Article

Synthesis of Tetrahydrocannabinols Based on an Indirect 1,4-Addition Strategy

Anthony D. William and Yuichi Kobayashi*

Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan

ykobayas@bio.titech.ac.jp

Received July 8, 2002

The synthetic procedure presented for the preparation of the title compounds requires 1,4-addition of bulky cuprates to cyclohexenones and subsequent reaction with electrophiles. However, the enolates generated by BF₃·OEt₂-assistance suffer from lack of nucleophilicity. To circumvent this problem, we developed an indirect method consisting of the following three steps: (1) iodination of the cyclohexenones at the α position; (2) BF₃·OEt₂-assisted 1,4-addition of cuprates (Ar₂Cu(CN)-Li₂, Ar = aryl) followed by quenching the enolates with water; (3) reaction of the α -iodo- β -aryl-cylohexanones thus formed with EtMgBr to generate magnesium enolates. The enolates thus generated in this way showed a high reactivity toward CIP(O)(OEt)₂ to furnish enol phosphates. The aforementioned procedure was also applied to a synthesis of optically active Δ^9 -tetrahydrocannabinol. In addition, a naphthalene analogue of the latter compound was also synthesized in a similar way.

Introduction

Figure 1 shows a class of compounds that are important in the pharmaceutical industry. Monoterpenylmagnolol (1),¹ extracted from the bark of *Magnolia officinalis* Rehd. et Wils., is often used in folk medicine for the treatment of bronchitis and emphysema. Δ^9 -Tetrahydrocannabinol (Δ^9 -THC) (**2**),^{2,3} a product of the female flowering parts of Cannabis sativa L., is used in the treatment of patients undergoing cancer chemotherapy because of its antinauseant effect. It also possesses antiemetic, antiglaucoma, and analgesic properties. Furthermore, the metabolites of Δ^9 -THC (i.e., **3** and **4**) are internal standards in analytical procedures to confirm the presence of cannabinoids in biological fluids and hence have forensic importance.⁴ Recently, receptor subtypes such as CB1, CB2, and several THC analogues that bind selectively to them have been reported.⁵ This opens the possibility to find the receptor-specific compound. Consequently, there is an urgent requirement for methods providing test compounds with the THC structure for further investigation. Although syntheses of compounds belonging to the THC family have been

FIGURE 1. Tetrahydrocannabinol (THC) Family.

published, most of the them suffer from drawbacks such as coproduction of the more stable Δ^8 -isomer, low diastereoselectivity in the preparation of the key intermediates, etc.^{3,6}

⁽¹⁾ Agharahimi, M. R.; LeBel, N. A. J. Org. Chem. **1995**, 60, 1856–1863.

^{(2) (}a) Razdan, R. K. Pharmacol. Rev. **1986**, *38*, 75–149. (b) Feigenbaum, J. J.; Richmond, S. A.; Weissman, Y.; Mechoulam, R. Eur. J. Pharmacol. **1989**, *169*, 159–165. (c) Cannabinoids as Therapeutic Agents; R. Mechoulam, Ed.; CRC Press: Boca Raton, FL, 1986. (d) Howlett, A. C.; Johnson, M. R.; Melvin, L. S.; Miline, G. M. Mol. Pharmacol. **1988**, *33*, 297–302.

⁽³⁾ For reviews of cannabinoids synthesis, see: (a) Razdan, R. K. In *Total Synthesis of Natural Products*, ApSimon, J., Ed.; John Wiley: NewYork, 1981; Vol. 4, pp 185–262. (b) Mechoulam, R.; Mccallum, N. K.; Burstein, S. *Chem. Rev.* **1976**, *76*, 75–112.

K.; Burstein, S. *Chem. Rev.* **1976**, *76*, 75–112.
 (4) (a) Agurell, S.; Halldin, M.; Lindgren, J.; Ohlsson, A.; Widman, M. *J. Pharmacol. Rev.* **1986**, *38*, 21–43. (b) Wall, M. E.; Perez-Reyes, M. *J. Clin. Pharmacol.* **1981**, *21*, 178S-189S.

^{(5) (}a) Mahadevan, A.; Siegel, C.; Martin, B. R.; Abood, M. E.; Belestskaya, I.; Razdan, R. K. *J. Med. Chem.* **2000**, *43*, 3778–3785. (b) Drake, D. J.; Jensen, R. S.; Busch-Petersen, J.; Kawakami, J. K.; Fernandez-Garcia, M. C.; Fan, P.; Makriyannis, A.; Tius, M. A. *J. Med. Chem.* **1998**, *41*, 3596–3608. (c) Harrington, P. E.; Stergiades, I. A.; Erickson, J.; Makriyannis, A.; Tius, M. A. *J. Org. Chem.* **2000**, *65*, 6576–6582. (d) Tius, M. A.; Makriyannis, A.; Zou, X. L.; Abadji, V. Tetrahedron **1994**, *50*, 2671–2680.

^{(6) (}a) Mechoulam, R.; Braun, P.; Gaoni, Y. J. Am. Chem. Soc. 1967, 94, 4552–4554.
(b) Petrzilka, T.; Haefliger, W.; Sikemeier, C. Helv. Chim. Acta 1969, 52, 1102–1134.
(c) Razdan, R. K.; Dalzell, H. C.; Handrick, G. R. J. Am. Chem. Soc. 1974, 96, 5860–5865.
(d) Handrick, G. R. J. Am. Chem. Soc. 1974, 96, 5860–5865.
(d) Handrick, G. R. J. Am. Chem. Soc. 1974, 96, 5860–5865.
(d) Handrick, G. R. J. Am. Chem. Soc. 1974, 96, 5860–5865.
(e) Crombie, L.; Crombie, W. M. L.; Jamieson, S. V.; Palmer, C. J. J. Chem. Soc., Perkin Trans. 1 1988, 1243–1250.
(f) Crombie, W. M. L.; Tuchinda, P. J. Chem. Soc., Perkin Trans. 1 1984, 1255–1262.
(g) Rickards, R. W.; Rönneberg, H. J. Org. Chem. 1984, 49, 572–573.
(h) Childers, W. E., Jr.; Pinnick, H. W. J. Org. Chem. 1984, 49, 5276–5277.
(i) Evans, D. A.; Barnes, D. M.; Johnson, J. S.; Lecta, T.; Von Matt, P.; Miller, S. J.; Murry, J. A.; Norcross, R. D.; Shaughnessy, E. A.; Campos, K. R. J. Am. Chem. Soc. 1999, 121, 7582–7594.

SCHEME 1. 1,4-Addition Strategy for Synthesis of Δ^9 -THC Family

We envisioned, as a new method, a strategy illustrated in Scheme 1. 1,4-Addition of a protected olivetol derivative **6** to enone **5** from the less hindered β side of the enone followed by trapping of the resulting enolate **7** with an electrophile E⁺ such as ClP(O)(OEt)₂ should provide enol **8**, which upon substitution with an appropriate anion and subsequent pyran ring cyclization would furnish the Δ^9 -THC structure **9**. Herein, we describe our results of this 1,4-addition approach, which was finally completed, even though in an indirect way.⁷

