REGULAR ARTICLE

A study of enantioselective syntheses by Sharpless asymmetric oxidation for aryl sulfoxides containing oxygen groups at the ortho position

TAKANORI TAKEI ${ }^{\mathrm{a}}$, JUN TAKAYAMA ${ }^{\mathrm{a}, *}{ }^{\text {© }}$, MEIYAN XUAN ${ }^{\mathrm{a}}$, MISA TOMODA ${ }^{\text {b }}$, HIROSHI MIYAMAE ${ }^{\text {b }}$ and TAKESHI SAKAMOTO ${ }^{\text {a }}$
${ }^{\text {a }}$ Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
${ }^{\text {b }}$ Faculty of Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
E-mail: takayama@josai.ac.jp

MS received 12 September 2020; revised 7 December 2020; accepted 20 December 2020

Abstract

While ortho-alkoxy aryl sulfoxides including various substituents were synthesized by Sharpless asymmetric oxidation reaction, we optimized the reaction conditions and screened better combination of starting materials to obtain high enantioselectivity. The result suggested new information that electronwithdrawing substituents on the aromatic ring have a strong influence upon enantioselectivity of the products. Also, several chiral ligands for Sharpless asymmetric oxidation reaction were evaluated to improve the enantioselectivity.

Keywords. Sharpless asymmetric oxidation; sulfide; chiral sulfoxide.

1. Introduction

In recent years, chiral sulfoxides are getting more attention as ligands and chiral auxiliaries for asymmetric syntheses. Chiral aryl sulfoxides are utilized in various reactions such as coupling reactions and asymmetric syntheses, taking advantage of their bulky structures. ${ }^{1-5}$ Moreover, they can also function as pharmacophores so that these structures have been incorporated into several pharmaceuticals, for instance, esomeprazole which is a proton pump inhibitor (PPI), and sparsomycin which has antitumor activity. ${ }^{6-8}$ Many studies have shown that the chirality of sulfoxides has a great influence on pharmacokinetics and pharmacological activity. ${ }^{9-18}$ Therefore, chiral sulfoxides are considered one of the most useful functional groups in organic and medicinal chemistry fields.

Asymmetric syntheses of chiral sulfoxides are classified into three groups, which are nucleophilic substitution reaction with chiral sulfinates, diastereoselective asymmetric syntheses reaction, and enantioselective asymmetric oxidation. ${ }^{19}$ Among these
methods, the enantioselective asymmetric oxidation is the most applicable since the reaction can be carried out under mild conditions when metal catalysts are used. For example, sulfoxidation by Sharpless asymmetric oxidation reactions, using $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ as Lewis acids, diethyl tartrate (DET) as ligands, and t-butyl hydroperoxide (TBHP) or similar oxidants, showed high enantioselectivities although they are fairly simple reactions. ${ }^{20-24}$ However, few enantioselective syntheses using Sharpless asymmetric oxidation have been reported for aryl sulfoxides containing functional group at the ortho position, and reproducible high enantioselectivity has not been yet achieved.

Figure 1 shows examples of aryl sulfoxide compounds having polar functional groups used as chiral ligands and intermediates of asymmetric syntheses. ${ }^{5,25-28}$ No simple enantioselective synthesis method has been reported for the Chiral ligands A in Figure 1. Some reported the syntheses of aryl sulfoxide compounds having polar functional groups at the ortho position to enhance the coordination force, ${ }^{29-31}$ yet most of them are nucleophilic substitution reactions on the chiral sulfoxide with protected polar

[^0]

Figure 1. Application of the chiral aryl sulfoxide incorporating oxygen functional groups at the ortho position.
functional groups, in addition, the reactant containing carbonyl groups could not be used in the synthesis. ${ }^{19,29}$

Others reported a synthesis method using a polypyridyl complex, ${ }^{32-34}$ but the method is not suitable for large-scale production. Therefore, we have focused on building simple enantioselective synthesis methods to obtain various chiral aryl sulfoxides containing oxygen functional group at the ortho position (Scheme 1). We accomplished this by Sharpless asymmetric oxidation after optimizing the reaction condition and screened the combinations of starting materials to achieve high enantioselectivity.

2. Experimental

2.1 Materials and physical measurements

All the reagents and solvents were purchased from commercial sources and used without further purification. Reagents for Sharpless oxidation such as $\mathrm{Ti}(\mathrm{O}-$ $i-\mathrm{Pr})_{4}$, diethyl tartrate (DET) and cumene hydroperoxide (CHP) were supplied from Sigma-Aldrich Co. (USA). Reagents for other reactions were supplied from Tokyo Chemical Industry Co., Ltd. (Japan), Wako Pure Chemical Industries Ltd. (Japan) and

$$
\begin{aligned}
& R_{1}, R_{4}=\text { various substituents } \\
& R_{2}=H, M e, M O M \\
& R_{3}=\text { alkyl groups }
\end{aligned}
$$

Scheme 1. Sharpless asymmetric oxidation for aryl sulfoxide containing ortho oxygen groups.

Kanto Chemical Co., Inc. (Japan). Flash chromatography was performed on $40-50 \mu \mathrm{~m}$ silica gel or $75 \mu \mathrm{~m}$ activated alumina. Enantiomeric excess (e.e.) was determined by HPLC using DAICEL CHIRALPAK IF or AY-3. ${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra were recorded on Varian-400MR using CDCl_{3} containing 0.03% TMS. IR spectra were recorded as neat or as solids in KBr pellets on IRAffinity-1. Mass spectra were recorded on JMS700(2). Elemental analyses were measured on CHN CORDER MT-6. Specific optical rotations were measured in CHCl_{3} on JASCOO P-1020 polarimeter. All measurements of X-ray crystal structure analysis were made on a R-AXIS RAPID diffractometer using filtered Mo-K α radiation $(\lambda=0.71075 \AA)$.

2.2 General procedure for methylation of phenol

NaOH in water, tetrabutylammonium bromide (TBAB) and dimethyl sulfate were added to the solution of phenol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and then the biphasic system was allowed to stir at room temperature for 2 h . The reaction mixture was extracted with EtOAc ($25 \mathrm{~mL} \times 2$), the organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The reaction mixture was purified by column chromatography on silica gel.

1-Bromo-2-methoxy-3-methylbenzene (2b) ${ }^{35}$ Compound $2 \mathbf{b}$ was followed by general procedure for methylation of phenol using 6-bromo-o-cresol 1b $(5.00 \mathrm{~g}, 26.7 \mathrm{mmol}), \mathrm{NaOH}(3.21 \mathrm{~g}, 80.2 \mathrm{mmol})$ in water (25 mL), TBAB ($0.862 \mathrm{~g}, 2.67 \mathrm{mmol}$), dimethyl sulfate ($6.17 \mathrm{~mL}, 61.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product $\mathbf{2 b}(5.91 \mathrm{~g},>99 \%)$ as a colorless oil.

5-Iodo-2-methoxy-1-methyl-3-[(R)-methylsulfinyl]benzene ($R-11$) Compound \boldsymbol{R}-11 was followed by general procedure for methylation of phenol using phenol \boldsymbol{R}-10 ($0.960 \mathrm{~g}, 3.24 \mathrm{mmol},>99 \%$ e.e.), NaOH $(0.389 \mathrm{~g}, 9.73 \mathrm{mmol})$ in water $(10 \mathrm{~mL})$, TBAB $(0.105$ $\mathrm{g}, 0.324 \mathrm{mmol})$, dimethyl sulfate ($0.71 \mathrm{~mL}, 7.46$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (1: 1) to give the product $\boldsymbol{R}-11(1.02 \mathrm{~g}$, $>99 \%,>99 \%$ e.e.) as a white solid. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $\mathrm{EtOH}=96: 4,0.75 \mathrm{~mL} /$ $\mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=34.82 \mathrm{~min}, t_{\text {minor }}=39.75 \mathrm{~min}$). M.p.: $80-82{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+94\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H})$,
2.25 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.5$, 152.7, 140.6, 134.0, 130.9, 88.6, 61.1, 42.3, 15.2; IR (KBr) 3054, 2954, 2915, 1462, 1416, 1254, 1215, 1162, $1061 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{SI}$ calcd $309.9524\left(\mathrm{M}^{+}\right)$, found 309.9545; Anal. Calcd for C_{9} $\mathrm{H}_{11} \mathrm{O}_{2} \mathrm{SI}: \mathrm{C}, 34.85 ; \mathrm{H}, 3.57$; $\mathrm{N}, 0.00$. found: $\mathrm{C}, 35.10$; H, 3.47; N, 0.00.

2.3 General procedure for protection by MOM group

$\mathrm{K}_{2} \mathrm{CO}_{3}$ and chloromethyl methyl ether (MOM-Cl) were added to the solution of phenol in dry acetone, and the mixture was allowed to stir at $40^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was concentrated by evaporation and extracted with EtOAc ($25 \mathrm{~mL} \times 2$), washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated by evaporation. The residue was purified by column chromatography on silica gel.

1-Bromo-2-(methoxymethoxy)benzene $(4 a)^{36}$ Compound $\mathbf{4 a}$ was followed by the general procedure for protection by MOM group using 2-bromophenol 1a $(5.00 \mathrm{~g}, 28.9 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(7.99 \mathrm{~g}, 57.8 \mathrm{mmol})$, MOM-Cl ($>80 \%, 4.0 \mathrm{~mL}, 42.2 \mathrm{mmol}$) in dry acetone $(25 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (10: 1) to give the product $4 \mathrm{a}(6.37 \mathrm{~g},>99 \%)$ as a colorless oil.

1-Bromo-2-(methoxymethoxy)-3-methylbenzene (4b) Compound $\mathbf{4 b}$ was followed by general procedure of protection by MOM group using 6-bromo-o-cresol 1b ($5.22 \mathrm{~g}, 27.9 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(7.71 \mathrm{~g}, 55.8 \mathrm{mmol})$, MOM-Cl ($>80 \%, 3.9 \mathrm{~mL}, 40.7 \mathrm{mmol}$) in dry acetone $(30 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (10: 1) to give the product $\mathbf{4 b}(6.40 \mathrm{~g}, 99 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39$ (dd, $J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, 2.37 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.1$, $133.8,131.0,130.3,125.3,117.3,99.5,57.7,17.3$; IR (neat) 2954, 2934, 1458, 1159, 1072, $960 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{9} \mathrm{H}_{11}{ }^{79} \mathrm{BrO}_{2}$ calcd $229.9942\left(\mathrm{M}^{+}\right)$, found 229.9928, $\mathrm{C}_{9} \mathrm{H}_{11}{ }^{81} \mathrm{BrO}_{2}$ calcd $231.9922\left(\mathrm{M}^{+}\right)$, found 231.9902 .

2-Bromo-1-(methoxymethoxy)-4-methylbenzene $(4 c)^{37}$ Compound $\mathbf{4 c}$ was followed by the general procedure of protection by MOM group using 2-bromo-p-cresol 1c ($5.00 \mathrm{~g}, 26.7 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(7.40 \mathrm{~g}, 53.5 \mathrm{mmol})$, MOM-Cl $(>80 \%, 3.7 \mathrm{~mL}$, 39.0 mmol) in dry acetone (30 mL). The reaction mixture was purified by column chromatography on
silica gel using hexane/EtOAc (10: 1) to give the product $4 \mathrm{c}(5.55 \mathrm{~g}, 90 \%)$ as a colorless oil.

1-Bromo-4-fluoro-2-(methoxymethoxy)benzene
$(4 d)^{38}$ Compound $4 \mathbf{d}$ was followed by the general procedure of protection by MOM group using 2-bromo-5-fluorophenol 1d ($5.00 \mathrm{~g}, 26.2 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(7.24 \mathrm{~g}, 52.4 \mathrm{mmol})$, MOM-Cl $(>80 \%, 3.6$ $\mathrm{mL}, 38.2 \mathrm{mmol}$) in dry acetone (25 mL). The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (10: 1) to give the product $4 \mathbf{d}(6.07 \mathrm{~g}, 99 \%)$ as a colorless oil.

2-Bromo-4-fluoro-1-(methoxymethoxy)benzene $(4 e)^{39}$ Compound $4 \mathbf{e}$ was followed by general procedure of protection by MOM group using 2-bromo-4fluorophenol $1 \mathrm{e}(5.00 \mathrm{~g}, 26.2 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(7.24 \mathrm{~g}$, 52.4 mmol), MOM-Cl ($>80 \%, 3.6 \mathrm{~mL}, 38.2 \mathrm{mmol}$) in dry acetone $(25 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (10: 1) to give the product $4 \mathrm{e}(6.02 \mathrm{~g}$, 98%) as a colorless oil.

1-Bromo-3-methoxy-2-(methoxymethoxy)benzene $(4 f)^{36}$ Compound $\mathbf{4 f}$ was followed by general procedure of protection by MOM group using 2-bromo-6methoxyphenol if ($3.00 \mathrm{~g}, 14.8 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(4.09 \mathrm{~g}, 29.6 \mathrm{mmol}), \mathrm{MOM}-\mathrm{Cl}(>80 \%, 2.1 \mathrm{~mL}, 21.6$ $\mathrm{mmol})$ in dry acetone $(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (10: 1) to give the product $4 f$ $(3.81 \mathrm{~g},>99 \%)$ as a colorless oil.

2-Bromo-4-methoxy-1-(methoxymethoxy)benzene $(4 \mathrm{~g})^{40}$ Compound $\mathbf{4 g}$ was followed by general procedure of protection by MOM group using 2-bromo-4methoxyphenol $\mathbf{1 g}(1.00 \mathrm{~g}, 4.93 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.35$ $\mathrm{g}, \quad 9.80 \mathrm{mmol}), \quad \mathrm{MOM}-\mathrm{Cl}(>80 \%, 0.68 \mathrm{~mL}$, $7.15 \mathrm{mmol})$ in dry acetone (10 mL). The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (30: 1) to give the product $\mathbf{4 g}(1.13 \mathrm{~g}, 92 \%)$ as a colorless oil.

2-Bromo-1-(methoxymethoxy)-4-nitrobenzene $(4 h)^{41}$ Compound $4 \mathbf{h}$ was followed by the general procedure of protection by MOM group using 2-bromo-4-nitrophenol $\mathbf{1 h}(3.73 \mathrm{~g}, 17.1 \mathrm{mmol})$, $\mathrm{K}_{2} \mathrm{CO}_{3}(4.73 \mathrm{~g}, 34.2 \mathrm{mmol})$, MOM-Cl $(>80 \%$, $2.4 \mathrm{~mL}, 25.0 \mathrm{mmol})$ in dry acetone (10 mL). The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (10: 1) to give the product $\mathbf{4 h}(4.35 \mathrm{~g}, 97 \%)$ as a white solid.

Methyl 3-bromo-4-(methoxymethoxy)benzoate ($4 i)^{42}$ Compound $4 \mathbf{i}$ was followed by the general procedure of protection by MOM group using methyl 3-bromo-4hydroxybenzoate 1 i ($5.00 \mathrm{~g}, 21.6 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(5.98 \mathrm{~g}, 43.3 \mathrm{mmol}), \mathrm{MOM}-\mathrm{Cl}(>80 \%, 3.0 \mathrm{~mL}, 31.6$ mmol) in dry acetone (35 mL). The reaction mixture
was purified by column chromatography on silica gel using hexane/EtOAc (10: 1) to give the product $\mathbf{4 i}$ $(5.81 \mathrm{~g}, 98 \%)$ as a white solid.

3-Bromo-4-(methoxymethoxy)benzaldehyde $(4 j)^{43}$ Compound $\mathbf{4} \mathbf{j}$ was followed by the general procedure of protection by MOM group using 3-bromo-4-hydroxybenzaldehyde $\mathbf{1 j}$ ($5.00 \mathrm{~g}, 24.9 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(6.88 \mathrm{~g}, 49.7 \mathrm{mmol}), \mathrm{MOM}-\mathrm{Cl}(>80 \%, 3.5 \mathrm{~mL}$, 36.3 mmol) in dry acetone (35 mL). The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (10: 1) to give the product $\mathbf{4 j}(5.94 \mathrm{~g}, 97 \%)$ as a white solid.

1-(Methoxymethoxy)-2-(methylsulfanyl)-4-nitrobenzene (5h) Compound $\mathbf{5 h}$ was followed by general procedure of protection by MOM group using phenol $16(0.290 \mathrm{~g}, 1.57 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.433 \mathrm{~g}$, 3.13 mmol), MOM-Cl ($>80 \%, 0.22 \mathrm{~mL}, 2.29$ $\mathrm{mmol})$ in dry acetone $(5.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (8: 1) to give the product $5 \mathrm{~h}(0.344 \mathrm{~g}, 96 \%)$ as a pale yellow solid. M.p.: $79-81{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00$ (dd, $J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H})$, $2.51(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.0$, 142.7, 130.8, 121.5, 120.0, 112.5, 94.7, 56.6, 14.2; IR (KBr) 3113, 3092, 2990, 2947, 2920, 2859, 2830, $1574,1510,1495,1476,1443,1342,1329,1302$, 1267, 1244, 1204, 1165, 1142, 1128, 1086, 1063, $961 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{~S}$ calcd $229.0409\left(\mathrm{M}^{+}\right)$, found 229.0410; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 47.15 ; \mathrm{H}, 4.84 ; \mathrm{N}, 6.11$. found C , 47.44; H, 4.91; N, 5.95.

2.4 General procedure for introduction of sulfide into an aromatic ring (method A)

A flask was charged with aryl bromide and evacuated and backfilled Ar gas. Aryl bromide was diluted with dry $\mathrm{Et}_{2} \mathrm{O}$ and cooled to $-78{ }^{\circ} \mathrm{C}$. The solution was added dropwise t - BuLi and allowed to stir at $-78^{\circ} \mathrm{C}$ for 1 h . Then, disulfide was added dropwise and the reaction mixture was allowed to stir at room temperature for 1 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL} \times 2)$ and washed brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated by evaporation. The residue was purified by column chromatography on silica gel or recrystallization.

2-Methoxy-1-methyl-3-(methylsulfanyl)benzene $(3 b)^{44}$ Compound $\mathbf{3 b}$ was followed by general procedure of method A using aryl bromide 2b (3.56 g , 17.7 mmol), $1.56 \mathrm{M} t$-BuLi in n-pentane $(25.0 \mathrm{~mL}$,
39.0 mmol), dimethyl disulfide ($2.7 \mathrm{~mL}, 30.1 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/ $\operatorname{EtOAc}(100: 1)$ to give the product $3 \mathbf{b}(2.62 \mathrm{~g}, 88 \%)$ as a colorless oil.
1-(Methoxymethoxy)-2-(methylsulfanyl)benzene $(5 a)^{45}$ Compound 5a was followed by the general procedure of method A using aryl bromide $\mathbf{4 a}(1.00 \mathrm{~g}$, 4.60 mmol), $1.56 \mathrm{M} t$-BuLi in n-pentane (6.5 mL , 10.1 mmol), dimethyl disulfide ($0.7 \mathrm{~mL}, 7.84 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10: 1) to give the product $\mathbf{5 a}(0.837 \mathrm{~g}, 99 \%)$ as a colorless oil.
2-(Methoxymethoxy)-1-methyl-3-(methylsul-
fanyl)benzene (5b) Compound 5b was followed by general procedure of method A using aryl bromide $\mathbf{4 b}$ $(5.00 \mathrm{~g}, 21.6 \mathrm{mmol}), 1.56 \mathrm{M} t$-BuLi in n-pentane ($30.5 \mathrm{~mL}, 47.6 \mathrm{mmol}$), dimethyl disulfide (3.3 mL , $36.8 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product $\mathbf{5 b}$ $(4.06 \mathrm{~g}, 95 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.05-6.96(\mathrm{~m}, 3 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~s}$, $3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.7,132.4,131.6,127.8,124.8,123.7$, $98.9,57.6,16.8,14.8$; IR (neat) 2954, 2923, 2826, $1495,1458,1437,1427,1396,1254,1236,1228$, 1202, 1158, 1072, $964 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ calcd $198.0715\left(\mathrm{M}^{+}\right)$, found 198.0717.

1-(Methoxymethoxy)-4-methyl-2-(methylsul-
fanyl)benzene (5c) Compound 5c was followed by general procedure of method A using aryl bromide $\mathbf{4 c}$ $(1.00 \mathrm{~g}, 4.33 \mathrm{mmol}), 1.53 \mathrm{M} t$-BuLi in n-pentane $(6.2 \mathrm{~mL}, 9.52 \mathrm{mmol})$, dimethyl disulfide (1.2 mL , $7.36 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product 5c $(0.853 \mathrm{~g}, 99 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}$, $2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.7,131.9,127.7,126.5$, 126.1, 114.4, 95.0, 56.1, 20.7, 14.6; IR (neat) 2953, 2920, 2824, 1487, 1439, 1233, 1198, 1155, 1142, 1086, 1065, $995 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ calcd 198.0715 (M^{+}), found 198.0709.

4-Fluoro-2-(methoxymethoxy)-1-(methylsul-
fanyl)benzene (5d) Compound 5d was followed by general procedure of method A using aryl bromide $\mathbf{4 d}$ $(1.00 \mathrm{~g}, 4.25 \mathrm{mmol}), 1.53 \mathrm{M} t$-BuLi in n-pentane $(6.1 \mathrm{~mL}, 9.36 \mathrm{mmol})$, dimethyl disulfide $(0.64 \mathrm{~mL}$, $7.23 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture
was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product 5d $(0.834 \mathrm{~g}, 97 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 7.13(\mathrm{dd}, J=8.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}$, $J=10.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dt}, J=8.4,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.23(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.5(\mathrm{~d}, J=243.6 \mathrm{~Hz}), 155.1(\mathrm{~d}$, $J=9.9 \mathrm{~Hz}), 127.9(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 122.4(\mathrm{~d}, J=3.0$ $\mathrm{Hz}), 108.7(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 102.6(\mathrm{~d}, J=25.8 \mathrm{~Hz})$, 94.7, 56.1, 15.3; IR (neat) 2957, 2920, 2830, 1593, 1481, 1441, 1425, 1389, 1273, 1244, 1153, 1121, 1088, 1061, $999 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{FO}_{2} \mathrm{~S}$ calcd 202.0464 $\left(\mathrm{M}^{+}\right)$, found 202.0461.

