A journal for new directions in chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: R. A. Fernandes, A.
J. Gangani and R. A. Kunkalkar, New J. Chem., 2020, DOI: 10.1039/C9NJ06438A.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Metal-Free Annulative Hydrosulfonation of Propiolate Esters: Synthesis of 4-Sulfonates of Coumarins and Butenolides

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

\author{

Abstract

An efficient metal-free and cost-effective method for the synthesis of coumarin and butenolide 4 -sulfonates (46 examples) has been developed. The reaction involves addition of sulfonic acids to ethyl propiolates followed by lactonization, resulting in direct formation of coumarin and butenolide 4 -sulfonates. This methodology has been elaborated to Sonogashira and Suzuki coupling including the synthesis of rac-tolterodine.

}

Introduction

4-Substituted coumarins and butenolides are a family of biologically important molecules which possess interesting activities like antibacterial, ${ }^{1}$ antifungal, ${ }^{2}$ antioxidant, ${ }^{3}$ antiviral, ${ }^{4}$ antitumor, ${ }^{5}$ hypotensive, ${ }^{6}$ antiallergenic inflammation, ${ }^{7}$ antiHIV, ${ }^{8}$ antiarrhythmic, ${ }^{9}$ and central nervous system activities. ${ }^{10}$ Sulfonate esters of coumarins are reported to inhibit NO and PGE2 productions in LPS-induced RAW 264.7 macrophages. ${ }^{11}$ Metal-free hydrosulfonylation (C-S bond formation) of simple propiolate esters 1a with sulfinic acid ($\mathrm{R}^{1} \mathrm{SO}_{2} \mathrm{H}$) has been reported by He and co-workers (Scheme 1A). ${ }^{12 \mathrm{a}} \mathrm{A} \mathrm{Pd}$-catalyzed regio- and stereoselective hydrosulfonation (C-O bond formation) of propiolate esters $\mathbf{1 b}$ was developed by Chuang et al. (Scheme 1B). ${ }^{12 b}$ Similarly, a recent report prepares 3sulfonates from precursor 4-hydroxycoumarins. ${ }^{13}$ Metal-free annulative hydrosulfonation of ethyl 3-(2hydroxyaryl)propiolates and γ-aryl- γ-hydroxy- α, β-acetylenic esters is not developed to the best of our knowledge. This would provide coumarin 4 -sulfonates and butenolide 4 -sulfonates directly, involving cyclization.

Acid-catalyzed cascade rearrangements provide an opportunity for the formation of several bonds in a single step and these reactions are usually highly atom economic. Sames et al. have extensively studied acid-catalyzed 1,5-hydride transfer cyclizations. ${ }^{14}$ In their work, alkyl ether $\mathbf{1 c}$ led with a hydride transfer to the pendant enone using $\mathrm{Sc}(\mathrm{OTf})_{3}$ as the catalyst to an active alkenyl-oxocarbenium ion that triggered cyclization by the in-situ formed enolate leading to pyran 2c (Scheme 1C). We believed that a methylene group of MOM ether would also provide an active hydride for 1,5 -shift in compound 3 to the Michael acceptor alkynoate intramolecularly followed by in-situ

[^0]enolate cyclization to give 4 (Scheme 1D). Various Lewis acids including $\mathrm{Sc}(\mathrm{OTf})_{3}$ failed to deliver the desired product 4. However, when Brønsted acid p-TsOH was used as the catalyst, the annulative hydrosulfonated product 5 a ($\mathrm{C}-\mathrm{O}$ bond formation, Scheme 1E) was formed. Product 5a was characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and HRMS data. Further, the structure was unambiguously confirmed by single crystal XRD ${ }^{15}$ (Scheme 1). This is an interesting metal-free annulative hydrosulfonation. The reaction involves MOM ether deprotection, hydrosulfonation and cyclization. The same

Scheme 1. Hydrosulfonation and Hydride Transfer Cyclization.
reaction on free phenol 6a also delivered compound 5awith better yield（Scheme 1F）．While 4 －sulfonates of coumarins are usually prepared by sulfonation of 4－hydroxycoumarins，${ }^{16}$ this direct method is promising as the sulfonates are precursors for various coupling reactions，providing an avenue for product diversification．We chose to study the scope and limitations of this reaction and the results are reported in this paper．

Results and discussion

We chose compound $\mathbf{6 a}$ for the optimization of reaction conditions using p－TsOH as hydrosulfonating agent．The starting ethyl 3－（2－hydroxyaryl）propiolates 6 were prepared by following Yamamoto＇s procedure．${ }^{17}$ In 1，2－dichloroethane（DCE） solvent，we varied the equivalence of p－ TsOH from 0.5 to 2.0 equiv at room temperature，but it did not give reasonable yields of $5 \mathbf{a}$（Table 1，entries 1－4）．The reaction worked well at both 50 ${ }^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$（Table 1，entries 5－12）．We found 1.5 equiv of p－ TsOH was optimum at $50^{\circ} \mathrm{C}$ ，the reaction being complete in 4 h yielding 5 a in 92% yield（entry 7）．Change in solvent was screened（entries 13－21）to indicate DCE to be the best solvent， although $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ could also give the product in 73% yield（entry 13）．In EtOAc，THF and $\mathrm{Et}_{2} \mathrm{O}$ the reaction did not proceed and

Table 1．Screening of Reaction Conditions ${ }^{a}$

6a

Entry	Solvent	$\begin{aligned} & p-\mathrm{TsOH} \\ & \text { (equiv) } \end{aligned}$	Temp． $\left({ }^{\circ} \mathrm{C}\right)$	Time （h）	Yield 5a $(\%)^{b}$
1	DCE	0.5	rt	12	9
2	DCE	1.0	rt	12	15
3	DCE	1.5	rt	12	16
4	DCE	2.0	rt	12	19
5	DCE	0.5	50	12	35
6	DCE	1.0	50	6	69
7	DCE	1.5	50	4	92
8	DCE	2.0	50	4	93
9	DCE	0.5	80	4	39
10	DCE	1.0	80	4	72
11	DCE	1.5	80	4	86
12	DCE	2.0	80	4	90
13	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1.5	45	6	73
14	DMF	1.5	50	6	26
15	DMSO	1.5	50	6	32
16	$\mathrm{CH}_{3} \mathrm{CN}$	1.5	50	6	36
17	EtOAc	1.5	50	12	0^{c}
18	THF	1.5	50	12	0^{c}
19	$\mathrm{Et}_{2} \mathrm{O}$	1.5	reflux	12	0^{c}
20	Benzene	1.5	50	5	59
21	Toluene	1.5	50	5	54

${ }^{a}$ All reaction are done on 0.5 mmol of $\mathbf{6 a} \mathbf{~ i n ~} \mathbf{3} \mathbf{~ m L}$ of solvent．
${ }^{b}$ Isolated yields．${ }^{\text {cStarting material fully recovered．}}$
the starting material was recovered（entries 17－19）Nonepolar solvents like benzene and toluene gave the ：desired prodqet 8 n moderate yields（entries 20－21）．Thus，the optimum conditions were found to be as in entry 7 ，i．e．in DCE at $50^{\circ} \mathrm{C}$ with 1.5 equiv of $p-\mathrm{TsOH}$ ．With the optimized conditions，the scope and limitations of the metal－free annulative hydrosulfonation of various ethyl 3－（2－hydroxyaryl）propiolates were investigated． As shown in Scheme 2，various ethyl 3－（2－ hydroxyaryl）propiolates provided the corresponding coumarin 4－tosylates $\mathbf{5 a - d}$ ，f and $\mathbf{5 i}$ in good to excellent yields（84－92\％）． Electron densities on the aryl ring of ethyl 3－（2－ hydroxyaryl）propiolates governed the progress of the reaction． Electron withdrawing group on aryl part of the substrate ester terminated the reaction．Thus，ethyl 3－（4－chloro－2－ hydroxyphenyl）propiolate $\mathbf{6 e}$ and the nitro compound $\mathbf{6 g}$ did

Scheme 2．Substrate Scope for Synthesis of Coumarin 4－Sulfonates and a Gram－Scale Reaction
not yield the corresponding coumarin 4 －sulfonate $\mathbf{5 e}$ and $\mathbf{5 g}$ ． We also considered addition of various other sulfonic acids．p－ Ethylbenzenesulfonic acid also gave good yields of coumarin 4－ sulfonates $7 a-c, f$ and $7 \mathbf{i l}(82-85 \%)$ ．Here also the nitro compound $\mathbf{6 g}$ did not yield $\mathbf{7 g}$ ．The use of benzenesulfonic acid $\left(\mathrm{PhSO}_{3} \mathrm{H}\right)$ decreased the yields of sulfonates $\mathbf{8 a - d} \mathbf{f} \mathbf{f} \mathbf{h}$ and $\mathbf{8 i}$ marginally （54－78\％）．p－Chlorobenzenesulfonic acid addition gave moderate yields of 9a－c（67－75\％），while methanesulfonic acid （ MsOH ）addition on ethyl 3－（2－hydroxyaryl）propiolates gave moderate yields of the coumarin 4－mesylates 10a，c，f，h（48－ 68% ）．Interestingly，camphorsulfonic acid（CSA）also reacted under these conditions to deliver the corresponding coumarin 4 －camphorsulfonates 11a－c，f，h in 47－67\％yields（Scheme 2）． Triflic acid did not participate in the hydrosulfonation reaction under various conditions including higher equivalence or temperature，and the starting material was unaffected．A reaction of 6 a at 5.0 mmol scale（ 1.021 g ）delivered coumarin 4－ tosylate 5a in good yield of 84%（ 1.387 g ），indicating the possibility for scale－up of this procedure．

The developed reaction was extended to the synthesis of 4－ sulfonates of butenolides（Scheme 3）．The substrate γ－aryl－γ－ hydroxy－α, β－acetylenic esters $\mathbf{1 2}$ were prepared by addition of lithiated ethyl propiolate on aryl aldehydes．The reaction temperature of sulfonic acid addition had to be raised to $80^{\circ} \mathrm{C}$ in these cases to get optimal yields．Addition of p－TsOH to 12a－ d provided the butenolide 4－tosylates 13a－d in good yields of

13a，$R=M e, 83 \%$
13b，$R=H, 84 \%$
13c， $\mathrm{R}=t$－ $\mathrm{Bu}, 81 \%$
13d，$R=P h, 81 \%$ 13e， $\mathrm{R}=\mathrm{Cl}, \mathrm{NR}$

13g，$R^{1}=H, R^{2}=M e, 78 \%$ 13h，$R^{1}=M e, R^{2}=H, 82 \%$

15a，$R=\mathrm{Me}, 74 \%$
15b，R＝H，72\％

15c， $\mathrm{R}=t-\mathrm{Bu}, 69 \%$
15c， $\mathrm{R}=t$－Bu， 68%
15d $=\mathrm{Ph}, 68 \%$

14，79\％

15g，$R^{1}=H, R^{2}=M e, 67 \%$ 15h，$R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}, 70 \%$

Scheme 3．Substrate Scope for Butenolide 4－Sulfonates．

81－84\％．Substrates with slight electon withrawing Aflclabd inE groups failed in this reaction to provide 13elahdilif／The brthet and meta－methyl substituted products $\mathbf{1 3 g}$（78\％）and 13h（82\％） were obtained in good yields．Aliphatic substrates $\mathbf{1 2 i}$ and 12j failed to deliver $\mathbf{1 3 i}$ and $\mathbf{1 3 j}$ ．Probably these are not as activated as the aryl alkynoates．Thus the sulphonic acid addition to aliphatic substrates has been achieved under Pd－catalysis （Scheme 1B）．${ }^{12 \mathrm{~b}} \mathrm{MsOH}$ could be added to 12 c to give 14 in 79% yield．Similarly， $\mathrm{PhSO}_{3} \mathrm{H}$ addition to $\mathbf{1 2 a - d}, \mathbf{1 2 g}$ and $\mathbf{1 2 h}$ furnished the butenolide 4－benzenesulfonates $\mathbf{1 5 a} \mathbf{- d}, \mathbf{1 5 g}$ and 15h in 67－74\％yields．Addition of 4－ethylbenzenesulfonic acid to $\mathbf{1 2 c}, \mathbf{1 2 g}$ and $\mathbf{1 2 h}$ provided the butenolide 4 －sulfonate $\mathbf{1 6 c}, \mathbf{1 6 g}$ and 16 h in $75-80 \%$ yields．A reaction of $\mathbf{1 2 c}$ at 5.0 mmol scale $(1.3 \mathrm{~g})$ delivered butanolide 4－sulfonate $\mathbf{1 3 c}$ in good yield of 68\％ （ 1.3 g ），indicating the possibility for scale－up of this procedure．

Various coumarin 4－sulfonates were subjected to Sonogashira coupling ${ }^{18}$ to choose the best sulfonate giving higher yield（Scheme 4）．Tosylate 5a gave the best yield of 18a （79\％）as compared to other sulfonates．p－ Ethylbenzenesulfonate 7a，benzenesulfonate $\mathbf{8 a}$ and p－ chlorobenzenesulfonate 9a provided 18a in 73\％，62\％and 63\％ yields，respectively．Mesylate 10a gave poor yield of 18a（43\％）， whereas camphor sulfonate 11a did not participate in this reaction and the starting materials decomposed．Considering the coumarin 4－tosylate to be the best coupling partner，5a，5b or 5c were then subjected to Sonagashira coupling with different alkynes 17 to deliver 4－（arylethynyl）coumarins 18a－g in good yields（69－79\％，Scheme 4）．

Scheme 4．Screening of Sulfonates for Sonogashira Reaction and Use of Coumarin 4－Tosylates for Synthesis of 4－（Arylethynyl）coumarins 18.

