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achine (SVM) classification model
based rational design of novel tetronic acid
derivatives as potent insecticidal and acaricidal
agents†

Ting-Ting Yao,a Jing-Li Cheng,a Bing-Rong Xu,a Min-Zhe Zhang,b Yong-Zhou Hu,b

Jin-Hao Zhao*a and Xiao-Wu Dong*b

A novel support vector machine (SVM) classification model was established for distinguishing potent and

weak/inactive insecticides. Classification model-based rational design of novel tetronic acid derivatives

was then performed to choose the preferable site of spirotetramat for chemical modification.

Afterwards, eleven C50-oxime ether-derived spirotetramat analogues, which are indicated as “potent

class”, were synthesized and validated by biological assays, revealing that theoretical estimates are

significantly consistent with experimental activities of these compounds. To be of interest, the most

promising compound 91b exhibited excellent insecticidal and acaricidal activities. Moreover, molecular

docking was further implemented to propose the possible interaction mode of acetyl-CoA carboxylase

(ACCase) and compounds 91b, 91j, and 91k, providing some important and useful guidelines for further

development.
1 Introduction

Tetronic acid derivatives, such as spirotetramat, spirodiclofen
and spiromesifen (Fig. 1), have been developed as good insec-
ticides in modern agriculture for the control of a broad spec-
trum of insects, such as aphids, whiteies and psyllids, via the
inhibition of acetyl-CoA carboxylase (ACCase).1,2 Since the
unique targeting characteristic, this kind of compounds are
considered to be safer insecticides, rendering the scientists to
perform extensively chemical optimization to explore the
insecticide candidates with more potency and broader insecti-
cidal spectrum.3–5 So far, most of the efficient studies focused
on C-4 and C-8 site of spirotetramat skeleton via application of
traditional approaches, nevertheless, there are still some chal-
lenges needing to be addressed, such as low discovering efficacy
and limited activities against mites,6,7 promoting us to develop a
novel series of tetronic acid derivatives with broader insecticidal
spectrum, especially using more efficient method.
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Due to the valuable quantitative realizations about the effect
of functional groups for biological activities, some QSAR studies
have been reported to assist the discovery of insecticides.8–13 In
this eld, Moore et al. reported the pioneering QSAR work on the
acaricidal activities using the Hansch approach.8 Later, Saka-
shita et al. rstly demonstrated the application of quantum
chemical parameters in the establishment of QSAR model.9 In
addition to 2D-QSAR, Yang et al.10 and Okazawa et al.11 described
the development of 3D-QSAR models using CoMFA method to
probe the 3D-requirement of pesticides for biological activities.
To be of interest, it is also feasible for QSAR study of tetronic
acid derivatives. Yang et al. revealed that 3D-QSAR models of
CoMFA and CoMSIA with good predictive ability were con-
structed based on a series of phenylhydrazine substituted
tetronic acid derivatives, providing a practical tool for guiding
the design novel compounds.12 We also found that the insecti-
cidal activities of tetronic acid derivatives were remarkably
correlated with quantum chemical and physicochemical
parameters, including log P, LUMO, HOMO.13 So far, all of the
reported QSAR models of tetronic acids were performed with
Fig. 1 The structure of representative tetronic acid derivatives.
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regression approaches, thereby, they focused on only small
sample sets of certain tetronic acids, owing to some limitations
associated with regression methods: (1) the limited availability
of consistent data for modelling; (2) the potential experimental
error and interlaboratory variability present within the biolog-
ical data.14 In addition, the regression approaches mainly
resolved the quantitative prediction of the model for active
compounds, but ignoring the discrimination ability of the
model for active and inactive compounds. In order to circum-
vent the problems of regressionmethods, more andmore efforts
have been placed into the development of relative exible clas-
sication model, such as utilizing pattern recognition tech-
niques. In this eld, support vector machines (SVMs),15,16 have
been shown to perform well in the drug discovery process.17,18

Indeed, we have demonstrated the establishment and applica-
tion of SVM classication model in the identication of novel
vasorelaxant agents.19 To our knowledge, the classication
model in rational design of tetronic acid derivatives is not dis-
closed so far. Therefore, the establishment of a SVM classica-
tion model for recognising tetronic acid derivatives as
insecticide would still be of great interest.

Recently, we reported a series of spirotetramat derivatives
with potent insecticidal and acaricidal activities using tradi-
tional approach,3,13,20 however, the meticulous SARs of these
compounds are not very clear, which requires much more
effort to address these issues. Thus, we envisioned that the
classication model of insecticides can be constructed, and
that the rational design of novel insecticides can be accelerated
by the assistance of classication model. In connection with
our previous work on QSAR,19,21–25 herein, we reported the rst
example of SVM classication model for distinguishing struc-
turally diverse insecticides (n ¼ 86) using a large set of
molecular descriptors, and its successful application in
rational design of novel spirotetramat derivatives (Scheme 1),
affording a series of C50-oxime ether-derived analogues
91a–91k with good insecticidal activities against Aphis fabae.
To our delight, the most potent compound 91b also exhibited
potent acaricidal activity against Tetranychus cinnabarinus.
Furthermore, molecular docking was performed to explore the
potential binding mode of ACCase with these spirotetramat
derivatives.
Scheme 1 The establishment of SVM classification model and its applicat
as potent insecticidal and acaricidal agents.