4-Fluoro-1-(methoxymethoxy)-2-(methylsulfanyl)benzene (5e) Compound $\mathbf{5 e}$ was followed by general procedure of method A using aryl bromide $\mathbf{4 e}$ $(1.00 \mathrm{~g}, 4.25 \mathrm{mmol}), 1.53 \mathrm{M} t$-BuLi in n-pentane ($6.1 \mathrm{~mL}, 9.36 \mathrm{mmol}$), dimethyl disulfide (0.64 mL , $7.23 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product 5e $(0.860 \mathrm{~g}, 100 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.00(\mathrm{dd}, J=8.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}$, $J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dt}, J=8.4,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.17(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.4(\mathrm{~d}, J=239.8 \mathrm{~Hz}), 149.5(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=8.3$ $\mathrm{Hz}), 111.9(\mathrm{~d}, J=25.8 \mathrm{~Hz}), 111.0(\mathrm{~d}, J=22.8 \mathrm{~Hz})$, 95.4, 56.1, 14.1; IR (neat) 2955, 2922, 2905, 2826, 1601, 1587, 1483, 1439, 1396, 1263, 1238, 1186, 1153, 1128, 1082, 1059, $995 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{FO}_{2} \mathrm{~S}$ calcd 202.0464 (M^{+}), found 202.0467.

1-Methoxy-2-(methoxymethoxy)-3-(methylsulfanyl)benzene (5f) Compound $\mathbf{5 f}$ was followed by general procedure of method A using aryl bromide $\mathbf{4 f}$ $(1.00 \mathrm{~g}, 4.05 \mathrm{mmol}), 1.64 \mathrm{M} t$-BuLi in n-pentane $(5.4 \mathrm{~mL}, 8.90 \mathrm{mmol})$, dimethyl disulfide $(0.61 \mathrm{~mL}$, $6.89 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (25: 1) to give the product $\mathbf{5 f}$ $(0.574 \mathrm{~g}, 66 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}$, $2 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.2,142.3,133.6,124.6$, 117.6, 109.3, 98.3, 57.8, 55.9, 14.8; IR (neat) 2994, 2959, 2920, 2835, 1584, 1468, 1437, 1398, 1292, 1265, 1157, 1074, $959 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$ calcd 214.0664 (M^{+}), found 214.0663.
4-Methoxy-1-(methoxymethoxy)-2-(methylsulfanyl)benzene ($5 g$) Compound $\mathbf{5 g}$ was followed by general procedure of method A using aryl bromide $\mathbf{4 g}$ $(1.00 \mathrm{~g}, 4.05 \mathrm{mmol}), 1.64 \mathrm{M} t$-BuLi in n-pentane
($5.43 \mathrm{~mL}, 8.90 \mathrm{mmol}$), dimethyl disulfide (0.61 mL , $6.89 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (50: 1) to give the product $\mathbf{5 g}$ $(0.856 \mathrm{~g}, 99 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=8.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.2,147.9,129.9,115.9,112.2$, 109.3, 95.7, 56.1, 55.6, 14.4; IR (neat) 2994, 2953, 2938, 2920, 2905, 2832, 1585, 1487, 1437, 1273, $1221,1196,1155,1140,1082,1059,1043,995 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$ calcd $214.0664\left(\mathrm{M}^{+}\right)$, found 214.0661.

1-(Ethylsulfanyl)-2-(methoxymethoxy)benzene (12a) Compound 12a was followed by general procedure of method A using aryl bromide $4 \mathbf{a}(1.00 \mathrm{~g}, 4.60 \mathrm{mmol})$, $1.53 \mathrm{M} t$-BuLi in n-pentane ($6.6 \mathrm{~mL}, 10.1 \mathrm{mmol}$), diethyl disulfide ($0.96 \mathrm{~mL}, 7.84 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product $\mathbf{1 2 a}(0.900 \mathrm{~g}, 99 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24$ (dd, $J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dt}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.08 (dd, $J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (ddd, $J=7.6,1.6$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{q}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.6,128.4,126.4,126.1,122.2$, 114.5, 94.7, 56.1, 25.7, 13.9; IR (neat) 2963, 2928, 2826, 1580, 1474,1439, 1261, 1231, 1198, 1155, 1132, 1086, 1067, 1043, $993 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ calcd $198.0715\left(\mathrm{M}^{+}\right)$, found 198.0718.

1-(Ethylsulfanyl)-2-(methoxymethoxy)-3-methylbenzene (12b) Compound 12b was followed by general procedure of method A using aryl bromide $\mathbf{4 b}(6.00 \mathrm{~g}$, 26.0 mmol), $1.53 \mathrm{M} t$ - BuLi in n-pentane $(35.7 \mathrm{~mL}$, 57.1 mmol), diethyl disulfide ($5.4 \mathrm{~mL}, 44.1 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/ EtOAc (100: 1) to give the product $\mathbf{1 2 b}$ ($5.36 \mathrm{~g}, 97 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H})$, $3.65(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$, $1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 153.6,131.8,130.5,128.3,126.1,124.5,98.9,57.4$, $26.0,16.8,13.9$; IR (neat) 2969, 2929, 2872, 2834, $1457,1429,1255,1226,1202,1158,1072,967 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ calcd $212.0871\left(\mathrm{M}^{+}\right)$, found 212.0858 .

2-(Ethylsulfanyl)-1-(methoxymethoxy)-4-methylbenzene (12c) Compound 12c was followed by general procedure of method A using aryl bromide $\mathbf{4 c}(1.00 \mathrm{~g}$, $4.33 \mathrm{mmol}), 1.64 \mathrm{M} t$ - BuLi in n-pentane $(5.8 \mathrm{~mL}, 9.52$
mmol) , diethyl disulfide ($0.90 \mathrm{~mL}, 7.36 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/ EtOAc (100: 1) to give the product $12 \mathrm{c}(0.911 \mathrm{~g}, 99 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.05$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}$, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.91$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 152.6, 131.7, $129.2,127.0,125.7,114.7,94.9,56.0,25.9,20.6,13.9$; IR (neat) 2963, 2926, 2824, 1738, 1487, 1233, 1198, 1157, 1142, 1086, 1065, $999 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ calcd $212.0871\left(\mathrm{M}^{+}\right)$, found 212.0867.

1-(Ethylsulfanyl)-4-fluoro-2-(methoxymethoxy)benzene (12d) Compound 12d was followed by general procedure of method A using aryl bromide $\mathbf{4 d}(1.00 \mathrm{~g}$, 4.25 mmol), $1.53 \mathrm{M} t$-BuLi in n-pentane (6.1 mL , $9.36 \mathrm{mmol})$, diethyl disulfide ($0.88 \mathrm{~mL}, 7.23 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/ EtOAc (100: 1) to give the product 12d ($0.902 \mathrm{~g}, 98 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26$ (dd, $J=8.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=10.8,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.69(\mathrm{dt}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 3.50$ $(\mathrm{s}, 3 \mathrm{H}), 2.87(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2$ (d, $J=244.3 \mathrm{~Hz}), 156.4(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=9.1$ $\mathrm{Hz}), 120.1(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 108.6(\mathrm{~d}, J=22.0 \mathrm{~Hz})$, $102.9(\mathrm{~d}, J=25.8 \mathrm{~Hz}), 94.7,56.1,26.8,14.0$; IR (neat) 2963, 2928, 2870, 2830, 1593, 1481, 1425, 1389, 1271, 1153, 1121, 1088, 1061, $999 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FO}_{2} \mathrm{~S}$ calcd $216.0620\left(\mathrm{M}^{+}\right)$, found 216.0624.

2-(Ethylsulfanyl)-4-fluoro-1-(methoxymethoxy)benzene (12e) Compound 12e was followed by general procedure of method A using aryl bromide $4 \mathbf{e}(1.00 \mathrm{~g}$, 4.25 mmol), $1.53 \mathrm{M} t$ - BuLi in n-pentane ($6.1 \mathrm{~mL}, 9.36$ $\mathrm{mmol})$, diethyl disulfide ($0.88 \mathrm{~mL}, 7.23 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/ EtOAc (100: 1) to give the product 12e (0.949 g, $>99 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.02$ (dd, $J=9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=9.2$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (ddd, $J=9.2,8.4,3.2 \mathrm{~Hz}), 5.17(\mathrm{~s}$, $2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.0$ $(\mathrm{d}, J=239.8 \mathrm{~Hz}), 150.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 129.1(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 113.7(\mathrm{~d}, J=25.8$ $\mathrm{Hz}), 111.7(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 95.3,56.1,25.3,13.5$; IR (neat) 2967, 2930, 2903, 2874, 2826, 1601, 1587, 1481, 1396, 1260, 1240, 1188, 1153, 1082, 1059, 995 cm^{-1}; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FO}_{2} \mathrm{~S}$ calcd 216.0620 $\left(\mathrm{M}^{+}\right)$, found 216.0622.

1-(Ethylsulfanyl)-3-methoxy-2-
(methoxymethoxy)benzene (12f) Compound 12 f was followed by general procedure of method A using aryl bromide $\mathbf{4 f}(1.00 \mathrm{~g}, 4.05 \mathrm{mmol}), 1.64 \mathrm{M} t$-BuLi in n pentane ($5.4 \mathrm{~mL}, 8.90 \mathrm{mmol}$), diethyl disulfide (0.84 $\mathrm{mL}, 6.89 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (50: 1) to give the product $12 \mathrm{f}(0.721 \mathrm{~g}, 78 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.4,143.0,131.8,124.3$, 119.8, 109.7, 98.2, 57.7, 55.7, 25.9, 13.9; IR (neat) 2999, 2965, 2930, 2837, 1582, 1466, 1437, 1398, 1294, 1265, 1157, 1074, 1047, $961 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$ calcd $228.0820\left(\mathrm{M}^{+}\right)$, found 228.0825 .

2-(Ethylsulfanyl)-4-methoxy-1-
(methoxymethoxy)benzene (12g) Compound 12g was followed by general procedure of method A using aryl bromide $4 \mathrm{~g}(1.00 \mathrm{~g}, 4.05 \mathrm{mmol}), 1.64 \mathrm{M} t$-BuLi in n pentane ($5.4 \mathrm{~mL}, 8.90 \mathrm{mmol}$), diethyl disulfide $(0.84 \mathrm{~mL}, 6.89 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (50:1) to give the product $\mathbf{1 2 g}(0.852 \mathrm{~g}, 92 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=8.8,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.8,148.6,128.0,116.2$, 114.1, 110.2, $95.6,56.0,55.4,25.6,13.7$; IR (neat) 2959, 2930, 2903, 2872, 2832, 1595, 1485, 1464, 1398, 1263, 1219, 1196, 1155, 1140, 1082, 1058, 1042, $997 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$ calcd $228.0820\left(\mathrm{M}^{+}\right)$, found 228.0814 .

1-(Methoxymethoxy)-2-(propan-2-ylsulfanyl)benzene (13a) Compound 13a was followed by general procedure of method A using aryl bromide $4 \mathbf{a}(1.00 \mathrm{~g}$, $4.60 \mathrm{mmol}), 1.53 \mathrm{M} t$-BuLi in n-pentane (6.6 mL , $10.1 \mathrm{mmol})$, diisopropyl disulfide ($1.3 \mathrm{~mL}, 7.84 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product 13a (0.859 $\mathrm{g}, 86 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dt}, J=8.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (dt, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.49$ (sep, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.8,131.9,127.6,124.9$, 122.1, 114.7, 94.7, 56.1, 36.0, 22.9; IR (neat) 2961, 2926, 2864, 1582, 1474, 1439, 1242, 1229, 1198,

1153, 1130, 1084, 1065, 1042, $995 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ calcd $212.0871\left(\mathrm{M}^{+}\right)$, found 212.0867.
2-(Methoxymethoxy)-1-methyl-3-(propan-2-ylsulfanyl)benzene (13b) Compound 13b was followed by general procedure of method A using aryl bromide 4b ($3.50 \mathrm{~g}, 15.1 \mathrm{mmol}$), $1.53 \mathrm{M} t$-BuLi in n-pentane (19.0 $\mathrm{mL}, 30.3 \mathrm{mmol}$), diisopropyl disulfide ($4.1 \mathrm{~mL}, 25.7$ $\mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product 13b (3.64 g , $>99 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}$, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}$, $2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{sep}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 155.0,132.2,129.5,129.4,124.4,99.2,57.5$, 57.5, 36.5, 23.0, 17.0; IR (neat) 2963, 2926, 1454, 1157, 1072, $966 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ calcd 226.1028 $\left(\mathrm{M}^{+}\right)$, found 226.1031.

1-(Methoxymethoxy)-4-methyl-2-(propan-2-ylsulfanyl)benzene (13c) Compound 13c was followed by general procedure of method A using aryl bromide $\mathbf{4 c}$ $(1.00 \mathrm{~g}, 4.33 \mathrm{mmol}), 1.64 \mathrm{M} t$-BuLi in n-pentane $(5.8$ $\mathrm{mL}, 9.52 \mathrm{mmol}$), diisopropyl disulfide ($1.2 \mathrm{~mL}, 7.36$ $\mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product 13c (0.901 g, 92%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.96 (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~s}$, $3 \mathrm{H}), 3.48(\mathrm{sep}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.9, 132.7, 131.5, 128.2, 124.5, 114.9, 94.9, 56.0, 36.1, 23.0, 20.4; IR (neat) 2961, 2924, 2864, 2824, 1487, 1233, 1198, 1157, 1144, 1084, 1065, 1001 cm^{-1}; HRMS (EI) for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ calcd 226.1028 $\left(\mathrm{M}^{+}\right)$, found 226.1026.
4-Fluoro-2-(methoxymethoxy)-1-(propan-2-ylsulfanyl)benzene (13d) Compound 13d was followed by general procedure of method A using aryl bromide $\mathbf{4 d}$ $(1.00 \mathrm{~g}, 4.25 \mathrm{mmol}), 1.53 \mathrm{M} t$-BuLi in n-pentane (6.1 $\mathrm{mL}, 9.36 \mathrm{mmol}$), diisopropyl disulfide ($1.2 \mathrm{~mL}, 7.23$ $\mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product 13d (0.562 $\mathrm{g}, 57 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{dd}, J=8.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=10.8$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ (ddd, $J=8.4,8.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.24$ (s, 2H), $3.50(3 \mathrm{H}), 3.40(\mathrm{sep}, 6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.25$ (d, $J=6.4 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.9$ (d, $J=245.1$), 157.8 (d, $J=10.7$), $135.1(\mathrm{~d}, J=9.8$ $\mathrm{Hz}), 119.1(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 108.6(\mathrm{~d}, J=21.3 \mathrm{~Hz})$, $103.0(\mathrm{~d}, J=25.8 \mathrm{~Hz}), 94.8,56.2,37.0,22.9$; IR (neat)

2961, 2926, 2866, 2830, 1585, 1479, 1425, 1387, $1273,1246,1153,1117,1088,1061,1001 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{FO}_{2} \mathrm{~S}$ calcd $230.0777\left(\mathrm{M}^{+}\right)$, found 230.0775 .

4-Fluoro-1-(methoxymethoxy)-2-(propan-2-ylsulfanyl)benzene (13e) Compound 13e was followed by general procedure of method A using aryl bromide $\mathbf{4 e}$ $(1.00 \mathrm{~g}, 4.25 \mathrm{mmol}), 1.53 \mathrm{M} t$ - BuLi in n-pentane ($6.1 \mathrm{~mL}, 9.36 \mathrm{mmol}$), diisopropyl disulfide $(1.2 \mathrm{~mL}$, $7.23 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product 13e $(0.933 \mathrm{~g}, 95 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{dd}, J=9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}$, $J=9.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{ddd}, J=9.2,8.0,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.18(\mathrm{~d}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{sep}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 157.8(\mathrm{~d}, J=240.5 \mathrm{~Hz}), 151.4(\mathrm{~d}, J=3.1$ $\mathrm{Hz}), 127.8(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 116.6(\mathrm{~d}, J=24.3 \mathrm{~Hz})$, $116.0(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 112.9(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 95.4$, 56.1, 35.7, 22.8; IR (neat) 2963, 2928, 2907, 2866, 2826, 1601, 1589, 1481, 1395, 1261, 1244, 1186, 1153, 1082, 1059, $997 \mathrm{~cm}^{-1}$; HRMS (EI) for C_{11} $\mathrm{H}_{15} \mathrm{FO}_{2} \mathrm{~S}$ calcd $230.0777\left(\mathrm{M}^{+}\right)$, found 230.0776 .

1-Methoxy-2-(methoxymethoxy)-3-(propan-2-ylsulfanyl)benzene (13f) Compound $\mathbf{1 3 f}$ was followed by general procedure of method A using aryl bromide $\mathbf{4 f}$ $(1.00 \mathrm{~g}, 4.05 \mathrm{mmol}), 1.64 \mathrm{M} t$-BuLi in n-pentane ($5.4 \mathrm{~mL}, 8.90 \mathrm{mmol}$), diisopropyl disulfide (1.1 mL , $6.89 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (25: 1) to give the product $\mathbf{1 3 f}$ $(0.742 \mathrm{~g}, 76 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=8.0$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}$, $2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{sep}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.30(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.8,144.5,130.8,124.3,123.2,110.6$, 98.4, 57.8, 55.8, 36.4, 23.0; IR (neat) 2961, 2926, 2864, 2835, 1574, 1466, 1452, 1435, 1396, 1292, 1261, 1227, 1204, 1157, 1072, 1047, $961 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ calcd $242.0977\left(\mathrm{M}^{+}\right)$, found 242.0977.

4-Methoxy-1-(methoxymethoxy)-2-(propan-2-ylsulfanyl)benzene ($13 g$) Compound $\mathbf{1 3 g}$ was followed by general procedure of method A using aryl bromide $\mathbf{4 g}$ $(1.00 \mathrm{~g}, 4.05 \mathrm{mmol}), 1.64 \mathrm{M} t$-BuLi in n-pentane (5.4 $\mathrm{mL}, 8.90 \mathrm{mmol}$), diisopropyl disulfide ($1.1 \mathrm{~mL}, 6.89$ $\mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (25: 1) to give the product $\mathbf{1 3 g}(0.917$ $\mathrm{g}, 94 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.69(\mathrm{dd}, J=8.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{sep}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $154.6,149.8,126.7,117.1,116.5,111.8,95.6,56.1$, 55.6, 36.0, 22.9; IR (neat) 2959, 2928, 2905, 2864, 2832, 1595, 1582, 1485, 1466, 1439, 1398, 1273, 1244, 1221, 1196, 1155, 1142, 1082, 1059, 1040, 999 cm^{-1}; HRMS (EI) for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ calcd 242.0977 $\left(\mathrm{M}^{+}\right)$, found 242.0972.

1-(Methoxymethoxy)-2-[(4-methylphenyl)sul-
fanyl]benzene (15a) Compound 15a was followed by general procedure of method A using aryl bromide $4 \mathbf{4}$ $(1.00 \mathrm{~g}, 4.60 \mathrm{mmol}), 1.53 \mathrm{M} t$ - BuLi in n-pentane ($6.6 \mathrm{~mL}, 10.1 \mathrm{mmol}$), di-p-tolyl disulfide (1.93 g , $7.84 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product 15a $(1.16 \mathrm{~g}, 97 \%)$ as a white solid. M.p.: $42-43{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.15-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (dt, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.2$, 137.7, 132.9, 130.0, 130.0, 129.8, 127.4, 126.8, 122.4, 114.7, 94.8, 56.2, 21.1; IR (KBr) 2990, 2957, 2907, 2843, 2822, 1578, 1476, 1439, 1234, 1202, 1155, 1130, 1084, 1059, $993 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ calcd $260.0871\left(\mathrm{M}^{+}\right)$, found 260.0871; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$: C, 69.20; H, 6.19; N, 0.00 . found $\mathrm{C}, 69.38 ; \mathrm{H}, 6.22 ; \mathrm{N}, 0.00$.

2-(Methoxymethoxy)-1-methyl-3-[(4-methylphenyl)sulfanyl]benzene (15b) Compound 15b was followed by general procedure of method A using aryl bromide 4b $(1.00 \mathrm{~g}, 4.33 \mathrm{mmol}), 1.64 \mathrm{M} t$ - BuLi in n-pentane ($5.8 \mathrm{~mL}, 9.52 \mathrm{mmol}$), di- p-tolyl disulfide (1.81 g , $7.36 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product $\mathbf{1 5 b}$ $(1.03 \mathrm{~g}, 87 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.99(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10$ $(\mathrm{s}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.3,137.7,132.8,132.0$, 131.2, 130.1, 130.1, 129.2, 128.0, 124.7, 99.2, 57.6, 21.1, 16.9; IR (neat) 2922, 2868, 2826, 1491, 1456, 1427, 1395, 1254, 1198, 1157, 1070, $962 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ calcd $274.1028\left(\mathrm{M}^{+}\right)$, found 274.1024.

1-(Methoxymethoxy)-4-methyl-2-[(4-methylphenyl)sulfanyl]benzene (15c) Compound 15c was followed by general procedure of method A using aryl bromide $4 \mathbf{c}(1.00 \mathrm{~g}, 4.33 \mathrm{mmol}), 1.64 \mathrm{M} t$-BuLi in n-pentane ($5.8 \mathrm{~mL}, 9.52 \mathrm{mmol}$), di-p-tolyl disulfide (1.81 g ,
$7.36 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product 15c $(0.866 \mathrm{~g}, 73 \%)$ as a white solid. M.p.: $42^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}$, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}$, 2 H), $3.44(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.5,137.3,132.2,132.0$, $131.2,130.5,129.9,128.3,126.0,115.0,95.0,56.1$, 21.1, 20.5; IR (KBr) 2995, 2961, 2938, 2907, 2853, 2828, 1597, 1485, 1395, 1319, 1233, 1202, 1180, 1160, 1142, 1082, 1060, 1007, $995 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ calcd $274.1028\left(\mathrm{M}^{+}\right)$, found 274.1029; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 70.04 ; \mathrm{H}, 6.61 ; \mathrm{N}$, 0.00 . found C, 70.32; H, 6.64; N, 0.00.

4-Fluoro-2-(methoxymethoxy)-1-[(4-methylphenyl)sulfanyl]benzene (15d) Compound 15d was followed by general procedure of method A using aryl bromide $4 \mathbf{d}(1.00 \mathrm{~g}, 4.25 \mathrm{mmol}), 1.64 \mathrm{M} t$-BuLi in n-pentane ($5.7 \mathrm{~mL}, 9.36 \mathrm{mmol}$), di-p-tolyl disulfide ($1.78 \mathrm{~g}, 7.23$ $\mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product 15d (1.00 $\mathrm{g}, 85 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.09 (dd, $J=8.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.91 (dd, $J=10.8,2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.63$ (dt, $J=8.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H})$, 3.39 (s, 3H), 2.31 ($\mathrm{s}, 3 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 162.8(\mathrm{~d}, J=245.9 \mathrm{~Hz}), 156.2(\mathrm{~d}, J=$ $10.7 \mathrm{~Hz}), 137.0,133.0(\mathrm{~d}, J=9.9 \mathrm{~Hz})$, 131.1, 131.1, $129.9,120.4(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 109.0(\mathrm{~d}, J=21.2 \mathrm{~Hz})$, 103.1 (d, $J=25.9 \mathrm{~Hz}$), 94.7, 56.2, 21.0; IR (neat) 2957, 2920, 2868, 2830, 1593, 1585, 1479, 1425, 1389, 1273, 1244, 1153, 1117, 1086, 1057, $999 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FO}_{2} \mathrm{~S}$ calcd $278.0777\left(\mathrm{M}^{+}\right)$, found 278.0772 .