Tosylates $\mathbf{5 a}$ and $\mathbf{5 c}$ were subjected to Suzuki coupling ${ }^{19}$ with boronic acids 19 using $\mathrm{Pd}(\mathrm{OAc})_{2}$ along with $\mathrm{K}_{3} \mathrm{PO}_{4}$ and PPh_{3} in t－ BuOH at $75^{\circ} \mathrm{C}$ to furnish 4－arylcoumarins 20a－d in 72－76\％yields （Scheme 5）．4－Phenylcoumarin 20a was transformed to tolterodine 22，traded as Detrol or Detrusitol，an antimuscarinic drug ${ }^{20}$ acting at the M2 and M3 subtypes of muscarinic receptors，${ }^{21}$ and it is used for the treatment of urinary incontinence．It selectively targets the bladder more than other areas of the body and hence is required in lower dosage． Therefore，it has fewer side effects in comparison to other drugs．Hydrogenation of 20a using Pd／C in ethanol at 4 atm of H_{2} at room temperature delivered dihydrocoumarin 21 in 95\％ yield．The subsequent DiBAL－H reduction to its corresponding lactol and further one－pot reductive amination gave tolterodine 22 in good yield（ 81% from 21）．

20a，73\％

20b，76\％

20c，$R^{1}=H, 72 \%$ 20d，$R^{1}=\mathrm{Me}, 75 \%$

tolterodine 22，81\％

Scheme 5．Suzuki Coupling of Coumarin 4－Tosylates with Boronic Acids to 4－Arylcoumarins and Synthesis of rac－Tolterodine 22.

We investigated further reactions to gain insight in the mechanism of the reaction（Scheme 6）．We noted that sulfinic acid addition to propiolates in presence of water results in $\mathrm{C}-\mathrm{S}$ bond formation（Scheme 1A）and involves protonation of the alkyne．${ }^{12 a}$ In our case the reaction occurs with $\mathrm{C}-\mathrm{O}$ bond formation in using the sulfonic acids．The reaction on compounds 23a and 23b，without the phenolic OH group resulted in the arylmethyl ketones 24a and 24b obtained in 78\％ and 87% yields，respectively．This unusual cleavage of 3 － arylpropiolates via decarboxylative hydration of alkyne is known in the literature．${ }^{22}$ To check the hypothesis that the reaction involves acid catalysis and protonation is required，we carried out reaction with p－TsONa on $6 \mathbf{6}$ in absence of water． The reaction failed to give $\mathbf{5 a}$ ．Other acids like $\mathrm{AcOH}, \mathrm{BzOH}$ ， TfOH or TFA also did not give addition products．The reaction of compound 12 c with p－TsOH in presence of $\mathrm{D}_{2} \mathrm{O}$ gave 13 c with
no significant deuterium incorporation at the $\boldsymbol{i}_{\text {ien }} \alpha_{\text {A }}$ position
 Hence，similar to sulfinic acid addition，${ }^{12 a}$ the protonation of alkyne in $\mathbf{6}$ gives the intermediate I that is possibly opened intramolecularly by the phenolic hydroxy group to give intermediate II．${ }^{23}$ Next，conjugate addition of the sulfonic acid and opening of the oxetane by the enolate results in the ester III．The latter cyclizes to the coumarin 4 －sulfonates $\mathbf{5 , 7 - 1 1}$ ．A similar mechanism is operative for butenolide 4 －sulfonate formation．It is also probable that intermediate I may give directly III by reaction of the sulfonic acid on protonated alkyne．

Scheme 6．Mechanistic Investigations and Plausible Mechanism

Conclusions

In summary，we have developed an efficient metal－free annulative hydrosulfonation of ethyl propiolates．Various sulfonates have been synthesized through annulative hydrosulfonation reaction（46 examples）．Different sulfonates have been screened for Sonogashira coupling reaction to find that the tosyl group works well．Some of the sulfonates were subjected to Suzuki coupling and the resultant 4－aryl coumarin 20a has been elaborated to tolterodine 22，an antimuscarinic drug．

Experimental section

Solvents were dried by using standard procedures．Thin－layer chromatography was performed on EM 250 Kieselgel 60 F254 silica gel plates．The spots were visualized by staining with KMnO_{4} or by using a UV lamp．${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded with a spectrometer operating at 400 or 500 and 100 or 125 MHz for proton and carbon nuclei，respectively．The chemical shifts are based on the CDCl_{3} peak at $\delta=7.26 \mathrm{ppm}$ for proton NMR and the CDCl_{3} peak at $\delta=77.00 \mathrm{ppm}$（ t ）for carbon NMR．IR spectra were obtained on an FT－IR spectrometer by evaporating compounds dissolved in CHCl_{3} on CsCl pellets． HRMS（ESI－TOF）spectra were recorded using positive electrospray ionization by the TOF method．
General Procedure for Preparation of Ethyl 3－（2－ Hydroxyphenyl）propiolates（6a－i）．To a stirred solution of orthohydroxy arylaldehydes（ $5.0 \mathrm{mmol}, 1.0$ equiv）in THF（ 100 mL ）was added portion wise $\mathrm{NaH}(240 \mathrm{mg}$ of 60% emulsion in mineral oil， $6.0 \mathrm{mmol}, 1.2$ equiv）and stirred for 10 min ．To this mixture，MOMCI（ $3.6 \mathrm{~mL}, 2.1 \mathrm{M}$ solution in toluene， 7.5 mmol ， 1.5 equiv）was added dropwise at $0^{\circ} \mathrm{C}$ and the resulting mixture was then stirred at room temperature for 6 h ．After completion of the reaction，which was monitored by TLC，the reaction was then quenched with sat．aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ ．The organic layer was separated and the aqueous layer extracted with EtOAc $(2 \times 30 \mathrm{~mL})$ ．The combined organic layers were thoroughly washed with water（ $2 \times 20 \mathrm{~mL}$ ）and brine（ 10 mL ）， dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated．The crude product was directly taken for next step．
A solution of carbon tetrabromide（ $3.32 \mathrm{~g}, 10 \mathrm{mmol}, 2.0$ equiv） in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{PPh}_{3}(5.25$ $\mathrm{g}, 20 \mathrm{mmol}, 4.0$ equiv）was added to form an orange－reddish solution．The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min and the above aryl aldehyde dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added in one portion．After stirring for 1 h at $0^{\circ} \mathrm{C}$ ，the mixture was allowed to warm to room temperature for 4 h ．To this， petroleum ether was added（ 100 mL ）over 5 min at $0^{\circ} \mathrm{C}$ and the precipitate obtained was filtered off through a pad of silica gel and the pad washed with petroleum ether／EtOAc（ $2 \times 20 \mathrm{~mL}$ ）． The filtrate was concentrated to give the olefin dibromide．
To the solution of above olefin dibromide in anhydrous THF（ 100 mL ）cooled to $-78^{\circ} \mathrm{C}$ was added n－BuLi（ $5.0 \mathrm{~mL}, 12.5 \mathrm{mmol}, 2.5$ M in hexanes）over a period of 30 min ．The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h ．Then ethyl chloroformate（ $0.814 \mathrm{~g}, 7.5 \mathrm{mmol}$ ） was added in one portion and the mixture was allowed to warm to room temperature and stirred for 3 h ，and then quenched with sat．aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ ．The organic layer was separated and the aqueous layer extracted with $\mathrm{EtOAc}(2 \times$ $30 \mathrm{~mL})$ ．The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated．The residue was then dissolved in THF（ 30 mL ） and stirred at $0{ }^{\circ} \mathrm{C}$ with dropwise addition of $\mathrm{HCl}(10 \mathrm{~mL}, 6 \mathrm{M})$ and stirred for 3 h ．The reaction mixture was then diluted with EtOAc（ 30 mL ）and the organic layer was separated and the aqueous layer extracted with EtOAc（ $2 \times 15 \mathrm{~mL}$ ）．The combined organic layers were thoroughly washed with water $(2 \times 20 \mathrm{~mL})$ and brine（ 10 mL ），dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated．The residue was purified by silica－gel column chromatography using
petroleum ether／EtOAc（4：1）as eluent to give vithertes $_{\text {desired }}$ propiolate esters $\mathbf{6 a} \mathbf{a} \mathbf{i}$ in good yields．DOI：10．1039／C9NJ06438A

Ethyl 3－（2－hydroxy－5－methylphenyl）propiolate（6a）．Yield＝ $541.2 \mathrm{mg}, 53 \%$ ，brown solid，M．p． $56-58{ }^{\circ} \mathrm{C}$ ；IR $\left(\mathrm{CHCl}_{3}\right)$ ：$v_{\text {max }}=$ 3440，2982，2212，1704，1684，1613，1510，1497，1466，1415， 1370，1315，1229，1152，1123，1025，909，859，820，750，732， $631 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.24(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.25$ $(\mathrm{s}, 3 \mathrm{H}), 1.36(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125 \mathrm{MHz}$ ， CDCl_{3} ）：$\delta=156.9,154.1,134.0,133.3,129.9,115.6,105.5,86.8$ ， 82．1，62．3，20．2， 14.1 ppm；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Na}$ 227．0679；Found 227．0682．
Ethyl 3－（2－hydroxyphenyl）propiolate（6b）．${ }^{24}$ Yield $=485.0 \mathrm{mg}$ ， 51% ，white solid，M．p． $44-46^{\circ} \mathrm{C}$ ；lit．${ }^{24}$ M．p． $44-46^{\circ} \mathrm{C}$ ； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ ： $v_{\text {max }}=3390,2983,2928,2209,1705,1686,1604,1486,1450$ ， 1371，1307，1216，1190，1156，1103，1020，840，765， $610 \mathrm{~cm}^{-1}$ ； ${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.43$（dd，$\left.J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.34$ （dd，$J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$ ； ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=159.0,154.3,133.5,133.0$ ， 120．5，115．9，106．0，86．7，82．3，62．4， 14.0 ppm．HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{Na} 213.0522$ ；Found 213．0525． Ethyl 3－［5－（tert－butyl）－2－hydroxyphenyl］propiolate（6c）．Yield＝ $554.2 \mathrm{mg}, 45 \%$ ，brown semi solid；IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3345,2965$ ， 2211，1708，1677，1607，1507，1464，1412，1370，1319，1264， $1225,1206,1185,1137,1100,1020,825,750,632 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.45(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.7$ ， $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.35$ （t，J＝ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$ ）， $1.27(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(100 \mathrm{MHz}$ ， $\left.\mathrm{CDCl}_{3}\right): \delta=156.7,154.1,143.5,130.6,130.0,115.4,105.2,86.7$ ， 82．4，62．3，34．1，31．2， 14.1 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na} 269.1148$ ；Found 269.1152.
Ethyl 3－［4－hydroxy－（1，1＇－biphenyl）－3－yl］propiolate（6d）．Yield＝ $506.0 \mathrm{mg}, 38 \%$ ，brown semi solid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ ：$v_{\max }=3256,2215$ ， $1682,1608,1515,1478,1453,1407,1375,1328,1296,1272$ ， $1179,1116,1027,898,867,820,745,698,637,599,486 \mathrm{~cm}^{-1}$ ； ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.69(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}$ ， $J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H})$ ， $7.41-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{q}, J=7.3 \mathrm{~Hz}$ ， $2 \mathrm{H}), 1.38(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）： $\delta=158.3,154.0,139.3,134.0,131.9,131.7,128.9,127.3,126.6$ ， 116．3，106．3，87．1，81．7，62．4， 14.1 ppm ；HRMS（ESI－TOF） m / z ： ［ $\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na} 289.0835$ ；Found 289．0836．
Ethyl 3－（5－chloro－2－hydroxyphenyl）propiolate（6e）．Yield＝ $370.7 \mathrm{mg}, 33 \%$ ，yellow solid，M．p． $88-90^{\circ} \mathrm{C}$ ；IR $\left(\mathrm{CHCl}_{3}\right)$ ：$v_{\max }=$ 3207，2979，2214，1700，1667，1595，1495，1468，1409，1371， $1316,1286,1123,1182,1114,1085,1016,970,908,875,858$ ， $823,749,668,631 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.41(\mathrm{~d}$ ， $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}$ ， $1 \mathrm{H}), 4.32(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=157.6,153.8,133.1,132.4,125.2$ ，