Results and Discussion

Preliminary Study. Scheme 2 represents our initial investigations carried out with enone 5a, prepared in racemic form from **19** in good overall yield by using the method of Stork (Scheme 3).⁸ Although the TES (SiEt₃) group is usually unstable under acidic conditions, HClassisted hydrolysis of enol ether 21, after the DIBAL reduction, produced 5a in 72% yield without desilylation. 1,4-Addition of enone **5a** with the higher order cuprate $Ph_2Cu(CN)Li_2$ (10a) (1.5 equiv) in Et_2O at -78 °C for 2 h, followed by in situ trapping of the lithium enolate 11 with $ClP(O)(OEt)_2$ (-78 °C to room temperature), provided the enol phosphate 12a in 63% yield.^{9,10} On the other hand, attempted 1,4-addition with the bulky cuprate Ar₂Cu(CN)Li₂ (10b) (Ar is shown in the lower side of Scheme 2) at -78 to -50 °C and subsequent in situ trapping of the presumed lithium enolate 15 with ClP- $(O)(OEt)_2$ did not provide enol phosphate **12b**, only starting enone 5a. Use of BF₃·OEt₂ (1 equiv) caused a dramatic change in the reactivity of the 1,4-addition.¹¹ Reaction in Et₂O at -78 °C for 2 h followed by aqueous workup produced the 1,4-addition product 17^{12} in 90% yield. Although the formation of boron enolate 16 was assumed, trapping of 16 as enol phosphate 12b at -78

°C to room temperature was unsuccessful. In a control experiment, reaction of enone **5a** with the less bulky cuprate **10a** in the presence of BF₃·OEt₂ afforded the 1,4-addition product **14**¹² in 80% yield after aqueous work up, but enolate trapping with ClP(O)(OEt)₂ did not proceed at all. Transmetalation of boron enolate **16** to lithium enolate **15** with *n*-BuLi followed by reaction with ClP(O)(OEt)₂ also failed, and ketone **17** was produced instead.^{13,14}

These results are consistent with the observation reported by Lipshutz¹⁵ about the unreactive nature of the boron enolate synthesized by the BF₃·OEt₂-assisted 1,4-addition on sterically hindered enones. To the best of our knowledge, the difficulty of trapping the boron enolate remains unsolved.

We also attempted the TMSCl-assisted 1,4-addition of cuprate **10b** on enone **5a**, anticipating that the intermediate silyl enol ether **18** could be metalated with MeLi to afford the reactive lithium enolate **15**. However, the 1,4-addition reaction under the Nakamura conditions¹⁶ using TMSCl and HMPA (each 2 equiv) in THF at -78 °C did not proceed, and the starting enone **5a** was recovered.

Indirect Method of the 1,4-Addition Strategy. To circumvent the intrinsic low reactivity of the boron enolate, we envisioned an indirect method disclosed in Scheme 4. The first step is iodination of enone 5 to produce α -iodo-cyclohexenone 22. Upon 1,4-addition in the presence of BF₃·OEt₂ 22 would furnish α -iodoketone 23 (step 2), which should be amenable to conversion into the reactive enolate 24 (step 3). Subsequent reaction with ClP(O)(OEt)₂ would afford enol phosphate 12. In addition, reaction with other electrophiles (E⁺) would furnish either enol ether 25 or ketone 26, depending on the nature of E⁺.

Iodides **22a** [R = C(Me)₂(OTES)], **22b** (R = Bu-*t*), and **22c** (R = H) were prepared from the corresponding enones **5a**-**c**¹⁷ in good yields by Johnson's method^{18,19} (eq 1), and submitted to the BF₃·OEt₂-assisted 1,4-addition under the conditions used in Scheme 2 (Et₂O, -78 °C, 2 h). Initially, 1,4-addition of α -iodoenone **22a** [R = C(Me)₂-

(14) Enolate trapping study as a triflate with other electrophiles such as $\rm Tf_2NPh,\,Tf_2O$ was unsuccessful.

(15) Lipshutz, B. H.; Parker, D. A.; Kozlowski, J. A.; Nguyen, S. L. *Tetrahedron Lett.* **1984**, *25*, 5959–5962.

(16) Nakamura, E.; Matsuzawa, S.; Horiguchi, Y.; Kuwajima, I. Tetrahedron Lett. **1986**, *27*, 4029–4032.

(17) Enone **5b** (R = Bu-*t*) was prepared according to Garbisch with comparable yields: Garbisch, E, W., Jr. *J. Org. Chem.* **1965**, *30*, 2109–2120.

(18) Johnson, C. R.; Adams, J. P.; Braun, M. P.; Senanayake, C. B. W.; Wovkulich, P. M.; Uskokovi'c, M. R. *Tetrahedron Lett.* **1992**, *33*, 917–918.

(19) Yield of enone $22c^{18}$ (R = H) was improved to 87% yield.

⁽⁷⁾ A preliminary report: William, A. D.; Kobayashi, Y. *Org. Lett.* **2001**, *3*, 2017–2020.

⁽⁸⁾ Stork, G.; Danheiser, R. L. *J. Org. Chem.* **1973**, *38*, 1775–1776.
(9) Use of a mixed cuprate, Ph(2-Th)Cu(CN)Li₂, furnished a complex

TLC pattern, which prevented isolation of the product by column chromatography, while use of $Ph_2Cu(CN)Li_2$ provided a better TLC and thus allowed easy purification.

^{(10) (}a) Lipshutz, B. H.; Koerner, M.; Parker, D. A. *Tetrahedron Lett.* **1987**, 28, 945–948. (b) Lipshutz, B. H.; Kozlowski, J. A.; Parker, D. A.; Nguyen, S. L.; McCarthy, K. E. J. Organomet. Chem. **1985**, 285, 437–447.

^{(11) (}a) Yamamoto, Y.; Yamamoto, S.; Yatagai, H.; Ishihara, Y.; Marumaya, K. J. Org. Chem. **1982**, 47, 119–126. (b) Tius, M. A.; Kannangara, G. S. K. J. Org. Chem. **1990**, 55, 5711–5714. (c) Mioskowski, C.; Manna, S.; Falck, J. R. Tetrahedron Lett. **1983**, 24, 5521–5524. (d) Ghirbi, A.; Alexakis, A.; Normant, J. F. Tetrahedron Lett. **1984**, 25, 3075–3086.

^{(12) &}lt;sup>1</sup>H NMR spectra. **14**: ¹H NMR δ 0.58 (q, J = 8 Hz, 6 H), 0.94 (t, J = 8 Hz, 9 H), 1.12 (s, 3 H), 1.18 (s, 3 H), 1.81–2.62 (m, 6 H), 2.69 (dd, J = 15, 6 Hz, 1 H), 3.35 (q, J = 7 Hz, 1 H), 7.13–7.32 (m, 5 H). **17**: ¹H NMR δ 0.55 (q, J = 8 Hz, 6 H), 0.85–1.00 (m, 12 H), 1.08 (s, 3 H), 1.16 (s, 3 H), 1.25–1.40 (m, 6 H), 1.50–1.65 (m, 2 H), 1.75–1.95 (m, 1 H), 2.25–2.75 (m, 6 H), 3.47 (s, 6 H), 3.93 (q, J = 7 Hz, 1 H), 5.10–5.20 (m, 4 H), 6.60 (s, 2 H).

^{5.20 (}m, 4 H), 6.60 (s, 2 H).
(13) (a) Batt, D. G.; Takamura, N.; Ganem, B. J. Am. Chem. Soc.
1984, 106, 3353-3354. (b) McMurry, J. E.; Scott, W. J. Tetrahedron Lett. 1983, 24, 979-982.

JOC Article

SCHEME 2^a

(OTES)] with Ph₂Cu(CN)Li₂ (**10a**) was carried out as a control experiment to afford α -iodoketone **23a** in 65% yield (Table 1, entry 1). Under the same reaction conditions, the more bulky reagent **10b** furnished **23b** in 72% yield (entry 2). The yields were comparable in both cases, and hence demonstrate the high performance of the

present procedure. In both cases, no reaction at the α site of the enones was observed by $^1\!H$ NMR spectroscopy. 20

Reaction of **22a** with the olivetol-derived cuprates **10c** and **10d** also produced ketones **23c** and **23d**, respectively,

^{*a*} For specific compounds: **5a**–**c** and iodoenones **22a**–**c**, see eq 1; cuprates **10a**–**e**, ketones **23a**–**h**, and phosphates **12a**–**h**, see Table 1.

in reasonable yields²¹ (entries 3 and 4). Furthermore, the naphthalene cuprate **10e** afforded the addition product **23e** in 74% yield without any difficulty (entry 5). As is evident from these results, the 1,4-addition has no restriction on the size of the cuprate [Ar₂Cu(CN)Li₂].