4-Fluoro-1-(methoxymethoxy)-2-[(4-methylphenyl)sulfanyl]benzene (15e) Compound 15e was followed by general procedure of method A using aryl bromide $4 \mathrm{e}(1.00 \mathrm{~g}, 4.25 \mathrm{mmol}), 1.64 \mathrm{M} t$-BuLi in n-pentane ($5.7 \mathrm{~mL}, 9.36 \mathrm{mmol}$), di-p-tolyl disulfide ($1.78 \mathrm{~g}, 7.23$ $\mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by recrystallization using hexane-EtOAc to give the product $15 e(0.845 \mathrm{~g}, 71 \%)$ as a white solid. M.p.: $37-39{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.03 (dd, $J=8.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{ddd}, J=8.8,8.0,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.48(\mathrm{dd}, J=9.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (s, 2H), 3.51 (s, 3H), 2.38 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 158.2 (d, $J=240.6 \mathrm{~Hz}$), 149.5 (d, $J=2.2 \mathrm{~Hz}$), 139.0, $134.5,130.7(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 130.5,127.7,115.9(\mathrm{~d}$,
$J=8.4), 114.6(\mathrm{~d}, J=26.6), 112.5(\mathrm{~d}, J=22.7), 95.6$, 56.3, 21.2; IR (KBr) 3071, 3026, 3003, 2980, 2957, 2938, 2911, 2855, 2828, 1599, 1481, 1450, 1396, $1261,1238,1186,1150,1130,1082,1053,995 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FO}_{2} \mathrm{~S}$ calcd $278.0777\left(\mathrm{M}^{+}\right)$, found 278.0775; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FO}_{2} \mathrm{~S}$: C, 64.73; H, 5.43; N, 0.00. found C, 64.96; H, 5.45; N, 0.00 .

1-Methoxy-2-(methoxymethoxy)-3-[(4methylphenyl)sulfanyljbenzene (15f) Compound $\mathbf{1 5 f}$ was followed by general procedure of method A using aryl bromide $\mathbf{4 f}(1.00 \mathrm{~g}, 4.05 \mathrm{mmol}), 1.64 \mathrm{M} t-\mathrm{BuLi}$ in n-pentane ($5.4 \mathrm{~mL}, 8.90 \mathrm{mmol}$), di-p-tolyl disulfide $(1.70 \mathrm{~g}, 6.89 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (25: 1) to give the product $\mathbf{1 5 f}(0.812 \mathrm{~g}, 69 \%)$ as a white solid. M.p.: $56-58{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48$ (dd, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, 3.68 (s, 3H), $2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.5,142.7,138.0,133.5,132.9,130.1$, 129.7, 124.5, 121.3, 110.1, 98.4, 57.9, 55.9, 21.1; IR (KBr) 3007, 2994, 2963, 2930, 2901, 2837, 2820, 1578, 1491, 1468, 1449, 1435, 1395, 1296, 1265, 1229, 1207, 1175, 1155, 1069, 1045, 1016, 962, 952 cm^{-1}; HRMS (EI) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ calcd 290.0977 $\left(\mathrm{M}^{+}\right)$, found 290.0972; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}$, 66.18; H, 6.25; N, 0.00. found C, 66.26; H, 6.28; N, 0.00 .

4-Methoxy-1-(methoxymethoxy)-2-[(4methylphenyl)sulfanyl]benzene (15g) Compound 15g was followed by general procedure of method A using aryl bromide $4 \mathrm{~g}(1.00 \mathrm{~g}, 4.05 \mathrm{mmol}), 1.64 \mathrm{M} t-\mathrm{BuLi}$ in n-pentane ($5.4 \mathrm{~mL}, 8.90 \mathrm{mmol}$), di-p-tolyl disulfide $(1.70 \mathrm{~g}, 6.89 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (25: 1) to give the product $\mathbf{1 5 g}(1.04 \mathrm{~g}, 89 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}$, $J=8.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}$, $2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.0,148.2,138.0,133.3$, 130.1, 129.1, 128.9, 116.5, 115.2, 111.5, 95.7, 56.1, 55.5, 21.1; IR (neat) 2995, 2951, 2938, 2903, 2832, $1595,1487,1464,1439,1398,1290,1271,1221$, 1196, 1155, 1140, 1082, 1053, 1040, $995 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ caldc $290.0977\left(\mathrm{M}^{+}\right)$, found 290.0977.

2.5 General procedure for introduction of sulfide into an aromatic ring using t-BuONa as a base (Method B-1)

A flask was charged with $t-\mathrm{BuONa}$ and evacuated and backfilled Ar gas, then degassed xylene was added to a flask and allowed to stir. The suspension was cooled to $0^{\circ} \mathrm{C}$ and t-butyl mercaptan was added dropwise. The resulting mixture was then warmed to room temperature and stirred for 1 h . The mixture of Aryl bromide, xantphos and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ in degassed xylene was allowed to stir at room temperature for 20 min and was added transferred via a syringe to the previously formed sodium thiolate. The dark solution was heated to reflux for $1.5-2 \mathrm{~h}$. After the resulting orange suspension was cooled to room temperature, the mixture was filtrated by silica gel pad using hexane/EtOAc (10: 1). The residue was concentrated by evaporation and purified by column chromatography on silica gel.

1-(tert-Butylsulfanyl)-2-(methoxymethoxy)benzene (14a) Compound 14a was followed by general procedure of method B-1 using aryl bromide $\mathbf{4 a}(0.500 \mathrm{~g}$, 2.30 mmol), t-BuONa ($0.277 \mathrm{~g}, 2.88 \mathrm{mmol}$), t-BuSH $(0.33 \mathrm{~mL}, 2.88 \mathrm{mmol})$, xantphos $(0.016 \mathrm{~g}, 0.0276$ $\mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.021 \mathrm{~g}, 0.0230 \mathrm{mmol})$ in degassed xylene (8.0 mL). The mixture was allowed to stir at reflux for 1.5 h . The reaction mixture was purified by column chromatography on silica gel using hexane/ EtOAc (100: 1) to give the product $\mathbf{1 4 a}$ (0.519 g , $>99 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dt}, J=8.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.19 (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ (dt, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}$, 9 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,140.3$, 130.7, 121.6, 121.5, 115.1, 95.1, 56.3, 46.9, 31.0; IR (neat) 2959, 2940, 2920, 2897, 2860, 2826,1582, 1474, $1437,1364,1269,1233,1198,1153,1128,1084$, 1063, $999 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ calcd $226.1028\left(\mathrm{M}^{+}\right)$, found 226.1038.

1-(Tert-Butylsulfanyl)-2-(methoxymethoxy)-3methylbenzene (14b) Compound 14b was followed by general procedure of method B-1 using aryl bromide 4b $(0.500 \mathrm{~g}, 2.16 \mathrm{mmol}), t$-BuONa ($0.259 \mathrm{~g}, 2.70$ mmol), t-BuSH ($0.30 \mathrm{~mL}, 2.70 \mathrm{mmol}$), xantphos $(0.015 \mathrm{~g}, 0.0259 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.020 \mathrm{~g}, 0.0216$ $\mathrm{mmol})$ in degassed xylene $(8.0 \mathrm{~mL})$. The mixture was allowed to stir at reflux for 2 h . The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product 14b $(0.523 \mathrm{~g},>99 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.10 (s, 2H), 3.60 (s, 3H), 2.34 (s, 3H), 1.26 (s, 9H);
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 158.8, 137.7, 132.5, $132.2,125.9,123.8,100.3,57.6,47.4,31.1,17.2$; IR (neat) 2959, 2938, 2922, 2895, 2860, 2830, 1470, 1454, 1424, 1391, 1364, 1256, 1196, 1157, 1142, 1070, $970 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}$ calcd $240.1184\left(\mathrm{M}^{+}\right)$, found 240.1181.
2-(tert-Butylsulfanyl)-1-(methoxymethoxy)-4methylbenzene (14c) Compound 14 c was followed by general procedure of method B-1 using aryl bromide $4 \mathrm{c}(0.500 \mathrm{~g}, 2.16 \mathrm{mmol}), t$-BuONa ($0.259 \mathrm{~g}, 2.70$ $\mathrm{mmol}), t$-BuSH ($0.30 \mathrm{~mL}, 2.70 \mathrm{mmol}$), xantphos $(0.015 \mathrm{~g}, 0.0259 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.020 \mathrm{~g}, 0.0216$ $\mathrm{mmol})$ in degassed xylene $(8.0 \mathrm{~mL})$. The mixture was allowed to stir at reflux for 1.5 h . The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product 14c $(0.502 \mathrm{~g}, 97 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.10(\mathrm{~m}, 2 \mathrm{H})$, $5.20(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.84$ (s, 3H), 1.31 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.3,140.5,131.1$, 130.9, 121.1, 115.1, 95.2, 56.1, 46.7, 31.0, 20.2; IR (neat) 2959, 2940, 2920, 2895, 2860, 2826, 1487, $1472,1456,1362,1275,1236,1198,1161,1144$, 1084, 1061, $1005 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}$ calcd $240.1184\left(\mathrm{M}^{+}\right)$, found 240.1185 .

1-(tert-Butylsulfanyl)-4-fluoro-2-

(methoxymethoxy)benzene (14d) Compound 14d was followed by general procedure of method B-1 using aryl bromide $4 d(0.500 \mathrm{~g}, 2.13 \mathrm{mmol}), t-\mathrm{BuONa}$ $(0.256 \mathrm{~g}, 2.66 \mathrm{mmol}), t$-BuSH $(0.30 \mathrm{~mL}, 2.66 \mathrm{mmol})$, xantphos $(0.015 \mathrm{~g}, 0.0255 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.019 \mathrm{~g}$, 0.0213 mmol) in degassed xylene (8.0 mL). The mixture was allowed to stir at reflux for 2.5 h . The reaction mixture was purified by column chromatography on silica gel using hexane/toluene/EtOAc (1: 1: 0.02) to give the product $\mathbf{1 4 d}(0.497 \mathrm{~g}, 96 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44$ (dd, $J=8.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=10.8,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.65 (dt, $J=8.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (s, 2H), 3.46 (s, 3 H), $1.24(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $164.1(\mathrm{~d}, J=247.5 \mathrm{~Hz}), 160.6(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 141.1$ $(\mathrm{d}, J=9.8 \mathrm{~Hz}), 116.6(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 108.4(\mathrm{~d}$, $J=21.2 \mathrm{~Hz}), 103.1(\mathrm{~d}, J=25.8 \mathrm{~Hz}), 95.1,56.3,46.8$, 30.8; IR (neat) 2961, 2940, 2920, 2897, 2864, 2832, 1584, 1474, 1456, 1423, 1387, 1364, 1271, 1153, 1113, 1086, 1059, $1003 \mathrm{~cm}^{-1}$; HRMS (EI) for C_{12} $\mathrm{H}_{17} \mathrm{FO}_{2} \mathrm{~S}$ calcd $244.0933\left(\mathrm{M}^{+}\right)$, found 244.0931.

2-(tert-Butylsulfanyl)-4-fluoro-1-
(methoxymethoxy)benzene (14e) Compound 14 e was followed by general procedure of method B-1 using aryl bromide $4 \mathrm{e}(0.500 \mathrm{~g}, 2.13 \mathrm{mmol}), t-\mathrm{BuONa}(0.256$ $\mathrm{g}, 2.66 \mathrm{mmol}), t$-BuSH ($0.30 \mathrm{~mL}, 2.66 \mathrm{mmol}$), xantphos $(0.015 \mathrm{~g}, 0.0255 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.019 \mathrm{~g}$,
0.0213 mmol) in degassed xylene (8.0 mL). The mixture was allowed to stir at reflux for 2 h . The reaction mixture was purified by column chromatography on silica gel using hexane/acetone (100: 1) to give the product $14 \mathrm{e}(0.460 \mathrm{~g}, 89 \%)$ as a pale yellow solid. M.p.: $35-36{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.25 (dd, $J=8.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=9.2,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.02$ (ddd, $J=9.2,7.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.18 (s, $2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 156.8(\mathrm{~d}, J=213.2 \mathrm{~Hz}), 155.6(\mathrm{~d}, J=25.8$ $\mathrm{Hz}), 125.7(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 123.4(\mathrm{~d}, J=7.6 \mathrm{~Hz})$, $116.8(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 116.4(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 95.7$, 56.2, 47.4, 31.0; IR (KBr) 2970, 2957, 2924, 2909, 2860, 2826, 1485, 1456, 1387, 1364, 1306, 1261, 1248, 1204, 1186, 1157, 1132, 1078, 1049, 1005 cm^{-1}; HRMS (EI) for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{FO}_{2} \mathrm{~S}$ calcd 244.0933 $\left(\mathrm{M}^{+}\right)$, found 244.0930; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{FO}_{2} \mathrm{~S}$: C, $58.99 ;$ H, $7.01 ; \mathrm{N}, 0.00$. found C, $58.85 ; \mathrm{H}, 6.94 ; \mathrm{N}$, 0.00 .

1-(tert-Butylsulfanyl)-3-methoxy-2-

(methoxymethoxy)benzene (14f) Compound $\mathbf{1 4 f}$ was followed by general procedure of method B-1 using aryl bromide $4 \mathbf{f}(0.550 \mathrm{~g}, 2.23 \mathrm{mmol}), t-\mathrm{BuONa}$ $(0.267 \mathrm{~g}, 2.78 \mathrm{mmol}), t$-BuSH ($0.31 \mathrm{~mL}, 2.78 \mathrm{mmol}$), xantphos $(0.015 \mathrm{~g}, 0.0267 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.020 \mathrm{~g}$, 0.0223 mmol) in degassed xylene (8.0 mL). The mixture was allowed to stir at reflux for 2 h . The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (100: 1) to give the product $\mathbf{1 4 f}(0.474 \mathrm{~g}, 83 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14$ (dd, $J=7.6,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=7.6$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, 1.30 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.2$, $148.5,131.3,127.5,123.7,113.2,99.2,57.7,55.8$, 47.4, 31.1; IR (neat) 2961, 2938, 2920, 2895, 2862, 2835, 1738, 1574, 1462, 1435, 1395, 1364, 1292, 1258, 1157, 1072, 1047, $964 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}$ calcd $256.1133\left(\mathrm{M}^{+}\right)$, found 256.1143.

2-(tert-Butylsulfanyl)-4-methoxy-1-
(methoxymethoxy)benzene (14 g) Compound $\mathbf{1 4 g}$ was followed by general procedure of method B-1 using aryl bromide $4 \mathrm{~g}(0.500 \mathrm{~g}, 2.02 \mathrm{mmol}), t-\mathrm{BuONa}$ $(0.240 \mathrm{~g}, 2.53 \mathrm{mmol}), t$-BuSH ($0.29 \mathrm{~mL}, 2.53 \mathrm{mmol}$), xantphos $(0.014 \mathrm{~g}, 0.0243 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.019 \mathrm{~g}$, 0.0202 mmol) in degassed xylene (8.0 mL). The mixture was allowed to stir at reflux for 2 h . The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (50: 1) to give the product $\mathbf{1 4 g}(0.485 \mathrm{~g}, 94 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=9.2,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}$,

9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.8, 153.6, 124.7, 122.7, 116.7, 115.8, 95.9, 56.1, 55.6, 47.1, 31.0; IR (neat) 2959, 2940, 2920, 2897, 2860, 2832, 1597, 1489, 1456, 1439, 1389, 1364, 1287, 1269, 1155, 1142, 1080, 1057, 1040, $1003 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}$ calcd $256.1133\left(\mathrm{M}^{+}\right)$, found 256.1127.

2.6 General procedure for introduction of sulfide into aromatic ring using i-Pr r_{2} NEt as base (Method $B-2$)

To the solution of Aryl bromide in degassed 1,4dioxane was added $i-\mathrm{Pr}_{2} \mathrm{NEt}$, thiol, xantphos and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$. The mixture was allowed to stir at $70-110{ }^{\circ} \mathrm{C}$ for $3-5.5 \mathrm{~h}$. After the resulting orange suspension was cooled to room temperature, the mixture was filtrated by silica gel pad using hexane/ EtOAc (10: 1). The residue was concentrated by evaporation and purified by column chromatography or recrystallization.

2-(Ethylsulfanyl)-1-(methoxymethoxy)-4-nitrobenzene (12h) Compound 12h was followed by general procedure of method B-2 using aryl bromide $\mathbf{4 h}$ (0.500 $\mathrm{g}, 1.91 \mathrm{mmol}), i-\mathrm{Pr}_{2} \mathrm{NEt}(0.66 \mathrm{~mL}, 3.82 \mathrm{mmol})$, EtSH $(0.16 \mathrm{~mL}, 2.10 \mathrm{mmol})$, xantphos $(0.055 \mathrm{~g}, 0.0954$ $\mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.044 \mathrm{~g}, 0.0477 \mathrm{mmol})$ in degassed 1,4-dioxane (5.0 mL). The mixture was allowed to stir at $70{ }^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was purified by column chromatography on silica gel using hexane/ acetone (100: 1) to give the product $\mathbf{1 2 h}(0.433 \mathrm{~g}$, 93%) as a pale yellow solid. M.p.: $50-52^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01$ (dd, $J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.34(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,142.6,129.2,121.9,121.8,112.9,94.8,56.7$, 25.3, 13.4; IR (KBr) 3111, 3090, 2970, 2947, 2932, 2909, 2872, 2837, 1576, 1506, 1481, 1472, 1447, 1352, 1263, 1236, 1204, 1161, 1140, 1084, 1065, 974 cm^{-1}; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}$ calcd 243.0565 $\left(\mathrm{M}^{+}\right)$, found 243.0564; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}$: C, 49.37; H, 5.39; N, 5.76. found C, 49.66; H, 5.43; N, 5.53.

1-(Methoxymethoxy)-4-nitro-2-(propan-2-ylsulfanyl)benzene (13h) Compound 13h was followed by general procedure of method B-2 using aryl bromide 4h ($0.800 \mathrm{~g}, 3.05 \mathrm{mmol}$), $i-\mathrm{Pr}_{2} \mathrm{NEt}(1.1 \mathrm{~mL}, 6.11$ $\mathrm{mmol}), i-\operatorname{PrSH}(0.31 \mathrm{~mL}, 3.36 \mathrm{mmol})$, xantphos (0.088 $\mathrm{g}, 0.153 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.070 \mathrm{~g}, 0.0763 \mathrm{mmol}) \mathrm{in}$ degassed 1,4 -dioxane (8.0 mL). The mixture was allowed to stir at $70^{\circ} \mathrm{C}$ for 5.5 h . The reaction mixture was purified by column chromatography on silica gel
using hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (10: 1: 0.1) to give the product $13 \mathrm{~h}(0.765 \mathrm{~g}, 97 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(\mathrm{~d}, J=2.4,1 \mathrm{H}), 8.04$ (dd, $J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.34(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{sep}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H})$, $1.38(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7,142.3,127.8,124.7,122.7,113.2,94.7,56.6$, 35.6, 22.7; IR (neat) 3103, 3086, 2965, 2926, 2909, 2866, 2830, 1576, 1516, 1474, 1342, 1263, 1250, 1161, 1138, 1088, 1061, $974 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}$ calcd 257.0721 $\left(\mathrm{M}^{+}\right)$, found 257.0722.

2-(tert-Butylsulfanyl)-1-(methoxymethoxy)-4-nitrobenzene (14h) Compound $\mathbf{1 4 h}$ was followed by general procedure of method B-2 using aryl bromide $4 \mathrm{~h}(1.00 \mathrm{~g}, 3.82 \mathrm{mmol}), i-\operatorname{Pr}_{2} \mathrm{NEt}(1.3 \mathrm{~mL}, 7.63 \mathrm{mmol})$, t-BuSH ($0.47 \mathrm{~mL}, 4.20 \mathrm{mmol}$), xantphos $(0.110 \mathrm{~g}$, $0.191 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.0874 \mathrm{~g}, 0.0954 \mathrm{mmol})$ in degassed 1,4-dioxane (10 mL). The mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was purified by column chromatography on silica gel using hexane/acetone (100:1) to give the product $\mathbf{1 4 h}$ $(1.02 \mathrm{~g}, 99 \%)$ as a pale yellow solid. M.p.: $85-87^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.21(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.2,141.5,134.8,126.3$, 123.2, 114.1, 95.0, 56.8, 47.9, 31.0; IR (KBr) 3105, 3084, 2963, 2922, 2899, 2859, 2828, 1593, 1578, 1506, 1472, 1456, 1342, 1261, 1163, 1138, 1125, 1082, 1051, $974 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}$ calcd $271.0878\left(\mathrm{M}^{+}\right)$, found 271.0871; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 53.12 ; \mathrm{H}, 6.31 ; \mathrm{N}, 5.16$. found C, 53.38; H, 6.26; N, 4.91.

Methyl 3-(tert-butylsulfanyl)-4-(methoxymethoxy)benzoate (14i) Compound 14 i was followed by general procedure of method B-2 using aryl bromide $\mathbf{4 i}$ (1.00 $\mathrm{g}, 3.64 \mathrm{mmol}), i-\mathrm{Pr}_{2} \mathrm{NEt}(1.3 \mathrm{~mL}, 7.27 \mathrm{mmol}), t-\mathrm{BuSH}$ ($0.45 \mathrm{~mL}, 4.00 \mathrm{mmol}$), xantphos ($0.105 \mathrm{~g}, 0.182$ $\mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.0832 \mathrm{~g}, 0.0909 \mathrm{mmol})$ in degassed 1,4-dioxane (10 mL). The mixture was allowed to stir at $80{ }^{\circ} \mathrm{C}$ for 22 h . The reaction mixture was purified by recrystallization using hexane-EtOAc to give the product $14 \mathrm{i}(0.674 \mathrm{~g}, 65 \%)$ as a white solid. M.p.: $69-70{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.01$ (dd, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.23 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (s, 2H), 3.90 (s, 3 H), $3.51(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.3,163.0,141.6,132.4,123.4,121.7$, 114.1, 94.8, 56.6, 52.0, 47.3, 31.0; IR (KBr) 2990, 2957, 2922, 2899, 2860, 2832, 1709, 1591, 1485, 1456, 1427, 1385, 1364, 1300, 1287, 1256, 1206, 1146, 1113, 1084, 1057, $984 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}$ calcd 284.1082 (M^{+}), found 284.1084;

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 59.13 ; \mathrm{H}, 7.09$; N , 0.00 . found C, 59.13; H, 7.04; N, 0.00 .