117．3，107．4，87．5，80．1，62．6， 14.0 ppm；HRMS（ESI－TOF）m / z ： ［ $\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{ClNa} 247.0135$ ；Found 247．0136．
Ethyl 3－（2－hydroxy－3，5－dimethylphenyl）propiolate（6f）．Yield＝ $523.8 \mathrm{mg}, 48 \%$ ，yellow semi solid；IR（ CHCl_{3} ）：$v_{\max }=3457,2983$ ， 2925，2864，2207，1707，1478，1369，1335，1244，1223，1158， 1051，1014，860，782， $748 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.08(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 6 \mathrm{H})$ ， $1.35(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}{ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 155．0，154．0，135．4，130．6，129．4，124．7，104．9，86．9，82．3，62．2， 20．2，15．8， 14.0 ppm；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na} 241.0835$ ；Found 241．0837．
Ethyl 3－（2－hydroxy－5－methyl－3－nitrophenyl）propiolate（6g）． Yield $=309 \mathrm{mg}, 53 \%$ ，yellow solid，M．p． $84-86{ }^{\circ} \mathrm{C}$ ；IR $\left(\mathrm{CHCl}_{3}\right)$ ： $v_{\max }=3246,2221,1693,1545,1459,1364,1344,1310,1298$ ， 1251，1225，1168，1124，1097，1032，941，878，853，749，699， $617 . \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=10.87(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}$ ， $1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=154.7$ ， 153．4，142．8，133．4，129．9，127．0，111．7，86．0，79．2，62．3，20．0， 14.0 ppm ；HRMS（ESI－TOF） m / z ：［M＋Na］${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{5} \mathrm{NNa}$ 272．0529；Found 272．0532．
Ethyl 3－（2－ethoxy－6－hydroxyphenyl）propiolate（6h）．Yield＝ $363.1 \mathrm{mg}, 31 \%$ ，brown semi solid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ ：$v_{\text {max }}=3451,2981$ ， 2215，1704，1584，1486，1467，1396，1369，1307，1278，1231， 1198，1069，1027，910，780，751， $733 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}$ NMR（ 400 MHz ， $\left.\mathrm{CDCl}_{3}\right): \delta=7.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ （t，J＝7．9 Hz，1H）， $4.30(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$ ， $1.45(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ （ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=154.2,149.0,145.8,125.6,119.9,114.0$ ， 106．0，84．9，82．2，64．9，62．0，14．8， 14.1 ppm；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na} 257.0784$ ；Found 257．0784． Ethyl 3－（2－hydroxy－3，6－dimethylphenyl）propiolate（6i）．Yield＝ $611.1 \mathrm{mg}, 56 \%$ ，yellow semi solid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=3405,2982,2212$ ， 1704，1679，1613，1497，1466，1415，1370，1315，1229，1152，1123， $1025,909,859,820,751,697,631 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：δ $=7.08(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.0 \mathrm{~Hz}$ ， $2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.3(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=157.1,154.0,140.3,133.5,121.7,121.1,105.7$ ， 91．0，80．8，62．2，20．4，15．6， 14.1 ppm；HRMS（ESI－TOF）m／z：［M＋Na］${ }^{+}$ Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}$ 241．0835；Found 241．0839．

General Procedure for the Preparations of Coumarin 4－ Sulfonates（5，7－11）．To a solution of ethyl 3－（2－ hydroxyaryl）propiolates 6 （ $0.5 \mathrm{mmol}, 1.0$ equiv）in DCE（ 5 mL ） was added the sulfonic acid（ $0.75 \mathrm{mmol}, 1.5$ equiv）and the mixture stirred at $50^{\circ} \mathrm{C}$ for 4 h ．After completion of the reaction which was monitored by TLC，the reaction mixture was cooled and concentrated under vacuum．The residue was purified by silica gel column chromatography using petroleum ether／EtOAc （19：1－4：1）as eluent to afford coumarin 4 －sulfonates $\mathbf{5 , ~ 7 - 1 1 ~ i n ~}$ 47－92\％yields．

6－Methyl－2－oxo－2H－chromen－4－yl 4－methylbenzenesulfonate
 lit．${ }^{16 e} 149-151{ }^{\circ} \mathrm{C}$ ； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=2925,1733,1631,1579$ ， 1491，1427，1391，1365，1316，1276，1200，1170，1090，1062， 923，861，833，817，760，745，709，666，601，572， $547 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.90(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.30$ $(\mathrm{m}, 4 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}$ ， 3H）ppm；${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=161.0,157.9,151.7$ ， $146.8,134.4,134.3,131.7,130.4,128.5,122.8,116.7,114.6$, 103．5，21．8， 20.8 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{~S} 331.0635$ ；Found 331．0632．
2－Oxo－2H－chromen－4－yl 4－methylbenzenesulfonate（5b）．${ }^{16 e}$ Yield $=136 \mathrm{mg}, 86 \%$ ，white solid，M．p． $110-112{ }^{\circ} \mathrm{C}$ ，lit．.$^{16 \mathrm{e}}$ $110-111{ }^{\circ} \mathrm{C}$ ；IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=2969,2935,2874,1735,1627$, 1607，1570，1488，1453，1373，1325，1274，1191，1176，1127， 1067，933，875，839，793，753，714，658，601，577，541， $504 \mathrm{~cm}^{-}$ ${ }^{1}$ ；${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.90(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{dd}$ ， $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=160.7,157.8,153.4,146.9,133.2$ ， 131．6，130．4，128．4，124．5，123．1，116．9，114．9，103．5， 21.8 ppm ； HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{SNa} 339.0298$ ； Found 339.0295.
6－（tert－Butyl）－2－oxo－2H－chromen－4－yl－4－
methylbenzenesulfonate（5c）．${ }^{25}$ Yield $=162.0 \mathrm{mg}, 87 \%$ ，white solid，M．p． $176-178{ }^{\circ} \mathrm{C}$ ，lit．.$^{25} \mathrm{M}$. p． $177^{\circ} \mathrm{C}$ ； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ ：$v_{\max }=3101$ ， 2965，2871，1738，1630，1606，1576，1491，1426，1388，1371， 1357，1315，1285，1263，1205，1178，1143，1111，1092，1061， $1018,936,908,860,843,816,765,745,679,664,599,571,549$ cm^{-1} ；${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58$ （dd，$J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}$ ）， $7.23(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}$ ， $9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=161.0,158.1,151.5$ ， 147．7，146．7，131．8，130．9，130．3，128．3，119．1，116．5，114．2， 104．3，34．6，31．1， 21.7 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{SNa} 395.0924$ ；Found 395.0920 ．
2－Oxo－6－phenyl－2H－chromen－4－yl 4－methylbenzenesulfonate （5d）．Yield $=164.8 \mathrm{mg}, 84 \%$ ，brown semi solid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=$ 3058，2926，1735，1630，1597，1576，1482，1454，1421，1388， 1364，1301，1271，1201，1177，1138，1093，1064，936，891，819， $762,743,706,665,602,584,559,547,525, \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR（ 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{dd}, J=8.4,0.6 \mathrm{~Hz}$ ， $1 \mathrm{H}), 7.73(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.33(\mathrm{~m}$, $4 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ 125 MHz ， $\left.\mathrm{CDCl}_{3}\right): \delta=160.7,157.9,152.8,147.0,139.0,138.0,132.1$ ， 131．7，130．4，129．0，128．5，128．0，127．1，121．3，117．4，115．2， 104．3， 21.8 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:$［ $\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{SNa} 415.0611$ ；Found 415．0611．

6，8－Dimethyl－2－oxo－2H－chromen－4－yl－4－

methylbenzenesulfonate（5f）．Yield $=155 \mathrm{mg}, 90 \%$ ，white solid， M．p． $140-144{ }^{\circ} \mathrm{C}$ ； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=1734,1630,1593,1470$ ， 1377，1371，1201，1167，1129，1088，1005，921，845，763，749， $732,669,624,580,548 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.90$ （d，J＝8．1 Hz，2H）， $7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}$ ， $1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$ ； ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=161.1,158.2,150.0,146.8$ ， 135．7，133．8，131．8，130．3，128．5，126．1，120．4，114．4，103．2，

21．8，20．8， 15.5 ppm；HRMS（ESI－TOF）$m / z:\left[\mathrm{M} \mathrm{+} \mathrm{Na]}{ }^{+}\right.$Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{SNa} 367.0611$ ；Found 367．0611．

5，8－Dimethyl－2－oxo－2H－chromen－4－yl－4－

methylbenzenesulfonate（5i）．Yield $=151.5 \mathrm{mg}, 88 \%$ ，white solid，M．p． $146-148{ }^{\circ} \mathrm{C}$ ；IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=2967,1727,1646$ ， 1598，1446，1411，1374，1282，1220，1194，1179，1095，1039， $1011,971,924,876,816,695,660,566,544 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$ ， $7.25(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 2.53$ （s，3H）， $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$ ， $\left.\mathrm{CDCl}_{3}\right): \delta=160.6,159.9,153.0,146.8,133.7,133.5,132.0$ ， 130．4，128．4，127．7，124．4，113．2，102．4，22．8，21．7， 15.7 ppm； HRMS（ESI－TOF） m / z ：$[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{SNa} 367.0611$ ； Found 367．0611．
6－Methyl－2－oxo－2H－chromen－4－yl 4－ethylbenzenesulfonate （7a）．Yield $=146.4 \mathrm{mg}, 85 \%$ ，white solid，M．p． $96-98{ }^{\circ} \mathrm{C}$ ；IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=2972,1732,1631,1578,1491,1425,1388,1365$ ， 1317，1276，1203，1169，1131，1062，923，833，792，744，705， $659,603,573,541 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.91(\mathrm{~d}$ ， $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.18$ （d，J＝ $8.1 \mathrm{~Hz}, 1 \mathrm{H}$ ）， $6.27(\mathrm{~s}, 1 \mathrm{H}), 2.74(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}$ ， $3 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ： $\delta=161.0,157.8,152.8,151.6,134.4,134.2,131.8,129.2,128.5$ ， 122．7，116．6，114．5，103．5，28．9，20．8， 14.8 ppm ；HRMS（ESI－ TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{SNa} 367.0611$ ；Found 367.0605.

2－Oxo－2H－chromen－4－yl 4－ethylbenzenesulfonate（7b）．Yield＝ $137.1 \mathrm{mg}, 83 \%$ ，brown semi－solid；IR $\left(\mathrm{CHCl}_{3}\right)$ ：$v_{\max }=2969,2932$ ， 2874，1732，1626，1608，1569，1490，1452，1372，1327，1274， 1197，1176，1132，1067，1032，933，875，837，790，753，719，658， $602,577,546 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.95$（ $\mathrm{d}, \mathrm{J}=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 2.78(\mathrm{q}, J=7.7 \mathrm{~Hz}$ ， $2 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ： $\delta=160.8,157.8,153.4,152.9,133.2,131.8,129.2,128.5,124.5$ ， 123．1，116．9，114．9，103．6，28．9， 14.8 ppm ；HRMS（ESI－TOF） m / z ： $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{~S} 331.0635$ ；Found 331．0632．

6－（tert－Butyl）－2－oxo－2H－chromen－4－yl－4－

ethylbenzenesulfonate（ 7 c ）．Yield $=158.5 \mathrm{mg}, 82 \%$ ，white semi solid；IR（ CHCl_{3} ）：$v_{\max }=3101,2967,2871,1735,1630,1597$ ， 1577，1491，1461，1427，1390，1371，1354，1315，1263，1208， 1178，1143，1111，1093，1060，935，909，859，842，791，762，744， $720,679,658,599,550 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.89$ （d，$J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$ ）， 7.58 （dd，$J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}$ ， $1 \mathrm{H}), 2.73(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$ ppm；${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=161.0,158.1,152.7$ ， 151．5，147．7，132．0，130．9，129．2，128．4，119．1，116．5，114．2， 104．4，34．6，31．1，28．9， 14.8 ppm；HRMS（ESI－TOF）m / z ：［M＋ $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{SNa}$ 409．1080；Found 409．1077．

6，8－Dimethyl－2－oxo－2H－chromen－4－yl

ethylbenzenesulfonate（7f）．Yield $=147 \mathrm{mg}, 82 \%$ ，white semi－ solid；IR（ CHCl_{3} ）：$v_{\max }=3106,2970,2928,2877,1732,1631$ ， 1596，1578，1491，1413，1391，1366，1317，1276，1202，1169， 1131，1093，1061，923，859，833，792，760，745，706，681，659， $618,602,573,542 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.91$（ d ， $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.25$