1,4-Addition using other enones **22b** (R = t-Bu) and **22c** (R = H) was also successful, as is seen in entries 6–8. These results clearly show that the size of the substituent at the γ position of the enones has little influence on the reaction.

The determination of the relative stereochemistry at the β and γ positions of the 1,4-addition products **23a**-**h** by ¹H NMR spectroscopy was ambiguous as a result of varying coupling constants (4.5–7.5 Hz) between the protons at these positions.²² However, the stereochemistry of **23c** was determined to be trans by synthesis of Δ^9 -THC (**2**) (vide infra).²³ This assignment is consistent with the steric approach control of cuprate **10c** to α -iodoenone **22a**. We assume that the same (trans) configuration is valid for the products of the other entries of Table 1.

Generation of Enolates from α -Iodoketones. The several protocols reported for similar types of the conversion were applied preliminary to α -iodoketone **23b** with the MOM protecting group on the aromatic ring. The conditions of Stork,²⁴ Borowitz,²⁵ and Pande²⁶ were not suitable for generating enolate **24b**, since **23b** was

(24) Stork, G.; Isobe, M. J. Am. Chem. Soc. 1975, 97, 4745-4746.

recovered unchanged after the reactions (Table 2, entries 1-3).

Attempted reactions using Et₃B/Ph₃SnH/C₆H₆, Et₃B/ Et₂O or C₆H₆, and *n*-BuLi/Et₂O according to Utimoto²⁷ also failed to provide enolate **24b** (entries 4–6). Fortunately, EtMgBr (1.5 equiv) in THF at 0 °C^{27b} furnished the magnesium enolate **24b** (M = MgBr), which was trapped with ClP(O)(OEt)₂ (2.5 equiv) at 0 °C for 2 h to produce the desired enol phosphate **12b** in 71% yield (entry 7). In this case, the reaction in THF was cleaner than that in Et₂O.^{27b}

The conditions found suitable for conversion of **23b** to enol phosphate **12b** were applied successfully to other α -iodoketones **23a** and **23c**-h to yield enol phosphates **12a** and **12c**-h in good yields as presented in Table 1 (entries 1, 3–8). During these investigation, no difference in reactivity was observed between olivetol moieties (entries 2–4, 6, and 7) and the naphthalene moiety (entries 5 and 8).

Reactivity of the Magnesium Enolate toward Aldol Reaction. Although Utimoto reported aldol reactions of the magnesium enolate derived from simple α -iodoketones with simple aldehydes,^{27b} aldol reactions of congested magnesium enolates were briefly studied, since the interference of the bulky aryl groups at the β position was not predictable. Such information on the reactivity would be useful in organic synthesis.

Magnesium enolate **24b**, generated from iodoketone **23b** and EtMgBr in THF, was submitted to aldol reaction with aldehyde **27** at 0 °C (Scheme 5). The reaction proceeded efficiently to afford aldol **28**²⁸ in 79% yield. Likewise, formaldehyde afforded aldol **29**²⁸ in 64% yield, which was a 2:1 mixture of the diastereoisomers by ¹H NMR spectroscopy. These results clearly show that the steric influence of the bulky aryl group at the β position on the reactivity at the α position is negligibly small, and hence other aldehydes would be equally compatible with the aldol reaction of the magnesium enolates **24** (M = MgBr). In addition, aldol **29** was converted into the corresponding mesylate, which was exposed to Al₂O₃ in CH₂Cl₂²⁹ to produce the exocyclic enone **30**³⁰ in good yield.

Conversion of Enol Phosphates into Corresponding Methyl- and Hydroxymethyl Compounds. The next step toward the synthesis of Δ^9 -THC structure shown in Scheme 1 is conversion of enol phosphate **8** (E = P(O)(OEt)₂) (= **12** of Scheme 4) into the corresponding

(30) Although further stirring at room temperature for longer time after completion of the mesylation in one flask produced enone **30**, the reaction was not completed and produced byproduct(s).

⁽²⁰⁾ Cf.: (a) Negishi, E.; Owczarczyk, Z. R.; Swanson, D. R. *Tetrahedron Lett.* **1991**, *32*, 4453–4456. (b) Johnson, C. R.; Adams, J. P.; Braun, M. P.; Senanayake, C. B. W. *Tetrahedron Lett.* **1992**, *33*, 919–922.

⁽²¹⁾ In entry 4, yield was calculated after conversion of semipurified α -iodoketone **23d** to its enol phosphate **12d** (vide infra) because of the similar R_f value for **23d** and the SEM ether of olivetol derived from the copper reagent after workup.

⁽²²⁾ In addition, the stereochemistry at the α position was not determined because of the next step of the enol formation reaction. (23) The characteristic signals for Δ^9 -THC (2) and its cis isomer in

⁽²³⁾ The characteristic signals for Δ^9 -THC (2) and its cis isomer in the ¹H NMR spectra appear at 3.14 and 3.59 ppm, respectively, whereas that for the *trans*- Δ^8 -isomer appears at 3.25 ppm: Taylor, E. C.; Lenard, K.; Shvo, Y. J. Am. Chem. Soc. **1966**, *88*, 367–368.

⁽²⁵⁾ Borowitz, I. J.; Anschel, M.; Firstenberg, S. J. Org. Chem. **1967**, 32, 1723–1729. (b) Borowitz, I. J.; Casper, E. W. R.; Crouch, R. K.; Yee, K. C. J. Org. Chem. **1972**, 37, 3873–3878. (26) (a) Joshi, G. C.; Pande, L. M. Synthesis **1975**, 450–452. (b) Hachimeter S.; Hith A.; Kitagawa Y.; Yamemete H.; Naraki, H. J.

^{(26) (}a) Joshi, G. C.; Pande, L. M. *Synthesis* **1975**, 450–452. (b) Hashimoto, S.; Itoh, A.; Kitagawa, Y.; Yamamoto, H.; Nozaki, H. *J. Am. Chem. Soc.* **1977**, *99*, 4192–4194.

^{(27) (}a) Nozaki, K.; Oshima, K.; Utimoto, K. *Bull. Chem. Soc. Jpn.* **1991**, *64*, 403–409. (b) Aoki, Y.; Oshima, K.; Utimoto, K. *Chem. Lett.* **1995**, 463–464.

⁽²⁸⁾ Because of the complex nature of the 1H NMR signals, the stereochemistry of the α carbon center was not determined.

^{(29) (}a) Posner, G. H.; Gurria, G. M.; Babiak, K. A. J. Org. Chem. 1977, 42, 3173–3180. (b) Yamada, K.; Arai, T.; Sasai, H.; Shibasaki, M. J. Org. Chem. 1998, 63, 3666–3672. (c) Kobayashi, Y.; Murugesh, M. G.; Nakano, M. Tetrahedron Lett. 2001, 42, 1703–1707.

