Journal

Contents lists available at ScienceDirect

Journal of Steroid Biochemistry and Molecular Biology

© 2010 Elsevier Ltd. All rights reserved.

journal homepage: www.elsevier.com/locate/jsbmb

Stereoselective synthesis of C24-hydroxylated vitamin D_3 analogs: A practical and expeditius route to calcipotriol^{\ddagger}

Antonio Rumbo*, Xenxo Pérez-García, Antonio Mouriño

Departamento de Química Orgánica y Unidad Asociada al C.S.I.C., Universidad de Santiago de Compostela, E-15706 Santiago de Compostela, Spain

ARTICLE INFO

ABSTRACT

Article history: Received 4 March 2010 Received in revised form 23 March 2010 Accepted 25 March 2010

Keywords: Calcipotriol Vitamin D₃ Psoriasis Synthesis Alkenylzinc intermediates Allylic alcohols 3-exo-(Dimethylamino)isoborneol catalyst

1. Introduction

Before bringing about its biological effects, the natural vitamin D_3 (1) undergoes successive hydroxylations to produce the major circulating metabolites 25-hydroxyvitamin D_3 (25-OH- D_3), 24*R*,25-dihydroxyvitamin D_3 [24*R*,25-(OH)₂- D_3] and 1 α ,25-dihydroxyvitamin D_3 [1 α ,25-(OH)₂- D_3] [1] (Fig. 1). Both 25-OH- D_3 and 1 α ,25-(OH)₂- D_3 are used clinically to treat numerous diseases. The latter (also known as calcitriol) is considered to be the hormonally active form of vitamin D_3 , playing important physiological roles in the regulation of mineral metabolism and of the proliferation and differentiation of both normal and malignant cells [1,2]. Due to lack of synthetic material, the precise biological roles of 24*R*,25-(OH)₂- D_3 and other 24-hydroxylated metabolites of vitamin D_3 have not been clearly established [1,3].

Interestingly, however, the only members of the vitamin D_3 family apart from the natural hormone 1α ,25-(OH)₂- D_3 that are being successfully used to treat psoriasis are 1α ,24*R*-dihydroxyvitamin D_3 (tacalcitol) and the similarly C24-hydroxylated analog calcipotriol (**2**) [1,2a,3]. Most of the many approaches to the synthesis of 24-hydroxylated metabolites and analogs of vitamin D_3 have involved linear routes and chromatographic separation of complex

* Corresponding author.

E-mail address: antonio.rumbo@usc.es (A. Rumbo).

mixtures of diastereoisomers [4]. Only recently have convergent and stereoselective approaches been developed [5,6]. We describe here an efficient synthesis of calcipotriol (**2**) [7] that illustrates a new approach to C24-hydroxylated vitamin D side chains. The synthetic plan for the preparation of the target compound **2** involves the stereoselective introduction of the C24 hydroxyl group via alkyne **3**, which is obtained by the convergent Lythgoe's Wittig–Horner approach (Scheme 1).

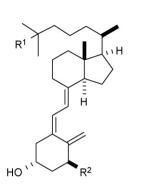
2. Results and discussion

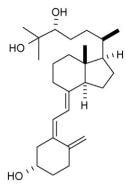
The synthesis of the clinically important drug calcipotriol (2, MC903) is described as an example of a new

and efficient approach to C24-hydroxylated analogs and metabolites of vitamin D_3 (1). The key step of

the process is the generation of the C24 stereocenter by DAIB [(-)-3-exo-(dimethylamino)) isoborneol]-

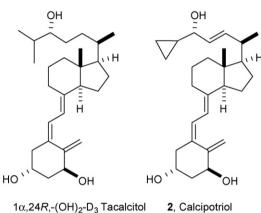
catalyzed addition of the alkenylzinc derivative of alkyne **3** to cyclopropylcarboxaldehyde.