 158．2，152．7，150．0，135．7，133．8，131．9，129．2，128．6，126．1， 120．4，114．4，103．3，29．0，20．8，15．5， 14.8 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{SNa}$ 381．0767；Found 381．0769．
5，8－Dimethyl－2－oxo－2H－chromen－4－yl 4－ ethylbenzenesulfonate（ 7 i ）．Yield $=148.6 \mathrm{mg}, 83 \%$ ，white solid； M．p．${ }^{152-154}{ }^{\circ} \mathrm{C}$ ； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=1732,1630,1593,1377$ ， $1201,1167,1129,1088,1005,975,921,845,814,763,734,669$ ， $580,548 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}$ ， $2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 2.73(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.30$ $(\mathrm{s}, 3 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$ ， $\left.\mathrm{CDCl}_{3}\right): \delta=160.5,159.7,152.8,152.7,133.5,133.4,132.0$ ， 129．1，128．4，127．6，124．2，113．0，102．2，28．8，22．7，15．6， 14.6 ppm；HRMS（ESI－TOF）m／z：［M＋Na］${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{SNa}$ 381．0767；Found 381．0769．
6－Methyl－2－oxo－ 2 H －chromen－4－yl benzenesulfonate（8a）．${ }^{16 \mathrm{~g}}$ Yield $=123.4 \mathrm{mg}, 78 \%$ ，white solid，M．p． $140-142^{\circ} \mathrm{C}$ ，lit．${ }^{16 \mathrm{~g}}$ M．p． $139-141{ }^{\circ} \mathrm{C}$ ；IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3127,1730,1629,1578,1450$ ， $1425,1382,1364,1316,1203,1168,1063,935,922,860,820$ ， $776,759,748,684,606,586,566 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ 400 MHz ， $\left.\mathrm{CDCl}_{3}\right): \delta=8.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{dt}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H})$ ， $7.64-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$ ， $6.27(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 160．9，157．8，151．7，135．3，134．8，134．5，134．3，129．8，128．4， 122．7，116．7，114．5，103．8， 20.8 ppm；HRMS（ESI－TOF）m／z：［M $+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{SNa} 339.0298$ ；Found 339.0299 ．
2－Oxo－2H－chromen－4－yl benzenesulfonate，（8b）．${ }^{16 \mathrm{~g}}$ Yield＝ $110.3 \mathrm{mg}, 73 \%$ ，white solid，M．p． $116-120^{\circ} \mathrm{C}$ ，lit．${ }^{16 \mathrm{~g}}$ M．p． $118-120{ }^{\circ} \mathrm{C}$ ； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=3075,1736,1625,1606,1567$ ， 1450，1386，1373，1278，1177，1128，1092，1071，1031，936， $910,877,855,767,720,683,606,588,568,538 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{t}, J=7.5 \mathrm{~Hz}$ ， $1 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}$ ， 1H），7．29－7．24（m，1H）， $6.33(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=160.7,157.7,153.5,135.4,134.8,133.3,129.8$ ， 128．4，124．5，123．1，117．0，114．9， 103.9 ppm；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{5} \mathrm{SNa}$ 325．0141；Found 325．0143．
6－（tert－Butyl）－2－oxo－2H－chromen－4－yl benzenesulfonate（8c）． Yield $=136.2 \mathrm{mg}, 76 \%$ ，brown semi solid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=2967$ ， 2905，1736，1630，1577，1449，1427，1393，1372，1315，1263， $1203,1185,1143,1092,1060,935,909,863,843,769,722,685$ ， $603,575,550 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=8.00(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.73(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$ ； ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=160.8,157.9,151.5,147.7$ ， 135．2，134．8，130．9，129．7，128．2，119．0，116．4，114．1，104．4， 34．5， 31.1 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:\left[\mathrm{M} \mathrm{+} \mathrm{Na]}{ }^{+}\right.$Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{SNa} 381.0767$ ；Found 381.0768.
2－Oxo－6－phenyl－2H－chromen－4－yl benzenesulfonate（ 8 d ）．Yield $=128.7 \mathrm{mg}, 68 \%$ ，brown semi solid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=2979$ ， 2932，1732，1626，1576，1467，1376，1277，1199，1168，1090， 1050，985，922，911，790，758，733，666， $548 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}$ NMR（ 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.04(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.90-7.69(\mathrm{~m}, 3 \mathrm{H})$ ，

7．64－7．57（m，2H），7．53－7．44（m，4H），7．44－7．36（m，2H）， 6.36 （s，1H）ppm；${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=160.6,157.8$ ， 152．8，139．0，138．1，135．4，134．8，132．2，129．8，129．0，128．4， 128．0，127．1，121．2，117．4，115．1， 104.3 ppm；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{SNa}$ 401．0454；Found 401．0454．
6，8－Dimethyl－2－oxo－2H－chromen－4－yl benzenesulfonate（8f）． Yield $=123.9 \mathrm{mg}, 75 \%$ ，brown solid，M．p． $116-118{ }^{\circ} \mathrm{C} ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ ： $v_{\max }=3116,2924,1726,1631,1591,1478,1449,1424,1369$ ， 1316，1239，1201，1166，1128，1088，1005，972，945，923，860， 830，767，750，685，663，646，626，586， $560 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}$ NMR（ 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.03(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$ ， $7.64-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}$ ， $3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=161.0$ ， 158．1，150．0，135．8，135．3，134．9，133．8，129．7，128．4，126．2， 120．3，114．3，103．5，20．8， 15.5 ppm ；HRMS（ESI－TOF） m / z ：［M＋ K］${ }^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{SK} 369.0194$ ；Found 369.0189.
8－Ethoxy－2－oxo－2H－chromen－4－yl benzenesulfonate（8h）．Yield $=93.5 \mathrm{mg}, 54 \%$ ，brown semi solid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=2983,1733$ ， 1629，1577，1466，1451，1376，1277，1201，1166，1090，1048， 982，924，912，758，734， $630 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：δ $=8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{td}, J=7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.57$ （m，2H），7．19－7．14（m，2H），7．12－7．07（d，J＝8．6 Hz，1H）， $6.34(\mathrm{~s}$ ， $1 \mathrm{H}), 4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=160.4,158.0,146.7,143.6,135.3$ ， 134．8，129．8，128．4，124．4，116．2，115．8，114．1，104．1，65．1， 14.7 ppm；HRMS（ESI－TOF）$m / z:[M+N a]+$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{SNa}$ 369．0403；Found 369．0403．
5，8－Dimethyl－2－oxo－2H－chromen－4－yl benzenesulfonate（8i）． Yield $=117.3 \mathrm{mg}, 71 \%$ ，white solid，M．p． $124-126^{\circ} \mathrm{C} ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ ： $v_{\max }=3127,1727,1629,1578,1451,1423,1382,1316,1203$ ， 1168，1129，1093，1063，1003，935，860，820，776，758，680，606， $586,566,541 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=8.02(\mathrm{~d}, \mathrm{~J}=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.76(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, \mathrm{J}=8.0,2 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}) 6.28(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.36$ （s，3H）ppm；${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=160.6,159.8$ ， 153．0，135．3，135．1，133．8，133．5，129．8，128．4，127．7，124．5， 113．2，102．7，22．8， 15.8 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M} \mathrm{+} \mathrm{K]+}$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{SK} 369.0194$ ；Found 369.0189.
6－Methyl－2－oxo－2H－chromen－4－yl 4－chlorobenzenesulfonate （9a）．Yield $=128.0 \mathrm{mg}, 73 \%$ ，brown semi solid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=$ 3108，2970，2932，2874，1732，1631，1578，1491，1422，1366， 1317，1276，1203，1170，1132，1093，1061，923，861，833，791， 760，744，706，659，602，573， $543 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}$ NMR（ 500 MHz ， $\left.\mathrm{CDCl}_{3}\right): \delta=7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ （d，J＝ $8.3 \mathrm{~Hz}, 1 \mathrm{H}$ ）， $7.32(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}$ ， 1 H ）， $2.36(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=160.7$ ， 157．6，151．6，142．3，134．6，134．5，133．1，130．1，129．8，122．5， 116．8，114．3，103．8， 20.8 ppm；HRMS（ESI－TOF）m／z：［M＋Na］${ }^{+}$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{O}_{5} \mathrm{ClSNa} 372.9908$ ；Found 372．9907．
2－Oxo－2H－chromen－4－yl 4－chlorobenzenesulfonate（9b）．Yield $=112.8 \mathrm{mg}, 67 \%$ ，brown semi solid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ ：$v_{\text {max }}=3088$ ， 1733，1628，1608，1576，1398，1373，1274，1192，1176，1088， 1064，934，876，832，768，751，714， $621 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}$ NMR（ 400 MHz ， CDCl_{3} ）：$\delta=7.97(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=160.5,157.6,153.5,142.4,133.4$ ，

 358．9751；Found 358．9750．

6－（tert－Butyl）－2－oxo－2H－chromen－4－yl－4－

chlorobenzenesulfonate（9c）．Yield $=147.3 \mathrm{mg}, 75 \%$ ，white solid，M．p． $94-96{ }^{\circ} \mathrm{C}$ ；IR（ CHCl_{3} ）：$v_{\text {max }}=3097,2964,2908,2874$ ， 1735，1630，1606，1576，1491，1476，1424，1399，1372，1357， $1315,1285,1263,1205,1185,1143,1111,1093,1059,1014$ ， $936,909,863,842,799,771,744,720,678,628,550 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.95(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{dd}, \mathrm{J}=$ $8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ （d，$J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$ ）， $6.33(\mathrm{~s}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.8,157.8,151.6,147.9,142.3,133.3$ ， 131．1，130．1，129．7，118．9，116．6，114．0，104．7，34．6， 31.1 ppm ； HRMS（ESI－TOF）$m / z:[M+N a]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{ClSNa}$ 415．0377；Found 415．0376．
6－Methyl－2－oxo－2H－chromen－4－yl methanesulfonate（10a）．${ }^{16 g}$ Yield $=80.1 \mathrm{mg}, 63 \%$ ，white solid，M．p． $118-120^{\circ} \mathrm{C}$ ，lit．.$^{16 g}$ M．p． $121-122{ }^{\circ} \mathrm{C}$ ；IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3033,1725,1630,1576,1425$ ， $1375,1360,1195,1171,1063,898,944,923,893,829,794,739$ ， $602,561,529 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.50(\mathrm{~s}, 1 \mathrm{H})$ ， 7.42 （dd，$J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H})$ ， $3.39(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：δ $=160.7,157.2,151.7,134.7,134.6,122.5,116.9,114.3,103.2$ ， 39．1， 20.9 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:\left[\mathrm{M} \mathrm{+} \mathrm{Na]}{ }^{+}\right.$Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{5} \mathrm{SNa} 277.0141$ ；Found 277．0145．
6－（tert－Butyl）－2－oxo－2H－chromen－4－yl methanesulfonate （10c）．Yield $=87.4 \mathrm{mg}, 59 \%$ ，brown semi solid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=$ 3023，2965，2871，1731，1629，1606，1577，1491，1426，1372， $1334,1315,1264,1205,1178,1144,1112,1066,972,939,911$ ， $845,791,740,717,675,590,521 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ 500 MHz ， $\left.\mathrm{CDCl}_{3}\right): \delta=7.71-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}$, $1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ 125 MHz ， CDCl_{3} ）：$\delta=160.8,157.6,151.7,148.1,131.3,118.9,116.8$, 113．9，103．2，39．1，34．7， 31.2 ppm ；HRMS（ESI－TOF） m / z ：［M＋ $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{SNa} 319.0611$ ；Found 319．0610．
6，8－Dimethyl－2－oxo－2H－chromen－4－yl methanesulfonate（10f）． Yield $=91.2 \mathrm{mg}, 68 \%$ ，brown solid，M．p． $134-138{ }^{\circ} \mathrm{C}$ ； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ ： $V_{\text {max }}=3024,1711,1629,1593,1476,1427,1363,1339,1196$ ， 1159，1126，1011，972，943，920，855，834，796，766，707，646， $572,504 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.33(\mathrm{~s}, 1 \mathrm{H}), 7.28$ $(\mathrm{s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$ ； ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=160.9,157.6,150.1,136.0$ ， 134．0，126．4，120．0，114．0，102．9，39．0，20．8， 15.5 ppm；HRMS （ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{SNa} 291.0298$ ；Found 291.0301.

8－Ethoxy－2－oxo－2H－chromen－4－yl methanesulfonate（10h）． Yield $=68.2 \mathrm{mg}, 48 \%$ ，brown semi solid； $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=2922$ ， $1725,1623,1576,1468,1382,1352,1285,1237,1206,1168$ ， 1143，1046，993，970，927，882，828，794，758，737，623， $507 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.31(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$ ， $7.27(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H})$ ， $4.21(\mathrm{q}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{t}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$ ； ${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.2,157.4,146.9,143.7$ ， 124．6，116．3，115．5，113．9，103．8，65．2，39．1， 14.7 ppm；HRMS （ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{SNa} 307.0247$ ；Found 307.0246.

6－Methyl－2－oxo－2H－chromen－4－yl（7，7－dimethyl－2－oxobicyclo ［2．2．1］heptan－1－yl）methanesulfonate（11a）．Yield $=113.2 \mathrm{mg}$ ， 58% ，white solid，M．p． $128-130^{\circ} \mathrm{C}$ ； $\mathrm{R}\left(\mathrm{CHCl}_{3}\right): v_{\max }=2966,1749$ ， 1726，1629，1578，1491，1424，1365，1317，1200，1183，1163， 1068，1056，924，835，794，742，607，526， $496 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR（500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.55(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}$ ， $1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H})$ ， 3.38 （d，J＝ $14.8 \mathrm{~Hz}, 1 \mathrm{H}$ ）， $2.54-2.40(\mathrm{~m}, 5 \mathrm{H}), 2.19(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}$ ， 1 H ），2．16－2．07（m，1H）， 2.01 （d，J＝18．5Hz，1H），1．82－1．73（m， 1H），1．54－1．47（m，1H）， $1.17(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=213.5,160.9,157.4,151.7,134.6$ ， 134．4，122．7，116．8，114．4，102．8，58．2，49．7，48．1，42．8，42．4， 26．8，25．2，20．9，19．74， 19.7 ppm ；HRMS（ESI－TOF） m / z ：［M＋ $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{SNa} 413.1029$ ；Found 413．1031．