TABLE 1.	Synthesis of 1,4-Addition Prod	lucts 23a-h, Enol Phos	phates 12a–h, and M	ethylation Products 31a-e
	y	· · · · · · · · · · · · · · · · · · ·	,	

	enone		cuprate		22	→ 23	23 -	→ 12	12	→ 31
entry	22	R	10	Ar	23	yield, %	12	yield, %	31	yield, %
1	22a	C(Me) ₂ (OTES)	10a	-}-	23a	65	12a	63	31a	94
2	22a	C(Me) ₂ (OTES)	10b	МОМО С ₅ H ₁₁ МОМО	23b	72	12b	71 ^a	31b	92
3	22a	C(Me) ₂ (OTES)	10c	МеО -≹-∕О С₅Н ₁₁ МеО	23c	67	12c	70	31c	90
4	22a	C(Me) ₂ (OTES)	10d	SEMO 	23d	_b	12d	53 ^b	31d	93
5	22a	C(Me) ₂ (OTES)	10e	OMe y ^y OO MeO	23e	74	12e	60	31e	99
6	22b	Bu-t	10b	МОМО -{	23f	67	12f	63	_	-
7	22c	н	10c	МеО -{- МеО МеО	23g	60	12g	58	_	_
8	22c	н	10e	Me MeO	23h	68	12h	62	_	-

^a Result of Table 2, entry 7. ^b The yield was obtained for **12d** (two-step yield).

methyl derivative.³¹ As shown in eq 2, this conversion,

examined first with **12b**, was accomplished by using MeMgCl in the presence of Ni(acac)₂ catalyst in THF at room temperature overnight to produce **31b** in 92% yield, as is presented in entry 2 of Table 1. In a similar manner, olivetol-derived phosphates **12c**,**d**, naphthalene phosphate **12e**, and model phosphate **12a** were all successfully converted into the methyl products **31c**-**e** and **31a** in good yields (entries 3–5 and 1 of Table 1).

The above procedure was applied to $ClMgCH_2SiMe_2$ -(OPr-*i*) (**32**) which has been shown to be a synthetic equivalent of the CH_2OH anion.³² The reaction with **12b** and **12c** at room temp. overnight proceeded smoothly to furnish **33b** and **33c** in good yields (Scheme 6), and subsequent oxidation with 35% H_2O_2 in the presence of KF and NaHCO₃ in THF and MeOH at 50 °C provided **34b** and **34c** in 58% and 52% yields, respectively. The products **34b**, **c** would be converted into Δ^9 -THC metabolites such as **3** and **4** (Figure 1).³³

Synthesis of Δ^9 -THC and Its Naphthalene Analogue in Racemic Form. The next step toward the synthesis of Δ^9 -THC was the removal of the protective groups on the aromatic ring and subsequent construction of the pyran ring. Among three candidates **31b**-**d**, compound **31b** with the MOM protection on its aromatic part was initially chosen with the expectation that the acidic conditions would facilitate deprotection of both the MOM and TES groups and simultaneous cyclization to provide the pyran in one flask. However, no reagent was found to provide the desired Δ^9 -THC (**2**) (Table 3): the regioisomeric product, Δ^8 -THC (**35**), was obtained with catecholborane in CH₂Cl₂³⁴ and P₂I₄ in CH₂Cl₂³⁵ (entries 1,2), while NaI in acetone with a trace amount of HCl,³⁶ PPTS in acetone³⁷ furnished alcohol **36** as a sole product,

^{(31) (}a) Hayashi, T.; Fujiwa, T.; Okamoto, Y.; Katsuro, Y.; Kumada, M. *Synthesis* **1981**, 1001–1003. (b) Sahlberg, C.; Quader, A.; Claesson, A. *Tetrahedron Lett.* **1983**, *24*, 5137–5138.

^{(32) (}a) Tamao, K.; Ishida, N. *Tetrahedron Lett.* 1984, *25*, 4245–4248. (b) Tamao, K.; Maeda, K. *Tetrahedron Lett.* 1986, *27*, 65–68. (33) This conversion is now under investigation.

⁽³⁴⁾ Boeckman, R. K., Jr.; Potenza, J. C. Tetrahedron Lett. 1985, 26, 1411-1414.

 $^b\,\rm NR:\,$ no reaction. $^c\,\rm This$ result is again presented in entry 2 of Table 1.

in which only the TES group was removed (entries 3 and 4). The use of LiBF₄ in aqueous MeCN³⁸ resulted in formation of complex mixture (entry 5).

Next examined was the SEM ether **31d**, which on treatment with TBAF under several conditions³⁹ led to deprotection of the TES group giving **37** or to decomposition (Table 4).

Fortunately, deprotection of the *O*-methylated derivative **31c** was accomplished successfully. On exposure of

TABLE 3. Attempted Deprotection of MOM Groups on31b

entry	conditions	results
1	catecholborane/CH ₂ Cl ₂ , 0 °C, 1 h	35
2	P ₂ I ₄ /CH ₂ Cl ₂ , 0 °C, 2 h	35
3	NaI/acetone/trace HCl, rt, 0.5 h	36
4	PPTS/acetone, rt-reflux, 12 h	36
5	LiBF ₄ /MeCN/H ₂ O, 60-70 °C, 2 h	complex mixture

31c to NaSEt in DMF at 140 °C according to Feutrill,⁴⁰ monodemethylation and desilylation took place simultaneously to furnish diol **38** in 70% yield (Scheme 7). Attempted one-step deprotection of all of the protecting groups on **31c** at higher temperature (>140 °C) was unsuccessful. Cyclization of diol **38** by using the protocol

⁽³⁵⁾ Saimoto, H.; Kusano, Y.; Hiyama, T. Tetrahedron Lett. 1986, 27, 1607–1610.

⁽³⁶⁾ Williams, D. R.; Barner, B. A.; Nishitani, K.; Phillips, J. G. J. Am. Chem. Soc. **1982**, 104, 4708–4710.

⁽³⁷⁾ Monti, H.; Leandri. G.; Klos-Ringquet, M.; Corriol, C. Synth. Commun. 1983, 13, 1021–1026.
(38) Ireland, R. E.; Varney, M. D. J. Org. Chem. 1986, 51, 635–

⁽³⁹⁾ Lipshtuz, B. H.; Miller, T. A. *Tetrahedron Lett.* **1989**, *30*, 7149–

⁽*Japanuz*, B. n., Miller, 1. A. *Tetranedron Lett.* **1989**, *30*, 7149-7152.

⁽⁴⁰⁾ Feutrill, G. I.; Marrington, R. N. Tetrahedron Lett. **1970**, 1327–1328.

TABLE 4. Attempted Deprotection of SEM Groups on31d

entry	conditions	results
1	TBAF/THF, 80 °C, 2 h	37
2	TBAF/HMPA/THF, 60–80 °C, 2 h	37
3	TBAF/HMPA/4Å MS, >100 °C	complex mixture

SCHEME 7. Racemic Synthesis of Δ^9 -THC

SCHEME 8

of Evans⁶ⁱ furnished the cyclized product **39** in 92% yield. Finally, the remaining methyl group on **39** was removed with NaSEt at 120 °C in DMF^{6h} to provide Δ^9 -THC (**2**) in 45% yield. The ¹H NMR (300 MHz) spectrum of synthetic **2** thus synthesized was identical with that reported,⁶ⁱ thus confirming the trans stereochemistry and thence the steric approach control of cuprate **10c** to enone **22a** (Scheme 4). In addition, the spectrum clearly shows no contamination of Δ^8 -isomer **35** in product **2**.²³

In order to prove the efficiency of our 1,4-addition strategy for building up the THC structure, naphthalene analogue **42** was synthesized starting from the racemic key intermediate **31e** (Scheme 8). Although the temperature used for **31c** (i.e., 140 °C) furnished a complex mixture, lower temperature (120 °C) allowed clean deprotection, giving **40**⁴¹ in 62% yield. Deprotection of the TES group of **40** with TBAF afforded diol **41** in 78%

yield, which was cyclized with $ZnBr_2$ and $MgSO_4$ to furnish the first maphthalene analogue **42** of Δ^9 -THC in 91% yield. The 1H NMR spectrum indicated absence of the Δ^8 -isomer.