3-(tert-Butylsulfanyl)-4-(methoxymethoxy)benzaldehyde (14j) Compound $\mathbf{1 4} \mathbf{j}$ was followed by general procedure of method B-2 using aryl bromide $\mathbf{4 j}$ (1.00 $\mathrm{g}, 4.08 \mathrm{mmol}), i-\mathrm{Pr}_{2} \mathrm{NEt}(1.4 \mathrm{~mL}, 8.16 \mathrm{mmol}), t-\mathrm{BuSH}$ ($0.51 \mathrm{~mL}, 4.49 \mathrm{mmol}$), xantphos ($0.118 \mathrm{~g}, 0.204$ $\mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.0934 \mathrm{~g}, 0.102 \mathrm{mmol})$ in degassed 1,4-dioxane (10 mL). The mixture was allowed to stir at $80^{\circ} \mathrm{C}$ for 22 h . The reaction mixture was purified by recrystallization using hexane-EtOAc to give the product $\mathbf{1 4 j}(0.814 \mathrm{~g}, 78 \%)$ as a white solid. M.p.: 63-66 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 8.05$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.33 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ (s, 2H), 3.52 (s, 3H), 1.33 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.5$, 164.2, 141.9, 132.3, 130.4, 122.7, 114.7, 94.8, 56.7, 47.5, 31.0; IR (KBr) 2957, 2938, 2920, 2897, 2860, 2826, 2720, 1695, 1678, 1589, 1564, 1481, 1470, $1456,1379,1364,1263,1246,1198,1165,1140$, 1080, 1051, $980 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ calcd $254.0977\left(\mathrm{M}^{+}\right)$, found 254.0974; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 61.39 ; \mathrm{H}, 7.13 ; \mathrm{N}, 0.00$. found C , 61.37; H, 7.08; N, 0.00.

2.7 General procedure for introduction of sulfide into aromatic ring using MeSNa (Method B-3)

To the solution of Aryl bromide in degassed 1,4dioxane was added xantphos, $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and MeSNa . The mixture was allowed to stir at reflux for 4 h . After the resulting orange suspension was cooled to room temperature, the mixture was filtrated by silica gel pad using hexane/EtOAc (10: 1). The residue was concentrated by evaporation and the product was purified by column chromatography or recrystallization using hexane-EtOAc.

Methyl 4-(methoxymethoxy)-3-(methylsulfanyl)benzoate (5i) Compound $\mathbf{5 i}$ was followed by general procedure of method B-3 using aryl bromide $\mathbf{4 i}$ (0.500 $\mathrm{g}, 1.82 \mathrm{mmol}), \mathrm{MeSNa}(0.140 \mathrm{~g}, 2.00 \mathrm{mmol})$, xantphos $(0.053 \mathrm{~g}, 0.0909 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.042 \mathrm{~g}, 0.0454$ mmol) in degassed 1,4 -dioxane (5.0 mL). The reaction mixture was purified by recrystallization using hex-ane-EtOAc to give the product $5 \mathbf{5 i}(0.268 \mathrm{~g}, 61 \%)$ as a pale yellow solid. M.p.: $54-55{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 2.49$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,157.1$, 128.7, 127.7, 126.7, 124.2, 112.8, 94.5, 56.4, 52.0, 14.4; IR (KBr) 3105, 3009, 3001, 2984, 2967, 2947, 2918, 2833, 1713, 1587, 1487, 1429, 1321, 1290,

1258, 1240, 1207, 1165, 1146, 1113, 1088, 1065, 980, $966 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}$ calcd 242.0613 $\left(\mathrm{M}^{+}\right)$, found 242.0627; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}$, 54.53; H, 5.82; N, 0.00. found C, 54.74; H, 5.83; N, 0.00 .

4-(Methoxymethoxy)-3-(methylsulfanyl)benzaldehyde (5 j) Compound $\mathbf{5 j}$ was followed by general procedure of method B-3 using aryl bromide $\mathbf{4 j}$ (0.500 g , $2.04 \mathrm{mmol})$, MeSNa ($0.157 \mathrm{~g}, 2.24 \mathrm{mmol}$), xantphos $(0.059 \mathrm{~g}, 0.102 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.047 \mathrm{~g}, 0.0510$ mmol) in degassed 1,4 -dioxane (5.0 mL). The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (10: 1) to give the product $5 \mathbf{j}(0.364 \mathrm{~g}, 84 \%)$ as a pale yellow solid. M.p.: $45-49{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.89(\mathrm{~s}, 1 \mathrm{H})$, 7.67 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.61 (dd, $J=8.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}$, 3 H), $2.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 190.7, 158.2, 131.0, 130.3, 129.4, 124.9, 112.9, 94.5, 56.5, 14.1; IR (KBr) 3103, 3001, 2982, 2957, 2938, 2924, 2903, 2847, 2830, 2806, 2756, 1697, 1587, 1572, 1487, 1369, 1319, 1240, 1204, 1167, 1140, 1092, 1065, $986 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$ calcd $212.0507\left(\mathrm{M}^{+}\right)$, found 212.0516; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 56.58 ; \mathrm{H}, 5.70 ; \mathrm{N}, 0.00$. found C , 56.83; H, 5.71; N, 0.00.

2.8 Transalkylation of alkyl aryl sulfide

2-(methylsulfanyl)-4-nitrophenol (16) ${ }^{46}$ Iodomethane ($1.2 \mathrm{~mL}, 18.4 \mathrm{mmol}$) was added to the solution of tertbutyl aryl sulfide $\mathbf{1 4 h}(0.500 \mathrm{~g}, 1.84 \mathrm{mmol})$ in dry DMF (5 mL) and the mixture was allowed to stir at 80 ${ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was extracted with EtOAc ($25 \mathrm{~mL} \times 3$) and the organic layer washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (5: 1) to give the product $16(0.322 \mathrm{~g}, 94 \%)$ as yellow solid.

2.9 General procedure for Sharpless asymmetric oxidation of aryl sulfide

A flask was charged with aryl sulfide and backfilled Ar gas. Aryl sulfide was diluted with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and to the solution was added L or $\mathrm{D}-\mathrm{DET}$ and $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$, and allowed to stir for 1 h at room temperature. The reaction mixture was cooled to $-25^{\circ} \mathrm{C}$ and 80% CHP added slowly, and the mixture was stirred for 24 h at $-25^{\circ} \mathrm{C}$, and then the reaction mixture was diluted with EtOAc and quenched with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ aq.. After filtration by celite pad, and the filtrate was
extracted with EtOAc ($2 \times 25 \mathrm{~mL}$) and the combined organic layer washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by column chromatography on alumina or silica gel.

2-[(R)-methylsulfinyl]phenol $(R-7 a)^{47}$: Compound $\boldsymbol{R}-7 \boldsymbol{a}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide 6 ($0.200 \mathrm{~g}, 1.43 \mathrm{mmol}$), L-DET (0.49 mL , $2.85 \mathrm{mmol}), \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.42 \mathrm{~mL}, 1.43 \mathrm{mmol}), 80 \%$ CHP ($0.29 \mathrm{~mL}, 1.57 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (3: 7) to give the product $\boldsymbol{R}-7 \boldsymbol{a}(0.136 \mathrm{~g}, 61 \%, 4.3 \%$ e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: EtOH: trifluoroacetic acid $=96: 4: 0.1,0.75$ $\mathrm{mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=33.39 \mathrm{~min}, t_{\text {minor }}=35.92$ min).

1-Methoxy-2-[(R)-methylsulfinyl]benzene $(R-8 a)^{48}$: Compound $\boldsymbol{R}-8 \boldsymbol{a}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $3 \mathbf{a}(0.200 \mathrm{~g}, 1.30 \mathrm{mmol})$, L-DET $(0.44 \mathrm{~mL}, 2.59 \mathrm{mmol}), \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.38 \mathrm{~mL}, 1.30$ $\mathrm{mmol}), 80 \% \mathrm{CHP}(0.26 \mathrm{~mL}, 1.43 \mathrm{mmol})$ in dry CH_{2-} Cl_{2} (3.0 mL). The reaction mixture was purified by column chromatography on silica gel using hexane/ EtOAc (6: 4) to give the product $\boldsymbol{R}-8 \boldsymbol{a}$ ($0.226 \mathrm{~g},>$ $99 \%, 91 \%$ e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $\mathrm{EtOH}=96: 4,0.75 \mathrm{~mL} /$ $\left.\mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=57.12 \mathrm{~min}, t_{\text {minor }}=60.62 \mathrm{~min}\right)$.

2-Methoxy-1-methyl-3-[(R)-methylsulfinyl]benzene ($R-8 b$) Compound $\boldsymbol{R}-8 \boldsymbol{b}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{3 b}$ ($0.200 \mathrm{~g}, 1.19 \mathrm{mmol}$), L-DET ($0.41 \mathrm{~mL}, 2.38 \mathrm{mmol}$), Ti($\mathrm{O}-i-\mathrm{Pr})_{4}(0.35 \mathrm{~mL}$, $1.19 \mathrm{mmol}), 80 \%$ CHP $(0.24 \mathrm{~mL}, 1.31 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.0 mL). The reaction mixture was purified by column chromatography on silica gel using hexane/ EtOAc (1: 1) to give the product $\boldsymbol{R}-8 \boldsymbol{b}(0.192 \mathrm{~g}, 88 \%$, 89% e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $\mathrm{EtOH}=96: 4,0.75 \mathrm{~mL} / \mathrm{min}, 250$ $\left.\mathrm{nm}, \quad t_{\text {major }}=33.32 \mathrm{~min}, \quad t_{\text {minor }}=36.21 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}=+267.3\left(c=1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (dd, $J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.6,138.5,134.0,131.3,125.1$, 122.0, 60.9, 42.3, 15.4; IR (neat) 3474, 2995, 2940, $2860,2835,1468,1412,1290,1258,1223,1171$, 1148, 1057, $999 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$ calcd $184.0558\left(\mathrm{M}^{+}\right)$, found 184.0564.

1-(Methoxymethoxy)-2-[(R)-methylsulfinyl]benzene ($R-9 a$) Compound $R-9 a$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide 5 a $(0.200 \mathrm{~g}, 1.09 \mathrm{mmol})$, L-DET ($0.37 \mathrm{~mL}, 2.17 \mathrm{mmol}$), Ti($\mathrm{O}-i-\mathrm{Pr})_{4}(0.32 \mathrm{~mL}$, $1.09 \mathrm{mmol}), 80 \%$ CHP ($0.18 \mathrm{~mL}, 1.19 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/ EtOAc (1: 1) to give the product $\boldsymbol{R}-9 \boldsymbol{a}(0.222 \mathrm{~g}$, $>99 \%, 91 \%$ e.e.) as a white solid. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, MeCN only, $0.50 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$, $\left.t_{\text {major }}=10.80 \mathrm{~min}, t_{\text {minor }}=11.62 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}=+269.3$ ($c=2.8$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.85(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dt}, J=8.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) 152.3, 133.7, 131.8, 124.5, 122.7, 113.8, 94.4, 56.4, 41.4; IR (KBr) 3069, 3001, 2951, 2922, 2911, 2828, 1585, 1472, 1441, 1410, 1315, 1269, 1229, $1200,1150,1132,1082,1062,1034,980 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$ calcd $200.0507\left(\mathrm{M}^{+}\right)$, found 200.0500; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 53.98$; H, 6.04 ; $\mathrm{N}, 0.00$. found: C, $54.16 ; \mathrm{H}, 5.96$; $\mathrm{N}, 0.00$.

2-(Methoxymethoxy)-1-methyl-3-[(S)-methylsulfinyl]benzene ($S-9 b$) Compound $S-9 \boldsymbol{b}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{5 b}(1.00 \mathrm{~g}, 5.04$ $\mathrm{mmol})$, D-DET ($1.7 \mathrm{~mL}, 10.1 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(1.5$ $\mathrm{mL}, 5.04 \mathrm{mmol}), 80 \%$ CHP ($1.0 \mathrm{~mL}, 5.55 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (1: 1) to give the product $\boldsymbol{S}-9 \boldsymbol{b}(1.12 \mathrm{~g}$, $>99 \%, 92 \%$ e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $\mathrm{EtOH}=96: 4,0.75 \mathrm{~mL} /$ $\mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=65.90 \mathrm{~min}, t_{\text {minor }}=74.66 \mathrm{~min}$). $[\alpha]_{\mathrm{D}}=-246.0 \quad\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{dd}, J=1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (dd, $J=1.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.04(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.61(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.0,139.1,134.0,131.5,125.3$, 122.0, 99.5, 57.7, 41.9, 16.3; IR (neat) 3503, 2992, 2955, 2932, 1462, 1398, 1159, 1057, 959, $945 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$ calcd $214.0664\left(\mathrm{M}^{+}\right)$, found 214.0660.

2-(Methoxymethoxy)-1-methyl-3-[(R)-methylsulfinyl]benzene ($R-9 b$) Compound $\boldsymbol{R}-9 \boldsymbol{b}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{5 b}(1.00 \mathrm{~g}, 5.04$ mmol), L-DET ($1.7 \mathrm{~mL}, 10.1 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$
($1.5 \mathrm{~mL}, 5.04 \mathrm{mmol}$), 80% CHP ($1.0 \mathrm{~mL}, 5.55 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (1:1) to give the product $\boldsymbol{R}-\mathbf{9 b}(1.06 \mathrm{~g}$, $99 \%, 94 \%$ e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $\mathrm{EtOH}=96: 4,0.75 \mathrm{~mL} /$ $\left.\mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=73.89 \mathrm{~min}, t_{\text {minor }}=66.96 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}=+242.0\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$ calcd 214.0664 (M^{+}), found 214.0661.

1-(Methoxymethoxy)-4-methyl-2-(methyl-
sulfinyl)benzene (9c) Compound 9 c was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $5 \mathrm{c}(0.200 \mathrm{~g}, 1.01$ mmol), L-DET ($0.35 \mathrm{~mL}, 2.02 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ $(0.30 \mathrm{~mL}, 1.01 \mathrm{mmol}), 80 \%$ CHP $(0.21 \mathrm{~mL}$, $1.11 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (1:1) to give the product $9 \mathrm{c}(0.179 \mathrm{~g}, 83 \%, 95 \%$ e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: i - $\mathrm{PrOH}=90$: $10,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=37.17 \mathrm{~min}, t_{\text {minor- }}$ $=39.65 \mathrm{~min}) .[\alpha]_{\mathrm{D}}=+213.2\left(c=1.5\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.21 (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0,133.2,132.5,132.2$, $124.5,113.8,94.4,56.2,41.3,20.4$; IR (neat) 3495 , 2994, 2953, 2920, 2828, 1489, 1416, 1271, 1159, 1142, 1084, 1070, 1038, $982 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$ calcd 214.0664 $\left(\mathrm{M}^{+}\right)$, found 214.0661.

4-Fluoro-2-(methoxymethoxy)-1-(methyl-
sulfinyl)benzene (9d) Compound 9d was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $5 \mathbf{d}(0.200 \mathrm{~g}, 0.989$ $\mathrm{mmol})$, L-DET ($0.32 \mathrm{~mL}, 1.88 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ ($0.28 \mathrm{~mL}, 0.989 \mathrm{mmol}$), 80% CHP ($0.19 \mathrm{~mL}, 1.04$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (1: 1) to give the product 9d $(0.187 \mathrm{~g}, 87 \%, 93 \%$ e.e.) as a white solid. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $\mathrm{EtOH}=96: 4$, $0.50 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=63.75 \mathrm{~min}, t_{\text {minor }}$ $=61.10 \mathrm{~min}) .[\alpha]_{\mathrm{D}}=+235.8\left(c=1.4\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{dd}, J=8.4,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97-6.91(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2(\mathrm{~d}, J=248.9$ $\mathrm{Hz}), 153.5(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=3.0 \mathrm{~Hz})$, $126.2(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 109.6(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 102.5$
(d, $J=27.0 \mathrm{~Hz}$), 94.7, 56.6, $41.6(\mathrm{~d}, J=1.5 \mathrm{~Hz}) ; \mathrm{IR}$ (KBr) 3102, 3073, 3038, 2994, 2967, 2907, 2880, 2833, 1607, 1587, 1477, 1450, 1429, 1408, 1393, 1312, 1275, 1236, 1225, 1169, 1152, 1094, 1067, 1034, $988 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{FO}_{3} \mathrm{~S}$ calcd $218.0413\left(\mathrm{M}^{+}\right)$, found 218.0410; Anal. Calcd for C_{9} $\mathrm{H}_{11} \mathrm{FO}_{3} \mathrm{~S}: \mathrm{C}, 49.53 ; \mathrm{H}, 5.08 ; \mathrm{N}, 0.00$. found: C, 49.81; H, 5.03; N, 0.00.

4-Fluoro-1-(methoxymethoxy)-2-(methylsulfinyl)benzene (9e) Compound $\mathbf{9 e}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $5 \mathrm{e}(0.200 \mathrm{~g}, 0.989$ mmol), L-DET ($0.32 \mathrm{~mL}, 1.88 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ ($0.28 \mathrm{~mL}, 0.989 \mathrm{mmol}$), $80 \% \mathrm{CHP}(0.19 \mathrm{~mL}$, $1.04 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (1: 1) to give the product $9 \mathrm{e}(0.196 \mathrm{~g}, 91 \%, 92 \%$ e.e.) as a white solid. The yield was 69% and the enantiomeric excess was 99% e.e. after one recrystallization using hexane-EtOAc. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: EtOH = 90: $10,0.50 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=27.14 \mathrm{~min}$, $\left.t_{\text {minor }}=35.00 \mathrm{~min}\right)$. M.p.: $57-60{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}=+249.0$ ($c=3.1$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.58 (dd, $J=7.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 2 \mathrm{H}), 5.23$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ (s, 3 H), $2.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $158.5(\mathrm{~d}, J=243.6 \mathrm{~Hz}), 148.3(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 136.1$ $(\mathrm{d}, J=6.1 \mathrm{~Hz}), 118.3(\mathrm{~d}, J=23.5 \mathrm{~Hz}), 115.5(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}), 111.8(\mathrm{~d}, J=25.8 \mathrm{~Hz}), 95.0,56.5,41.4$; IR (KBr) 3105, 3034, 3003, 2961, 2947, 2911, 2835, $1485,1479,1406,1315,1288,1263,1244,1209$, $1184,1153,1132,1088,1065,1030,982 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{FO}_{3} \mathrm{~S}$ calcd $218.0413\left(\mathrm{M}^{+}\right)$, found 218.0413; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{FO}_{3} \mathrm{~S}$: C, 49.53; H, 5.08; N, 0.00. found: C, 49.58; H, 5.03; N, 0.00 .

1-Methoxy-2-(methoxymethoxy)-3-(methyl-

sulfinyl)benzene (9f) Compound $9 \mathrm{9f}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{5 f}(0.200 \mathrm{~g}, 0.933$ mmol), L-DET ($0.32 \mathrm{~mL}, 1.87 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ ($0.27 \mathrm{~mL}, 0.933 \mathrm{mmol}$), 80% CHP ($0.19 \mathrm{~mL}, 1.03$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (1: 1) to give the product 9 f ($0.154 \mathrm{~g}, 72 \%, 93 \%$ e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $i-\mathrm{PrOH}=90: 10$, $0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=46.63 \mathrm{~min}, t_{\text {minor- }}$ $=42.42 \mathrm{~min}) .[\alpha]_{\mathrm{D}}=+159.0\left(c=1.4 \mathrm{in} \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=8.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.5,140.6,139.6,125.2$, 115.6, 114.7, 98.6, 57.9, 56.0, 42.0; IR (neat) 3026, 3001, 2957, 2943, 2911, 2847, 2828, 1582, 1489, 1472, 1450, 1441, 1306, 1265, 1192, 1163, 1067, 1043, 1028, $941 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}$ calcd 230.0613 $\left(\mathrm{M}^{+}\right)$, found 230.0617.

4-Methoxy-1-(methoxymethoxy)-2-(methylsulfinyl)benzene (9 g) Compound 9 g was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $5 \mathbf{g}(0.200 \mathrm{~g}, 0.933$ mmol), L-DET ($0.32 \mathrm{~mL}, 1.87 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ $(0.27 \mathrm{~mL}, 0.933 \mathrm{mmol}), 80 \%$ CHP ($0.19 \mathrm{~mL}, 1.03$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (1:3) to give the product 9 g $(0.210 \mathrm{~g}, 99 \%, 92 \%$ e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $i-\mathrm{PrOH}=90: 10$, $0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=30.89 \mathrm{~min}, t_{\text {minor- }}$ $=35.37 \mathrm{~min}) .[\alpha]_{\mathrm{D}}=+195.4\left(c=1.5\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.09 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=9.2,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.5,146.0,134.9,118.2$, 115.8, 108.2, 95.1, 56.3, 55.9, 41.4; IR (neat) 2995, 2968, 2953, 2941, 2828, 1609, 1491, 1470, 1433, 1317, 1269, 1215, 1198, 1157, 1140, 1084, 1061, 1024, $986 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~S}$ calcd $230.0613\left(\mathrm{M}^{+}\right)$, found 230.0609.

1-(Methoxymethoxy)-2-(methylsulfinyl)-4-nitrobenzene (9h) Compound 9 h was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{5 h}(0.100 \mathrm{~g}, 0.436 \mathrm{mmol})$, L-DET ($0.15 \mathrm{~mL}, 0.872 \mathrm{mmol}$), Ti(O-i-Pr) $)_{(0.13 \mathrm{~mL} \text {, }}$ $0.436 \mathrm{mmol}), 80 \%$ CHP ($0.090 \mathrm{~mL}, 0.480 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (1: 1) to give the product $9 \mathrm{~h}(0.0976 \mathrm{~g}$, $91 \%, 99 \%$ e.e.) as a white solid. The yield was 44% and the enantiomeric excess was $>99 \%$ e.e. after one recrystallization using hexane-EtOAc. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: $\mathrm{EtOH}=70$: $30,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=95.22 \mathrm{~min}, t_{\text {minor- }}$ $=31.35 \mathrm{~min})$. М.p.: $110-111{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}=+200.0$ ($c=1.1$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.74(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{dd}, J=8.8,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.35(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~s}$,
$3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.9,143.2$, 136.1, 127.8, 121.4, 114.0, 95.0, 57.0, 41.2; IR (KBr) 3102, 2970, 2922, 2839, 1587, 1512, 1487, 1472, 1341, 1261, 1231, 1206, 1167, 1134, 1088, 1059, 1028, $949 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{~S}$ calcd $245.0358\left(\mathrm{M}^{+}\right)$, found 245.0354; Anal. Calcd for C_{9} $\mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 44.08$; H, 4.52; N, 5.71. found: C, 44.33; H, 4.60; N, 5.87.
Methyl 4-(methoxymethoxy)-3-(methylsulfinyl)benzoate (9i) Compound $9 \mathbf{9}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $5 \mathbf{5 i}(0.100 \mathrm{~g}, 0.413 \mathrm{mmol})$, L-DET ($0.14 \mathrm{~mL}, 0.825 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.12 \mathrm{~mL}$, 0.413 mmol), $80 \% \mathrm{CHP}$ ($0.084 \mathrm{~mL}, 0.454 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (2: 3) to give the product $9 \mathbf{i}(0.109 \mathrm{~g},>$ $99 \%, 96 \%$ e.e.) as a white solid. The yield was 47% and the enantiomeric excess was $>99 \%$ e.e. after one recrystallization using hexane-EtOAc. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $\mathrm{EtOH}=70: 30$, $0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=17.63 \mathrm{~min}, t_{\text {minor }}$ $=20.00 \mathrm{~min}$). М.р.: $70-74{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}=+172.1$ $\left(c=1.3\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.52 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.15 (dd, $J=8.8,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.29(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}$, 3 H), $2.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $165.9,155.8,134.3,133.9,126.6,125.1,113.5,94.6$, 56.8, 52.2, 41.4; IR (KBr) 3078, 3007, 2980, 2955, 2922, 2841, 1709, 1599, 1489, 1445, 1321, 1312, 1287, 1254, 1207, 1165, 1148, 1115, 1086, 1069, 1034, $955 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S}$ calcd $258.0562\left(\mathrm{M}^{+}\right)$, found 258.0575; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 51.15 ; \mathrm{H}, 5.46 ; \mathrm{N}, 0.00$. found: C, 51.37; H, 5.46; N, 0.00.