2－Oxo－2H－chromen－4－yl

（7，7－dimethyl－2－
oxobicyclo［2．2．1］heptan－1－yl）methanesulfonate（11b）．Yield＝ $126.1 \mathrm{mg}, 67 \%$ ，white solid，M．p． $134-136{ }^{\circ} \mathrm{C}$ ；IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=$ 2961，1734，1627，1606，1571，1453，1375，1274，1173，1128， 1073， $935,877,790,764,714 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：δ $=7.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.30(\mathrm{~m}$ ， $2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 3.98$（d，$J=15.1 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 3.37 （d，$J=15.1 \mathrm{~Hz}$ ， 1H），2．55－2．36（m，2H）， 2.18 （t，J＝ $4.6 \mathrm{~Hz}, 1 \mathrm{H}$ ），2．16－2．05（m， $1 \mathrm{H}), 2.00(\mathrm{~d}, \mathrm{~J}=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.46(\mathrm{~m}$ ， 1 H ）， 1.15 （s，3H）， 0.93 （s，3H）ppm；${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ 100 MHz ， $\left.\mathrm{CDCl}_{3}\right): \delta=213.4,160.7,157.3,153.5,133.3,124.6,123.1$ ， 117．0，114．8，103．0，58．2，49．8，48．2，42．8，42．3，26．8，25．2，19．7， 19.65 ppm；HRMS（ESI－TOF）m／z：［M＋Na］${ }^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{SNa}$ 399．0873；Found 399．0878．
6－（tert－Butyl）－2－oxo－2H－chromen－4－yl－（7，7－dimethyl－2－ oxobicyclo［2．2．1］heptan－1－yl）methanesulfonate（11c）．Yield＝ $134.1 \mathrm{mg}, 62 \%$ ，white solid，M．p． $70-72^{\circ} \mathrm{C}$ ； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=$ 2964，1746，1628，1606，1577，1491，1425，1372，1316，1265， 1219，1173，1143，1111，1064，1027，937，912，845，798，762， $718,680,611,560,523 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.72$ （ $\mathrm{d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 7.65 （dd，$J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}$ ）， $7.30(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, \mathrm{~J}=15.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.56-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.06(\mathrm{~m}$ ， $1 \mathrm{H}), 2.00(\mathrm{~d}, \mathrm{~J}=19.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.46(\mathrm{~m}$ ， 1H）， $1.36(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=213.3,161.0,157.7,151.6,147.9,131.0,119.2$ ， 116．6，114．1，102．8，58．1，49．7，48．2，42．8，42．4，34．7，31．3，26．8， 25．2，19．7， 19.66 ppm ；HRMS（ESI－TOF） m / z ：［M＋Na］${ }^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{SNa} 455.1499$ ；Found 455．1497．
6，8－Dimethyl－2－oxo－2H－chromen－4－yl（7，7－dimethyl－2－ oxobicyclo［2．2．1］heptan－1－yl）methanesulfonate（11f）．Yield＝ $123.4 \mathrm{mg}, 61 \%$ ，brown semi solid；IR（ CHCl_{3} ）；$v_{\max }=2961,1747$ ， 1728，1631，1592，1474，1426，1388，1373，1324，1199，1161， 1129，1054，1007，972，921，858，831，793，671， $575 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.39(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H})$ ， 3.97 （ $\mathrm{d}, \mathrm{J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 3.36 （ $\mathrm{d}, \mathrm{J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}$ ）， $2.55-2.41(\mathrm{~m}$ ， $5 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.00$ （d，$J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.17$ $(\mathrm{s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 213．5，160．1，157．8，150．1，135．8，134．0，126．3，120．3，114．2， 102．5，58．2，49．6，48．1，42．9，42．4，26．9，25．2，20．9，19．8，19．7， 15.5 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{SNa}$ 427．1186；Found 427．1189．

8－Ethoxy－2－oxo－2H－chromen－4－yl oxobicyclo［2．21］heptan－1－yl）methan
 $98.8 \mathrm{mg}, 47 \%$ ，white solid，M．p． $102-106^{\circ} \mathrm{C}$ ； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=$ 2974，1745，1731，1626，1576，1466，1377，1277，1198，1167， 1049，984，926，885，791，754，734，629， $501 \mathrm{~cm}^{-1}$ ；$^{1} \mathrm{H}$ NMR（ 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}$ ， $1 \mathrm{H}), 7.14$（dd，$J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}$ ， 2 H ）， 3.97 （ $\mathrm{d}, \mathrm{J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}$ ）， $3.36(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.39$ $(\mathrm{m}, 2 \mathrm{H}), 2.18(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=$ $18.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H})$ ， $0.93(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=213.4$ ， $160.4,157.5,146.8,143.7,124.5,116.3,115.7,114.1,103.2$ ， 65．2，58．2，49．7，48．1，42．9，42．4，26．9，25．2，19．8，19．7， 14.7 ppm；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{7} \mathrm{SNa}$ 443．1135；Found 443．1134．
General Procedure for Synthesis of Alcohols（12a－i）．To a stirred solution of ethyl propiolate（ $245 \mathrm{mg}, 2.5 \mathrm{mmol}$ ）at -78 ${ }^{\circ} \mathrm{C}$ in anhydrous THF（ 10 mL ）was added n－BuLi（ $1.72 \mathrm{~mL}, 2.75$ mmol， 1.1 equiv， 1.6 M in THF ）and the mixture allowed to stir for 30 min ．To this mixture was added the aryl／alkyl aldehyde （ $2.75 \mathrm{mmol}, 1.1$ equiv）in anhydrous THF（ 2 mL ）dropwise at same temperature and reaction was allowed to stir for 1 h ．The reaction mixture was then warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for additional 2 h and then quenched with saturated aq．solution of $\mathrm{NH}_{4} \mathrm{Cl}$ ．The solution was extracted with EtOAc $(2 \times 15 \mathrm{~mL})$ and the combined organic layers were thoroughly washed with water and brine，dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated．The residue was purified by silica gel column chromatography using petroleum ether／EtOAc（4：1）as eluent to give the propiolate esters 12a－i in good yields．

Ethyl 4－hydroxy－4－（p－tolyl）but－2－ynoate（12a）．${ }^{26}$ Yield $=409.2$ $\mathrm{mg}, 75 \%$ ，pale yellow oil； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ ：$v_{\max }=3397,2983,2235$ ， $1713,1612,1513,1466,1368,1279,1192,1114,1073,1017$, $858,817,753,656,564 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.39$ （d，J＝8．1 Hz，2H）， $7.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=153.4,138.8,135.7,129.4,126.6$ ， 86．4，77．7，64．0，62．2，21．1， 13.9 ppm ；HRMS（ESI－TOF） m / z ：［M $+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na} 241.0835$ ；Found 241.0835.
Ethyl 4－hydroxy－4－phenylbut－2－ynoate（12b）．${ }^{27}$ Yield $=377.8$ $\mathrm{mg}, 74 \%$ ，pale yellow oil；IR $\left(\mathrm{CHCl}_{3}\right): v_{\text {max }}=3440,2983,2238$ ， $1713,1495,1456,1369,1304,1246,1191,1069,1019,918$, $862,818,753,700,665,609 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：δ $=7.52(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 3 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H})$ ， $4.24(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{br} s, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$ ppm；${ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=153.3,138.5,128.9$ ， 128．8，126．7，86．1，77．9，64．3，62．3， 13.9 ppm；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Na}$ 227．0679；Found 227．0678． Ethyl 4－（4－tert－butylphenyl）－4－hydroxybut－2－ynoate（12c）．${ }^{28}$ Yield $=501.1 \mathrm{mg}, 77 \%$ ，pale yellow oil； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=3440$ ， 2964，2870，2235，1714，1605，1511，1465，1410，1366，1204， 1184，1110，1073，1017，839，800，752， $587 \mathrm{~cm}^{-1}$ ；$^{1} \mathrm{H}$ NMR（400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.47-7.39(\mathrm{~m}, 4 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{q}, \mathrm{J}=7.2$ $\mathrm{Hz}, 2 \mathrm{H}$ ）， $1.34-1.28(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ 100 MHz ， CDCl_{3} ）：$\delta=153.4,152.0,135.7,126.4,125.8,86.3,77.7,64.0$ ， 62．2，34．6，31．2， 13.9 ppm ；HRMS（ESI－TOF） m / z ：［ $\mathrm{M}+\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~K}$ 295．1954；Found 295．1954．
Ethyl 4－（［1，1＇－biphenyl］－4－yl）－4－hydroxybut－2－ynoate（12d）． Yield $=567.6 \mathrm{mg}, 81 \%$ ，pale yellow oil； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\text {max }}=3411$ ， 2982，2234，1712，1600，1488，1407，1367，1250，1185，1116， 1075，1018，857，766，752，698，660， $611 \mathrm{~cm}^{-1}$＇$^{1} \mathrm{H}$ NMR（400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{br} \mathrm{s}$ ， $1 \mathrm{H}), 1.32(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）： $\delta=153.3,141.7,140.3,137.5,128.8,127.5,127.47,127.1$ ， 127．06，86．2，77．9，63．9，62．3， 13.9 ppm ；HRMS（ESI－TOF）m／z： ［M＋Na］${ }^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na} 303.0992$ ；Found 303.0999 ．
Ethyl 4－（4－chlorophenyl）－4－hydroxybut－2－ynoate（12e）．Yield＝ $465.4 \mathrm{mg}, 78 \%$ ，pale yellow oil；IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3453,2983$ ， 2867，2236，1689，1589，1490，1401，1369，1343，1253，1195， 1170，1092，1014，962，836，800，753，725，627，556， $528 \mathrm{~cm}^{-1}$ ； ${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.44(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=153.2,137.0$ ， 134．7，128．9，128．0，85．6，78．0，63．5，62．4，13．9 ppm；HRMS（ESI－ TOF）$m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{NaCl}$ 261．0289；Found 261．0284．
Ethyl 4－（2－fluorophenyl）－4－hydroxybut－2－ynoate（12f）．Yield＝ $377.8 \mathrm{mg}, 68 \%$ ，pale green oil；IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3419,2983$ ， 2925，2239，1711，1599，1511，1464，1446，1391，1368，1164， 1080，1016，981，861，803，780，752，611， $508 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}$ NMR（ 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.61(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$ ， $7.19(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 4.25$ （q，J＝7．2 Hz，2H）， $1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=161.2,158.8,153.2,130.8$（d，$J=8 \mathrm{~Hz}$ ），128．4， 124．6， 115.8 （d，$J=20 \mathrm{~Hz}$ ），84．9，77．7，62．3，58．8， 13.9 ppm ； ${ }^{19} \mathrm{~F}\{\mathrm{H}\}$ NMR（ $471 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=-118.67 \mathrm{ppm}$ ．HRMS （ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FO}_{3} \mathrm{Na} 245.0584$ ； Found 245．0583．
Ethyl 4－hydroxy－4－（o－tolyl）but－2－ynoate（12g）．Yield $=371.0 \mathrm{mg}$ ， 68% ，pale yellow oil； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ ：$v_{\text {max }}=3393,2983,2358,2233,1710$ ， 1605，1490，1463，1367，1252，1176，1114，1095，1072，1015，945， 858， $823,787,751,725,656,612,581 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}$ NMR（ 500 MHz ， $\left.\mathrm{CDCl}_{3}\right): \delta=7.59-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 1 \mathrm{H})$ ， $5.67(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 2.41(\mathrm{~s}, 3 \mathrm{H})$ ， $1.30(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=153.4$ ， 136．4，135．8，130．8，128．8，126．6，126．3，86．2，77．6，62．2，61．9，18．8， 13.9 ppm ；HRMS（ESI－TOF）m／z：$[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}$ 241．0835；Found 241．0835．
Ethyl 4－hydroxy－4－（m－tolyl）but－2－ynoate（12h）．Yield $=431.0 \mathrm{mg}$ ， 79% ，pale yellow oil；IR（ CHCl_{3} ）：$v_{\max }=3393,2938,2236,1712,1608$ ， 1490，1445，1367，1250，1206，1153，1096，1073，1019，907，860，794， $767,752,702,665,615 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.31-$ $7.26(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=7.0 \mathrm{~Hz}$ ， $2 \mathrm{H}), 2.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$ ； ${ }^{13} \mathrm{C}\{\mathrm{H}\}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=153.4,138.6,138.5,129.6,128.7$ ， 127．3，123．7，86．2，77．8，64．2，62．2，21．3， 13.9 ppm；HRMS（ESI－TOF） m / z ：$[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na} 241.0835$ ；Found 241．0829．

 1466，1367，1248，1068，1016，964，910，860，751，726， $635 \mathrm{~cm}^{-}$ ${ }^{1}$ ；${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.46(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}$ ， $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{brs}, 1 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.41(\mathrm{~m}$, $2 \mathrm{H}), 1.30-1.26(\mathrm{~m}, 9 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=153.6,88.2,76.362 .1,61.9,36.8,31.5$ ， 28．7，24．8，22．5，13．9， 13.87 ppm ；HRMS（ESI－TOF） m / z ：［M＋ $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na} 235.1305$ ；Found 235.1300 ．
Ethyl hept－2－ynoate（12j）．${ }^{29}$ To a stirred solution of 1－hexyne （ $205 \mathrm{mg}, 2.5 \mathrm{mmol}$ ）in anhydrous THF（ 8 mL ）was added n－BuLi $\left(1.7 \mathrm{~mL}, 2.73 \mathrm{mmol}, 1.1\right.$ equiv， 1.6 M in THF）at $-78^{\circ} \mathrm{C}$ and the mixture allowed to stir for 30 min ．To this mixture was added ethyl chloroformate（ $2.75 \mathrm{mmol}, 1.1$ equiv）in anhydrous THF（ 2 mL ）dropwise at same temperature and the mixture was allowed to stir for 1 h ．The reaction mixture was then warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for additional 1 h and then quenched with saturated aq．solution of $\mathrm{NH}_{4} \mathrm{Cl}$ ．The solution was extracted with EtOAc（ $2 \times 15 \mathrm{~mL}$ ）and the combined organic layers were thoroughly washed with water，brine，dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated．The residue was purified by silica gel column chromatography using petroleum ether／EtOAc（4：1）as eluent to give 12j．Yield $=285.3 \mathrm{mg}, \mathbf{7 4 \%}$ ，pale yellow oil；IR $\left(\mathrm{CHCl}_{3}\right)$ ： $v_{\text {max }}=2923,2854,2359,2339,1677,1599,1451,1321,1287$ ， 1271，1209，1178，1130，1031，998，928，883，864，767，719，688， $667,648,539,462 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=4.19$（ q ， $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H})$ ， $1.28(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ （ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=153.8,89.4,73.1,61.7,29.5,21.9,18.3$ ， 14．0， 13.4 ppm ．
General Procedure for Synthesis of Butenolide 4－Sulfonates （13－16）．To a solution of $\mathbf{1 2}$（ $0.5 \mathrm{mmol}, 1.0$ equiv）in DCE（ 5 mL ） was added sulfonic acid（ $0.75 \mathrm{mmol}, 1.5$ equiv）and the mixture stirred at $80^{\circ} \mathrm{C}$ for 4 h ．After completion of the reaction which was monitored by TLC，the reaction mixture was cooled and concentrated under vacuum．The residue was purified by silica gel column chromatography using petroleum ether／EtOAc （19：1－4：1）as eluent to afford the 4－sulfonyl butenolides 13－16 in $69-84 \%$ yields．