Synthesis of Δ^9 -THC in Optically Active Form. Having performed the synthesis of racemic Δ^9 -THC, our attention was focused on synthesis of optically active Δ^9 -THC ((-)-2), in which the (*R*)-isomer of **5a** was required as one of the key intermediates. This isomer was synthesized from (+)- β -pinene (**43**) as depicted in Scheme 9. According to reported procedures, ozonolysis⁴² of 43 $(\alpha)^{20} + 21$ (neat); from Aldrich) followed by the cyclobutane ring opening⁴³ of **44** with Zn(OAc)₂ and BF₃·OEt₂ in Ac₂O furnished enol acetate **45** in 72% yield ($[\alpha]^{26}$ _D +45° (*c* 0.47, EtOH); lit.^{44a} $[\alpha]^{29.5}$ _D -48.3° (*c* 0.0325, EtOH) for the enantiomer). Conversion of 45 to enone 46 was carried out in 85% yield with allyl ethyl carbonate in the presence of Pd(OAc)₂, DPPE, and Bu₃SnOMe.⁴⁵ Removal of the acetyl (Ac) group from 46 was achieved by reduction with DIBAL-H to furnish diol 47 in 94% yield. Subsequent oxidation with PCC afforded enone 48 in 76% yield ($[\alpha]^{29}_{D} + 72^{\circ}$ (*c* 0.44, MeOH)). Finally, enone **48** was converted to the TES ether (+)-**5a** in 85% ($[\alpha]^{24}_{D}$ +67°(*c* 0.49, MeOH)).

The sequence we have established for the synthesis of racemic Δ^9 -THC was traced with optically active enone (+)-**5a** to complete the synthesis of optically active Δ^9 -THC ((-)-**2**) through the key intermediates (-)-**22a** ([α]²⁸_D -5 (c 0.96, MeOH)), (-)-**12c** ([α]³⁰_D -43° (*c* 0.53, CHCl₃)), and (-)-**31c** ([α]²⁸_D -84° (*c* 0.49, CHCl₃)). The optical rotation of (-)-**2** thus synthesized was in good agreement with that reported ([α]³⁰_D -145° (*c* 0.11, CHCl₃), lit.^{6b} ([α]²⁸_D -150° (*c* 1.0, CHCl₃)).

Conclusion

We established an indirect method to generate reactive magnesium enolates after the $BF_3 \cdot OEt_2$ -assisted 1,4-addition of cuprates $[R_2Cu(CN)Li_2]$ to enones. The method is especially convenient when less reactive cuprates are used. By means of this method, optically pure Δ^9 -THC (**2**) and a naphthalene analogue were synthesized.

Experimental Section

General Methods. Infrared (IR) spectra are reported in wavenumbers (cm⁻¹). The ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were measured in CDCl₃ using SiMe₄ ($\delta = 0$ ppm) and the center line of CDCl₃ triplet ($\delta = 77.1$ ppm) as internal standards, respectively. Signal patterns are indicated as br s, broad singlet; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Coupling constants (*J*) are given in hertz (Hz). The coupling constants between ¹³C and ³¹P of the enol phosphates are given in the ¹³C NMR spectral data. Some of the signals in the ¹³C NMR spectra appearing as broad singlets

⁽⁴¹⁾ Although no evidence about the site of the demethylation was obtained from the ¹H NMR spectrum of the product, we are speculating that the less hindered methyl group underwent the demethylation to produce **40**.

⁽⁴²⁾ Grimshaw, J.; Grimshaw, J. T.; Juneja, H. R. J. Chem. Soc., Perkin Trans 1 1972, 50–52.

^{(43) (}a) Kato, M.; Watanabe, M.; Vogler, B.; Tooyama, Y.; Yoshikoshi, A. *J. Chem. Soc., Chem. Commun.* **1990**, 1706–1707. (b) Kato, M.; Kamat, V. P.; Tooyama, Y.; Yoshikoshi, A. *J. Org. Chem.* **1989**, *54*, 1536–1538.

^{(44) (}a) Siegel, C.; Gorden, P. M.; Uliss, D. B.; Handrick, G. R.; Dalzell, H. C.; Razdan, R. K. *J. Org. Chem.* **1991**, *56*, 6865–6872. (b) Gordon, P. M.; Siegel, C.; Razdan, R. K. *J. Chem. Soc., Chem. Commun.* **1991**, 692–694.

⁽⁴⁵⁾ Tsuji, J.; Minami, I.; Shimizu, I. Tetrahedron Lett. **1983**, 24, 5639–5640.

⁽⁴⁶⁾ Purchased from ICN (Alumina N-Super I).

SCHEME 9. Synthesis of Optically Active Δ^9 -THC

with low intensity, probably owing to the restriction of free rotation of the aromatic ring are represented as br s. Routinely, an organic extract was dried over $MgSO_4$ and concentrated by using a rotary evaporator to leave a residual oil, which was purified by chromatography on silica gel.

MeC

6-[(1-Hydroxy-1-methyl)ethyl]-3-ethoxy-2-cyclohexen-1-one (20). To an ice-cold solution of (*i*-Pr)₂NH (7.2 mL, 51.4 mmol) in THF (60 mL) was added slowly a solution of *n*-BuLi (18.9 mL, 2.26 M in hexane, 42.7 mmol). The solution was stirred for 15 min and cooled to -78 °C. Enone 19 (4.15 mL, 28.5 mmol) was added to the solution. After 2 h of stirring at -78 °C, acetone (4.20 mL, 57.1 mmol) was added. The solution was stirred at -78 °C for additional 30 min and poured into an ice-cold mixture of saturated NH₄Cl and Et₂O (1:1). The organic layer was separated, and the aqueous layer was extracted with Et₂O twice. The combined organic extracts were dried and concentrated to afford an oil, which was purified by chromatography (hexane/EtOAc) to furnish 20 (5.58 g, 99% yield): IR(neat) 3426, 1605 cm⁻¹; ¹H NMR δ 1.21 (s, 3 H), 1.22 (s, 3 H), 1.38 (t, J = 7 Hz, 3 H), 1.71 (dq, J = 13, 5 Hz, 1 H), 1.98-2.16 (m, 1 H), 2.33 (dd, J = 13, 4.5 Hz, 1 H), 2.42 (dq, J = 17, 2.5 Hz, 1 H), 2.53 (dddd, J = 17, 13, 4.5, 1.5 Hz, 1 H), 3.84-4.00 (m, 2 H), 5.35 (d, J = 1.5 Hz, 1 H), 5.68 (s, 1 H); ${}^{13}C$ NMR & 14.2, 24.3, 24.5, 28.6, 29.3, 54.2, 64.6, 72.6, 103.3, 178.2, 203.2. Anal. Calcd for C11H18O3: C, 66.64; H, 9.15. Found: C, 66.22: H. 9.12

6-[(1-Methyl-1-triethylsilyloxy)ethyl]-3-ethoxy-2-cyclohexen-1-one (21). A mixture of alcohol 20 (5.00 g, 25.2 mmol), TESCI (5.58 mL, 32.8 mmol), and imidazole (2.74 g, 40.2 mmol) in DMF (50 mL) was stirred overnight at ambient temperature and poured into a 1:1 mixture of saturated NaHCO3 and hexane at 0 °C with vigorous stirring. The organic layer was separated, and the aqueous layer was extracted with hexane twice. The combined organic extracts were dried and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish 21 (7.80 g, 99% yield): IR (neat) 1654, 1612 cm⁻¹; ¹H NMR δ 0.46–0.56 (m, 6 H), 0.88 (t, J = 8 Hz, 9 H), 1.23 (s, 3 H), 1.30 (t, J = 7 Hz, 3 H), 1.43 (s, 3 H), 1.90-2.30 (m, 4 H), 2.50-2.64 (m, 1 H), 3.82 (q, J = 7 Hz, 2 H), 5.24 (s, 1 H); ¹³C NMR δ 6.9, 7.2, 14.3, 22.9, 27.2, 28.4, 31.0, 55.9, 64.0, 75.1, 103.9, 177.0, 200.1. Anal. Calcd for C₁₇H₃₂O₃Si: C, 65.33; H, 10.32. Found: C, 65.21; H, 10.38