4-(Methoxymethoxy)-3-(methylsulfinyl)benzaldehyde (9j) Compound $\mathbf{9 j}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $5 \mathbf{j}$ ($0.100 \mathrm{~g}, 0.471 \mathrm{mmol}$), L-DET ($0.16 \mathrm{~mL}, 0.942 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr}) 4_{4}(0.14 \mathrm{~mL}$, $0.471 \mathrm{mmol}), 80 \% \mathrm{CHP}(0.096 \mathrm{~mL}, 0.518 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (2: 3) to give the product $\mathbf{9 j}(0.0980 \mathrm{~g}$, $91 \%, 94 \%$ e.e.) as a white solid. The yield was 53% and the enantiomeric excess was $>99 \%$ e.e. after one recrystallization using hexane-EtOAc. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $\mathrm{EtOH}=75: 25$, $0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=23.64 \mathrm{~min}, t_{\text {minor }}$ $=29.88 \mathrm{~min})$. М.р.: $99-101{ }^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}=+203.5$
($c=1.2$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.01(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02$ (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H})$, $2.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.0$, 156.9, 135.1, 132.6, 131.4, 127.9, 114.1, 94.7, 56.9, 41.2; IR (KBr) 3078, 3038, 2974, 2832, 2803, 2737, 1694, 1682, 1595, 1576, 1495, 1474, 1416, 1398, 1277, 1250, 1206, 1186, 1171, 1101, 1061, 1032, 943 cm^{-1}; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}$ calcd 228.0456 $\left(\mathrm{M}^{+}\right)$, found 228.0458; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}$, 52.62 ; H, 5.30; N, 0.00 . found: C, 52.72 ; H, 5.34 ; N, 0.00 .

1-(Ethylsulfinyl)-2-(methoxymethoxy)benzene (17a) Compound 17a was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide 12a ($0.200 \mathrm{~g}, 1.01 \mathrm{mmol}$), L-DET (0.35 $\mathrm{mL}, 2.02 \mathrm{mmol}), \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.30 \mathrm{~mL}, 1.01 \mathrm{mmol})$, 80% CHP ($0.16 \mathrm{~mL}, 1.11 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0$ mL). The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (1: 1) to give the product $\mathbf{1 7 a}(0.190 \mathrm{~g}, 88 \%, 68 \%$ e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, MeCN only, $0.50 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=10.80 \mathrm{~min}$, $\left.t_{\text {minor }}=11.62 \mathrm{~min}\right) . \quad[\alpha]_{\mathrm{D}}=+215.3 \quad(c=3.2 \quad$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78$ (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dt}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}$, $3 \mathrm{H}), 3.08(\mathrm{dq}, J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dq}$, $J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.4,131.6,130.9,125.5$, 122.2, 113.7, 94.3, 56.2, 46.5, 5.4; IR (neat) 3466, 2967, 2934, 2845, 1585, 1474, 1441, 1269, 1155, 1130, 1084, 1070, 1036, $978 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$ calcd 214.0664 $\left(\mathrm{M}^{+}\right)$, found 214.0665.

1-(Ethylsulfinyl)-2-(methoxymethoxy)-3-methylbenzene (17b) Compound 17b was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 2 b}(0.200 \mathrm{~g}, 0.942 \mathrm{mmol})$, L-DET ($0.32 \mathrm{~mL}, 1.88 \mathrm{mmol}$), Ti($\mathrm{O}-i-\mathrm{Pr})_{4}(0.28 \mathrm{~mL}$, $0.942 \mathrm{mmol}), 80 \%$ CHP $(0.19 \mathrm{~mL}, 1.04 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/ EtOAc (1: 1) to give the product $\mathbf{1 7 b}(0.183 \mathrm{~g}, 85 \%$, 67% e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: i - $\mathrm{PrOH}=96: 4,0.75 \mathrm{~mL} / \mathrm{min}$, $\left.250 \mathrm{~nm}, t_{\text {major }}=74.45 \mathrm{~min}, t_{\text {minor }}=71.06 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}=+215.5\left(c=3.6\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{dd}, J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (dd, $J=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.04(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.60(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{dq}, J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dq}$, $J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.2, 136.3, 133.9, 131.4, 124.9, 123.2, 99.5, 57.7, 47.5, 16.3, 5.7; IR (neat) 3466, 2967, 2934, 2876, 2828, 1460, 1429, 1398, 1159, 1072, 1057, 1045, 1022, $949 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$ calcd $228.0820\left(\mathrm{M}^{+}\right)$, found 228.0821.

2-(Ethylsulfinyl)-1-(methoxymethoxy)-4-methylbenzene (17c) Compound 17c was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 2 c}(0.200 \mathrm{~g}, 0.942 \mathrm{mmol})$, L-DET ($0.32 \mathrm{~mL}, 1.88 \mathrm{mmol}$), Ti(O-i-Pr) $)_{(0.28 \mathrm{~mL} \text {, }}$ 0.942 mmol), 80% CHP ($0.19 \mathrm{~mL}, 1.04 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/ EtOAc (2: 3) to give the product $17 \mathrm{c}(0.216 \mathrm{~g},>99 \%$, 74% e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: $i-\mathrm{PrOH}=90: 10,0.50 \mathrm{~mL} /$ $\left.\mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=54.99 \mathrm{~min}, t_{\text {minor }}=40.27 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}=+191.4 \quad\left(c=1.5\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}$, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H})$, $3.07(\mathrm{dq}, J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dq}, J=13.6,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.3,132.2,132.1,130.6$, 125.6, 113.8, $94.5,56.2,46.7,20.4,5.6$; IR (neat) 3487, 2967, 2932, 2874, 2826, 1491, 1456, 1271, 1159, 1142, 1084, 1069, 1038, $982 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$ calcd $228.0820\left(\mathrm{M}^{+}\right)$, found 228.0823 .

1-(Ethylsulfinyl)-4-fluoro-2-(methoxymethoxy)benzene (17d) Compound $\mathbf{1 7 d}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 2 d}(0.200 \mathrm{~g}, 0.925 \mathrm{mmol})$, L-DET ($0.32 \mathrm{~mL}, 1.85 \mathrm{mmol}$), Ti(O-i-Pr) ${ }_{4}(0.27 \mathrm{~mL}$, $0.925 \mathrm{mmol}), 80 \%$ CHP ($0.19 \mathrm{~mL}, 1.02 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/ EtOAc (1: 1) to give the product $\mathbf{1 7 d}(0.202 \mathrm{~g}, 94 \%$, 62% e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: i - $\mathrm{PrOH}=95: 5,0.50 \mathrm{~mL} / \mathrm{min}$, $\left.250 \mathrm{~nm}, t_{\text {major }}=60.63 \mathrm{~min}, t_{\text {minor }}=58.38 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}=+179.3\left(c=2.6\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{dd}, J=9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.84-6.79 (m, 2H), $5.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{dq}, J=13.6,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.69(\mathrm{dq}, J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.9$ (d, $J=248.9 \mathrm{~Hz}), 153.5(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 127.1(\mathrm{~d}$,
$J=9.9 \mathrm{~Hz}), 126.4(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 109.1(\mathrm{~d}, J=22.0$ $\mathrm{Hz}), 102.3$ (d, $J=26.6 \mathrm{~Hz}$), 94.5, 56.4, 46.6, 5.3; IR (neat) 3495, 2967, 2934, 2876, 2832, 1605, 1587, $1479,1427,1391,1275,1117,1086,1069,1024,988$ $\mathrm{cm}^{-1} ;$ HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FO}_{3} \mathrm{~S}$ calcd 232.0569 $\left(\mathrm{M}^{+}\right)$, found 232.0568.

2-(Ethylsulfinyl)-4-fluoro-1-(methoxymethoxy)benzene (17e) Compound 17 e was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 2 e}(0.200 \mathrm{~g}, 0.925 \mathrm{mmol})$, L-DET ($0.32 \mathrm{~mL}, 1.85 \mathrm{mmol}$), Ti(O-i- Pr$)_{4}(0.27 \mathrm{~mL}$, $0.925 \mathrm{mmol}), 80 \%$ CHP ($0.19 \mathrm{~mL}, 1.02 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.0 mL). The reaction mixture was purified by column chromatography on silica gel using hexane/ EtOAc (1: 1) to give the product $17 \mathrm{e}(0.228 \mathrm{~g},>99 \%$, 68% e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $\mathrm{EtOH}=90: 10,0.50 \mathrm{~mL} / \mathrm{min}$, $\left.250 \mathrm{~nm}, t_{\text {major }}=22.40 \mathrm{~min}, t_{\text {minor }}=30.75 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}=+177.4\left(c=4.1\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{dd}, J=7.6,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.06-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{dq}, J=13.6,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.74(\mathrm{dq}, J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.1$ (d, $J=242.5 \mathrm{~Hz}$), $148.5(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 133.3$ (d, $J=5.3 \mathrm{~Hz}), 118.0(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=7.6$ $\mathrm{Hz}), 112.7$ (d, $J=26.6 \mathrm{~Hz}$), 94.9, 56.3, 46.5, 5.4; IR (neat) 3503, 2967, 2936, 2911, 2878, 2828, 1485, $1400,1258,1184,1157,1128,1084,1067,1026,979$ cm^{-1}; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FO}_{3} \mathrm{~S}$ calcd 232.0569 $\left(\mathrm{M}^{+}\right)$, found 232.0567.

1-(Ethylsulfinyl)-3-methoxy-2-
(methoxymethoxy)benzene (17f) Compound $\mathbf{1 7 f}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 2 f}$ $(0.200 \mathrm{~g}, 0.877 \mathrm{mmol})$, L-DET ($0.30 \mathrm{~mL}, 1.75 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.26 \mathrm{~mL}, 0.877 \mathrm{mmol}), 80 \% \mathrm{CHP}(0.18$ $\mathrm{mL}, 0.965 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (2: 3) to give the product $\mathbf{1 7 f}(0.138 \mathrm{~g}, 64 \%, 66 \%$ e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: i $\mathrm{PrOH}=90: 10,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=40.87$ $\left.\mathrm{min}, t_{\text {minor }}=36.86 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}=+131.5(c=2.1 \mathrm{in}$ CHCl_{3}) ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{dd}$, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.13(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H})$, 3.10 (dq, $J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dq}, J=13.6,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.5,140.8,137.0,124.8,116.9$,
114.6, 98.6, 57.9, 56.0, 47.5, 5.8; IR (neat) 3464, 2967, 2936, 2839, 1589, 1477, 1450, 1439, 1300, 1267, 1190, 1177, 1159, 1072, 1059, 1036, $945 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$ calcd $244.0769\left(\mathrm{M}^{+}\right)$, found 244.0768.

2-(Ethylsulfinyl)-4-methoxy-1-
(methoxymethoxy)benzene (17 g) Compound $\mathbf{1 7 g}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 2 g}$ ($0.200 \mathrm{~g}, 0.877 \mathrm{mmol}$), L-DET ($0.30 \mathrm{~mL}, 1.75 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.26 \mathrm{~mL}, 0.877 \mathrm{mmol}), 80 \%$ CHP (0.18 $\mathrm{mL}, 0.965 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (2: 3) to give the product $17 \mathrm{~g}(0.200 \mathrm{~g}, 92 \%, 78 \%$ e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: i $\operatorname{PrOH}=90: 10,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=25.99$ $\left.\min , t_{\text {minor }}=32.94 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}=+159.8(c=2.1 \mathrm{in}$ CHCl_{3}); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}$, $J=8.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{dq}$, $J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dq}, J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 155.2,146.2,132.2,117.8,115.7,109.4,95.0,56.2$, 55.7, 46.7, 5.6; IR (neat) 3482, 2959, 2936, 2909, 2832, 1491, 1441, 1267, 1194, 1157, 1138, 1082, 1067, 1043, 1026, $984 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{~S}$ calcd $244.0769\left(\mathrm{M}^{+}\right)$, found 244.0762.

2-(Ethylsulfinyl)-1-(methoxymethoxy)-4-nitrobenzene (17h) Compound $\mathbf{1 7 h}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 2 h}(0.130 \mathrm{~g}, 0.534 \mathrm{mmol})$, L-DET ($0.18 \mathrm{~mL}, 1.07 \mathrm{mmol}), \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.16 \mathrm{~mL}$, $0.534 \mathrm{mmol}), 80 \% \mathrm{CHP}(0.11 \mathrm{~mL}, 0.588 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/ EtOAc (2: 3) to give the product $\mathbf{1 7 h}(0.135 \mathrm{~g}, 97 \%$, 78% e.e.) as a white solid. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: $\mathrm{EtOH}=70: 30,0.75 \mathrm{~mL} / \mathrm{min}$, $\left.250 \mathrm{~nm}, \quad t_{\text {major }}=46.48 \mathrm{~min}, t_{\text {minor }}=28.95 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}=+177.7 \quad\left(c=1.8\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.68(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{dd}$, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H})$, 3.13 (dq, $J=14.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dq}, J=14.8,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.1,143.1,133.5,127.7,122.4$, 113.9, 94.9, 57.0, 46.6, 5.6; IR (KBr) 3102, 2978, 2940, 2916, 2876, 2835, 1585, 1510, 1487, 1458, $1342,1261,1200,1159,1132,1088,1061,1026,945$
cm^{-1}; HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S}$ calcd 259.0514 $\left(\mathrm{M}^{+}\right)$, found 259.0517; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{5} \mathrm{~S}$: C, 46.32; H, 5.05; N, 5.40. found: C, $46.62 ; \mathrm{H}, 5.09$; N, 5.53.

1-(Methoxymethoxy)-2-(propan-2-ylsulfinyl)benzene $(18 a)^{30}$: Compound 18a was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $13 \mathbf{a}(0.200 \mathrm{~g}, 0.943 \mathrm{mmol})$, L-DET ($0.32 \mathrm{~mL}, 1.89 \mathrm{mmol}), \mathrm{Ti}(\mathrm{O}-i-\operatorname{Pr})_{4}(0.28 \mathrm{~mL}$, $0.943 \mathrm{mmol}), 80 \%$ CHP ($0.19 \mathrm{~mL}, 1.04 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/ EtOAc (1: 1) to give the product $18 \mathbf{a}(0.170 \mathrm{~g}, 79 \%$, 26% e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, MeCN only, $0.50 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {ma- }}$ jor $\left.=10.70 \mathrm{~min}, t_{\text {minor }}=11.70 \mathrm{~min}\right)$.

2-(Methoxymethoxy)-1-methyl-3-(propan-2-ylsulfinyl)benzene (18b) Compound 18b was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 3 b}(0.300 \mathrm{~g}$, $1.33 \mathrm{mmol})$, L-DET ($0.45 \mathrm{~mL}, 2.65 \mathrm{mmol}$), Ti(O-i$\mathrm{Pr}_{4}(0.39 \mathrm{~mL}, 1.33 \mathrm{mmol}), 80 \%$ CHP ($0.27 \mathrm{~mL}, 1.45$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (2: 1) to give the product $\mathbf{1 8 b}$ ($0.258 \mathrm{~g}, 80 \%, 33 \%$ e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, MeCN only, $0.50 \mathrm{~mL} /$ $\left.\min , 250 \mathrm{~nm}, t_{\text {major }}=12.65 \mathrm{~min}, t_{\text {minor }}=13.60 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}=+103.8 \quad\left(c=3.7\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ $(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.04(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{sep}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.33(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.5,135.6$, $133.9,131.5,124.8,123.9,99.5,57.7,51.8,17.3,16.4$, 12.3; KBr (neat) $3466,2967,2930,2868,1462,1429$, 1396, 1159, 1072, 1057, 1024, $949 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ calcd $242.0977\left(\mathrm{M}^{+}\right)$, found 242.0977.

1-(Methoxymethoxy)-4-methyl-2-(propan-2-ylsulfinyl)benzene (18c) Compound 18c was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 3 c}(0.200 \mathrm{~g}, 0.884$ mmol), L-DET ($0.30 \mathrm{~mL}, 1.77 \mathrm{mmol}$), Ti(O-i-Pr) 4_{4} ($0.26 \mathrm{~mL}, 0.884 \mathrm{mmol}$), 80% CHP ($0.18 \mathrm{~mL}, 0.972$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (2: 3) to give the product 18c ($0.161 \mathrm{~g}, 75 \%, 41 \%$ e.e.) as a pale yellow oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: i - $\mathrm{PrOH}=90$: $10,0.50 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=60.53 \mathrm{~min}$,
$\left.t_{\text {minor }}=30.64 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}=+85.6\left(c=1.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{sep}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}$, $3 \mathrm{H}), 1.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.8,132.1$, $132.0,130.2,126.2,113.9,94.6,56.2,51.1,20.5,17.2$, 12.5; IR (neat) $3474,2968,2930,2868,2826,1489$, 1464, 1271, 1159, 1142, 1084, 1070, 1040, 1022, 984 cm^{-1}; HRMS (EI) for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ calcd 242.0977 $\left(\mathrm{M}^{+}\right)$, found 242.0979 .

4-Fluoro-2-(methoxymethoxy)-1-(propan-2-ylsulfinyl)benzene (18d) Compound 18d was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 3 d}(0.200 \mathrm{~g}$, $0.868 \mathrm{mmol})$, L-DET ($0.30 \mathrm{~mL}, 1.74 \mathrm{mmol}$), Ti(O-i$\operatorname{Pr})_{4}(0.26 \mathrm{~mL}, 0.868 \mathrm{mmol}), 80 \%$ CHP $(0.18 \mathrm{~mL}$, $0.955 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc $(2: 1)$ to give the product $18 d(0.209 \mathrm{~g}, 98 \%, 15 \%$ e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: i $\operatorname{PrOH}=90: 10,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=18.39$ $\left.\min , t_{\text {minor }}=14.97 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}=+35.7 \quad(c=2.0 \mathrm{in}$ CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70$ (dd, $J=9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 2 \mathrm{H}), 5.25$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H})$, $3.06(\mathrm{sep}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 165.0(\mathrm{~d}, J=249.0 \mathrm{~Hz}), 154.1(\mathrm{~d}, J=11.3 \mathrm{~Hz})$, 127.7 (d, $J=10.6 \mathrm{~Hz}), 126.0(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 109.1(\mathrm{~d}$, $J=22.0 \mathrm{~Hz}), 102.3(\mathrm{~d}, J=26.6 \mathrm{~Hz}), 94.6,56.4,51.2$, 16.9, 12.3; IR (neat) 3503, 2968, 2932, 2870, 2832, 1605, 1587, 1479, 1427, 1391, 1275, 1152, 1086, 1067, 1043, 1024, $988 \mathrm{~cm}^{-1}$; HRMS (EI) for C_{11} $\mathrm{H}_{15} \mathrm{FO}_{3} \mathrm{~S}$ calcd $246.0726\left(\mathrm{M}^{+}\right)$, found 246.0728.

4-Fluoro-1-(methoxymethoxy)-2-(propan-2-ylsulfinyl)benzene (18e) Compound $\mathbf{1 8 e}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 3 e}(0.200 \mathrm{~g}, 0.868$ mmol), L-DET ($0.30 \mathrm{~mL}, 1.74 \mathrm{mmol}$), Ti(O-i-Pr) ${ }_{4}$ ($0.26 \mathrm{~mL}, 0.868 \mathrm{mmol}$), 80% CHP ($0.18 \mathrm{~mL}, 0.955$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (5: 1) to give the product 18e ($0.130 \mathrm{~g}, 68 \%, 38 \%$ e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: $i-\mathrm{PrOH}=90$: $10,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=21.92 \mathrm{~min}, t_{\text {minor- }}$ $=19.18 \mathrm{~min}) .[\alpha]_{\mathrm{D}}=+108.9\left(c=1.6\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{dd}, J=8.0,2.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{sep}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.44(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.1$ (d, $J=243.6 \mathrm{~Hz}), 148.9(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=5.3$ $\mathrm{Hz}), 118.1(\mathrm{~d}, J=23.5 \mathrm{~Hz}), 115.5(\mathrm{~d}, J=7.6 \mathrm{~Hz})$, $113.1(\mathrm{~d}, J=25.8 \mathrm{~Hz}), 95.0,56.3,51.1,17.2,12.2$; IR (neat) 3482, 2970, 2934, 2909, 2870, 2828, 1485, 1400, 1258, 1184, 1157, 1128, 1084, 1069, 1022, 982 cm^{-1}; HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{FO}_{3} \mathrm{~S}$ calcd 246.0726 $\left(\mathrm{M}^{+}\right)$, found 246.0724 .

1-Methoxy-2-(methoxymethoxy)-3-(propan-2-yl-
sulfinyl)benzene ($18 f$) Compound $\mathbf{1 8 f}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 3 f}(0.200 \mathrm{~g}$, $0.826 \mathrm{mmol}), \mathrm{L}-\mathrm{DET}(0.28 \mathrm{~mL}, 1.65 \mathrm{mmol})$, $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ ($0.25 \mathrm{~mL}, 0.826 \mathrm{mmol}), 80 \%$ CHP ($0.17 \mathrm{~mL}, 0.909$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (1: 1) to give the product $\mathbf{1 8 f}$ ($0.145 \mathrm{~g}, 68 \%, 16 \%$ e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $i-\mathrm{PrOH}=90: 10$, $0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=34.34 \mathrm{~min}, t_{\text {minor }}$ $=30.80 \mathrm{~min}) .[\alpha]_{\mathrm{D}}=+25.5\left(c=1.5\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=8.4,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{sep}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.41(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.6,141.2$, $136.3,124.6,117.5,114.5,98.6,58.0,56.0,51.8,17.5$, 12.4; IR (neat) $3462,2967,2934,2839,1587,1476$, 1450, 1439, 1300, 1267, 1190, 1175, 1159, 1072, 1059, 1038, 1024, $945 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}$ calcd $258.0926\left(\mathrm{M}^{+}\right)$, found 258.0926.