Alkyne **3** was prepared in 95% yield by coupling the anion of phosphine oxide **4** to ketone **5**, which was straightforwardly prepared in 68% yield from the Inhoffen-Lythgoe diol (**6**) [8] (Scheme 2).

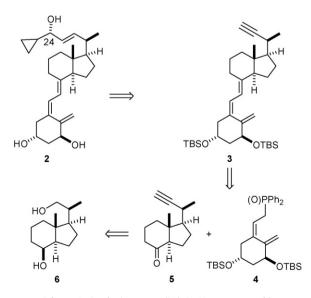

To introduce the requisite stereocenter at C24 we chose the method developed by Oppolzer and Radinov [9] for enantioselective synthesis of (*E*)-allylic alcohols by reaction of alkenylzinc reagents derived from alkenylboranes with aldehydes in the presence of catalytic (-)-3-*exo*-(dimethylamino)isoborneol [(-)-DAIB, 7] or (+)-DAIB.

Preliminary experiments to study the reliability of this reaction were undertaken using the protected alkyne **5a**. Addition of dicyclohexylborane to **5a** and transmetalation of the resulting alkenylborane with diethylzinc furnished the corresponding organozinc derivative, treatment of which with cyclohexycarboxaldehyde in the presence of (+)-DAIB [10] provided a chromatographically separable mixture of allylic alcohols **8** and **9**

[☆] Special issue selected article from the 14th Vitamin D Workshop held at Brugge, Belgium on October 4–8, 2009.


^{0960-0760/\$ -} see front matter © 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.jsbmb.2010.03.074

24R,25-(OH)2-D3


R¹= H, R²= H **1** Vitamin D₃ R¹= OH, R²= H 25-OH-D₃ R¹and R²= OH 1 α ,25-(OH)₂-D₃

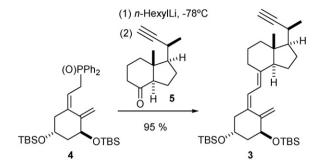
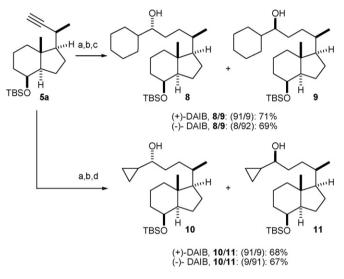
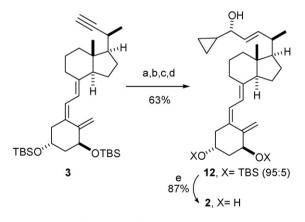

 \mathbf{L} , \mathbf{L}

Fig. 1. Biosynthesis and metabolism of vitamin D_3 .


in 71% yield and 91:9 ratio. Although the stereochemistry of the reaction is established by the mechanism [11], we checked the stereochemistry of each isolated alcohol by ¹H RMN analysis of respective mandelate derivatives [12]. The result was consistent with the proposal mechanism [11b]. The use of (–)-DAIB instead of (+)-DAIB reversed the diastereomeric ratio (Scheme 3). Thus DAIB catalysts successfully controlled the asymmetric addition of the

Scheme 1. Synthetic strategy (Wittig-Horner approach).


Scheme 2. Construction of the vitamin D triene system.

Scheme 3. Asymmetric introduction of 24-hydroxy side chains on alkyne **5a**. Reagents and conditions. (a) Cyclohexene, BH₃·SMe₂, hexane, 0 °C, 3 h; addition of alkyne **5a**, -20 °C. (b) Et₂Zn and (+)- or (-)-DAIB. (c) Cyclohexycarboxaldehyde, 0 °C. (d) Cyclopropylcarboxaldehyde, 0 °C.

organozinc intermediates to the aldehydes with negligible interference from the alkyne framework. With cyclopropylaldehyde instead of cyclohexylcarboxaldehyde as substrate, **10** and **11** were formed in similar ratios and overall yields to **8** and **9** above.