4-[(1-Methyl-1-triethylsilyloxy)ethyl]-2-cyclohexen-1one (5a). To a solution of ketone **21** (8.00 g, 25.6 mmol) in THF (50 mL) at -78 °C was added DIBAL (51.2 mL, 1.0 M in hexane, 51.2 mmol). After 1 h of stirring at -78 °C, the reaction was quenched by slow addition of H₂O (18.4 mL, 1.02 mmol) dissolved in THF (40 mL). The mixture was stirred at ambient temperature for 1 h. NaF (8.60 g) was added to the mixture, and stirring was continued for additional 1 h. The reaction mixture was filtered through a pad of Celite with EtOAc, and the filtrate was evaporated under reduced pressure to afford the corresponding alcohol (8.00 g) as an oil, which was taken as such for the next the step.

To an ice-cold solution of the above crude alcohol (8.00 g) in Et₂O (150 mL) was added 2 N HCI (150 mL). After 45 min of vigorous stirring at ambient temperature, the mixture was diluted with H₂O, and the organic layer was separated. The aqueous layer was extracted with Et₂O. The combined organic layers were washed with saturated NaHCO₃ and brine, dried, and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish 5a (4.92 g, 72% yield from **21**): IR (neat) 1684 cm⁻¹; ¹H NMR δ 0.52–0.62 (m, $^{\circ}6$ H), 0.92 (t, J = 8 Hz, 9 H), 1.15 (s, 3 H), 1.26 (s, 3 H), 1.60-1.76 (m, 1 H), 2.00-2.12 (m, 1 H), 2.31 (ddd, J = 16, 14, 5 Hz, 1 H), 2 41 (dq, J = 11, 2 Hz, 1 H), 2.48 (dt, J = 16, 3 Hz, 1 H), 6.01 (ddd, J = 10, 3, 1 Hz, 1 H), 7.12 (dt, J = 10, 2 Hz, 1 H); ¹³C NMR δ 6.9, 7.2, 24.8, 26.6, 28.3, 37.6, 49.2, 74.7, 129.7, 152.7, 199.8. Anal. Calcd for $C_{15}H_{28}O_2Si: C, 67.11; H, 10.51.$ Found: C, 66.80; H, 10.67.

2-Iodo-4-[(1-methyl-1-triethylsilyloxy)ethyl]-2-cyclohexen-1-one (22a). To an ice-cold solution of enone 5a (1.00 g, 3.72 mmol) in CCl₄ (10 mL) and pyridine (10 mL) was added a solution of I_2 (2.84 g, 11.2 mmol) dissolved in CCl₄ and pyridine (1:1, 20 mL). After stirring overnight at ambient temperature, the mixture was diluted with Et₂O and H₂O. The organic layer was separated, and the aqueous layer was extracted with Et₂O twice. The combined organic layers were washed with saturated Na₂S₂O₃ and H₂O, dried, and evaporated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish 22a (1.20 g, 82% yield): IR (neat) 1690, 1585 cm⁻¹; ¹H NMR δ 0.57–0.67 (m, 6 H), 0.97 (t, J = 8 Hz, 9 H), 1.10 (s, 3 H), 1.32 (s, 3 H), 1.72-1.88 (m, 1 H), 2.09-2.20 (m, 1 H), 2.41-2.60 (m, 2 H), 2.81 (dt, J = 17, 4 Hz, 1 H), 7.92 (dd, J = 2, 1.8 Hz, 1 H); ¹³C NMR δ 6.9, 7.3, 24.9, 26.8, 28.4, 36.3, 53.6, 74.5, 103.9, 161.7, 192.3. Anal. Calcd for C15H27IO2Si: C, 45.68; H, 6.90. Found: C, 45.66; H, 6.86.

2-Iodo-4-[(1,1-dimethyl)ethyl]-2-cyclohexen-1-one (22b). To an ice-cold solution of 4-[(1,1-dimethyl)ethyl]-2-cyclohexen-1-one (**5b**)¹⁷ (2.00 g, 13.1 mmol) in CCl₄ (25 mL) and pyridine (25 mL) was added a solution of I₂ (10.0 g, 39.4 mmol) dissolved in CCl₄ (25 mL) and pyridine (25 mL). After the mixture was stirred overnight at ambient temperature, Et₂O and H₂O were added to the reaction mixture. The organic layer was separated, and the aqueous layer was extracted with Et₂O twice. The combined organic layers were washed sequentially with 1 N HCl, saturated Na₂S₂O₃, and H₂O, dried, and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish **22b** (3.25 g, 89% yield): IR (neat) 1671, 1578 cm⁻¹; ¹H NMR δ 0.99 (s, 9 H), 1.73–1.89 (m, 1 H), 2.09–2.22 (m, 1 H), 2.31–2.55 (m, 2 H), 2.81 (dt, *J* = 16, 4 Hz, 1 H), 7.77 (t, *J* = 2 Hz, 1 H); ¹³C NMR δ 24.1, 27.1, 32.8, 36.2, 51.0, 104.0, 161.3, 191.5. Anal. Calcd for C₁₀H₁₅IO: C, 43.18; H, 5.44. Found: C, 43.03; H, 5.69.

2-Iodo-2-cyclohexen-1-one (22c). The title compound was prepared by the procedure of Johnson¹⁸ in better yield. Briefly, a mixture of enone **5c** (500 mg, 5.2 mmol) and I₂ (3.96 g, 15.60 mmol) in CCl₄ (10 mL) and pyridine (10 mL) was stirred overnight at ambient temperature. After addition of water, the resulting mixture was extracted with Et₂O, and the crude product was purified as described above for **22b** to furnish **22c**¹⁸ (1.00 g, 87% yield): ¹H NMR δ 2.05–2.16 (m, 2 H), 2.46 (dt, J = 4.5, 6 Hz, 2 H), 2.67 (t, J = 7 Hz, 2 H), 7.79 (t, J = 4.5 Hz, 1 H).

2-Iodo-4-[(1-methyl-1-triethylsilyloxy)ethyl]-3-phenyl-1-cyclohexanone (23a). To a suspension of CuCN (68 mg, 0.76 mmol) in Et₂O (5 mL) at -78 °C was added PhLi (1.62 mL, 1.0 M in cyclohexanes-Et₂O, 1.62 mmol). After the addition, the reaction mixture was stirred at 0 °C for 10 min, cooled to -78 °C, and stirred further for 30 min. To the resulting pale yellow solution of cuprate 10a was added slowly a solution of 2-iodocyclohexenone 22a (200 mg, 0.507 mmol) and BF₃·Et₂O (0.063 mL, 0.502 mmol) in Et₂O (5 mL) at -78°C. After 2 h at -78 °C, the solution was poured into saturated NH₄Cl, and the product was extracted with EtOAc twice. The combined organic extracts were dried and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish 23a (156 mg, 65% yield): IR (neat) 1712, 1455 cm⁻¹; ¹H NMR δ 0.50–0.70 (m, 6 H), 0.8–1.2 (m, 15 H), 2.20–3.15 (m, 5 H), 3.58–3.72 (m, 1 H), 4.61 (d, J = 6Hz, 0.5 H) and 5.44 (d, J = 6 Hz, 0.5 H), 7.05–7.40 (m, 5 H). Anal. Calcd for C21H33IO2Si: C, 53.38; H, 7.04. Found: C, 53.17; H, 6.94.