49196 | RSC Adv., 2015, 5, 49195–49203
2 Computational method
2.1 Dataset

A total of 86 structurally diverse compounds (Fig. 2) with
different potency of insecticidal activities against Aphis fabae
were taken from the recent literatures,3,13,20,26 and randomly
divided into training and test set, consisting of 66 molecules in
training set and 20 molecules in test set. To reconcile the
insecticidal activity (I%) against Aphis fabae at different
concentrations (mg L�1), biological data was converted to
pseudo LD50 (pLD50) according to the following steps: the mass-
based concentration (mg L�1) was transferred to mole-based
one (C mmol L�1); insecticidal activity (I%) was then converted
to pLD50 (pLD50 ¼ �log C + log((100 � I)/I)). All of the
compounds were classied into potent set (with a pLD50 #

�3.00) or weak/inactive set (with a pLD50 > �3.00) on the basis
of pseudo LD50 (Table 1 and S1, ESI†). In general, the structures
of compounds were sketched and optimized using Discovery
Studio 2.5 soware package (Accelrys, Inc. San Diego, CA).
2.2 Descriptors calculation and selection

The optimized molecules were transferred into Dragon soware
(developed by Milano Chemometrics and QSAR Group)27 to
calculate constitutional descriptors, topological descriptors,
edge adjacency indices, burden eigenvalue descriptors, etc.
Aer the calculation of the molecular descriptors, those that
stayed constant for all molecules were eliminated, and pairs of
variables with a correlation coefficient greater than 0.80 were
classied as inter-correlated, and one of them in each correlated
pair was deleted. Then, the resultant pool of descriptors with
low correlation were further sent to a combined protocol of
stepwise multiple linear regression (Stepwise-MLR) and feature
selection (F-score),28 with aim to select the most relevant
descriptors for model building.
2.3 SVM modelling

The basic idea of SVM can be summarized as follows: (1) the
input vectors are mapped to a higher dimensional feature space
via kernel function; (2) linear division within the feature space
ion in rational design of novel C50-substituted spirotetramat derivatives

This journal is © The Royal Society of Chemistry 2015
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Fig. 2 The structures of insecticidal compounds 1–86 for SVM model development.
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was optimized to construct a hyperplane with the largest margin
separating classes of data. The decision function is as follow:

f ðxÞ ¼ sign

 Xl

i¼1

yiaiKðx; xiÞ þ b

!

where sign is simply a sign function, which returns +1 for
positive argument and �1 for a negative argument; yi is input
class label that takes a value of�1 or +1, xi is a set of descriptors.
K(x, xi) ¼ f(x)f(xi) is the kernel function, which is equal to the
inner product of vectors x and xi in the feature space f(x) and
f(xi).
2.4 Model validation

The quality of SVM model was measured by the values of
sensitivity (eqn (1)), specicity (eqn (2)), accuracy (eqn (3)) and
Matthews correlation coefficient (MCC) (eqn (4)). The value of
MCC varies from �1 (complete disagreement between predic-
tion of classes and observation) to +1 (perfect prediction), while
0 indicates a prediction no better than random.

Sensitivity ¼ TP

TPþ FN
(1)

Specificity ¼ TN

TNþ FP
(2)

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
(3)
This journal is © The Royal Society of Chemistry 2015
MCC ¼ TP� TN� FN� FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FNÞðTPþ FPÞðTNþ FNÞðTNþ FPÞp (4)

where TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives, and FN is the
number of false negatives.
2.5 Sequence analysis and molecular docking

The amino acidic sequences of binding domain of ACCase
enzyme from yeast and insects (Panonychus citri and Tetra-
nychus urticae) were obtained from Swiss-Prot/TrEMBL data-
base (http://expasy.org/). At rst, we aligned them using
alignment tool in Discovery studio 2.5 (Accelrys, Inc. San
Diego, CA). Then, the molecular docking were performed by
using LigandFit module embedded in Discovery Studio 2.5.29 At
rst, the crystal structure of ACCase's CT domain of yeast was
obtained from PDB bank (entry code: 3PGQ), and then was
removed water molecules and charged by CHARMm force eld.
The active site was derived from the volume of co-crystal
ligand. For generation of the ligands' conformations, variable
numbers of Monte Carlo simulations were employed. All the
calculations during the docking steps were performed under
the PLP energy grid. A short rigid body minimization was then
performed and 50 preferable poses were saved according to
their dock score. Based on the dock score and visual inspec-
tion, the most possible pose was selected for the further
analysis.
RSC Adv., 2015, 5, 49195–49203 | 49197
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Table 1 Compounds in training set and test set for SVM classificationmodel, and their corresponding experimental and theoretical classification