4-Methoxy-1-(methoxymethoxy)-2-(propan-2-ylsulfinyl)benzene $(18 g)^{30}$: Compound $\mathbf{1 8 g}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 3 g}(0.200 \mathrm{~g}$, $0.826 \mathrm{mmol})$, L-DET ($0.28 \mathrm{~mL}, 1.65 \mathrm{mmol}$), Ti(O-iPr) $4^{(}(0.25 \mathrm{~mL}, 0.826 \mathrm{mmol}), 80 \% \mathrm{CHP}(0.17 \mathrm{~mL}$, $0.909 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc $(1: 3)$ to give the product $18 \mathrm{~g}(0.130 \mathrm{~g}, 61 \%, 55 \%$ e.e. $)$ as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $i-\mathrm{PrOH}=90: 10,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=22.64$ $\left.\min , t_{\text {minor }}=33.58 \mathrm{~min}\right)$.

1-(Methoxymethoxy)-4-nitro-2-(propan-2-ylsulfinyl)benzene (18h) Compound $\mathbf{1 8 h}$ was followed by general procedure for Sharpless asymmetric
oxidation of aryl sulfide using aryl sulfide $\mathbf{1 3 h}(0.200$ $\mathrm{g}, 0.777 \mathrm{mmol})$, L-DET ($0.27 \mathrm{~mL}, 1.55 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-$ $\mathrm{Pr}_{4}(0.23 \mathrm{~mL}, 0.777 \mathrm{mmol}), 80 \%$ CHP $(0.16 \mathrm{~mL}$, $0.855 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (13: 7) to give the product $18 \mathrm{~h}(0.165 \mathrm{~g}, 78 \%, 61 \%$ e.e.) as a white solid. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: $\mathrm{EtOH}=70: 30,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=83.46$ $\left.\min , t_{\text {minor }}=21.66 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}=+136.8(c=1.3 \mathrm{in}$ CHCl_{3}) ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61$ (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{sep}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.45(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 157.4, 143.0, 133.1, 127.6, 122.8, 113.9, 95.0, 57.0, 51.3, 17.3, 12.5; IR (KBr) 3102, 2968, 2928, 2870, 2832, 1585, 1514, $1489,1470,1344,1261,1227,1198,1165,1132$, 1088, 1065, 1026, $955 \mathrm{~cm}^{-1}$; HRMS (EI) for C_{11} $\mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}$ calcd $273.0671\left(\mathrm{M}^{+}\right)$, found 273.0669; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}$: C, 48.34; H, 5.53; N, 5.12. found: C, $48.31 ; \mathrm{H}, 5.47 ; \mathrm{N}, 4.90$.

1-(tert-butylsulfinyl)-2-(methoxymethoxy)benzene $(19 a)^{26}$: Compound 19a was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 4 a}(0.200 \mathrm{~g}, 0.884 \mathrm{mmol})$, L-DET ($0.30 \mathrm{~mL}, 1.77 \mathrm{mmol}$), Ti($\mathrm{O}-i-\operatorname{Pr})_{4}(0.26 \mathrm{~mL}$, $0.884 \mathrm{mmol}), 80 \%$ CHP ($0.18 \mathrm{~mL}, 0.972 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. L-DET was eliminated by short column chromatography on activated alumina using hexane/EtOAc (1:1), then the mixture was purified by column chromatography on silica gel using hexane/ EtOAc (4: 1) to give the product $19 \mathrm{a}(0.168 \mathrm{~g}, 78 \%$, 64% e.e.) as a white solid. The yield was 46% and the enantiomeric excess was 98% e.e. after one recrystallization using hexane-EtOAc. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: $\mathrm{EtOH}=90: 10,0.75$ $\mathrm{mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=23.60 \mathrm{~min}, t_{\text {minor }}=14.11$ $\min)$.

1-(tert-Butylsulfinyl)-2-(methoxymethoxy)-3-methylbenzene (19b) Compound 19b was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide 14b $(0.200 \mathrm{~g}, 0.832$ mmol), L-DET ($0.28 \mathrm{~mL}, 1.66 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ ($0.25 \mathrm{~mL}, 0.832 \mathrm{mmol}$), 80% CHP ($0.17 \mathrm{~mL}, 0.915$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. L-DET was eliminated by short column chromatography on activated alumina using hexane/EtOAc (4: 1), then the mixture was purified by column chromatography on silica gel using hexane/EtOAc (4: 1) to give the product $19 \mathrm{~b}(0.108 \mathrm{~g}$,
$50 \%, 55 \%$ e.e.) as a white solid. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: i - $\mathrm{PrOH}=90: 10,0.75$ $\mathrm{mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=23.28 \mathrm{~min}, t_{\text {minor }}=21.07$ $\mathrm{min}) .[\alpha]_{\mathrm{D}}=+146.0\left(c=1.6\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.32 (dd, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (t, $J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.2,134.2,134.0,131.7$, 125.0, 124.5, 99.5, 57.9, 57.8, 22.9, 16.5; IR (neat) 3447, 2961, 2928, 2903, 2868, 2828, 1458, 1429, $1396,1364,1256,1159,1072,1043,951 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}$ calcd $256.1133\left(\mathrm{M}^{+}\right)$, found 256.1128; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 60.91$; $\mathrm{H}, 7.86$; $\mathrm{N}, 0.00$. found: C, 60.96 ; H, 7.72; N, 0.00 .

2-(tert-Butylsulfinyl)-1-(methoxymethoxy)-4-methylbenzene (19c) Compound 19c was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 4 c}(0.200 \mathrm{~g}, 0.832 \mathrm{mmol})$, L-DET ($0.28 \mathrm{~mL}, 1.66 \mathrm{mmol}$), Ti(O-i-Pr) ${ }_{4}(0.25 \mathrm{~mL}$, $0.832 \mathrm{mmol}), 80 \%$ CHP ($0.17 \mathrm{~mL}, 0.915 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.0 mL). L-DET was eliminated by short column chromatography on activated alumina using EtOAc, then the mixture was purified by column chromatography on silica gel using hexane/EtOAc (7: 3) to give the product $19 \mathrm{c}(0.146 \mathrm{~g}, 68 \%, 65 \%$ e.e.) as a white solid. The yield was 27% and the enantiomeric excess was $>99 \%$ e.e. after one recrystallization using hexane-EtOAc. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: $\mathrm{EtOH}=90: 10,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {ma- }}$ jor $=32.43 \mathrm{~min}, t_{\text {minor }}=10.03 \mathrm{~min}$). M.p.: $84-85^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}=+189.8 \quad\left(c=1.2\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}$, $J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H})$, $2.36(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 152.9,132.8,131.8,128.9,127.3,114.2$, 94.9, 57.3, 56.4, 22.9, 20.6; IR (KBr) 2980, 2963, 2924, 2864, 2832, 1487, 1447, 1412, 1393, 1366, $1358,1314,1275,1238,1207,1169,1146,1084$, 1057, 1028, $980 \mathrm{~cm}^{-1}$; HRMS (FAB) for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~S}$ calcd $257.1211\left(\mathrm{MH}^{+}\right)$, found 257.1214; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}$: C, $60.91 ; \mathrm{H}, 7.86 ; \mathrm{N}, 0.00$. found: C , 61.13; H, 7.79; N, 0.00.

1-(tert-Butylsulfinyl)-4-fluoro-2-

(methoxymethoxy)benzene (19d) Compound 19d was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 4 d}$ $(0.200 \mathrm{~g}, 0.819 \mathrm{mmol})$, L-DET ($0.28 \mathrm{~mL}, 1.64 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.24 \mathrm{~mL}, 0.819 \mathrm{mmol}), 80 \%$ CHP $(0.17$ $\mathrm{mL}, 0.900 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The
reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (7:3) to give the product $19 \mathbf{d}(0.164 \mathrm{~g}, 77 \%, 62 \%$ e.e.) as a white solid. The yield was 42% and the enantiomeric excess was 87% e.e. after one recrystallization using hexaneEtOAc. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: $\mathrm{EtOH}=90: 10,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=19.60$ $\left.\min , t_{\text {minor }}=11.07 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}=+94.1(c=1.4 \mathrm{in}$ CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74$ (dd, $J=8.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.88(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H})$, $1.21(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2(\mathrm{~d}$, $J=249.7 \mathrm{~Hz}), 156.2(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 129.0(\mathrm{~d}$, $J=10.7 \mathrm{~Hz}), 124.9(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 109.3(\mathrm{~d}, J=22.8$ $\mathrm{Hz}), 102.4(\mathrm{~d}, J=25.8 \mathrm{~Hz}), 95.0,57.4,56.6,22.8$; IR (KBr) 3096, 3073, 3034, 2988, 2970, 2928, 2828, 1605, 1589, 1476, 1454, 1427, 1396, 1368, 1315, 1273, 1240, 1219, 1161, 1121, 1084, 1053, 1032, 989 cm^{-1}; HRMS (FAB) for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{FO}_{3} \mathrm{~S}$ calcd 261.0961 $\left(\mathrm{MH}^{+}\right)$, found 261.0959 ; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{FO}_{3} \mathrm{~S}$: C, $55.36 ; \mathrm{H}, 6.58 ; \mathrm{N}, 0.00$. found: C, $55.42 ; \mathrm{H}, 6.58$; N, 0.00 .

2-(tert-Butylsulfinyl)-4-fluoro-1-
(methoxymethoxy)benzene (19e) Compound 19e was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 4} \mathbf{e}$ ($0.200 \mathrm{~g}, 0.819 \mathrm{mmol}$), L-DET ($0.28 \mathrm{~mL}, 1.64 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.24 \mathrm{~mL}, 0.819 \mathrm{mmol}), 80 \%$ CHP (0.17 $\mathrm{mL}, 0.900 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (3: 1) to give the product $19 \mathrm{e}(0.106 \mathrm{~g}, 50 \%, 67 \%$ e.e.) as a white solid. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: i $\operatorname{PrOH}=90: 10,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=21.92$ $\left.\mathrm{min}, t_{\text {minor }}=19.18 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}=+149.6(c=1.4 \mathrm{in}$ CHCl_{3}) ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49$ (dd, $J=8.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H})$, 1.23 (s, 9H); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.0(\mathrm{~d}$, $J=242.9 \mathrm{~Hz}), 151.1(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=5.3$ $\mathrm{Hz}), 118.9(\mathrm{~d}, J=23.6 \mathrm{~Hz}), 115.8(\mathrm{~d}, J=6.9 \mathrm{~Hz})$, 114.1 (d, $J=25.1 \mathrm{~Hz}$), $95.4,58.0$, $56.5,22.9$; IR (KBr) 2965, 2928, 2909, 2868, 2830, 1489, 1472, $1458,1394,1366,1263,1190,1161,1132,1084$, 1053, 1030, $986 \mathrm{~cm}^{-1}$; HRMS (FAB) for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{FO}_{3} \mathrm{~S}$ calcd $261.1138\left(\mathrm{MH}^{+}\right)$, found 261.0964; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{FO}_{3} \mathrm{~S}$: C, $55.36 ; \mathrm{H}, 6.58 ; \mathrm{N}, 0.00$. found: C, 55.54; H, 6.54; N, 0.00.

1-(tert-Butylsulfinyl)-3-methoxy-2-
(methoxymethoxy)benzene (19f) Compound 19f was followed by general procedure for Sharpless
asymmetric oxidation of aryl sulfide using aryl sulfide $14 f(0.200 \mathrm{~g}, 0.780 \mathrm{mmol})$, L-DET ($0.26 \mathrm{~mL}, 1.56$ $\mathrm{mmol}), \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.23 \mathrm{~mL}, 0.780 \mathrm{mmol}), 80 \% \mathrm{CHP}$ $(0.16 \mathrm{~mL}, 0.858 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (3: 1) to give the product $19 \mathrm{f}(0.0939 \mathrm{~g}, 44 \%, 47 \%$ e.e.) as a white solid. The yield was 27% and the enantiomeric excess was 68% e.e. after one recrystallization using hexaneEtOAc. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: $\mathrm{EtOH}=90: 10,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=23.11$ $\left.\mathrm{min}, t_{\text {minor }}=34.58 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}=+77.8(c=1.1 \mathrm{in}$ CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (dd, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.13(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H})$, 1.22 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.8, 143.1, 134.9, 124.3, 118.5, 114.7, 98.6, 58.1, 57.9, 55.9, 23.0; IR (KBr) 3071, 3028, 2999, 2976, 2957, 2899, 2862, 2837, 2781, 1581, 1481, 1440, 1391, $1366,1360,1304,1265,1234,1200,1163,1076$, $1049,1011 \mathrm{~cm}^{-1}$; HRMS (FAB) for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~S}$ calcd $273.1161\left(\mathrm{MH}^{+}\right)$, found 273.1163; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 57.33 ; \mathrm{H}, 7.40 ; \mathrm{N}, 0.00$. found: C, 57.17; H, 7.31; N, 0.00.

2-(tert-Butylsulfinyl)-4-methoxy-1-
(methoxymethoxy)benzene (19g) Compound $\mathbf{1 9 g}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 4 g}$ $(0.200 \mathrm{~g}, 0.780 \mathrm{mmol})$, L-DET ($0.26 \mathrm{~mL}, 1.56 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4} \quad(0.23 \mathrm{~mL}, \quad 0.780 \mathrm{mmol}), 80 \% \mathrm{CHP}$ $(0.16 \mathrm{~mL}, 0.858 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (7:3) to give the product $19 \mathrm{~g}(0.165 \mathrm{~g}, 78 \%, 51 \%$ e.e.) as a white solid. The yield was 32% and the enantiomeric excess was 97% e.e. after one recrystallization using hexaneEtOAc. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $i-\mathrm{PrOH}=90: 10,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=$ $25.06 \mathrm{~min}, t_{\text {minor }}=57.10 \mathrm{~min}$). M.p.: $96-98^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}=+171.4 \quad\left(c=1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=8.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 154.9,149.0,130.4,118.8,116.1,110.9$, 95.5, 57.7, 56.4, 55.9, 23.0; IR (KBr) 3073, 3057, 2982, 2967, 2938, 2914, 2862, 2828, 1491, 1466, 1437, 1396, 1364, 1317, 1298, 1265, 1217, 1157, 1138, 1080, 1053, 1026, $980 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}$ calcd 272.1082 (M^{+}), found 272.1076.

2-(tert-Butylsulfinyl)-1-(methoxymethoxy)-4-nitrobenzene (19h) Compound 19h was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 4 h}(0.200 \mathrm{~g}, 0.737$ $\mathrm{mmol})$, L-DET ($0.25 \mathrm{~mL}, 1.47 \mathrm{mmol}$), $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ ($0.22 \mathrm{~mL}, 0.737 \mathrm{mmol}$), 80% CHP ($0.15 \mathrm{~mL}, 0.811$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. L-DET was eliminated by short column chromatography on activated alumina using hexane/EtOAc (3: 2), then the mixture was purified by column chromatography on silica gel using hexane/EtOAc (3: 2) to give the product $\mathbf{1 5 h}(0.174 \mathrm{~g}$, $82 \%, 88 \%$ e.e.) as a white solid. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: $\mathrm{EtOH}=70: 30,0.75$ $\mathrm{mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=34.55 \mathrm{~min}, t_{\text {minor }}=16.29$ $\min) .[\alpha]_{\mathrm{D}}=+157.0\left(c=1.7\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}$, $J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=9.2 \mathrm{H}, 1 \mathrm{H}), 5.34(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H})$, $1.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4$, $142.7,131.8,127.9,123.9,114.2,95.2,58.3,57.1$, 22.9; IR (KBr) 3107, 3082, 3067, 2978, 2963, 2930, 2860, 2830, 1587, 1520, 1506, 1479, 1458, 1342, 1306, 1269, 1171, 1146, 1090, 1053, 1030, $947 \mathrm{~cm}^{-1}$; HRMS (FAB) for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{~S}$ calcd 288.0906 $\left(\mathrm{MH}^{+}\right)$, found 288.0907; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{17}$ $\mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 50.16 ; \mathrm{H}, 5.96 ; \mathrm{N}, 4.87$. found: C, $50.23 ; \mathrm{H}$, 5.99; N, 4.78.

Methyl 3-(tert-butylsulfinyl)-4-(methoxymethoxy)benzoate (19i) Compound 19i was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 4 i}(0.200 \mathrm{~g}, 0.703 \mathrm{mmol})$, L-DET ($0.24 \mathrm{~mL}, 1.41 \mathrm{mmol}), \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.21 \mathrm{~mL}$, $0.703 \mathrm{mmol}), 80 \%$ CHP ($0.14 \mathrm{~mL}, 0.774 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/ EtOAc (2: 3) to give the product $19 \mathrm{i}(0.114 \mathrm{~g}, 54 \%$, 87% e.e.) as a white solid. The yield was 30% and the enantiomeric excess was $>99 \%$ e.e. after one recrystallization using hexane-EtOAc. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $\mathrm{EtOH}=80: 20$, $0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=15.40 \mathrm{~min}, t_{\text {minor- }}$ $=44.96 \mathrm{~min})$. M.p.: $118-120{ }^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}=+173.2$ $\left(c=1.2\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}$, 3H), $1.24(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $165.9,158.4,134.1,129.9,129.3,124.4,113.7,94.8$, 57.7, 56.8, 52.2, 22.9; IR (KBr) 3009, 2967, 2943, 2928, 1709, 1597, 1487, 1437, 1300, 1259, 1231, $1200,1171,1148,1125,1090,1055,1032,978,953$
cm^{-1}; HRMS (FAB) for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{~S}$ calcd 301.1110 $\left(\mathrm{MH}^{+}\right)$, found 301.1115; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~S}$: C, $55.98 ; \mathrm{H}, 6.71 ; \mathrm{N}, 0.00$. found: C, $56.23 ; \mathrm{H}, 6.63$; N, 0.00 .

3-(tert-Butylsulfinyl)-4-(methoxymethoxy)benzaldehyde (19j) Compound $\mathbf{1 9 j}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 4 j}(0.200 \mathrm{~g}, 0.786 \mathrm{mmol})$, L-DET ($0.27 \mathrm{~mL}, 1.57 \mathrm{mmol}), \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.23 \mathrm{~mL}$, $0.786 \mathrm{mmol}), 80 \%$ CHP ($0.16 \mathrm{~mL}, 0.865 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/ EtOAc (1: 1) to give the product $\mathbf{1 9 j}(0.218 \mathrm{~g},>99 \%$, 76% e.e.) as a white solid. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $\mathrm{EtOH}=80: 20,0.75 \mathrm{~mL} / \mathrm{min}$, $\left.250 \mathrm{~nm}, \quad t_{\text {major }}=20.77 \mathrm{~min}, t_{\text {minor }}=52.21 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}=+143.0\left(c=4.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.99(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=2.0 \mathrm{~Hz} 1 \mathrm{H})$, $8.00(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 190.1,159.4,132.7,130.9,130.8,130.7$, 114.4, 94.9, 57.9, 56.9, 22.9; IR (KBr) 3105, 2999, 2965, 2930, 2866, 2830, 1686, 1595, 1493, 1375, 1366, 1319, 1248, 1198, 1163, 1140, 1090, 1026, 968 cm^{-1}; HRMS (FAB) for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~S}$ calcd 271.1004 $\left(\mathrm{MH}^{+}\right)$, found 271.1010; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}$: C, $57.76 ; \mathrm{H}, 6.71 ; \mathrm{N}, 0.00$. found: C, $57.61 ; \mathrm{H}, 6.64$; N, 0.00.

1-(Methoxymethoxy)-2-[(4-methylphenyl)sulfinyl]benzene (20a) Compound 20a was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 5 a}(0.200 \mathrm{~g}$, $0.768 \mathrm{mmol})$, L-DET ($0.26 \mathrm{~mL}, 1.54 \mathrm{mmol}$), Ti($\mathrm{O}-i-$ $\operatorname{Pr})_{4}(0.23 \mathrm{~mL}, 0.768 \mathrm{mmol}), 80 \%$ CHP $(0.12 \mathrm{~mL}$, $0.845 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(5: 1)$ to give the product $20 \mathrm{a}(0.0634 \mathrm{~g}, 30 \%, 7.2 \%$ e.e.) as a white solid. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: $i-\mathrm{PrOH}=90: 10,0.50 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=45.27$ $\left.\min , t_{\text {minor }}=51.71 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}=+12.1 \quad(c=1.3 \mathrm{in}$ CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95$ (dd, $J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ (ddd, $J=7.6,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 3 \mathrm{H})$, $7.06(\mathrm{dd}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.0,142.3$, $141.4,133.7,131.9,129.6,125.6,124.6,122.5,114.0$, 94.2, 56.2, 21.3; IR (KBr) 3004, 2983, 2961, 2945, 2916, 2903, 2868, 2824, 1582, 1495, 1474, 1449,

1435, 1398, 1310, 1271, 1229, 1198, 1165, 1152, $1128,1086,1061,1030,1015,980 \mathrm{~cm}^{-1} ;$ HRMS (EI) for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$ calcd $276.0820\left(\mathrm{M}^{+}\right)$, found 276.0824; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}$: C, $65.19 ; \mathrm{H}, 5.84 ; \mathrm{N}$, 0.00 . found: C, $65.49 ; \mathrm{H}, 5.77 ; \mathrm{N}, 0.00$.

2-(Methoxymethoxy)-1-methyl-3-[(4-methylphenyl)sulfinyl]benzene (20b) Compound 20b was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 5 b}(0.200 \mathrm{~g}$, $0.729 \mathrm{mmol}), \mathrm{L}-\mathrm{DET}(0.25 \mathrm{~mL}, 1.46 \mathrm{mmol})$, $\mathrm{Ti}(\mathrm{O}-i-$ $\mathrm{Pr}_{4}(0.22 \mathrm{~mL}, 0.729 \mathrm{mmol}), 80 \%$ CHP $(0.15 \mathrm{~mL}$, 0.802 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. L-DET was eliminated by short column chromatography on activated alumina using hexane/EtOAc (3: 1), then the mixture was purified by column chromatography on silica gel using hexane/EtOAc (3: 1) to give the product $20 b$ ($0.0889 \mathrm{~g}, 42 \%, 4.9 \%$ e.e.) as a colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: $\mathrm{EtOH}=90: 10,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=33.72$ $\left.\min , t_{\text {minor }}=28.66 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}=-12.4 \quad(c=1.9$ in CHCl_{3}) ; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69$ (dd, $J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.27-7.18(\mathrm{~m}, 4 \mathrm{H}), 5.10(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}$, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.2,142.3$, $141.2,139.2,134.2,131.9,129.7,125.3,125.0,122.7$, 99.8, 57.9, 21.3, 16.5; IR (neat) 3503,2953, 2926, 2828, 1401, 1460, 1429, 1396, 1159, 1082, 1072, 1047, $949 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ calcd $290.0977\left(\mathrm{M}^{+}\right)$, found 290.0982.