3-[(2,6-Bis(methoxymethoxy)-4-pentyl)phenyl]-2-iodo-4-[(1-methyl-1-triethylsilyloxy)ethyl]-1-cyclohexanone (23b). To an ice-cold solution of the bis MOM ether of olivetol (1.02 g, 3.80 mmol) in Et₂O (5 mL) was added *n*-BuLi (1.93 mL, 2.30 M in hexane, 4.44 mmol) over 10 min. The mixture was stirred at 0 °C for 10 min and then at ambient temperature for 2 h. In a separate flask was taken Et₂O (5 mL) and CuCN (170 mg, 1.90 mmol), and the mixture was cooled to -78 °C. The lithiated olivetol solution was transferred to the copper suspension over 10 min at -78 °C. After the addition, the reaction mixture was stirred at 0 °C for 10 min, cooled to -78 °C, and stirred further for 30 min. To the resulting pale yellow solution of cuprate 10b was added slowly a solution of iodoenone 22a (500 mg, 1.27 mmol) and BF₃·Et₂O (0.159 mL, 1.27 mmol) in Et₂O (5 mL) at -78 °C. After 2 h at -78 °C, the solution was poured into saturated NH₄Cl, and the product was extracted with EtOAc twice. The combined organic extracts were dried and evaporated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish 23b (605 mg, 72% yield): IR (neat) 1725, 1611, 1583 cm⁻¹; ¹H NMR δ 0.57–0.67 (m, 6 H), 0.88 (t, J = 7 Hz, 3 H), 0.97 (t, J = 8 Hz, 9 H), 1.26 (s, 3 H), 1.27-1.35 (m, 4 H), 1.37 (s, 3 H), 1.52-1.68 (m, 2 H), 1.96-2.21 (m, 3 H), 2.47-2.62 (m, 3 H), 2.81 (dt, J = 18, 7 Hz, 1 H), 3.42 (s, 3 H), 3.50 (s, 3 H), 4.53 (dd, J=9, 5 Hz, 1 H), 4.80 (d, J=7 Hz, 1 H), 5.01 (d, J = 7 Hz, 1 H), 5.20 (s, 2 H), 5.71 (d, J = 9 Hz, 1 H), 6.62 (d, J = 1 Hz, 1 H), 6.66 (d, J = 1 Hz, 1 H); ¹³C NMR δ 6.9, 7.3, 14.2, 22.6, 22.9, 28.7, 30.0, 31.0, 31.8, 36.4, 36.8, 41.1, 43.1, 50.9, 56.2, 56.4, 60.5, 94.3, 94.9, 107.8, 108.0, 119.7, 143.9, 155.2, 156.3, 202.2. Anal. Calcd for $C_{30}H_{51}IO_6Si:\ C,\ 54.37;\ H,\ 7.76.$ Found: C, 54.20; H, 7.96.

Phosphate 12a. By using the procedure for synthesis of **12b** (below), iodoketone **23a** (150 mg, 0.317 mmol) in THF (5 mL), EtMgBr (0.48 mL, 1.0 M in THF, 0.48 mmol), and ClP-(O)(OEt)₂ (0.114 mL, 0.792 mmol) afforded the title product **12a** (97 mg, 63% yield) after purification by chromatography: IR (neat) 1687, 1456, 1270 cm⁻¹; ¹H NMR δ 0.50–0.65 (m, 6 H), 0.90–1.02 (m, 9 H), 1.13–1.36 (m, 12 H), 1.64–1.88 (m, 2 H), 1.90–2.06 (m, 1 H), 2.28–2.53 (m, 2 H), 3.66 (d, J = 2 Hz, 1 H), 4.04–4.20 (m, 4 H), 5.32–5.40 (m, 1 H), 7.10–7.34 (m, 5 H). Anal. Calcd for C₂₅H₄₃O₅PSi: C, 62.21; H, 8.98. Found: C, 61.89; H, 8.65.

Phosphate 12b. To an ice-cold solution of iodoketone 23b (561 mg, 0.847 mmol) in THF (10 mL) was added EtMgBr (1.27 mL, 1.0 M in THF, 1.27 mmol). After 10 min of stirring, ClP- $(O)(OEt)_2$ (0.31 mL, 2.15 mmol) was added to the resulting pale vellow solution. The reaction was continued at 0 °C for 2 h and quenched with saturated NaHCO₃. The product was extracted with EtOAc twice. The combined organic extracts were dried and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) on silica gel that was pretreated with Et₃N (5wt %) to furnish **12b** (404 mg, 71% yield): IR (neat) 1608, 1580 cm⁻¹; ¹H NMR δ 0.46– 0.56 (m, 6 H), 0.86-0.96 (m, 15 H), 1.12 (s, 3 H), 1.24-1.36 (m, 10 H), 1.50-1.70 (m, 3 H), 2.20-2.55 (m, 6 H), 3.48 (br s, 6 H), 4.02-4.16 (m, 5 H), 5.06-5.18 (m, 5 H), 6.57 (s, 2 H); ¹³C NMR δ 6.9, 7.3, 14.2, 16.1 (d, J = 7 Hz), 22.6, 25.3, 26.3, 28.3 (d, J = 3 Hz), 30.1, 31.1, 31.7, 32.8, 36.3, 46.9, 56.1, 63.84, 63.87, 63.92, 63.95 (four peaks for two carbons (2 CH₂)), 76.1, 94.8, 108.1, 108.7, 115.1 (d, J = 6 Hz), 120.8, 142.5, 147.0 (d, J = 15 Hz), 154.7 (br s), 156.8 (br s). Anal. Calcd for C₃₄H₆₁O₉-PSi: C, 60.69; H, 9.14. Found: C, 60.68; H, 9.06.

Phosphate 12d. According to the procedure for synthesis of **23b**, cuprate **10d** was prepared from the bis SEM ether of olivetol (601 mg, 1.36 mmol) in Et₂O (5 mL), n-BuLi (0.64 mL, 2.50 M in hexane, 1.60 mmol), and CuCN (61 mg, 0.68 mmol) in Et₂O (5 mL) and submitted to reaction with a solution of enone 22a (180 mg, 0.456 mmol) and BF₃·Et₂O (0.068 mL, 0.547 mmol) in E_2O (5 mL) at -78 °C to afford a mixture (252 mg) of **23d** and the bis SEM ether of olivetol, which was taken for the next step after semi purification by fast column chromatography on silica gel. Spectral data of 23d: 1H NMR δ 0.05 (s, 18 H), 0.65 (q, J = 8 Hz, 6 H), 0.85–1.05 (m, 16 H), 1.25 (s, 3 H), 1.20-1.40 (m, 2 H), 1.37 (s, 3 H), 1.50-1.65 (m, 3 H), 1.90–2.20 (m, 3 H), 2.45–2.60 (m, 4 H), 2.83 (dt, J = 7, 18 Hz, 1 H), 3.60-3.85 (m, 4 H), 4.52 (dd, J = 9, 5 Hz, 1 H), 4.87 (d, J = 7 Hz, 1 H), 5.02 (d, J = 7 Hz, 1 H), 5.24 (s, 2 H), 5.72 (d, J = 9 Hz, 1 H), 6.65 (s, 1 H), 6.72 (s, 1 H).