Compd
Exp. classa

(pLD50 against A. fabae) SVM-pred. classc Compd
Exp. classa

(pLD50 against A. fabae) SVM-pred. classc

1 �1 (�2.57) �1 44 1 (<�5.31) 1
2 �1 (�2.65) �1 45 �1 (�1.82) 1
3 �1 (�1.99) �1 46 �1 (�2.10) �1
4b �1 (�1.90) �1 47 �1 (�2.47) �1
5b �1 (�2.82) �1 48 �1 (�2.56) �1
6 �1 (�1.94) �1 49 �1 (�2.81) �1
7 �1 (�2.26) �1 50b �1 (�2.74) �1
8 �1 (�2.04) �1 51 1 (�3.17) 1
9b 1 (�3.10) 1 52 �1 (�2.55) �1
10 �1 (�1.69) �1 53 �1 (�2.41) �1
11 �1 (�2.81) �1 54 �1 (�2.26) �1
12 �1 (�2.94) �1 55b 1 (�4.21) 1
13b 1 (�5.45) 1 56 1 (<�5.43) 1
14 1 (�3.23) 1 57 1 (�3.03) �1
15 1 (�3.66) 1 58 �1 (�1.80) �1
16 1 (�3.27) 1 59b �1 (�2.97) �1
17 1 (�3.51) 1 60 �1 (�1.58) 1
18b �1 (�2.82) 1 61 �1 (�2.98) �1
19 1 (�3.73) 1 62b �1 (�2.93) �1
20 �1 (�2.87) �1 63 �1 (�2.79) �1
21 �1 (�2.70) �1 64 �1 (�2.57) �1
22 1 (�3.54) 1 65 �1 (�2.92) �1
23b 1 (�3.43) 1 66 �1 (�2.78) �1
24 1 (�3.80) 1 67b �1 (�2.56) �1
25 1 (�3.30) 1 68 �1 (�2.68) �1
26 1 (�3.10) 1 69 �1 (�2.75) �1
27 1 (�3.89) 1 70b 1 (<�3.07) �1
28 1 (�4.16) 1 71 1 (<�4.08) 1
29 1 (�3.42) 1 72 1 (<�3.48) 1
30b 1 (�4.23) 1 73 1 (<�3.05) �1
31 1 (�3.51) 1 74 1 (<�4.06) �1
32 �1 (�2.54) �1 75b �1 (�1.69) 1
33 1 (�3.13) 1 76 �1 (>1.58) �1
34 �1 (�1.84) �1 77b �1 (�1.25) �1
35 �1 (�2.62) �1 78 �1 (�1.33) �1
36b �1 (�2.08) 1 79 �1 (>1.57) �1
37 �1 (�2.96) 1 80b �1 (�1.25) �1
38 �1 (�2.33) �1 81 �1 (�1.34) �1
39 1 (�3.79) 1 82 �1 (�1.36) �1
40b 1 (�3.17) �1 83b �1 (�1.16) �1
41 1 (�3.68) 1 84 �1 (�1.46) �1
42 1 (�3.09) 1 85 �1 (�1.61) �1
43 �1 (�2.71) �1 86 1 (<�3.36) 1

a Insecticidal activity scale against A. fabae: potent set with a pLD50 # �3.00 (1); weak/inactive set with a pLD50 > �3.00 (�1). b Test set. c The
insecticidal activities scale was estimated by SVM classication model.
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3 Results and discussion
3.1 Establishment of SVM classication model

Aer the correlation analysis, stepwise-MLR and feature selec-
tion, an optimal set of ve molecular descriptors (PW3, Lop,
R6m, EEig02r and BELm6, Table S2 and S3, ESI†), together with
the squared log P, were nally selected for the classication
modelling. Among them, squared log P is an equivalent
measure of lipophilicity, which was found to be most correlated
physicochemical parameters.13 In addition to log P, the topo-
logical descriptors (PW3 and Lop) are the numerical quantiers
of the molecular topology; the GETAWAY descriptor (R6m) is a
49198 | RSC Adv., 2015, 5, 49195–49203
geometrical descriptor encoding information on the effective
position of substituents and fragments in the molecular space;
the Edge adjacency indices (EEig02r) encodes the connectivity
between graph edges; the Burden eigenvalues (BELm6) can
characterize the diagonal elements with atom weights. Indeed,
all of these selected molecular descriptors provided the
geometrical and topological features of the tested compounds,
the features of which have been previously demonstrated to be
optimal selections in other QSAR study.30,31

Because of the usage of radial basis function (RBF) as kernel
function during SVM-classication modelling, the essential
parameter RBF (g) and capacity parameter (C) are needed to be
This journal is © The Royal Society of Chemistry 2015
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Fig. 3 The 3D plot of cross-validation accuracy for SVMs when
choosing the optimal parameters g and C.

Scheme 2 Synthetic route for target compounds 91a–91k.
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optimized. Initially, intensive grid search method was applied
in the process of leave-one-out (LOO) cross-validation to nd the
optimal parameters of g and C, ranging from �8 to 8 of log2 g
and log2 C with increment steps of 1, respectively. To our
delight, the best LOO cross-validation result (accuracy: 89.4%,
Fig. 3) was obtained with an optimal value of 1 and 4 for g and
C, respectively. With the optimal parameters in hands, the SVM
model was developed from the training set with a statistically
signicant performance (sensitivity: 92.3%, specicity: 97.5%,
accuracy: 95.5%, MCC: 90.7%). For the twenty compounds in
test set, the SVM model can correctly classify seventeen
compounds (sensitivity: 85.7%, specicity: 84.6%, accuracy
85.0% and MCC 70.6%) (Fig. 4), the result of which demon-
strated the accuracy and reliability of the established SVM
model in categorizing structurally diverse compounds with
potent or weak/inactive insecticidal activities.

3.2 Classication model-based rational design of novel
insecticides

Considering that derivatives of spirotetramat shows good
insecticidal activities but weak acaricidal activities, and the
oxime ether moiety is a potent acaricidal pharmacophore,32 we
introduced oxime ether group to different site of spirotetramat
skeleton, affording a set of analogues (Fig. S1, ESI†). Further-
more, the established SVM classication model was used to
predict the potency of these newly designed compounds. To be
Fig. 4 Performance of the SVM classification model for the training
and test sets.