In accordance with the results achieved in the preliminary experiments, the 24 stereocenter of **2** was successfully introduced on alkyne **3** by reaction of the latter with dicyclohexylborane, followed by transmetalation of the resulting alkenylborane to the

Scheme 4. Synthesis of calcipotriol from alkyne **3.** Reagents and conditions. (a) Dicyclohexylborane, hexane, $0 \circ C$, 3 h. (b) Alkyne **3.** $-20 \circ C$. (c) Et₂Zn and (+)-DAIB. (d) Cyclopropylaldehyde, $0 \circ C$. (e) TBAF (3 equiv.), THF, rt.

organozinc derivative and its subsequent addition of the latter to cyclopropylaldehyde in the presence of (+)-DAIB. After desilylation, this procedure afforded the desired compound calcipotriol (**2**) in 55% overall yield from **3** (Scheme 4).

In conclusion, we have developed a short and efficient synthesis of the clinically important drug calcipotriol from the Lythgoe-Inhoffen diol. A key feature of this synthesis is the generation of the C24 stereocenter by (+)-DAIB-catalyzed addition of alkenylzinc to aldehyde, which works despite the presence of the labile vitamin D triene system. Application of this strategy to the synthesis of other vitamin D metabolites and analogs will be reported in due course.

Acknowledgements

We thank the Spanish MEC (Project SAF2007-67205) and Xunta de Galicia (Project GRC-2006/65) for financial support, and Dishman-Netherlands for the gift of vitamin D_2 . X.P.-G. thanks the Xunta de Galicia for a predoctoral research grant. A.R. thanks the Spanish Ministry of Education and Technology for a Ramon y Cajal grant.

References

- R. Bouillon, W.H. Okamura, A.W. Norman, Structure-function relationships in the vitamin D endocrine system, Endocr. Rev. 16 (1995) 200– 257.
- [2] (a) D. Feldman, J.W. Pike, F.H. Glorieux (Eds.), Vitamin D, Academic Press, New York, 2005;

(b) G. Jones, S.A. Strugnell, H.F. DeLuca, Current understanding of the molecular actions of vitamin D, Physiol. Rev. 78 (1998) 1193–1231;

(c) A.J. Brown, A. Dusso, E. Slatoplosky, D. Vitamin, Am. J. Physiol. Renal Physiol. 277 (1999) 157–175;

(d) M.F. Holick (Ed.), Vitamin D, Humana, Totowa, NJ, 1999;

(e) D.R. Bouillon, A.W. Norman, J.R. Pasqualini (Eds.), Proceedings of the 13th Workshop on Vitamin D, J. Steroid Biochem. Mol. Biol. 103 (2007) 201–822; D.R. Bouillon, A.W. Norman, J.R. Pasqualini (Eds.), Proceedings of the 12th Workshop on Vitamin D, J. Steroid Biochem. Mol. Biol. 89–90 (2004) 1–633, and the previous 11 volumes in this series.

[3] (a) M.J. Beckman, H.F. DeLuca, Modern view of vitamin D₃ and its medicinal uses, Prog. Med. Chem. 35 (1998) 1–56;

(b) A. Verstuyf, S. Segaert, L. Verlinden, R. Bouillon, C. Mathieu, Recent developments in the use of vitamin D analogues, Exp. Opin. Invest. Drugs 9 (2000) 443–455; (c) M.M. Kabat, R. Radinov, The practical synthesis of vitamin D analogs. A challenge for process research, Curr. Opin. Drug Discov. Dev. 4 (2001) 808–833; (d) C. Carlberg, A. Mouriño, New vitamin D receptor ligands, Expert Opin. Ther. Pat. 13 (2003) 761–772.