1-(Methoxymethoxy)-4-methyl-2-[(4-methylphenyl)sulfinyl]benzene (20c) Compound 20c was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 5 c}(0.200 \mathrm{~g}$, 0.729 mmol), L-DET ($0.25 \mathrm{~mL}, 1.46 \mathrm{mmol}$), Ti($\mathrm{O}-i-$ $\operatorname{Pr})_{4}(0.22 \mathrm{~mL}, 0.729 \mathrm{mmol}), 80 \% \mathrm{CHP}(0.15 \mathrm{~mL}$, 0.802 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.0 mL). L-DET was eliminated by short column chromatography on activated alumina using hexane/EtOAc (3: 1), then the mixture was purified by column chromatography on silica gel using hexane/EtOAc (3: 1) to give the product $20 \mathrm{c}(0.0664 \mathrm{~g}, 31 \%, 1.3 \%$ e.e.) as a white solid. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: $\mathrm{EtOH}=90: 10,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=27.33$ $\left.\min , t_{\text {minor }}=24.32 \mathrm{~min}\right) . \quad[\alpha]_{\mathrm{D}}=+2.9 \quad(c=1.1 \mathrm{in}$ CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.9,142.4$,
$141.3,133.3,132.4,132.4,129.6,125.5,124.6,114.1$, 94.4, 56.1, 21.3, 20.6; IR (KBr) 3038, 3009, 2978, 2961, 2918, 2822, 1595, 1487, 1310, 1267, 1234, 1196, 1159, 1134, 1088, 1078, 1055, 1030, 1015, 986 cm^{-1}; HRMS (EI) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ calcd 290.0977 $\left(\mathrm{M}^{+}\right)$, found 290.0978; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}$, 66.18; H, 6.25; N, 0.00. found: C, 66.04; H, 6.10; N, 0.00 .

4-Fluoro-2-(methoxymethoxy)-1-[(4-methylphenyl)sulfinyl]benzene (20d) Compound 20d was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 5 d}(0.200 \mathrm{~g}$, $0.719 \mathrm{mmol}), \mathrm{L}-\mathrm{DET}$ ($0.25 \mathrm{~mL}, 1.44 \mathrm{mmol}$), Ti($\mathrm{O}-i$ Pr) ${ }_{4}(0.21 \mathrm{~mL}, 0.719 \mathrm{mmol}), 80 \%$ CHP (0.15 mL , $0.790 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (4: 1) to give the product $20 \mathrm{~d}(0.107 \mathrm{~g}, 51 \%, 5.2 \%$ e.e.) as a white solid. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: $\mathrm{EtOH}=90: 10,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=22.78$ $\left.\min , t_{\text {minor }}=24.80 \mathrm{~min}\right) . \quad[\alpha]_{\mathrm{D}}=+9.7 \quad(c=1.9$ in CHCl_{3}); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{dd}$, $J=8.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{dt}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (dd, $J=10.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.08 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27$ (s, 3H), 2.35 ($\mathrm{s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.2(\mathrm{~d}, J=249.0$ $\mathrm{Hz}), 154.2(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 142.2,141.6,129.7,129.4$ $(\mathrm{d}, J=3.1 \mathrm{~Hz}), 126.3(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 125.5,109.4$ $(\mathrm{d}, J=22.0 \mathrm{~Hz}), 102.6(\mathrm{~d}, J=26.6 \mathrm{~Hz}), 94.5,56.3$, 21.4; IR (KBr) 3100, 3073, 3059, 3038, 3003, 2988, 2955, 2916, 2901, 2874, 2828, 1605, 1585, 1493, $1479,1458,1429,1385,1306,1269,1233,1209$, 1177, 1148, 1126, 1088, 1038, $988 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FO}_{3} \mathrm{~S}$ calcd $294.0726\left(\mathrm{M}^{+}\right)$, found 294.0732; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FO}_{3} \mathrm{~S}: \mathrm{C}, 61.21$; H , 5.14; N, 0.00. found: C, 61.36; H, $5.10 ; \mathrm{N}, 0.00$.

4-Fluoro-1-(methoxymethoxy)-2-[(4-methylphenyl)sulfinyl]benzene (20e) Compound 20 e was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $\mathbf{1 5 e}(0.200 \mathrm{~g}$, $0.719 \mathrm{mmol}), \mathrm{L}-\mathrm{DET}(0.25 \mathrm{~mL}, 1.44 \mathrm{mmol})$, Ti(O-i-
 $0.790 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. The reaction mixture was purified by column chromatography on silica gel using hexane/EtOAc (10: 1) to give the product 20e ($0.0387 \mathrm{~g}, 18 \%, 15 \%$ e.e.) as a white solid. The yield was 11% and the enantiomeric excess was 20% e.e. after one recrystallization using hexaneEtOAc. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: $\mathrm{EtOH}=90: 10,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=19.60$
$\left.\min , t_{\text {minor }}=27.45 \mathrm{~min}\right) .[\alpha]_{\mathrm{D}}=+35.4 \quad(c=1.0$ in CHCl_{3}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{dd}$, $J=7.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 158.3$ (d, $J=243.6 \mathrm{~Hz}), 149.0(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 141.8,141.7$, $136.0(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 129.7,125.5,118.3(\mathrm{~d}, J=23.5$ $\mathrm{Hz}), 115.7(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 111.5(\mathrm{~d}, J=25.8 \mathrm{~Hz})$, 94.8, 56.2, 21.4; IR (KBr) 3103, 3084, 2984, 2949, 2936, 2924, 2826, 1595, 1483, 1460, 1402, 1312, $1258,1188,1157,1128,1086,1053,1024,1015,980$ cm^{-1}; HRMS (EI) for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FO}_{3} \mathrm{~S}$ calcd 294.0726 $\left(\mathrm{M}^{+}\right)$, found 294.0731; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FO}_{3} \mathrm{~S}$: C, 61.21; H, 5.14; N, 0.00. found: C, 61.28; H, 5.18; N, 0.00.

1-Methoxy-2-(methoxymethoxy)-3-[(4methylphenyl)sulfinyllbenzene (20f) Compound 20f was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide $15 f(0.200 \mathrm{~g}, 0.689 \mathrm{mmol})$, L-DET ($0.24 \mathrm{~mL}, 1.38$ $\mathrm{mmol}), \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.20 \mathrm{~mL}, 0.689 \mathrm{mmol}), 80 \%$ CHP ($0.14 \mathrm{~mL}, 0.758 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. L-DET was eliminated by short column chromatography on activated alumina using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (5: 1), then the mixture was purified by column chromatography on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (5: 1) to give the product $20 f(0.0295 \mathrm{~g}, 14 \%, 28 \%$ e.e.) as a white solid. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK AY-3, hexane: $i-\mathrm{PrOH}=85: 15,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major- }}$ $\left.=54.37 \mathrm{~min}, \quad t_{\text {minor }}=59.30 \mathrm{~min}\right) . \quad[\alpha]_{\mathrm{D}}=-40.1$ $\left(c=2.1\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.97(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.13(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}$, $3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $151.8,142.5,141.6,141.1,139.8,129.8,125.1,125.0$, $115.9,114.6,98.7,58.1,55.9,21.3$; IR (KBr) 3007, 2994, 2963, 2932, 2901, 2837, 2819, 1578, 1491, 1477, 1468, 1435, 1395, 1296, 1265, 1229, 1207, $1175,1155,1069,1045,962 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}$ calcd $306.0926\left(\mathrm{M}^{+}\right)$, found 306.0923; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}$: C, 62.72; H, 5.92; N, 0.00 . found: C, $63.01 ; \mathrm{H}, 5.99 ; \mathrm{N}, 0.00$.

4-Methoxy-1-(methoxymethoxy)-2-[(4methylphenyl)sulfinyl]benzene (20g) Compound $\mathbf{2 0 g}$ was followed by general procedure for Sharpless asymmetric oxidation of aryl sulfide using aryl sulfide 15 g ($0.200 \mathrm{~g}, 0.689 \mathrm{mmol})$, L-DET (0.24 mL , $1.38 \mathrm{mmol}), \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(0.20 \mathrm{~mL}, 0.689 \mathrm{mmol}), 80 \%$ CHP ($0.14 \mathrm{~mL}, 0.758 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$.

L-DET was eliminated by short column chromatography on activated alumina using hexane/EtOAc (7: 3), then the mixture was purified by column chromatography on silica gel using hexane/EtOAc (7: 3) to give the product $\mathbf{2 0 g}(0.0905 \mathrm{~g}, 43 \%$, 8.6% e.e.) as a white solid. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $i-\mathrm{PrOH}=90: 10,0.75 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}, t_{\text {major }}=48.09$ $\left.\min , t_{\text {minor }}=55.83 \mathrm{~min}\right) . \quad[\alpha]_{\mathrm{D}}=+2.4 \quad(c=1.2$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}$, $J=8.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.4,146.9$, $142.3,141.5,134.8,129.7,125.6,118.2,116.1,108.4$, 95.0, 56.1, 56.0, 21.4; IR (KBr) 2951, 2926, 2895, 2832, 1589, 1489, 1474, 1441, 1319, 1267, 1209, 1196, 1161, 1140, 1088, 1057, 1040, 1024, $982 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}$ calcd $306.0926\left(\mathrm{M}^{+}\right)$, found 306.0933; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 62.72$; $\mathrm{H}, 5.92 ; \mathrm{N}, 0.00$. found: C, 63.01; H, 5.94; N, 0.00.
2.9a MOM deprotection: 2-Methyl-6-[(R)methylsulfinyl]phenol $(R-7 b)^{49}: 10 \% \mathrm{HCl}$ aq. (6.9 $\mathrm{mL}, 18.9 \mathrm{mmol}$) was added dropwise to the solution of sulfoxide $\boldsymbol{R}-9 \boldsymbol{b}$ ($0.387 \mathrm{~g}, 1.80 \mathrm{mmol}, 94 \%$ e.e.) in $\mathrm{EtOH}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The solution was allowed to stir at room temperature for 16 h . The reaction mixture was extracted with EtOAc ($25 \mathrm{~mL} \times 2$) and the organic layer washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The reaction mixture was purified by column chromatography on silica gel using hexane/ EtOAc (1: 1) to give the product $\boldsymbol{R}-7 \boldsymbol{b}(0.280 \mathrm{~g}, 91 \%$, 94% e.e.) as colorless oil. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $\mathrm{EtOH}=96: 4,0.75 \mathrm{~mL} /$ $\left.\min , 250 \mathrm{~nm}, t_{\text {major }}=22.19 \mathrm{~min}, t_{\text {minor }}=30.05 \mathrm{~min}\right)$. $[\alpha]_{\mathrm{D}}=+114 \quad\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; HRMS (EI) for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}$ calcd 170.0402 $\left(\mathrm{M}^{+}\right)$, found 170.0407.
2.9b Iodination of aromatic ring: 4-Iodo-2-methyl-$6-[(R)$-methylsulfinyl]phenol $(R-10) \mathrm{NaOH}(0.605 \mathrm{~g}$, $15.1 \mathrm{mmol})$ and $\mathrm{NaI}(2.21 \mathrm{~g}, 14.8 \mathrm{mmol})$ were added to the solution of o-hydroxy Aryl sulfoxide $\boldsymbol{R}-7 \boldsymbol{b}$ (2.04 $\mathrm{g}, 12.0 \mathrm{mmol}, 92 \%$ e.e.) in THF (50 mL). $5 \% \mathrm{NaClO}$ $(11 \mathrm{~mL}, 7.39 \mathrm{mmol})$ was added dropwise at $0^{\circ} \mathrm{C}$, and then the mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was quenched with 10% $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and prepared to $\mathrm{pH} 6-7$ using $10 \% \mathrm{HCl}$ at $0{ }^{\circ} \mathrm{C}$. The mixture was extracted with EtOAc (25 $\mathrm{mL} \times 2$), the organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The reaction
mixture was purified by recrystallization using hexane-EtOAc to give the product $\boldsymbol{R}-10(2.27 \mathrm{~g}$, $64 \%,>99 \%$ e.e.) as a colorless crystal. The enantiomeric excess was determined by chiral HPLC (DAICEL CHIRALPAK IF, hexane: $\mathrm{EtOH}=96: 4$, $1.00 \mathrm{~mL} / \mathrm{min}, \quad 250 \mathrm{~nm}, \quad t_{\text {major }}=18.14 \mathrm{~min}$, $\left.t_{\text {minor }}=24.96 \mathrm{~min}\right)$. M.p.: $155-158{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}=+178$ ($c=1.0$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.5(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.6,142.1,131.7,130.4,124.0$, 80.2, 41.7, 15.0; IR (KBr) 2920, 1465, 1414, 1340, 1260, 1215, $1016 \mathrm{~cm}^{-1}$; HRMS (EI) for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{SI}$ calcd $295.9368\left(\mathrm{M}^{+}\right)$, found 295.9389; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{SI}: \mathrm{C}, 32.45$; H, 3.06; N, 0.00. found: C, 32.74; H, 3.11; N, 0.00.

3. Results and Discussion

3.1 Sharpless asymmetric oxidation of orthoalkoxy aryl sulfides

The aryl sulfides, $\mathbf{3}$ and $\mathbf{5}$, which are starting materials used for Sharpless asymmetric oxidation reactions, were synthesized with methylsulfide after protecting the hydroxy group at ortho position by methyl or methoxymethyl (MOM) groups (Scheme 2). ${ }^{50}$

Sharpless asymmetric oxidation reactions were performed to evaluate enantioselectivity by reacting sulfide $/ \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4} / \mathrm{DET}$ at $1 / 1 / 2$ ratio. For these reactions, CHP was used as the oxidant in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Table 1). It was reported by Kagan et al., that aryl sulfoxide compounds having hydroxyl group at the
para position showed 50% e.e., ${ }^{20}$ but few enantioselective syntheses using Sharpless asymmetric oxidation have been reported for aryl sulfoxides containing functional group at the ortho position, and reproducible high enantioselectivity has not been yet achieved. We initially evaluated the oxidation reaction with a commercially available compound 6a with phenolic hydroxyl group at ortho position. However, the yield was poor with a low enantioselectivity (Entry $1-2$).

Subsequently, we evaluated Sharpless asymmetric oxidation on the compounds $\mathbf{3 a}$ and $\mathbf{3 b}$ with protected phenolic hydroxyl function at ortho position with a methyl group. Sharpless oxidations method typically requires a small amount of water ${ }^{20-22}$ but we discovered that the enantioselectivity was higher when no water was added during the reaction (Entry 3-6). Although the enantioselectivity was quite high, deprotection of the methyl groups is generally very difficult. Therefore, we examined aryl sulfoxide compound $\mathbf{5 a}$ and $\mathbf{5 b}$ which are protected with MOM. The compound $\mathbf{5 a}$ and $\mathbf{5 b}$ resulted in higher enantioselectivity than those of $\mathbf{3 a}$ and $\mathbf{3 b}$, and the presence/absence of water also affected the result the same way (Entry 7-10).

Compound 5b, which showed the highest enantioselectivity, was used to synthesize the enantiomer using a chiral ligand D-DET (Entry 11).

In conclusion, protecting the phenolic hydroxyl group and having anhydrous condition for the oxidation are found to be important to achieve high enantioselectivity by Sharpless asymmetric oxidation for the ortho-substituted aryl sulfides.

Scheme 2. Syntheses of aryl sulfides $\mathbf{3 b}$ and $\mathbf{5 a} \mathbf{- b}$.

Table 1. Sharpless asymmetric oxidation of $\mathbf{3 a - b}, \mathbf{5 a - b}$ and $\mathbf{6 a}$. ${ }^{\text {a }}$

6a: $R_{1}=H, R_{2}=H$
7a: $R_{1}=H, R_{2}=H$
3a: $R_{1}=H, R_{2}=M e$
8a: $R_{1}=H, R_{2}=M e$
3b: $\mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{Me}$
8b: $R_{1}=M e, R_{2}=M e$
5a: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{MOM}$
9a: $R_{1}=H, R_{2}=M O M$
5b: $\mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{MOM}$
9b: $\mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{MOM}$

Entry	Sulfoxide	Ligand	$\mathrm{H}_{2} \mathrm{O}$ (eq.)	Yield (\%) $^{\text {b }}$	e.e. (\%)	Config.
$\mathbf{1}$	$\mathbf{7 a}$	L-DET	1.0	51	3.1	R^{47}
$\mathbf{2}$	$\mathbf{7 a}$	L-DET	0	61	4.3	R^{47}
$\mathbf{3}$	$\mathbf{8 a}$	L-DET	1.0	>99	83	R^{48}
$\mathbf{4}$	$\mathbf{8 a}$	L-DET	0	>99	91	R^{48}
$\mathbf{5}$	$\mathbf{8 b}$	L-DET	1.0	88	79	R
$\mathbf{6}$	$\mathbf{8 b}$	L-DET	0	88	89	R
$\mathbf{7}$	$\mathbf{9 a}$	L-DET	1.0	87	86	R
$\mathbf{8}$	$\mathbf{9 a}$	L-DET	0	>99	91	R
$\mathbf{9}$	$\mathbf{9 b}$	L-DET	1.0	97	87	R
$\mathbf{1 0}$	$\mathbf{9 b}$	L-DET	0	99	94	R
$\mathbf{1 1}$	$\mathbf{9 b}$	D-DET	0	94	93	S

${ }^{\mathrm{a}}$ Reaction condition: aryl sulfide/Ti(O-i-Pr) $)_{4} / \mathrm{DET} / \mathrm{CHP}=1: 1: 2: 1.1$.
${ }^{\mathrm{b}}$ Isolated yield with column flash chromatography.
${ }^{\text {c }}$ Determined by HPLC analyses on CHIRALPAK IF or CHIRALPAK AY-3.

Scheme 3. Syntheses of compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ for determination of absolute configuration.

Figure 2. X-ray crystal structure analysis of compound R-10.

The compound $9 \mathbf{b}$ which was synthesized by Sharpless asymmetric oxidation was transformed to compound 10 (Scheme 3) via deprotection of MOM group and the iodization. The resulting material was analyzed by X-ray single-crystal diffraction analysis to confirm the absolute configuration. The crystal structure confirmed that the absolute configuration of compound 10, which was synthesized from compound

9b using L-DET as a chiral ligand, is R (Figure 2). This showed that enantioselective synthesis from compound $\mathbf{5 b}$ is possible by selecting L-DET (to form R enantiomer) or D-DET (to form S enantiomer) in the Sharpless asymmetric oxidation. The absolute configuration of $\mathbf{8 b}$ was confirmed after it was converted to 11 and analyzing it by chiral HPLC and optical rotation, and by comparing the data to the compound $\mathbf{1 1}$ obtained from compound $\mathbf{1 0}$ whose absolute stereochemistry is known. The absolute configuration of $9 \mathbf{a}$ was confirmed by converting it to $\mathbf{7 a}$, whose stereochemistry has been reported, by performing chiral HPLC and optical rotation analyses. ${ }^{48}$

3.2 Effects of substituents combinations

 on the sulfide and the aromatic ring for Sharpless asymmetric oxidationsIn the previous chapter, it was shown that protecting the phenolic hydroxyl group with MOM groups helped to achieve high enantioselectivity during Sharpless asymmetric oxidation reactions. To evaluate the effectiveness of substituents, various substituent combinations in the aromatic ring and the sulfide group were evaluated.

For the sulfide, methyl (Me), ethyl (Et), isopropyl (iPr), tert-butyl (t - Bu), and para-tolyl (p-Tol) substituents were evaluated. For the aromatic ring, methyl

Figure 3. The effect of the sulfoxide substituents on enantioselectivity in Sharpless asymmetric oxidation.

Reagents and conditions: (I) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MOM-Cl, acetone, $40{ }^{\circ} \mathrm{C}$; (II) Method A : t - BuLi , $\mathrm{R}_{3} \mathrm{~S}_{-\mathrm{SR}_{3}}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}$ to r.t.; Method B-1 : t-BuONa, t - BuSH , cat. $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, cat. xantphos, xylene, reflux; Method B-2 : i - $\mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{R}_{3} \mathrm{SH}$, cat. $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, cat. xantphos, 1,4-dioxane, $70-80{ }^{\circ} \mathrm{C}$; Method B-3 : MeSNa, cat. $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, cat. xantphos, 1,4dioxane, reflux.

Scheme 4. Syntheses of aryl sulfides $\mathbf{5}$ and $\mathbf{1 2 - 1 5}$ with various substituents on aromatic ring.

Scheme 5. Synthesis of aryl sulfide $\mathbf{5 h}$.
and methoxy substituents were evaluated as electrondonating groups, fluoro, nitro, methyl-ester, and aldehyde substituents were evaluated as electron-withdrawing groups.

The starting materials for Sharpless asymmetric oxidations, 5 and 12-15 (Scheme 4), were obtained by
a two-step synthesis as follows: The phenolic hydroxyl group on bromophenol was protected with a methoxymethyl, followed by a nucleophilic substitution reaction with t-BuLi and disulfide (Method A), ${ }^{50}$ or a coupling reaction with Pd and xantphos (Method B) ${ }^{51,52}$ to add the sulfide substituent to the aromatic

Table 2. The effect of substituents on enantioselectivity in Sharpless asymmetric oxidation.