This journal is © The Royal Society of Chemistry 2015
of interest, all the compounds with oxime ether moiety onto C-50

position of spirotetramat skeleton were estimated as potent
insecticidal compounds, suggesting that C-50 position is
optimal for chemical modication. Accordingly, eleven
compounds 91a–91k (Scheme 2) bearing diverse side chains
(e.g.methyl, vinyl, phenyl) on C-4 position of spirotetramat were
selected for further study.
3.3 The synthesis of tetronic acid derivatives 91a–91k

The synthetic pathway of compounds 91a–91k is outlined in
Scheme 2. Initially, compound 88 was obtained through Die-
ckmann condensation of 87 in presence of potassium tert-bu-
toxide. Successively esterication of 88 with ethyl chloroformate
in room temperature afforded compound 89, which was further
oxidized by ceric ammonium nitrate (CAN) to afford 90. The
target compound 91a was prepared by condensation of 90 with
methoxyamine hydrochloride in anhydrous methanol. Finally,
the synthesis of compounds 91b–91k was achieved by acylation
of 91a with corresponding acyl chloride in presence of DMAP in
CH2Cl2. The structures of compounds prepared were elucidated
by 1H NMR, 13C NMR and HRMS.
3.4 Biological assay

The insecticidal activities of compound 91a–91k were biologi-
cally evaluated against Aphis fabae, with commercial insecticide
spirotetramat serving as a positive control. All of the biological
assays were performed under a concentration of 100 mg L�1. To
our delight, the results indicated that most of the tested
compounds showed potent insecticidal activities (Table 2), with
more than 80% mortality rates against Aphis fabae, except for
two misclassied compounds 91h and 91j with weak insecti-
cidal activities, demonstrating the excellent predictive perfor-
mance of SVM classication model. Moreover, three
compounds 91b, 91c and 91k with more than 90% mortality
rates against Aphis fabae were further tested for their acaricidal
activities against Tetranychus cinnabarinus, with aim to evaluate
their insecticidal spectrum. To be of interest, compound 91b
RSC Adv., 2015, 5, 49195–49203 | 49199
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Table 2 Insecticidal and acaricidal activities of target compounds 91a–91k

Entry Exp. classa (pLD50) Mortality against A. fabaeb (LC50)
c Mortality against T. cinnabarinusb (LC50)

c

91a 1(�3.10) 84% —
91b 1(�3.92) 97% (13.7 mg L�1) 93% (8.9 mg L�1)
91c 1(�3.46) 92% 45%
91d 1(�3.09) 85% —
91e 1(�3.19) 88% —
91f 1(�3.24) 89% —
91g 1(�3.04) 84% —
91h �1(�1.67)d 19% —
91i 1(�3.03) 84% —
91j �1(�1.59)d 16% —
91k 1(�3.33) 91% 13%
Spirotetramat 100% (5.1 mg L�1)c 75% (9.8 mg L�1)c

a The classication of compounds was provided by SVM model. b Mortality rate was determined at 100 mg L�1. c Lethal concentration 50 value.
d Misclassied compounds.

Fig. 5 Interaction mode of ACCase and 91b (A), 91j (B) and 91k
(C) proposed by molecular docking and their molecular overlay (D).
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exhibited promising acaricidal activity with a LC50 value of
8.9 mg L�1, revealing that the introduction of oxime ether
moiety can exactly improve acaricidal activity of spirotetramat,
and possibly extend the scope of application as miticide.

3.5 Molecular docking

In order to give a structural illustration for the experimental
results above, molecular docking was performed to further
explore the mechanism of newly developed spirotetramat
derivatives. Due to the absence of crystal structure of carboxyl-
transferase domain of ACCase from insects, the structure from
yeast (PDB ID code: 3PGQ) was employed as a surrogate, which
shares a high sequence similarity (57.4% and 57.4%, respec-
tively) with insects Panonychus citri and Tetranychus urticae,
especially in the ligand binding site (92.2% and 92.2%,
respectively) (Fig. S2, ESI†). The result of docking study showed
that two hydrogen bonds and additional hydrophobic interac-
tion served as important anchoring points for 91b. As shown in
Fig. 5A, the carbonyl oxygen on pyrrolone ring of 91b is
hydrogen-bonded to the amides of Ala1627 (2.68 Å) and Ile1735
(3.20 Å), and the oxygen of ethyl ester on the pyrrolone ring of
91b formed additional H-bond with the amide of Gly1998
(2.17 Å), and the toluene group attached to pyrrolone ring of 91b
inserted into a hydrophobic pocket surrounded by Ile1735,
Ala1672, Val2001, Val2002 and Phe1956 and Tyr1738. On the
contrast, the binding mode of 91j, which exhibited very weak
insecticidal activities, was also docked into ACCase of yeast. To
be of interest, no hydrogen bond were observed in proposed
ACCase–91j complex (Fig. 5B), in which the orientation of
carbonyl and the attached ethyl ester moiety on the pyrrolone
ring was remarkably affected by the cinnamoyl group. Instead of
toluene group attached to pyrrolone ring of 91j, the cinnamoyl
group inserted into the hydrophobic pocket surrounded by
Ile1735, Ala1672, Val2001, Val2002 and Phe1956 and Tyr1738.
Thus, the proposed interaction mode of 91j is quite different
from that of 91b, which may cause their signicantly different
potency of insecticidal activities. Furthermore, molecular
docking of 91k was also performed to investigate the effect of
more exible moiety (phenylpropionyl group) on the binding
49200 | RSC Adv., 2015, 5, 49195–49203
conformation of 91k, revealing that the phenylpropionyl group
can easily point to the surface of the binding pocket of ACCase,
and the negative effect of the orientation of carbonyl on pyrro-
lone ring can be attenuated, thereby the essential hydrogen
bond between the carbonyl oxygen on pyrrolone ring of 91k and
the amides of Ala1627 (2.55 Å) and Ile1735 (2.94 Å) can be
observed (Fig. 5C). However, we could not exclude the other
possibility caused by structural features for their different effi-
cacy, considering that the ACCase used in present study is
neither from Aphis fabae nor Tetranychus cinnabarinus.