- 4] Quinkert (Ed.), Vitamin D Active Compounds Part III, Synform 5 (1987) 1-86.
- [5] Y. Fall, M. Torneiro, L. Castedo, A. Mouriño, An efficient stereoselective synthesis of 1α,24(R)-dihydroxyvitamin D₃ by the dienyne route, Tetrahedron 53 (1997) 4703–4714.
- [6] J. Pérez-Sestelo, I. Cornella, O. de Uña, A. Mouriño, L. Sarandeses, Stereoselective convergent synthesis of 24,25-dihydroxyvitamin D₃ metabolites: a practical approach, Chem. Eur. J. 8 (2002) 2747–2752.
- [7] Calcipotriol (MC 903) is marketed with the name DOVONEX by Leo Pharmaceutical Co. To the best of our knowledge only one synthesis of calcipotriol has been reported: M.C. Calverley, Synthesis of MC-903, a biologically-active vitamin-D analog, Tetrahedron 43 (1987) 4609–4619.
- [8] (a) J. Granja, M. Rey, J.A. Martínez, A. Fernanez, L. Castedo, A. Mouriño, in: A.W. Norman, K. Schaefer, H.G. Grigoleit (Eds.), Vitamin D: Molecular, Cellular and Clinical Endocrinology, Walter de Gruyter, Berlin, 1996, p. 46; (b) P. Barbier, F. Bauer, P. Mohr, M. Muller, W. Pirson, EP 47866 (1998).
- [9] (a) W. Oppolzer, R.N. Radinov, Catalytic asymmetric synthesis of secondary (*E*)-allyl alcohols from acetylenes and aldehydes via (1-alkenyl)zinc intermediates. Preliminary communication, Helv. Chim. Acta 75 (1992) 170–173;
 (b) W. Oppolzer, R.N. Radinov, E. El-Sayed, Catalytic asymmetric synthesis of macrocyclic (*E*)-allylic alcohols from ω-alkynals via intramolecular 1-alkenylzinc/aldehyde additions, J. Org. Chem. 66 (2001) 4766–4770;
 (c) For a review on the subject, see: L. Pu, H. Yu, Catalytic asymmetric organiczinc additions to carbonyl compounds, Chem. Rev. 101 (2001) 757–824;
 (d) For the recent use of related amino alcohols in this process, see: S. Dahmen, S. Braese, [2,2]Paracyclophane-based N,O-ligands in alkenylzinc additions to aldehydes, Org. Lett. 3 (2001) 4119–4122.
- [10] (+) and (-)-DAIB were prepared in four steps using reported procedures;
 (a) R.A. Chittenden, G.H. Cooper, Aminobicyclo[2,2,1]heptanes. 2. Diastereoisomeric dimethylaminobornyl acetates, J. Chem. Soc. (C) (1970) 49–54;
 (b) P. Wilder Jr., W.C. Hsieh, Determination of 2-exo-hydroxy-3-exo-aminobornane endo-endo hydride shift to a secondary carbonium ion, J. Org. Chem. 36 (1970) 2552–2553;
 (c) A.H.M. de Vries, Catalytic enantioselective conjugate addition of organometalic reagents, PhD dissertation, University of Rijk, Gröningen, Holland, 1996, p.

21;
(d) S. Roy, A.K. Charkarborti, An efficient synthesis of anti-(1R)-(+)-camphorguinone 3-oxime, Tetrahedron Lett. 39 (1998) 6355–6356.

- [11] On the possible mechanisms of the β-aminoalcohol-catalyzed asymmetric addition of organozincs to aldehydes, see:
 (a) M. Yamakawa, R. Noyori, Asymmetric addition of dimethylzinc to benzaldehyde catalyzed (2S)-3-exo-(dimethylamino)isoborneol. A theoretical study on the origin of enantioselection, Organometallics 18 (1999) 128–133;
 (b) W. Oppolzer, R.N. Radinov, Synthesis of (*R*)-(-)-muscone by an asymmetrically catalyzed macrocyclization of an w-alkynal, J. Am. Chem. Soc. 115 (1993) 1593–1594.
- [12] J.M. Seco, E. Quiñoá, R. Riguera, The assignment of absolute configuration by NMR, Chem. Rev. 104 (2004) 17–117.