5－Oxo－2－（p－tolyl）－2，5－dihydrofuran－3－yl－4－
methylbenzenesulfonate（13a）．Yield $=142.9 \mathrm{mg}, 83 \%$ ，pale yellow semi－solid；IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=2925,1785,1653,1388$ ， 1294，1192，1178，1109，1089，850，819，771，674， $553 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.88(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ （d，J＝ $8.1 \mathrm{~Hz}, 2 \mathrm{H}$ ）， $5.90(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}$ ， 3H）ppm；${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=165.6,146.6,139.9$ ， 137．0，135．0，131．5，130．3，130．1，129．7，128．6，126．8，79．9， 21．8， 21.2 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:$［ $\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{SNa} 367.0611$ ；Found 367.0613 ．
5－Oxo－2－phenyl－2，5－dihydrofuran－3－yl－4－
methylbenzenesulfonate（13b）．Yield $=138.7 \mathrm{mg}, 84 \%$ ，yellow
semi－solid；IR $\left(\mathrm{CHCl}_{3}\right): V_{\text {max }}=2927,2852,2235,1713,1494$ ， 1452，1368，1248，1190，1068，1019，918，861，818，753，699， $661,608 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.87(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$ ， 2H），7．41－7．36（m，5H）， 7.24 （d，J＝ $1.9 \mathrm{~Hz}, 1 \mathrm{H}$ ），7．19－7．16（m， 2H）， 5.94 （d，J＝ $1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ）， $2.47(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ 125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.5,146.6,137.0,134.9,133.4,131.5,130.1$ ， $129.8,129.1,128.6,126.8,79.9,21.8 \mathrm{ppm}$ ；HRMS（ESI－TOF） m / z ： ［ $\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{SNa} 353.0454$ ；Found 353．0452．
2－（4－tert－Butylphenyl）－5－oxo－2，5－dihydrofuran－3－yl－4－
methylbenzenesulfonate（13c）．Yield $=156.5 \mathrm{mg}, 81 \%$ ，pale yellow semisolid； $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right)$ ：$v_{\max }=2965,1787,1649,1597$, 1463，1388，1292，1192，1178，1104，1089，1040，952，887，837， $783,752,670,596,550 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88$ （d，$J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H})$ ， $7.12(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.32$ （s，9H）ppm；${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=165.6,153.2$ ， 146．5，137．0，135．1，131．6，130．4，130．1，128．6，126．7，126．1， 79．8，34．7，31．2， 21.8 ppm；HRMS（ESI－TOF）$m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{SNa} 409.1080$ ；Found 409.1083 ．
2－（［1，1＇－Biphenyl］－4－yl）－5－oxo－2，5－dihydrofuran－3－yl－4－
methylbenzenesulfonate（13d）．Yield $=164.6 \mathrm{mg}, 81 \%$ ，pale yellow semisolid；IR（ CHCl_{3} ）：$v_{\text {max }}=2929,2854,1786,1646$, 1486，1449，1388，1339，1259，1177，1088，1037，919，848，816， $753,698,549 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.90(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.63-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$ ； ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.5,146.6,134.9,134.8$ ， 132．3，131．5，130．1，129．8，129．1，128．9，128．6，127．8，127．3， 127．1，126．8，79．9，21．8，ppm；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{SNa} 429.0767$ ；Found 429.0768.

5－Oxo－2－（o－tolyl）－2，5－dihydrofuran－3－yl－4－

methylbenzenesulfonate（13g）．Yield $=134.3 \mathrm{mg}, 78 \%$ ，Pale yellow semi－solid；IR（ CHCl_{3} ）：$v_{\text {max }}=3106,2931,1784,1709$ ， 1650，1596，1463，1386，1289，1249，1202，1177，1104，1088， 1044，940，885，851，818，787，736，669，595， $548 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.87(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}$ ， $2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d} J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}$ ， $1 \mathrm{H}), 6.94$（d，J＝ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$（d，J＝ $1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 2.47 （s，3H）， 2.42 （s，3H）ppm；${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=165.6$ ， 146．6，137．1，136．6，134．8，131．7，131．4，131．1， 130.1 129．6， 128．5，126．5，126．2，77．3，21．8， 18.9 ppm ；HRMS（ESI－TOF） m / z ： ［ $\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{SNa}$ 367．0611；Found 367．0607．
5－Oxo－2－（m－tolyl）－2，5－dihydrofuran－3－yl－4－
methylbenzenesulfonate（ 13 h ）．Yield $=141.2 \mathrm{mg}, 82 \%$ ，pale yellow semi－solid； $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=2920,2861,1786,1649$ ， 1596，1492，1454，1387，1290，1206，1179，1104，1088，1041， $958,912,873,829,795,734,702,669,595,595,548 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.87(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.98-6.96(\mathrm{~m}, 2 \mathrm{H}), 5.90(\mathrm{~d}, \mathrm{~J}=2.0$ $\mathrm{Hz}, 1 \mathrm{H}$ ）， $2.47(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ 100 MHz ， CDCl_{3} ）：$\delta=165.5,146.6,139.0,136.9,135.0,133.3,131.4$ ， 130．5，130．1，129．0，128．6，127．3，123．9，79．9，21．8， 21.3 ppm； HRMS（ESI－TOF） m / z ：［ $\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{SNa} 367.0611$ ； Found 367．0616．
2－（4－tert－Butylphenyl）－5－oxo－2，5－dihydrofuran－3－yl－
methanesulfonate（14）．Yield $=122.6 \mathrm{mg}, 79 \%$ ，pale yellow semisolid； $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v_{\text {max }}=2965,1783,1650,1415,1380,1334$ ，

1291，1271，1203，1178，1103，1040，972，857，839w 816e 万57
 $7.29-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$ ； ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=166.2,153.3,137.1,137.0$ ， 130．0，126．8，126．2，80．2，39．8，34．8， 31.2 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{SNa}$ 333．0767；Found 333．0769．

5－Oxo－2－（p－tolyl）－2，5－dihydrofuran－3－yl－benzenesulfonate

（15a）．Yield $=122.2 \mathrm{mg}, 74 \%$ ，pale yellow semisolid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ ： $V_{\text {max }}=3098,2922,1785,1649,1516,1450,1389,1299,1209$ ， $1188,1105,1089,1040,949,887,854,817,786,749,686,607$, $577,510 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=8.10(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.74(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 7.18 （d，$J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) 7.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.92$ （d，$J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(125 \mathrm{MHz}$ ， CDCl_{3} ）：$\delta=165.5,140.0,136.9,135.2,135.1,134.6,130.2$, $129.8,129.5,128.5,126.8,79.9,21.2 \mathrm{ppm}$ ；HRMS（ESI－TOF） m / z ： ［ $\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{SNa} 353.054$ ；Found 353．054．
5－Oxo－2－phenyl－2，5－dihydrofuran－3－yl benzenesulfonate （15b）．Yield $=113.8 \mathrm{mg}, 72 \%$ ，pale yellow semi－solid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ ： $V_{\text {max }}=3108,2925,1784,1649,1586,1449,1388,1290,1212$ ， $1188,1103,1090,1041,998,953,883,846,814,785,749,699$ ， $683,646,626,602,575,505 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：δ $=8.0(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.55(\mathrm{~m}$ ， 2H），7．45－7．33（m，3H）， $7.25(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{~s}$ ， 1H）ppm；${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=165.4,136.8,135.2$ ， 134．4，133．3，129．8，129．5，129．1，128．5，126．7， 79.8 ppm；HRMS （ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{SNa} 339.0298$ ；Found 339.0296.

2－（4－tert－Butylphenyl）－5－oxo－2，5－dihydrofuran－3－yl

benzenesulfonate（15c）．Yield $=132.2 \mathrm{mg}, 69 \%$ ，pale yellow semisolid；IR（CHC13）：$v_{\text {max }}=2965,1786,1649,1450,1390,1292$ ， 1190，1157，1105，1089，1040，954，838，815，784，752，686， 590 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=8.02(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.95$ （d，$J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$ ， $7.41(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 1.32$ （s，9H）ppm；${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=165.5,153.2$ ， 136．9，135．1，133．2，129．5，129．2，128．5，127．6，126．6，126．1， 79．8，34．7， 31.2 ppm；HRMS（ESI－TOF）$m / z:$［M＋Na］${ }^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{SNa} 395.0924$ ；Found 395.0923.

2－（Biphenyl－4－yl）－5－oxo－2，5－dihydrofuran－3－yl

benzenesulfonate（15d）．Yield $=133.4 \mathrm{mg}, 68 \%$ ，pale yellow semi－solid；IR $\left(\mathrm{CHCl}_{3}\right)$ ：$v_{\text {max }}=2927,1785,1648,1488,1450$ ， 1388，1337，1289，1211，1177，1105，1089，1041，1001，950， $918,884,847,816,751,717,698,685,624,602,574,504 \mathrm{~cm}^{-1}$ ； ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.06-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.70(\mathrm{~m}$ ， $1 \mathrm{H}), 7.65-7.53(\mathrm{~m}, 5 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 2 \mathrm{H})$ ， 7.29 （d，J＝ $1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ）， $7.24(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.0(\mathrm{~s}$ ， 1H）ppm；${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=165.4,142.7,139.9$ ， 136．9，135．2，134．5，132．1，129．5，129．1，128．9，128．5，127．8， 127．2，127．1，126．7， 79.7 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{SNa} 415.0611$ ；Found 415.0605 ．

5－Oxo－2－（o－tolyl）－2，5－dihydrofuran－3－yl－benzenesulfonate

$(15 \mathrm{~g})$ ．Yield $=110.7 \mathrm{mg}, 67 \%$ ，pale yellow semi－solid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ ： $V_{\text {max }}=3095,2931,1784,1650,1493,1450,1388,1288,1204$ ， 1187，1104，1089，1044，940，886，851，821，789，744，718，685， $659,625,603,574 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=8.0(\mathrm{~d}, \mathrm{~J}$

ARTICLE
$=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=8.0,2 \mathrm{H}), 7.33-$ $7.16(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ （s，3H）ppm；${ }^{13}$ C\｛ $\left.{ }^{1} \mathrm{H}\right\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=165.5,137.1$ ， 136．6，135．2，135．0，134．6，131．6，131．1，129．7，129．5，128．5， 126．6，126．2， 18.9 ppm ；HRMS（ESI－TOF）m／z：［M＋Na］＋Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{SNa} 353.0454$ ；Found 353.0457 ．

5－Oxo－2－（m－tolyl）－2，5－dihydrofuran－3－yl－benzenesulfonate

（15h）．Yield $=115.6 \mathrm{mg}, 70 \%$ ，pale yellow semi－solid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ ： $v_{\max }=3095,2919,1786,1649,1608,1450,1388,1290,1208$ ， $1187,1105,1089,1042,1000,958,912,874,830,796,740,717$ ， $685,653,604,573 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=8.0(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-$ $7.19(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ （s，3H）ppm；${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=165.5,139.0$ ， 136．8，135．2，135．1，134．5，133．2，130．5，129．5，129．0，128．5， 127．2，123．8，79．9， 21.3 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{K}]^{+}$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{SK}$ 369．0194；Found 369.0194 ．

2－（4－tert－Butylphenyl）－5－oxo－2，5－dihydrofuran－3－yl

4－
ethylbenzenesulfonate（16c）．Yield $=150.2 \mathrm{mg}, 75 \%$ ，White semi－solid；IR $\left(\mathrm{CHCl}_{3}\right)$ ：$v_{\text {max }}=3142,2962,1774,1652,1593$, 1391，1283，1212，1180，1124，1112，1090，1046，968，912，868， 836，790，753，658，593，558， $533 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}$ NMR（ 400 MHz ， $\left.\mathrm{CDCl}_{3}\right): \delta=7.92(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~s}$ ， $1 \mathrm{H}), 7.11(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$ ， 1．36－1．23（m，12H）ppm；${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=$ 165．6，153．2，152．6，137．0，134．8，131．7，130．4，129．0，128．7， 126．7，126．1，79．8，34．7，31．2，29．0， 14.9 ppm；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{SNa} 423.1237$ ；Found 423.1232