4 Conclusion

Herein, we developed a SVM classication model with a statis-
tically signicant performance against training set and test set.
This journal is © The Royal Society of Chemistry 2015
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This model was further applied to rationally design novel
tetronic acid derivatives as insecticide, resulting in the devel-
opment of nine C-50-oxime ether-derived tetronic acids with
potent insecticidal activities against Aphis fabae. To be of
interest, the most promising compound 91b exhibited both of
excellent insecticidal and acaricidal activities. The interaction
modes between the potential target ACCase and compound 91b,
91j and 91k were further explored to give a structural explana-
tion for their different insecticidal activities. The good accor-
dance of experimental activities and theoretical estimates
renders this strategy a good complement in further develop-
ment of novel insecticides.

5 Experimental section
5.1 Chemistry
1H NMR and 13C NMR spectra were recorded at 500MHz using a
Bruker AVANCE III spectrometer in CDCl3, or DMSO-d6 solu-
tion, with tetramethylsilane (TMS) serving as internal standard.
Chemical shi values (d) were reported in ppm. MALDI-TOF
mass spectra were conducted on a Waters GCT Premier
GC-TOFMA mass spectrometer. The melting points were
determined on an X-4 binocular microscope melting point
apparatus (Beijing Tech Instruments Co., Beijing, China) and
are uncorrected. All of the reagents were distilled and dried by
standard techniques prior to use when necessary.

5.1.1 Synthesis of cis-3-(2,5-dimethylphenyl)-4-hydroxy-8-
methoxy-1-azaspiro[4.5]-dec-3-en-2-one (88). Potassium tert-bu-
toxide (5.1 g, 45 mmol) was initially charged in 25 mL of
dimethyl formamide and cooled on ice. A solution of 87 (30 g, 90
mmol) in 150 mL dimethyl formamide was added dropwise at
0 to 10 �C, and the mixture was stirred at 90 �C overnight. Aer
removal of dimethyl formamide, residue was acidied with
hydrochloric acid and partitioned between water and ethyl
acetate. The organic layer was dried and distilled off. The
mixture was puried by column chromatography on silica gel
(dichloromethane/ethyl acetate ¼ 1 : 1) to give 88. Yield: 20.34 g
(79% of theory); m.p. 225–227 �C; 1H NMR (500 MHz, CDCl3): d
7.08 (d, J¼ 8 Hz, 1H, Ph–H), 6.99 (d, J¼ 8 Hz, 1H, Ph–H), 6.89 (s,
1H, Ph–H), 3.26 (s, 3H, –OCH3), 3.10 (s, 1H, –NH), 1.41–1.98 (m,
8H, cyclohexane-H8); TOF-MS: calcd for C18H23NO3 301.1678,
found 301.1674.

5.1.2 Synthesis of cis-3-(2,5-dimethylphenyl)-8-methoxy-2-
oxo-1-azaspiro[4.5]-dec-3-ene-4-ethylcarbonate (89). To a solu-
tion of 88 (7.89 g, 23.6 mmol) and triethylamine (5.29 g,
52.3 mmol) in dichloromethane (15 mL) was added dropwise a
solution of ethyl chloroformate (4.26 g, 39.3 mmol) in anhy-
drous dichloromethane (80 mL). The reaction mixture was
stirred at room temperature for 3.5 h until the reaction was
completed, indicated by TLC. Aerward, the mixture obtained
was extracted by dichloromethane, and the organic layer was
concentrated and puried by column chromatography on silica
gel with petroleum ether and ethyl acetate (v/v¼ 3 : 1) to give 89
as a white solid. Yield: 6.3 g (75% of theory); m.p. 141–142 �C;
1H NMR (500 MHz, CDCl3): d 7.12 (d, J¼ 8.0 Hz, 1H, Ph–H), 7.05
(d, J ¼ 8.0 Hz, 1H, Ph–H), 6.99 (s, 1H, Ph–H), 6.78 (s, 1H, –NH–),
4.04 (q, J ¼ 7.0 Hz, 2H, –O–CH2CH3), 3.39 (s, 3H, –OCH3), 3.27–
This journal is © The Royal Society of Chemistry 2015
3.22 (m, 1H, CH3OCH–), 2.30 (s, 3H, Ar–CH3), 2.27 (s, 3H, Ar–
CH3), 1.40–2.21 (m, 8H, cyclohexane-H8), 1.12 (q, J¼ 7.0 Hz, 3H,
–O–CH2CH3); TOF-MS: calcd for C21H27NO5 373.1889, found
373.1886.