Sulfoxide	R_{3}	Yield (\%) ${ }^{\text {a }}$	e.e. $(\%)^{\text {b }}$	$[\alpha]^{25}{ }_{\text {D }}\left(\right.$ in CHCl_{3})
9a	Me	> 99	91	$+269.3(c=2.3)$
17a	Et	88	68	$+215.3(c=3.2)$
18a	$i-\mathrm{Pr}$	79	26	$+81.3(c=3.1)$
19a	$t-\mathrm{Bu}$	78	64 (98) ${ }^{\text {c }}$	$+160.1^{\mathrm{d}}(c=3.1)$
20 a	p-Tol	30	7.2	$+12.1(c=1.1)$
9b	Me	99	94	+242.0 ($c=1.0)$
17b	Et	85	67	$+215.5(c=3.6)$
18b	$i-\mathrm{Pr}$	80	33	+103.8 ($c=3.6)$
19b	$t-\mathrm{Bu}$	50	55	$+146.0(c=1.6)$
20b	$p-\mathrm{Tol}$	42	4.9	$-12.4(c=1.9)$
9c	Me	83	95	$+213.2(c=1.5)$
17c	Et	> 99	74	+191.4 ($c=1.5$)
18c	$i-\mathrm{Pr}$	75	41	+85.6 ($c=1.9)$
19c	t-Bu	68	65 (>99) ${ }^{\text {c }}$	$+189.8^{\text {d }}(c=1.2)$
20c	p-Tol	31	1.3	$+2.9(c=1.1)$
9d	Me	87	93	$+235.8(c=1.4)$
17d	Et	94	62	+179.3 ($c=2.6$)
18d	$i-\mathrm{Pr}$	98	15	+35.7 ($c=2.0)$
19d	$t-\mathrm{Bu}$	77	62 (87) ${ }^{\text {c }}$	$+94.1^{\text {d }}(c=1.4)$
20d	p-Tol	51	5.2	+9.7 ($c=1.9)$
9 e	Me	91	$92(>99)^{\text {c }}$	$+249.0^{\mathrm{d}}(c=3.1)$
17e	Et	> 99	68	$+177.4(c=4.1)$
18e	$i-\mathrm{Pr}$	82	38	+108.9 ($c=1.6)$
19e	$t-\mathrm{Bu}$	61	67	+149.6 ($c=1.4)$
20e	p-Tol	18	15 (20) ${ }^{\text {c }}$	$+35.4^{\text {d }}(c=1.0)$
9 f	Me	72	93	$+159.0(c=1.4)$
17f	Et	64	66	+131.5 $(c=2.1)$
18 f	$i-\mathrm{Pr}$	68	16	+25.5 ($c=1.5)$
19 f	$t-\mathrm{Bu}$	44	47 (68) ${ }^{\text {c }}$	$+77.8^{\text {d }}(c=1.1)$
20 f	p-Tol	14	28	-40.1 ($c=2.1$)
9g	Me	99	92	$+195.4(c=1.5)$
17g	Et	92	78	$+159.8(c=2.1)$
18g	$i-\mathrm{Pr}$	60	55	+130.6 ($c=1.5)$
19g	$t-\mathrm{Bu}$	78	51 (97) ${ }^{\text {c }}$	$+171.4{ }^{\text {d }}(c=1.1)$
20g	p-Tol	43	11	$+2.4(c=1.2)$
9 h	Me	91	$99(>99)^{\text {c }}$	$+200.0^{\mathrm{d}}(c=1.1)$
17h	Et	97	78	$+177.7(c=1.8)$
18h	$i-\mathrm{Pr}$	85	61	$+136.8(c=1.3)$
19h	t-Bu	82	88	$+157.0(c=1.7)$

${ }^{\text {a }}$ Isolated yield via column flash chromatography
${ }^{\mathrm{b}}$ Determined by HPLC analyses on CHIRALPAK IF or CHIRALPAK AY-3
${ }^{\text {c }}$ Enantiomeric excess (e.e.) after one recrystallization
${ }^{\mathrm{d}}$ Specific rotation after one recrystallization.
ring, with one exception (compound $\mathbf{5 h}$). ${ }^{53}$ The substitution reaction cleaved the MOM group from $\mathbf{1 4 h}$, and therefore the MOM protection step was added after the sulfide group was added (Scheme 5).

The same reaction method was used for the Sharpless asymmetric oxidation with aryl sulfides 5 and 12-15, and the results are summarized in Table 2. The yield and measured enantioselectivity (e.e.) are listed within. No Sharpless oxidation was observed for $\mathbf{1 5 h}$, p-Tol nitro-substituted compounds.

The results showed that the yield from the Sharpless oxidation is related to the size of the substituent $\left(\mathrm{R}_{3}\right)$ on the sulfide where the larger substituents lead to lower yields (Table 2). The e.e. data also showed the same tendency when R_{3} was Me, Et, or i - Pr , except for t - Bu substituent on sulfide showed much better e.e. than materials with i-Pr. It was an interesting result since t - Bu group is larger than $i-\mathrm{Pr}$ (Figure 3). However, there was one exception that $\mathbf{1 9 g}(t-B u)$, which has a methoxy group on the aromatic ring, had a

$5 i: R_{3}=M e$
14i: $\mathrm{R}_{3}=t-\mathrm{Bu}$

5j: $\mathrm{R}_{3}=\mathrm{Me}$
14j: $\mathrm{R}_{3}=t-\mathrm{Bu}$

Figure 4. Structure of aryl sulfides $\mathbf{5 i}, \mathbf{j}$ and $\mathbf{1 4 i}, \mathbf{j}$.
slightly lower e.e. than $\mathbf{1 8 g}(i-\operatorname{Pr})$. On the contrary, 19h $(t-\mathrm{Bu})$, which had a nitro substituent on the aromatic ring showed quite a high e.e., even exceeding that of $\mathbf{1 7 h}$ (Et). The starting materials with p-Tol substituents showed poor enantioselectivity. However, high enantioselectivity was reported for Sharpless asymmetric oxidation of nitrophenyl pyrrolyl sulfides, ${ }^{54}$ therefore, it may be possible to achieve higher enantioselectivity for compounds 20a-h with a nitro group in the p-Tol substituent. Since Sharpless oxidation didn't work for $\mathbf{1 5 h}$, this requires further investigation.

Comparing the substituents on the sulfide, it appeared that higher e.e. was achieved with electronwithdrawing groups on aryl ring compared to electrondonating groups. Therefore, two additional electronwithdrawing substituents, methyl-ester (i) and aldehyde (\mathbf{j}), were added to evaluate their impact on enantioselectivity.

The synthesis of $\mathbf{5 i} \mathbf{i} \mathbf{j}$ and $\mathbf{1 4 i} \mathbf{i} \mathbf{j}$ was achieved using the same methods employed for $\mathbf{5}$ and 12-15 (Figure 4). Even though a nucleophilic addition reaction can easily occur to the ester substituent, $\mathbf{9 i}$ and $\mathbf{1 9 i}$ were obtained without a problem. Also, the aldehyde substituent can easily undergo nucleophilic addition reactions and oxidation reactions, but there were no issues with obtaining $\mathbf{9 j}$ and $\mathbf{1 9 j}$. As expected, both \mathbf{i} and \mathbf{j} showed high enantioselectivity (Table 3).

3.3 Evaluation of Other Chiral Ligands

Throughout our study thus far, L-DET was used as the chiral ligand, but when R_{3} on the sulfide was i - Pr group, high enantioselectivity was not observed. Therefore, we evaluated other ligands which are similar to L-DET and having high steric hindrance.

Di-tert-butyl tartrate (DTBT), dibenzyl tartrate (DBT), and N, N 'dibenzyl tartrate diamide (DBTDA)

Table 3. The effect of ester (i) and aldehyde (j) on enantioselectivity in Sharpless asymmetric oxidation.

[^1]Table 4. The effect of bulky chiral ligands on enantioselectivity in Sharpless asymmetric oxidation.

chiral ligand

Entry	Ligand	Oxidant	${\text { Yield }(\%)^{\mathrm{a}}}$	e.e. $(\%)^{\text {b }}$
$\mathbf{1}$	L-DET	CHP	80	33
$\mathbf{2}$	L-DET	TBHP	92	31
$\mathbf{3}$	L-DTBT	CHP	56	56
$\mathbf{4}$	L-DTBT	TBHP	50	53
$\mathbf{5}$	D-DBT	CHP	98	4.3
$\mathbf{6}$	D-DBT	TBHP	>99	9.0
$\mathbf{7}$	L-DBTDA	CHP	13	1.5
$\mathbf{8}$	L-DBTDA	TBHP	10	0

a Isolated yield with column flash chromatography
${ }^{\text {b}}$ Determined by HPLC analyses on CHIRALPAK IF
were evaluated to see whether these ligands would afford high enantioselectivity (Table 4). For the Sharpless asymmetric oxidation reactions, tert-butyl hydroperoxide (TBHP) was used as oxidants in addition to CHP to determine the impact of TBHP in the reactions.

Initially, aryl sulfide 13b were evaluated and the results are summarized in Table 4. When DTBT was used as the ligand, e.e. was improved by more than 20%, but e.e. of 56% is not high compared to other sulfide alkyl substitution compounds ($\mathrm{R}_{3}=\mathrm{Me}$, Et, t $\mathrm{Bu})$. DBT showed nearly no enantioselectivity although the yield was quite high. On the other hand, extremely poor yield was obtained with DBTDA with
no enantioselectively. Between the two oxidants CHP and TBHP, little difference was observed in terms of yield.

4. Conclusions

Simple asymmetric syntheses of various aryl sulfoxides containing ortho-oxygen substituents are accomplished by optimizing Sharpless oxidation conditions for the first time. Reproducible higher enantioselectivity of the Sharpless oxidation was observed under anhydrous reaction conditions which were unexpected since Sharpless asymmetric oxidation typically
requires a small amount of water. Moreover, the enantioselectivity (e.e.) of the oxidation of the aryl sulfoxide was further improved when an electronwithdrawing group was present on the aromatic ring of the aryl sulfoxide. The success of asymmetric synthesis was confirmed by determining the absolute configuration of one of the products (compound 10) by X-ray single-crystal diffraction. The yield of the Sharpless oxidation was in general higher when the size of the alkyl substituent R_{3} on the sulfide was smaller. For the e.e., high enantioselectivity was observed when R_{3} was methyl group regardless of the substituent on the aromatic ring, and the result is in agreement with Kagan's data reported previously. ${ }^{55}$ Moreover, the e.e. results followed the same trend with the yields, except when R_{3} was t - Bu , the e.e. was much higher than i-Pr. One of the cases, however, showed slightly better e.e. with $i-\operatorname{Pr}$, was when the aromatic ring contained a methoxy group ($\mathbf{1 8 g}$ with i Pr exhibited slightly higher e.e. than 19 g with t-Bu). The effect of the substituents on the aromatic ring was further investigated and it was discovered that a higher e.e. can be achieved when substituent R_{4} on the aromatic ring is an electron-withdrawing substituent compared to electron-donating substituents. In addition to DET, three other ligands (DTBT, DBT, DBTDA) were investigated for the Sharpless oxidation of compound 13b. Of four ligands evaluated, DTBT showed 20% improvement in e.e. Based on this result, a possibility that bulkier non-aromatic ligands may offer better enantioselectivity was suggested.

Supplementary Information (SI)

Crystallographic data for the structural analysis of compound $\boldsymbol{R}-\mathbf{1 0}$ has been deposited with the Cambridge Crystallographic Data Centre bearing the CCDC No. 2034188. Copies of this information are available on request at free of charge from CCDC, Union Road, Cambridge, CB21EZ, UK (fax: +44-1223-336-03; e-mail: deposit@ccdc.ac.uk or http://www.ccdc.cam.ac.uk). ${ }^{1} \mathrm{H}$ NMR and ${ }^{\mathrm{n}} \mathrm{C}$ NMR spectra (Figure S1 to S172), HPLC chromatogram (Figure S173 to S222) are available at www.ias.ac.in/chemsci.

References

1. Trost B M and Rao M 2015 Development of chiral sulfoxide ligands for asymmetric catalysis Angew. Chem. Int. Ed. 545026
2. Pulis A P and Procter D J 2016 C-H Coupling reactions directed by sulfoxides: teaching an old functional group new tricks Angew. Chem. Int. Ed. 559842
3. Pellissier H 2006 Use of chiral sulfoxides in asymmetric synthesis Tetrahedron 625559
4. Fernández I, Valdiva V, Leal M P and Khiar N $2007 C_{2^{-}}$ Symmtric bissulfoxides as organocatalysts in the allylation of benzoyl hydrazones: spacer and concentration effects Org. Lett. 92215
5. Otocka S, Kwiatkowska M, Madalińska L and Kiełbasiński P 2017 Chiral organosulfur ligands/catalysts with a stereogenic sulfur atom: applications in asymmetric synthesis Chem. Rev. 1174147
6. Äbelö A, Andersson T B, Antonsson M, Naudot A K, Skånberg I and Weidolf L 2000 Stereoselective metabolism of omeprazole by human cytochrome P450 enzymes Drug Metab. Dispos. 28966
7. Flynn G A and Ash R J 1983 Necessity of the sulfoxide moiety for the biochemical and biological properties of an analog of sparsomycin Biochem. Biophys. Res. 1141
8. Hansen J L, Schmeing T M, Moore P B and Steitz T A 2002 Structural insights into peptide bond formation PNAS 9911670
9. Bentley R 2005 Role of sulfur chirality in the chemical processes of biology Chem. Soc. Rev. 34609
10. Xiong F, Yang B-B, Zhang J and Li L 2018 Enantioseparation, stereochemical assignment and chiral recognition mechanism of sulfoxide-containing drugs Molecules 232680
11. Matsui T, Dekishima Y and Ueda M 2014 Biotechnological production of chiral organic sulfoxides: current state and perspectives Appl. Microbiol. Biotechol. 98 7699
12. Goundry W R F, Adams B, Benson H, Demeritt J, McKown S, Mulholland K, et al. 2017 Development and scale-up of a biocatalytic process to form a chiral sulfoxide Org. Process. Res. Dev. 21107
13. Butler B T, Silvey G, Houston D M, Borcherding D R, Vaughn V L, Mcphail A T, et al. 1992 The resolution, isolation, and pharmacological characterization of the enantiomers of a benzamide containing a chiral sulfoxide Chirality 4155
14. Kashiyama E, Todaka T, Odomi M, Tanokura Y, Johnson D B, Yokoi T, et al. 1994 Stereoselective pharmacokinetics and interconversions of flosequinan enantiomers containing chiral sulphoxide in rat Xenobiotica 24369
15. Katsuki H, Yagi H, Arimori K, Nakamura C, Nakano M, Katafuchi S, et al. 1996 Determination of R (+)- and S (-)-lansoprazole using chiral stationary-phase liquid chromatography and their enantioselective pharmacokinetics in humans Pharm. Res. 13611
16. Donovan J L, Malcolm R J, Markowitz J S and De Vane C L 2003 Chiral analysis of d - and l-modafinil in human serum: application to human pharmacokinetic studies Ther. Drug Monit. 25197
17. Delatour P, Benoit E, Besse S and Boukraa A 1991 Comparative enantioselectivity in the sulphoxidation of albendazole in man, dogs and rats Xenobiotica 21217
18. Cristofol C, Virkel G, Alvarez L, Sánchez S, Arboix M and Lanusse C 2001 Albendazole sulphoxide enantiomeric ratios in plasma and target tissues after intravenous administration of ricobendazole to cattle J. Vet. Pharmacol. Therap. 24117
19. Fernández I and Khiar N 2003 Recent developments in the synthesis and utilization of chiral sulfoxides Chem. Rev. 1033651
20. Pitchen P, Duñach E, Deshmukh M N and Kagan H B 1984 An efficient asymmetric oxidation of sulfides to sulfoxides J. Am. Chem. Soc. 1068188
21. Zhao S H, Samuel O and Kagan H B 1987 Asymmetric oxidation of sulfides mediated by chiral titanium complexes: mechanistic and synthetic aspects Tetrahedron 435135
22. Kagan H B and Rebiere F 1992 Some routes to chiral sulfoxides with very high enantiomeric excesses Synlett 1992643
23. Saitoh M, Kunitomo J, Kimura E, Yamano T, Itoh F and Kori M 2010 Enantioselective synthesis of the novel chiral sulfoxide derivatives as a glycogen synthase kinase 3β inhibitor Chem. Pharm. Bull. 581252
24. Capozzi M A M, Cardellicchio C, Naso F and Tortorella P 2000 Substituted benzene anions as leaving groups in the reaction of sulfinyl derivatives with Grignard reagents: a new and convenient route to dialkyl sulfoxides in high enantiomeric purity J. Org. Chem. 652843
25. Bolm C, Müller P and Harms K 1996 Sulfoximinetitanium reagents in enantioselective trimethylsilylcyanations of aldehydes Acta Chem. Scand. 50305
26. Wang P, Chen J, Cun L, Deng J, Zhu J and Liao J 2009 Aryl tert-butyl sulfoxide-promoted highly enantioselective addition of allyltrichlorosilane to aldehydes Org . Biomol. Chem. 73741
27. Lin Z, Gong L, Celik M A, Harms K, Frenking G and Meggers E 2011 Asymmetric coordination chemistry by chiral-auxiliary-mediated dynamic resolution under thermodynamic control Chem. Asian J. 6474
28. Mohd A, Anitha T, Reddy K R, Wencel-Delord J and Colobert F 2019 P-Stereogenic phosphonates via dynamic kinetic resolution: a route towards enantiopure tertiary phosphine oxides Eur. J. Org. Chem. 20197836
29. Tang Y, Sun Y, Liu J and Duttwyler S 2016 Facile synthesis of enantioenriched phenol-sulfoxides and their aluminum complexes Org. Bioorg. Chem. 145580
30. Gong L, Lin Z, Harms K and Meggers E 2010 Isomerization-induced asymmetric coordination chemistry: from auxiliary control to asymmetric catalysis Angew. Chem. Int. Ed. 497955
31. Seidel F W, Frieß S, Heinemann F W, Chelouan A, Scheurer A, Grasruck A, et al. $2018 C_{2}$-Symmetric (SO)N(SO) sulfoxide pincer complexes of Mg and Pd : Helicity switch by ambidentate S / O-coordination and isolation Organometallics 371160
32. Li Z-Z, Wen A-H, Yao S-Y and Ye B-H 2015 Enantioselective syntheses of sulfoxides in octahedral ruthenium(II) complexes via a chiral-at-metal strategy Inorg. Chem. 542726
33. Li Z-Z, Yao S-Y, Wu J-J and Ye B-H 2014 In situ generation of sulfoxides with predetermined chirality via a structural template with a chiral-at-metal ruthenium complex Chem. Commun. 505644
34. Yao S-Y, Chen X-Y, Ou Y-L and Ye B-H 2017 Chiral recognition and dynamic thermodynamic resolution of sulfoxides by chiral iridium(III) complexes Inorg. Chem. 56878
35. Rocaboy R, Anastasiou I and Baudoin O 2019 RedoxNeutral Coupling between Two $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ - H bonds enabled by 1,4-palladium shift for the synthesis of fused heterocycles Chem. Int. Ed. 5814625
36. Stephenson G R, Roe C and Sandoe E J 2011 Electrophilic C_{12} building blocks for alkaloids: 1,1 Iterative organoiron-mediated routes to (\pm)-lycoramine and (\pm)-maritidine Eur. J. Org. Chem. 91664
37. Liu J-G, Naruta Y and Tani F 2007 Synthetic models of the active site of cytochrome c oxidase: influence of tridentate or tetradentate copper chelates bearing a HisTyr linkage mimic on dioxygen adduct formation by heme/Cu complexes Chem. Eur. J. 136365
38. Carson M, Giese M W and Coghlan M J 2008 An intra/ intermolecular Suzuki sequence to Benzopyridyloxepines containing geometrically pure exocyclic tetrasubstituted alkenes Org. Lett. 102701
39. Obaro-Best O, Reed J, Norfadilah A A F B, Monahan R and Sunasee R 2016 Bismuth trichloride-mediated cleavage of phenolic methoxymethyl ethers Synth. Commun. 46586
40. Hughes C C and Trauner D 2004 Palladium-catalyzed couplings to nucleophilic heteroarenes: the total synthesis of (-)-frondosin B Tetrahedron 609675
41. Knewtson K E, Rane D and Peterson B R 2018 Targeting fluorescent sensors to endoplasmic reticulum membranes enables detection of peroxynitrite during cellular phagocytosis ACS Chem. Biol. 132595
42. Basabe P, Diego A, Delgado S, Díez D, Marcos I S and Urones J G 2003 Short and efficient synthesis of (+)subersic acids Tetrahedron 599173
43. Chausset-Boissarie L, Àrvai R, Cumming G R, Besnard C and Kündig E P 2010 Total synthesis of (\pm)-Vertine with Z-selective RCM as a key step Chem. Commun. 46 6264
44. Inoue T, Takada M, Suzuki T and Saito K 1994 Process for producing trisubstituted benzene, and intermediate PCT Int. Appl. 109424099
45. Kalgutkar A S, Kozak K R, Crews B C, Hochgesang G P Jr and Marnett K J 1998 Covalent modification of cyclooxygenase-2 (COX-2) by 2-acetoxyphenyl alkyl sulfides, a new class of selective COX-2 inactivators J. Med. Chem. 414800
46. Donner P L, Randolph J T, Krueger A C, Betebenner D A, Hutchinson D K, Liu D, et al. 2009 Uracil derivatives as HCV inhibitors and their preparation, pharmaceutical compositions and use in the treatment of hepatitis C PCT Int. Appl. 252009039135
47. Peng L, Wen Y, Chen Y, Yuan Z, Zhou Y, Cheng X, et al. 2018 Biocatalytic preparation of chiral sulfoxides through asymmetric reductive resolution by methionine sulfoxide reductase A ChemCatChem 103284
48. Jalba A, Régnier N and Ollevier T 2017 Enantioselective aromatic sulfide oxidation and tandem kinetic resolution using aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ and chiral iron-bis(oxazolinyl)bipyridine catalysts Eur. J. Org. Chem. 20171628
49. Oyaizu K, Mikami T, Mitsuhashi F and Tsuchida E 2002 Synthetic routes to polyheteroacenes: characterization of a heterocyclic ladder polymer containing phenoxathiinium-type building blocks Macromolecules 3567
50. Lau S Y W and Keay B A 2001 A highly efficient strategy for the synthesis of 3-substituted salicylic acids by either directed ortho-lithiation or halogen-metal exchange of substituted MOM protected phenols followed by carboxylation Can. J. Chem. 791541
51. Mispelaere-Canivet C, Spindler J-F, Perrio S and Beslin P $2005 \mathrm{Pd}_{2}(\mathrm{dba})_{3} /$ Xantphos-catalyzed cross-coupling of thiols and aryl bromides/triflates Tetrahedron 615253
52. Itoh T and Mase T 2004 A general palladium-catalyzed coupling of aryl bromides/triflates and thiols Org. Lett. 64587
53. Nawrot D, Kolenič M, Kuneš J, Kostelansky F, Miletin M, Novakova V and Zimcik P 2018 Transalkylation of
alkyl aryl sulfides with alkylating agents Tetrahedron 74594
54. Thompson A, Garabatos-Perera J R and Gillis H M 2008 Asymmetric oxidation of 2-(arylsulfenyl)pyrroles Can. J. Chem. 86676
55. Brunel J-M, Diter P, Duetsch M and Kagan H B 1995 Highly enantioselective oxidation of sulfides mediated by a chiral titanium complex J. Org. Chem. 608086

[^0]: *For correspondence
 Electronic supplementary material: The online version of this article (https://doi.org/10.1007/s12039-021-01887-5) contains supplementary material, which is available to authorized users.

[^1]: ${ }^{a}$ Isolated yield with column flash chromatography.
 ${ }^{\mathrm{b}}$ Determined by HPLC analyses on CHIRALPAK IF or CHIRALPAK AY-3.
 ${ }^{c}$ Enantiomeric excess (e.e.) after one recrystallization.
 ${ }^{\mathrm{d}}$ Specific rotation after one recrystallization.