5－Oxo－2－（o－tolyl）－2，5－dihydrofuran－3－yl

4－
ethylbenzenesulfonate（ $\mathbf{1 6 g}$ ）．Yield $=139.8 \mathrm{mg}, 78 \%$ ，white semi－solid；IR $\left(\mathrm{CHCl}_{3}\right): V_{\text {max }}=2970,2932,1789,1709,1649$ ， 1596，1492，1463，1386，1289，1250，1178，1105，1090，1044， $940,886,852,820,793,736,665,597,550 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$ ， $7.31-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}$ ， $1 \mathrm{H}), 2.76(\mathrm{q}, J=7.5,2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$ ； ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=165.6,152.6,137.1,136.6$ ， 134．5，131．7，131．5，131．0，129．6，128．9，128．6，126．5，126．2， 77．3，28．9，18．9， 14.9 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{SNa} 381.0767$ ；Found 381．0771．
5－Oxo－2－（m－tolyl）－2，5－dihydrofuran－3－yl
4－
ethylbenzenesulfonate（16h）．Yield $=143.4 \mathrm{mg}, 80 \%$ ，white semi－solid；IR $\left(\mathrm{CHCl}_{3}\right): V_{\max }=2969,2931,1786,1649,1596$ ， 1490，1457，1386，1289，1209，1178，1105，1089，1042，959， $912,870,830,794,701,662,597,569 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}$ NMR（ 400 MHz ， $\left.\mathrm{CDCl}_{3}\right): \delta=7.89(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-$ 7.19 （m，3H），6．98－6．96（m，1H）， 6.19 （d，J＝ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$（q， $J=7.6,2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ （ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=165.6,152.6,139.0,136.9,134.8,133.3$ ， 131．6，130．5，129．0，128．7，127．3，123．9，79．9，29．0，21．3， 14.9 ppm；；HRMS（ESI－TOF） m / z ：［ $\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{SNa}$ 381．0767；Found 381．0767．
Sonogashira Coupling Reaction for the Synthesis of 6－Methyl－ 4－（Phenylethynyl）－2H－Chromen－2－one（18a）．To a solution of 4－ sulfonyl coumarins（ 0.25 mmol ）， $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(17.6 \mathrm{mg}, 10 \mathrm{~mol}$ $\%$ ），Cul（ $4.8 \mathrm{mg}, 10 \mathrm{~mol} \%$ ）， N, N－（di－iso－propylethyl）amine（ 0.13
mL ， 1.5 equiv）in $\mathrm{MeCN}(3 \mathrm{~mL}$ ）was added phenylacetylene（38．3
 h at $60^{\circ} \mathrm{C}$ ．After completion of the reaction which was monitored by TLC，the reaction mixture was cooled，diluted with EtOAc（ 10 mL ），and was then filtered through a short pad of Celite．The filtrate was concentrated under vacuum and the residue were purified by silica gel column chromatography using petroleum ether／EtOAc（19：1）as an eluent to afford 18a （ $51.4 \mathrm{mg}, 79 \%$ yield from 5a； $47.5 \mathrm{mg}, 73 \%$ from 7a； 40.3 mg ， 62% from 8a； $41.0 \mathrm{mg}, 63 \%$ from 9a； $28.0 \mathrm{mg}, 43 \%$ from 10a， and 11a did not gave any product），brown semi solid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ ： $V_{\max }=2210,1721,1603,1560,1486,1368,1251,1185,933$ ， $812,756,686,536 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.71(\mathrm{~s}$ ， $1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}$ ）， 7.24 （d，J＝ $8.4 \mathrm{~Hz}, 1 \mathrm{H}$ ）， $6.61(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$ ； ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=160.5,151.7,137.2,134.2$ ， 133．3，132．2，130．1，128．7，126．4，121．2，118．4，118．0，116．8， 101．9，82．9， 20.9 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{Na} 283.0730$ ；Found 283.0729 ．

Compounds 18b－g were prepared according to above procedure used for 18a．
6－Methyl－4－（m－tolylethynyl）－2H－chromen－2－one（18b）．Yield＝ $50.7 \mathrm{mg}, 74 \%$ ；white solid，M．p． $76{ }^{\circ} \mathrm{C}$ ； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=2969$ ， 2208，1725，1629，1595，1579，1564，1491，1386，1366，1274， $1254,1200,1185,1170,1061,933,833,757,661 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.71(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.21$ $(\mathrm{m}, 4 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR （ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=160.5,151.7,138.5,137.3,134.2,133.3$ ， 132．7，131．1，129．3，128．6，126．4，121．0，118．3，118．1，116．8， 102．2，82．6，21．2， 21.0 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~K} 313.0625$ ；Found 313．0622．
4－（4－tert－Butylphenylethynyl）－6－methyl－2H－chromen－2－one
（18c）．Yield $=56.2 \mathrm{mg}, 71 \%$ ，white semi solid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=$ 2963，2867，2210，1726，1617，1598，1561，1507，1421，1365， 1270，1251，1182，1108，1039，933，859，835，819， $563 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.71(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$ ， 7.46 （d，$J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=1.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=160.5,153.8,151.7,137.4,134.1$ ， 133．2，132．0，126．4，125．7，118．2，118．1，118．06，116．7，102．4， 82．5，35．0，31．1， 20.9 ppm ；HRMS（ESI－TOF） m / z ：［M＋H］${ }^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{2}$ 317．1536；Found 317．1539．
4－（Phenylethynyl）－2H－chromen－2－one（18d）．${ }^{18 b}$ Yield $=44.9 \mathrm{mg}$ ， 73% ，colorless oil；IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=2205,1720,1607,1556$ ， 1487，1449，1372，1270，1249，1187，934，856，768，756，685， $542 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.97(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$ ， $7.67-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.57$（td，$J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.41(\mathrm{~m}$ ， $3 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.2,153.5,137.2,132.3,132.2,130.2,128.7$ ， 126．6，124．4，121．1，118．3，117．0，102．1， 82.7 ppm；HRMS（ESI－

TOF）$m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Na}$ 269．0573；Found 269.0576.

4－（4－tert－Butylphenylethynyl）－2H－chromen－2－one（18e）．Yield $=55.9 \mathrm{mg}, 74 \%$ ；brown semi solid；IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=2964,2207$ ， 1724，1604，1557，1449，1373，1323，1270，1249，1181，931， $861,836,768,563 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.96$（dd， $J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H})$ ， 7．39－7．11（m，2H）， $6.62(\mathrm{~s}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.3,153.9,153.6,137.5,132.2,132.0$ ， 126．7，125．7，124．4，118．5，118．1，117．0，102．7，82．4，35．0， 31.1 ppm HRMS（ESI－TOF）m／z：［M＋Na］${ }^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}$ 325．1199；Found 325.1196.
6－（tert－Butyl）－4－（m－tolylethynyl）－2H－chromen－2－one（18f）． Yield $=54.6 \mathrm{mg}, 69 \%$ ，white semi solid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\text {max }}=2957$ ， 2867，2204，1711，1608，1559，1486，1423，1370，1264，1203， 1178，1139，1048，937，852，828，777， $685 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.95(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}$ ， $1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}$ ， 2H）， 6.59 （s，1H）， $2.40(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ 100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=160.6,151.5,147.5,138.5,137.6,132.7,131.1$ ， 129．9，129．3，128．6，122．7，121．0，117．8，117．6，116．5，102．5， 82．7，34．6，31．3， 21.2 ppm；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:\left[\mathrm{M} \mathrm{+} \mathrm{Na]}{ }^{+}\right.$Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na} 339.1356$ ；Found 339.1353 ．
6－（tert－Butyl）－4－（4－tert－butylphenylethynyl）－2H－chromen－2－
one（18g）．Yield $=68.1 \mathrm{mg}, 76 \%$ ，white semi solid； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ ： $v_{\max }=2957,2908,2871,2205,1720,1598,1561,1464,1369$ ， 1319，1268，1256，1183，1103，1038，941，855，839，826，753， $670,568,557 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.96(\mathrm{~d}, \mathrm{~J}=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}$ ， 1H）， $6.60(\mathrm{~s}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ 100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=160.7,153.9,151.6,147.5,137.7,132.0,129.9$ ， 125．8，122．8，118．2，117．7，117．65，116．6，102．7，82．6，35．0， 34．6，31．3， 31.1 ppm ；HRMS（ESI－TOF） m / z ：［M＋Na］${ }^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Na} 381.1825$ ；Found 381．1817．
Suzuki Coupling Reaction for the Synthesis of 4－Aryl－2H－ Chromen－2－ones（20a－d）．To a solution of 4－tosylcoumarins（ 0.5 $\mathrm{mmol}, 1.0$ equiv）， $\mathrm{Pd}(\mathrm{OAc})_{2}(5.6 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(26.2 \mathrm{mg}, 20$ $\mathrm{mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}$（ $318.2 \mathrm{mg}, 3.0$ equiv）in $t-\mathrm{BuOH}(3 \mathrm{~mL}$ ）was added boronic acid（ $1.0 \mathrm{mmol}, 2.0$ equiv）．The reaction mixture was stirred for 12 h at $75^{\circ} \mathrm{C}$ ．After completion of the reaction which was monitored by TLC，the reaction mixture was cooled，diluted with EtOAc（ 10 mL ），and was then filtered through a short pad of Celite．The filtrate was then concentrated under vacuum and the residue was purified by silica gel column chromatography using petroleum ether／EtOAc（19：1）as an eluent to give 20a－d in good yields．

6－Methyl－4－phenyl－2H－chromen－2－one（20a）．${ }^{30}$ Yield $=86.2$ $\mathrm{mg}, 73 \%$ ，white solid，M．p．131－134 ${ }^{\circ} \mathrm{C}$ ，lit．${ }^{30}$ M．p．134．7－135．1 ${ }^{\circ} \mathrm{C}$ ；IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=2924,1725,1618,1565,1446,1417,1364$ ， 1312，1277，1258，1219，1181，1122，1030，940，871，819，774， $701,667,587 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.56-7.50(\mathrm{~m}$ ，

 NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=161.0,155.6,152.3,135.3,133.8$ ， 133．9，129．6，128．8，128．4，126．7，118．6，117．0，115．1， 20.9 ppm； HRMS（ESI－TOF）m／z：［M＋H］${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2}$ 237．0910； Found 237.0903.
6－Methyl－4－（ \boldsymbol{m}－tolyl）－2H－chromen－2－one（20b）．Yield $=95.1 \mathrm{mg}$ ， 76% ，colorless oil；IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=2923,2859,1731,1618$ ， 1566，1485，1420，1363，1314，1277，1255，1194，1176，1121， 1042，939，868，819，794，778，756，719，700，655，593， $542 \mathrm{~cm}^{-}$ ${ }^{1}$ ；${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}$ ， $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.33$ $(\mathrm{s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125 \mathrm{MHz}$ ， $\left.\mathrm{CDCl}_{3}\right): \delta=161.0,155.8,152.3,138.7,135.3,133.8,132.8$ ， 130．3，128．9，128．6，126．7，125．5，118．7，117．0，115．0，21．5， 20.9 ppm；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}$ 273．0886；Found 273．0880．
6－（tert－Butyl）－4－phenyl－2H－chromen－2－one（20c）．${ }^{30}$ Yield＝ $100.2 \mathrm{mg}, 72 \%$ ，white solid，M．p． $105-106{ }^{\circ} \mathrm{C}$ ，lit．${ }^{30}$ M．p． $108.3-109{ }^{\circ} \mathrm{C}$ ； $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\text {max }}=2963,2867,1732,1615,1567$ ， 1487，1464，1369，1313，1263，1200，1178，1128，939，867，828， $790,676,580 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.60(\mathrm{dd}, \mathrm{J}=$ 8．6， $2.3 \mathrm{~Hz}, 1 \mathrm{H}$ ），7．57－7．52（m，3H），7．50－7．45（m，3H）， 7.35 （dd， $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=161.1,155.9,152.2,147.2,135.3,129.7,129.5$ ， 128．8，128．4，123．1，118．2，116．8，115．0，34．6， 31.2 ppm；HRMS （ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{2}$ 279．1380；Found 279.1377.

6－（tert－Butyl）－4－（m－tolyl）－2H－chromen－2－one（20d）．Yield＝ $109.6 \mathrm{mg}, 75 \%$ ，colorless oil；IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3064,2963,2911$ ， 2874，1727，1615，1567，1489，1447，1418，1370，1313，1263， 1185，1129，1029，940，869，827，773，754，731，703，641， 573 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.59(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H})$ ， $7.50(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.5 \mathrm{~Hz}$ ， $2 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=161.1,156.0,152.1$ ， 147．1，138．6，135．2，130．4，129．4，129．1，128．6，125．5，123．2， 118．2，116．7，114．7，34．5，31．2， 21.4 ppm；HRMS（ESI－TOF）m／z： ［ $\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{2}$ 293．1536；Found 293．1540．
6－Methyl－4－phenylchroman－2－one（21）．${ }^{31}$ To a solution of 20 $(70 \mathrm{mg}, 0.3 \mathrm{mmol})$ in EtOAc（ 6 mL ）was added Pd／C（ $35 \mathrm{mg}, 10 \%$ w / w ）and the mixture stirred under 4 atm of H_{2} for 24 h ．After completion of reaction it was then filtered through Celite pad and the pad washed with EtOAc（ 10 mL ）．The filtrate was concentrated and the residue was purified by silica gel column chromatography using petroleum ether／EtOAc（19：1）as eluent to give $\mathbf{2 1}\left(67.9 \mathrm{mg}, 95 \%\right.$ ）as white solid，M．p．$=84-86^{\circ} \mathrm{C}$ ，lit．${ }^{28}$ M．p． $81-84^{\circ} \mathrm{C} ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\text {max }}=2924,2851,1770,1610,1587$ ， $1514,1487,1455,1344,1280,1222,1177,1138,968,920,880$ ， $823,756,730 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.38-7.28(\mathrm{~m}$ ， $3 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-2.96(\mathrm{~m}$ ， $2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.8$ ， 149．7，140．5，134．3，129．3，129．1，128．6，127．6，127．5，125．3， 116．9，40．7，37．1， 20.7 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}$ 261．0886；Found 261．0886．