5.1.3 Synthesis of cis-3-(5-formyl-2-methylphenyl)-8-methoxy-
2-oxo-1-azaspiro[4.5]-dec-3-ene-4-ethylcarbonate (90). Compound
89 (18.7 g, 52 mmol), ceric ammonium nitrate (0.75 g, 5 mmol)
and sodium bromate (0.75 g, 5 mmol) were added to acetonitrile
(100 mL). The mixture was stirred for 12 h in the temperature
ranging from 80 to 85 �C, and solvent was removed in vacuo.
Water was added to the residue, and the aqueous solution was
extracted with ethyl acetate. The separated organic layer was
dried over anhydrous Na2SO4, ltered and concentrated. The
mixture obtained was puried by column chromatography on
silica gel with petroleum ether and ethyl acetate (v/v ¼ 2 : 1) to
give 90 as a white solid. Yield: 6.20 g (32% of theory); m.p. 197–
198 �C; 1H NMR (500 MHz, CDCl3): d 9.97 (s, 1H, –CHO), 7.80–
7.78 (dd, J1¼ 2 Hz, J2¼ 8 Hz, 1H, Ar–H), 7.69 (d, J¼ 2 Hz, 1H, Ar–
H), 7.43 (d, J ¼ 8 Hz, 1H, Ar–H), 6.60 (s, 1H, –NH–), 4.05–4.01 (q,
2H, –CH2–CH3), 3.41 (s, 3H, –OCH3), 3.29–3.25 (m, 1H, CH3OCH–

), 2.39 (s, 3H, Me–Ar), 2.26–1.39 (m, 8H, cyclohexane-H8), 1.10 (t,
3H, –CH2–CH3);

13C NMR (125MHz, CDCl3): d 191.6, 169.3, 165.7,
149.8, 145.2, 134.4, 131.6, 131.2, 129.5, 129.4, 120.4, 65.9, 60.6,
55.9, 31.6, 28.33, 20.25, 13.74; TOF-MS: calcd for C21H25NO6

387.1682, found 387.1684.
5.1.4 Synthesis of cis-3-[5-(methoxyimino-methyl)-2-methyl-

phenyl]-8-methoxy-2-oxo-1-azaspiro[4.5]dec-3-en-4-ethylcarbonate
(91a). To a solution of 90 (2.0 g, 5.37 mmol) in 20 mL anhydrous
methanol was added methoxyamine hydrochloride (756 mg,
6.20 mmol). The mixture was stirred at room temperature for
2 h and monitored by TLC. Aer removal of the solution,
residue was poured into ice water (60 mL) to give crude product.
The mixture was puried by column chromatography on silica
gel with petroleum ether and ethyl acetate (v/v ¼ 3 : 1) to give
91a as a pale yellow oil. Yield: 1.97 g (88% of theory); 1H NMR
(500 MHz, CDCl3): d 8.02 (s, 1H, Ph–CH]N–), 7.52–7.50 (m, 1H,
Ph–H), 7.35 (d, J ¼ 1.55 Hz, 1H, Ph–H), 7.25 (d, J ¼ 8.0 Hz, 1H,
Ph–H), 6.58 (s, 1H, –NH–), 4.04–4.02 (m, 2H, CH3–CH2–O), 3.95
(s, 3H, ]N–OCH3), 3.40 (s, 3H, –OCH3), 3.25–3.23 (m, 1H,
CH3OCH–), 2.30 (s, 3H, Me–Ar), 2.24–1.41 (m, 8H, cyclohexane-
H8), 1.13–1.11 (m, 3H, CH3–CH2–); TOF-MS: calcd for
C22H28N2O6 416.1947, found 416.1952.

5.1.5 Synthesis of cis-3-[5-(methoxyimino-methyl)-2-methyl-
phenyl]-8-methoxy-2-oxo-1-azaspiro[4.5]dec-3-en-4-acetic acid
ester (91b). Compound 91a (100 mg, 0.24 mmol) was initially
charged in 8 mL of anhydrous dichloromethane, and 4-dime-
thylamiopryidine (118 mg, 1.00 mmol) was added. The mixture
was stirred at room temperature for 3 h. Aerward, acetyl
chloride (29 mg, 0.36 mmol) in 2 mL anhydrous dichloro-
methane was added dropwise. Then, the mixture was stirred for
another 1 h at room temperature until the reaction was
completed, indicated by TLC. The reaction mixture was poured
into ice water (60 mL) and extracted by dichloromethane
(10 mL � 3). The organic layer was successively washed with 5%
dilute hydrochloric acid (10 mL � 3), 5% aqueous sodium
bicarbonate (10 mL � 3), saturated brine (10 mL� 3), and dried
over anhydrous Na2SO4. Aer ltration, the solvent was distilled
RSC Adv., 2015, 5, 49195–49203 | 49201
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off, and residue was puried by column chromatography on
silica gel with petroleum ether and ethyl acetate (v/v ¼ 4 : 1) to
give 91b as a yellow solid. Yield: 62.8 mg (68% of theory); m.p.
180–185 �C; 1H NMR (500 MHz, CDCl3): d 8.02 (s, 1H, Ph–CH]

N–), 7.50–7.48 (m, 1H, Ph–H), 7.31 (d, J ¼ 1.55 Hz, 1H, Ph–H),
7.24 (d, J¼ 8.0 Hz, 1H, Ph–H), 6.60 (s, 1H, –NH–), 3.95 (s, 3H,]
N–OCH3), 3.40 (s, 3H, –OCH3), 3.26–3.22 (m, 1H, CH3OCH–),
2.30 (s, 3H, Me–Ar), 2.23–1.40 (m, 8H, cyclohexane-H8), 2.08 (s,
3H, O]C–CH3); TOF-MS: calcd for C21H26N2O5 386.1842, found
386.1843.

5.1.6 The identical method of 91b was used to synthesize
and purify compounds 91c–91k

Analytical data for 91c. Yield: 35%; 1H NMR (500 MHz,
CDCl3): d 8.01 (s, 1H, Ph–CH]N–), 7.48–7.46 (d, J ¼ 8.0 Hz, 1H,
Ph–H), 7.31 (s, 1H, Ph–H), 7.25–7.23 (d, J ¼ 8.0 Hz, 1H, Ph–H),
6.71 (s, 1H, Ph–H), 3.96 (s, 3H, ]N–OCH3), 3.67–3.63 (m, 1H,
CH2]CH–), 3.39 (s, 3H, –OCH3), 3.25–3.21 (m, 1H, CH3OCH–),
2.84–2.80 (m, 2H, CH2]CH–), 2.30 (s, 3H, Me–Ar), 2.23–1.40 (m,
8H, cyclohexane-H8); TOF-MS: calcd for C22H26N2O5 398.1842,
found 398.1838.

Analytical data for 91d. Yield: 38%; m.p. 192–194 �C; 1H NMR
(500 MHz, CDCl3): d 8.01 (s, 1H, Ph–CH]N–), 7.87–7.85 (m,
2H, Ph–H), 7.43 (dd, J1 ¼ J2 ¼ 1.7 Hz, 1H, Ph–H), 7.37 (d, J¼ 1.6
Hz, 1H, Ph–H), 7.23 (d, J ¼ 8.0 Hz, 2H, Ph–H), 7.18 (d, J ¼ 8.0
Hz, 1H, Ph–H), 6.62 (s, 1H, –NH–), 3.93 (s, 3H,]N–OCH3), 3.38
(s, 3H, –OCH3), 3.23–3.21 (m, 1H, CH3OCH–), 2.43 (s, 3H, Me–
Ar), 2.33 (s, 3H, Me–Ar), 2.24–1.43 (m, 8H, cyclohexane-H8);

13C
NMR (125 MHz, CDCl3): d 170.1, 165.6, 161.5, 148.45, 147.34,
145.4, 139.82, 139.37, 130.7, 130.6, 130.5, 130.3, 129.7, 129.6,
129.5, 129.4, 129.2, 128.6, 127.4, 126.6, 126.2, 124.9, 122.2,
119.9, 61.9, 60.9, 55.7, 31.9, 28.3, 21.8, 19.8; TOF-MS: calcd for
C27H30N2O5 462.2155, found 462.2157.

Analytical data for 91e. Yield: 42%; m.p. 199–201 �C; 1H NMR
(500 MHz, CDCl3): d 8.03 (s, 1H, Ph–CH]N–), 7.72–7.70 (m, 1H,
Ph–H), 7.53–7.51 (m, 1H, Ph–H), 7.43 (dd, J1 ¼ J2 ¼ 1.65 Hz, 1H,
Ph–H), 7.40 (d, J¼ 1.45 Hz, 1H, Ph–H), 7.22–7.20 (m, 1H, Ph–H),
6.98–6.96 (m, 2H, Ph–H), 6.54 (s, 1H, –NH–), 3.94 (s, 3H, ]N–
OCH3), 3.87 (s, 3H, Ar–OCH3), 3.39 (s, 3H, –OCH3), 3.23–3.21 (m,
1H, CH3OCH–), 2.35 (s, 3H, Me–Ar), 2.24–1.40 (m, 8H, cyclo-
hexane-H8); TOF-MS: calcd for C27H30N2O6 478.2104, found
478.2102.

Analytical data for 91f. Yield: 39%; 1H NMR (500MHz, CDCl3):
d 7.96 (s, 1H, Ph–CH]N–), 7.49–7.46 (m, 3H, Ph–H), 7.38–7.36
(m, 1H, Ph–H), 7.21–7.19 (m, 2H, Ph–H), 7.08–7.06 (m, 2H, Ph–
H), 6.47 (s, 1H, –NH–), 3.97 (s, 3H, ]N–OCH3), 3.62 (s, 2H, Ph–
CH2–COO–), 3.38 (s, 3H, –OCH3), 3.22–3.20 (m, 1H, CH3OCH–),
2.33 (s, 3H, Me–Ar), 2.14–1.34 (m, 8H, cyclohexane-H8); TOF-MS:
calcd for C27H30N2O5 462.2155, found 462.2166.

Analytical data for 91g. Yield: 30%; 1H NMR (500 MHz,
CDCl3): d 7.95 (s, 1H, Ph–CH]N–), 7.48–7.42 (m, 1H, Ph–H),
7.26–7.16 (m, 4H, Ph–H), 7.08–7.06 (m, 1H, Ph–H), 6.94–6.92
(m, 1H, Ph–H), 6.54 (s, 1H, –NH–), 3.96 (s, 3H, ]N–OCH3), 3.57
(s, 2H, Ph–CH2–COO–), 3.38 (s, 3H, –OCH3), 3.26–3.19 (m, 1H,
CH3OCH–), 2.34 (s, 3H, Me–Ar), 2.23 (s, 3H, Me–Ar), 2.18–1.38
(m, 8H, cyclohexane-H8); TOF-MS: calcd for C28H32N2O5