2－［（3－Diisopropylamino）－1－phenylpropyl］－4－methyl phenol， tolterodine（22）．${ }^{16 \mathrm{~d}}$ To a solution of 6 －methyl－4－phenyl chroman－2－one 21 （ $60 \mathrm{mg}, 0.25 \mathrm{mmol}$ ）in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$（4 mL ）was added DIBAL－H（ $0.18 \mathrm{~mL}, 1.75 \mathrm{M}$ in toluene， 0.6 mmol ） dropwise under N_{2} at $-20^{\circ} \mathrm{C}$ ．After stirring for 6 h ，the reaction was quenched with EtOAc（ 1 mL ）and an aqueous solution of Rochelle salt was added．The mixture was stirred at room temperature for 1 h ．The aqueous phase was extracted with EtOAc（ $2 \times 15 \mathrm{~mL}$ ）and the combined organic layers were dried （ $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ）and concentrated．To a solution of the residue in EtOH （ 2 mL ），placed in a glass cylinder in a stainless－steel autoclave， were added $\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$ and $i \mathrm{Pr}_{2} \mathrm{NH}(30.4 \mathrm{mg}, 0.6 \mathrm{mmol})$ ，and the autoclave was pressurized with $\mathrm{H}_{2}(20 \mathrm{~atm})$ ．The reaction mixture was stirred for 12 h at $60^{\circ} \mathrm{C}$ and then the autoclave was cooled to room temperature and depressurized．The mixture was filtered through Celite pad and the pad washed with EtOAc $(2 \times 5 \mathrm{~mL})$ ．The filtrate was concentrated and the residue was purified by silica gel column chromatography using petroleum ether／EtOAc（5：1）as eluent to give tolterodine $22(65.9 \mathrm{~g}, 81 \%)$ as pale yellow oil．IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3294,3027,2967,2942$ ， 2877，1601，1508，1494，1454，1388，1361，1253，1164，1114， $817,734,700 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.32-7.29(\mathrm{~m}$ ， 4H），7．23－7．20（m，1H），6．89－6．81（m，2H）， $6.54(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{dd}$ ， $J=10.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-2.72(\mathrm{~m}, 1 \mathrm{H})$ ， $2.44-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.11(\mathrm{~m}, 4 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 6 \mathrm{H})$ ， $1.09(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=153.1$ ， 144．6，132．2，129．2，128．6，127．7，126．1，118．0，48．2，42．2，39．4， 33．1，20．7，19．8， 19.4 ppm；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}$ 326．2478；Found 326．2482．
Ethyl 3－（4－chlorophenyl）propiolate（23a）．The title compound was prepared following literature procedure．${ }^{32}$ Pale yellow oil； IR（ CHCl_{3} ）：$v_{\text {max }}=2796,2678,2067,1873,1702,1588,1545$ ， 1487，1432，1358，1262，1213，1167，1094，1069，1043，1007， 821，756，697，643，606， $503 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=7.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}$ ）， $1.33(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ 125 MHz ， CDCl_{3} ）：$\delta=153.8,136.9,134.1,129.0,118.0,84.6,81.4,62.1$ ， 14.0 ppm ；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{NaCl}$ 231．0183；Found 231．0183．
Ethyl 3－［4－（tert－butyl）phenyl］propiolate（23b）．The title compound was prepared following literature procedure．${ }^{32}$ Pale yellow oil；IR $\left(\mathrm{CHCl}_{3}\right)$ ：$v_{\max }=2964,2869,2209,1709,1604,1506$ ， 1463，1395，1366，1291，1201，1179，1106，1024，948，859，837， $749,670,565 \mathrm{~cm}^{-1}$ ；${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=7.52(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 2 \mathrm{H}$ ）， 7.38 （ $\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$ ）， 4.29 （ $\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ）， 1.35 （t，J $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31$（brs， 9 H$) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ： $\delta=154.2,132.8,125.5,116.4,86.5,80.3,61.9,34.9,31.0,14.0$ ppm；HRMS（ESI－TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}$ 253．1199；Found 253．1194．
1－（4－Chlorophenyl）ethan－1－one（24a）．${ }^{33}$ The title compound was obtained from 23a（ $104.3 \mathrm{mg}, 0.5 \mathrm{mmol}$ ）under similar reaction conditions as described for 13 to give 24a．Yield $=60.3$ $\mathrm{mg}, 78 \%$ ，pale yellow oil；IR $\left(\mathrm{CHCl}_{3}\right): v_{\text {max }}=1735,1690,1590$, 1488，1424，1396，1357，1259，1198，1127，1095，1014，956， $907,829,763,710,624,592,524 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ 400 MHz ， CDCl_{3} ）：$\delta=7.88(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.58$
 135．4，129．7，128．9， 26.6 ppm．

DOI：10．1039／C9NJ06438A
1－［4－（tert－Butyl）phenyl］ethan－1－one（24b）．${ }^{33}$ The title compound was obtained from 23b（ $115.2 \mathrm{mg}, 0.5 \mathrm{mmol}$ ）under similar reaction conditions as described for 13 to give 24b．Yield $=76.6 \mathrm{mg}, 87 \%$ ，colorless oil； $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=2964,2868$ ， 1683，1606，1468，1406，1358，1296，1212，1192，1113，1014， 957，838，734，635，599， $562 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：δ $=7.79(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H})$ ， 1.33 （s，9H）ppm；${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）：$\delta=197.8$ ， 156．8，134．5，128．2，125．4，35．0，31．0， 26.5 ppm；HRMS（ESI－ TOF） $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}$ 177．1274；Found 177．1276．

Conflicts of interest

There are no conflicts to declare．

Acknowledgements

We thank SERB New Delhi，Grant No．EMR／2017／000499 for financial support．AJG and RAK thank IIT Bombay and the University Grants Commission of India（UGC），respectively for research fellowships．
\＃These authors contributed equally

References

1 D．Lafitte，V．Lamour，P．O．Tsvetkov，A．A．Makarov，M．Klich， P．Deprez，D．Moras，C．Briand，and R．Gilli，Biochemistry 2002， 41， 7217.
2 P．Curir，F．Galeotti，M．Dolci，E．Barile，and V．Lanzotti，J．Nat． Prod．2007，70， 1668.
3 T．Symeonidis，M．Chamilos，D．J．Hadjipavlou－Litina，M． Kallitsakis，and K．E．Litinas，Bioorg．Med．Chem．Lett．2009，19， 1139.

4 J．R．Hwu，R．Singha，S．C．Hong，Y．H．Chang，A．R．Das，I．E． Vliegen，D．Clercq，and J．Neyts，Antiviral Res．2008，77， 157.
5 M．J．Ortega，E．Zubía，J．M．Ocaña，S．Naranjo，and J．Salvá， Tetrahedron 2000，56， 3963.
6 V．K．Tandon，M．Vaish，S．Jain，D．S．Bhakuni，and R．C．Srimal， Indian J．Pharm．Sci．1991，53， 22.
7 D．Li and L．Wu，Experimental and Therapeutic Medicine 2017， 14， 874.
8 S．Kirkiacharian，D．Thuy，S．Sicsic，R．Bakhchinian，R．Kurkjian， and T．Tonnaire，II Farmaco 2002，57， 703.
9 M．Longobardi，A．Bargagna，E．Mariani，P．Schenone，and E． Marmo，Farmaco Soc．Chim．Italiana 1990，45， 399.
10 K．Skalicka－Wozniak，I．E．Orhan，G．A．Cordell，S．M．Nabavi， and B．Budzynska，Pharmacological Research 2016，103， 188.
11 H．－L．Jang，M．I．El－Gamal，H．－E．Choi，H．－Y．Choi，K．－T．Lee，and C．－H．Oh，Bioorg．Med．Chem．Lett．2014，24， 571.
12 （a）C．Wu，P．Yang，Z．Fu，Y．Peng，X．Wang，Z．Zhang，F．Liu，W． Li，Z．Li，and W．He，J．Org．Chem．2016，81，10664．（b）S．Raju， P．Annamalai，F．－W．Chan，P．－Y．Tseng，P．－Y．Chen，T．－S．Kuo，and S．－C．Chuang，Synthesis 2017， 5007.
13 B．Xu，Y．Gao，J．Han，Z．Xing，S．Zhao，Z．Zhang，R．Ren，and L． Wang，J．Org．Chem．2019，84， 10136.
14 （a）S．J．Pastine and D．Sames，Org．Lett．2005，7，5429．（b）K． McQuaid and D．Sames，J．Am．Chem．Soc．2009，131，402．（c） K．McQuaid，J．Z．Long，and D．Sames，Org．Lett．2009，11，
2972. (d) P. A. Vadola, I. Carrera, and D. Sames, J. Org. Chem. 2012, 77, 6689.
15 CCDC 1942552 (5a) contains the supplementary crystallographic data.
16 (a) G. M. Boland, D. M. X. Donnelly, J.-P. Finet, and M. D. Rea, J. Chem. Soc., Perkin Trans. I 1996, 2591. (b) K. C. Majumdar and S. K. Samanta, Tetrahedron Lett. 2002, 43, 2119. (c) A. L. Hansen and T. Skrydstrup, Org. Lett. 2005, 7, 5585. (d) B. D. Gallagher, B. R. Taft, and B. H. Lipshutz, Org. Lett. 2009, 11, 5374. (e) J. Kuroda, K. Inamoto, K. Hiroya, and T. Doi, Eur. J. Org. Chem. 2009, 2251. (f) J. T. Pierson, J. P. Finet, S. Combes, A. Dumetre, S. Hutter, F. Delmas, M. Laget, and N. Azas, J. Med. Chem. 2010, 45, 864. (g) X. He, Y. Wu, Y. Zuo, M. Xie, R. Li, and Y. Shang, Synth. Comm. 2019, 49, 959.
17 Y. Yamamoto and N. Kirai, Org. Lett. 2008, 10, 5513.
18 (a) K. Sonogashira, Y. Tohda, and N. Hagihara, Tetrahedron Lett. 1975, 16, 4467. (b) J. Wu, Y. Liao, and Z. Yang, J. Org. Chem. 2001, 66, 3642.
19 N. Miyaura, K. Yamada, and A. Suzuki, Tetrahedron Lett. 1979, 20, 3437.
20 P. V. Kerrebroeck, K. Kreder, U. Jonas, N. Zinner, and A. Wein, Urology 2001, 57, 414.
21 D. J. Sellers, T. Yamanishi, C. R. Chapple, C. Cloudwell, K. Yasuda, and R. Chess-Williams, J. Auton Pharmacol. 2000, 20, 171.

22 (a) Z.-W. Chen, D.-N. Ye, Y.-P. Qian, M. Ye, and L.-X. Liu, Tetrahedron 2013, 69, 6116. (b) S. Liang, G. B. Hammond, and B. Xu, Chem. Commun. 2015, 51, 903.

23 For such a conjugate addition to alkyne to a 3-or 4-membered intemediate see: (a) M. Egi, K. Azechi, M. Saneto, K. Shimizu, and S. Akai, J. Org. Chem. 2010, 75, 2123. (b) S. P. Gholap, D. Jangid, and R. A. Fernandes, J. Org. Chem. 2019, 84, 3537.
24 Y. Liu, T. Lu, W.-F. Tang, and J. Gao. RSC Adv. 2018, 8, 28637.
25 K.C. Majumdar and S. Sarkar, Synth. Comm. 2004, 34, 2873.
26 C. W. Downey, B. D. Mahoney, and V. R. Lipari, J. Org. Chem. 2009, 74, 2904.
27 M. Alfonsi, A. Arcadi, M. Chiarini, and F. Marinelli, J. Org. Chem. 2007, 72, 9510.
28 V. N. N. Phani Babu Tiruveedhula, C. M. Witzigmann, R. Verma, M. S. Kabir, M. Rott, W. R. Schwan, S. Medina-Beilski, M. Lane, W. Close, R. L. Polanowski, D. Sherman, A. Monte, J. R. Deschamps, and J. M. Cook, Bioorg. Med. Chem. 2013, 21, 7830.

29 S. N. Karad, W.-K. Chung, and R.-S. Liu, Chem. Sci. 2015, 6, 5964.

30 C. Jia, D. Piao, T. Kitamura, and Y. Fujiwara, J. Org. Chem. 2000, 65, 7516.
31 V. Zadsirjan, M. M. Heravi, M. Tajbakhsh, H. A. Oskooie, M. Shiri, and T. Hosseinnejad, Res. Chem. Intermed. 2016, 42, 6407.

32 P. Kumar, R. A. Kunkalkar, and R. A. Fernandes, Asian J. Org. Chem. 2019, 8, 1001.
33 D. A. Chaudhari and R. A. Fernandes, J. Org. Chem. 2016, 81, 2113.

Graphical Abstract

Metal－Free Annulative Hydrosulfonation of Propiolate Esters：Synthesis of 4－Sulfonates of Coumarins and Butenolides

Rodney A．Fernandes，${ }^{* a}$ Ashvin J．Gangani ${ }^{a}$ and Rupesh A．Kunkalkar ${ }^{a}$

An efficient metal－free and cost－effective method for the synthesis of coumarin and butenolide 4 －sulfonates has been developed involving addition of sulfonic acids to ethyl propiolates followed by lactonization．

[^0]: ${ }^{a}$ Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India. E-mail: rfernand@chem.iitb.ac.in; Fax: +91 22 25767152; Tel: +91 2225767174.
 Electronic Supplementary Information (ESI) available: Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for all the compounds. See DOI: 10.1039/×0xx00000x