476.2311, found 476.2309.
49202 | RSC Adv., 2015, 5, 49195–49203
Analytical data for 91h. Yield: 34%; m.p. 184–186 �C; 1H NMR
(500 MHz, CDCl3): d 7.99 (s, 1H, Ph–CH]N–), 7.62 (d, J ¼ 15.9
Hz, 1H, Ar–CH]CH), 7.47–7.45 (m, 3H, Ph–H), 7.35 (d, J ¼ 1.6
Hz, 1H, Ph–H), 7.22 (d, J ¼ 7.95 Hz, 1H, Ph–H), 6.92–6.90 (m,
2H, Ph–H), 6.52 (s, 1H, –NH–), 6.24 (d, J ¼ 15.75 Hz, 1H, Ar–
CH]CH), 3.92 (s, 3H, ]N–OCH3), 3.86 (s, 3H, Ar–OCH3), 3.40
(s, 3H, –OCH3), 3.25–3.23 (m, 1H, CH3OCH–), 2.33 (s, 3H, Me–
Ar), 2.25–1.41 (m, 8H, cyclohexane-H8);

13C NMR (125 MHz,
CDCl3): d 169.9, 165.6, 162.2, 161.9, 148.5, 148.2, 139.4, 130.8,
130.3, 129.6, 129.3, 128.5, 126.8, 126.3, 121.9, 114.5, 112.1, 61.8,
60.7, 55.9, 55.5, 31.9, 28.5, 21.5, 19.8. TOF-MS: calcd for
C29H32N2O6 504.2260, found 504.2265.

Analytical data for 91i. Yield: 29%; m.p. 159–161 �C; 1H NMR
(500 MHz, CDCl3): d 8.01 (s, 1H, Ph–CH]N–), 7.63 (d, J¼ 16 Hz,
1H, Ph–CH]CH–), 7.51–7.49 (m, 2H, Ph–H), 7.05–7.03 (m, 3H,
Ph–H), 6.97 (d, J¼ 2.0 Hz, 2H, Ph–H), 6.54 (s, 1H, –NH–), 6.33 (d,
J ¼ 16 Hz, 2H, Ph–CH]CH–), 3.94 (s, 3H, ]N–OCH3), 3.39 (s,
3H, –OCH3), 3.27–3.22 (m, 1H, CH3OCH–), 2.35 (s, 3H, Me–Ar),
2.22–1.38 (m, 8H, cyclohexane-H8); TOF-MS: calcd for
C28H29FN2O5 492.2061, found 492.2066.

Analytical data for 91j. Yield: 30%; 1H NMR (500 MHz, CDCl3):
d 8.00 (s, 1H, Ph–CH]N–), 7.50–7.48 (m, 1H, Ph–H), 7.46–7.37
(m, 7H, Ph–H), 7.24 (d, J¼ 8.0 Hz, 1H, Ph–H), 6.32 (s, 1H, –NH–),
3.92 (s, 3H, ]N–OCH3), 3.40 (s, 3H, –OCH3), 3.28–3.24 (m, 1H,
CH3OCH–), 2.35 (s, 3H, Me–Ar), 2.27–1.41 (m, 8H, cyclohexane-
H8), 2.05–2.04 (m, 3H, O]C–CH3); TOF-MS: calcd for
C29H32N2O5 488.2311, found 488.2316.

Analytical data for 91k. Yield: 36%; m.p. 173–174 �C; 1H NMR
(500 MHz, CDCl3): d 8.01 (s, 1H, Ph–CH]N–), 7.48–7.45 (m,
1H, Ph–H), 7.31–7.01 (m, 7H, Ph–H), 6.55 (s, 1H, –NH–), 3.95 (s,
3H, ]N–OCH3), 3.40 (s, 3H, –OCH3), 3.12–3.08 (m, 1H,
CH3OCH–), 2.84–2.81 (m, 2H, Ph–CH2–CH2–), 2.71–2.68 (m,
2H, Ph–CH2–CH2–), 2.29 (s, 3H, Me–Ar), 2.14–1.27 (m, 8H,
cyclohexane-H8); TOF-MS: calcd for C28H32N2O5 476.2311,
found 476.2316.
5.2 Biological assay

All bioassays were performed on representative organisms
reared in the laboratory. The bioassay was tested for triplicates
at 25 � 1 �C to take consideration of inter-batch variability. The
variation of the measurement estimated over the total proce-
dure is known to be approximately �5%. Assessments were
made on a dead/alive basis, and mortality rates were corrected
using Abbott's formula. Evaluations were based on a percentage
scale of 0–100, where 0 indicates no activity and 100 represents
total kill. Spirotetramat was evaluated employing the same
procedure as standard.

5.2.1 Inhibition activity against bean aphids (Aphis fabae).
The insecticidal activities of target compounds and spirote-
tramat were evaluated according to the previously reported
procedure.33,34 Bean aphids were treated according to a slightly
modied FAO dip test. Tender soybean shoots with y healthy
third-instar nymphae were dipped into the diluted solutions of
the compounds for 5 s, then superuous uid was removed,
and the nymphae treated were placed in an conditioned room.
Mortality was calculated 72 h aer treatment. Each treatment
This journal is © The Royal Society of Chemistry 2015
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was performed in triplicates. These tests were implemented in
parallel with a control treated by water only.

5.2.2 Inhibition activity against carmine spider mite (Tet-
ranychus cinnabarinus). The larvicidal activities of target
compounds and the contrast spirotetramat against T. cinna-
barinus were measured on the basis of reported procedure.35,36

Fiy third-instar mite larvae were dipped in the diluted solu-
tions of tested chemicals for 5 s, the superuous liquor was
removed, and the larvae were kept in an conditioned room.
Mortality rates were recorded 72 h aer treatment. Each test was
replicated three folds. Control groups treated with water only
were tested under the same conditions.
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