By using the procedure for synthesis of **12b**, iodoketone **23d** (252 mg) in THF (5 mL), EtMgBr (0.45 mL, 1.0 M in THF, 0.45 mmol), and ClP(O)(OEt)₂ (0.11 mL, 0.76 mmol) afforded the title product **12d** (205 mg, 53% yield from **22a**) after purification by chromatography: IR (neat) 1580 cm⁻¹; ¹H NMR δ 0.00 (s, 18 H), 0.46–0.55 (m, 6 H), 0.82–1.02 (m, 19 H), 1.10 (s, 3 H), 1.22–1.34 (m, 11 H), 1.48–1.65 (m, 3 H), 2.17–2.43 (m, 3 H), 2.49 (t, J = 8 Hz, 2 H), 3.72 (br s, 4 H), 4.00–4.15 (m, 5 H), 5.03 (dd, J = 5, 3 Hz, 1 H), 5.06–5.24 (m, 4 H), 6.60 (s, 2 H); ¹³C NMR δ –1.2, 7.0, 7.4, 14.3, 16.2 (d, J = 7 Hz), 18.2, 22.7, 25.3, 26.2, 28.3 (d, J = 3 Hz), 30.4, 31.2, 31.8, 32.8, 36.3, 47.1, 63.9 (d, J = 6 Hz), 66.1, 76.1, 93.4, 108.0, 108.9, 115.3 (d, J = 6 Hz), 120.6, 142.5, 147.1 (d, J = 9 Hz), 154.9 (br s), 157.2 (br s). Anal. Calcd for C₄₂H₈₁O₉PSi₃: C, 59.68; H, 9.66. Found: C, 59.60; H, 9.94.

3-[(2,6-Bis(methoxymethoxy)-4-pentyl)phenyl]-2-[(1-hydroxy-3-phenyl)propyl]-4-[(1-methyl-1-triethylsilyloxy)-ethyl]-1-cyclohexanone (28). To an ice-cold solution of iodoketone **23b** (50 mg, 0.075 mmol) in THF (2 mL) was added EtMgBr (0.091 mL, 1.0 M in THF, 0.091 mmol). After 10 min of stirring, Ph(CH₂)₂CHO (**27**) (0.014 mL, 0.106 mmol) was added to the resulting pale yellow solution. The reaction was continued at 0 °C for 2 h and quenched with saturated

NaHCO₃. The product was extracted with EtOAc twice. The combined organic extracts were dried and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish aldol **28** (40 mg, 79% yield): IR (neat) 3515, 1683, 1609, 1581 cm⁻¹; ¹H NMR δ 0.47–0.68 (m, 6 H), 0.80–1.10 (m, 13 H), 1.02 (s, 3 H), 1.14 (s, 3 H), 1.20–2.00 (m, 9 H), 2.25–2.64 (m, 6 H), 2.82–3.03 (m, 1 H), 3.09–3.31 (m, 2 H), 3.35 (s, 3 H), 3.48 (s, 3 H), 3.33–3.52 (m, 1 H), 3.68 (t, *J* = 9 Hz, 1 H), 4.93 (d, *J* = 7 Hz, 1 H), 5.02–5.26 (m, 4 H), 6.60 (s, 2 H), 7.07–7.32 (m, 5 H). HRMS (CI) *m/z* calcd for C₃₉H₆₂O₇Si (M⁺) 670.4265, found 670.4266.

3-[(2,6-Bis(methoxymethoxy)-4-pentyl)phenyl]-2-hydroxymethyl-4-[(1-methyl-1-triethylsilyloxy)ethyl]-1-cyclohexanone (29). To an ice-cold solution of iodoketone 23b (220 mg, 0.332 mmol) in THF (2 mL) was added EtMgBr (0.50 mL, 1.0 M in THF, 0.50 mmol). After 10 min of stirring, gaseous CH₂O in THF (5 mL) freshly prepared by cracking $(CH_2O)_n$ (200 mg, 6.6 mmol) was added to the resulting pale vellow solution. The reaction was continued at 0 °C for 2 h and quenched with saturated NaHCO₃. The product was extracted with EtOAc twice. The combined organic extracts were dried and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish aldol 29 (120 mg, 64% yield): IR (neat) 3567, 1700 cm⁻¹; ¹H NMR (diagnostic signals) δ 0.51–0.65 (m, 6 H), 1.05 (s, CH₃), 1.11 (s, CH₃), 3.43 and 3.50 (2s, minor isomer, 2 CH₃), 3.47 and 3.50 (2s, major isomer, 2 CH₃). HRMS (CI) m/z calcd for C₃₁H₅₄O₇Si (M⁺) 566.3639, found 566.3638.

3-[(2,6-Bis(methoxymethoxy)-4-pentyl)phenyl]-2-methylene-4-[(1-methyl-1-triethylsilyloxy)ethyl]-1-cyclohexanone (30). To an ice-cold solution of aldol 29 (50 mg, 0.088 mmol) and Et₃N (0.12 mL, 0.88 mmol) in CH₂Cl₂ (2 mL) was added MsCl (0.054 mL, 0.698 mmol). After 1 h of stirring at 0 °C, the reaction was quenched with NaHCO₃ and the product was extracted with EtOAc twice. The combined organic extracts were dried and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish the corresponding mesylate (44 mg, 79% yield): IR (neat) 1715, 1357 cm^{-1} ; ¹H NMR δ 0.51–0.63 (m, 6 H), 0.84– 1.00 (m, 12 H), 1.05 (s, 3 H), 1.13 (s, 3 H), 1.23-1.42 (m, 4 H), 1.50-1.66 (m, 2 H), 1.83-1.98 (m, 1 H), 2.30-2.75 (m, 6 H), 2.97 (s, 3 H), 3.39-3.52 (m, 1 H), 3.47 (s, 3 H), 3.50 (s, 3 H), 3.73 (dd, J = 12, 8 Hz, 1 H), 4.02 (dd, J = 10, 3 Hz, 1 H), 4.14(dd, J = 10, 6 Hz, 1 H), 5.16 (s, 2 H), 5.23 (s, 2 H), 6.60 (br s, 1 H), 6.67 (d, J = 1 Hz, 1 H); ¹³C NMR δ 6.8, 7.3, 14.3, 22.7, 24.1, 27.3, 30.2, 31.1, 31.9, 34.7, 36.5, 36.8, 38.9, 49.3, 50.0, 56.3, 56.6, 67.8, 76.8, 94.3, 95.2, 107.85, 107.92, 117.3, 144.0, 155.4, 156.3, 211.0. HRMS (CI) m/z calcd for C32H56O9SSi (M+) 644.3414, found 644.3408.

To an ice-cold solution of the above mesylate (40 mg, 0.062 mmol) in CH₂Cl₂ (2 mL) was added Al₂O₃ (63 mg, 0.62 mmol).⁴⁶ After stirring overnight at ambient temperature, the reaction mixture was filtered through a pad of Celite and the solvent was evaporated under reduced pressure to afford an oily residue, which was purified by chromatography (hexane/ EtOAc) to furnish 30 (30 mg, 88% yield): IR (neat) 1721, 1697, 1608 cm⁻¹; ¹H NMR δ 0.55 (q, J = 8 Hz, 6 H), 0.85–0.97 (m, 12 H), 1.14 (s, 3 H), 1.23 (s, 3 H), 1.2-1.4 (m, 4 H), 1.49-1.82 (m, 3 H), 2.04-2.27 (m, 2 H), 2.39-2.69 (m, 4 H), 3.39 (br s, 3 H), 3.50 (br s, 3 H), 4.61 (d, J = 7 Hz, 1 H), 5.00 (br s, 2 H), 5.08 (t, J = 1.5 Hz, 1 H), 5.21 (br s, 2 H), 5.79 (t, J = 1.5 Hz, 1 H), 6.58 (br s, 2 H); $^{13}\mathrm{C}$ NMR δ 6.9, 7.4, 14.3, 22.7, 22.8, 27.4, 30.0, 31.2, 31.8, 36.4, 36.9, 37.9, 49.7, 56.3, 76.3, 94.0, 94.7, 107.7, 108.0, 121.3, 122.5, 142.9, 149.0, 154 (br s), 155 (br s), 202.6. HRMS (CI) m/z calcd for $C_{31}H_{52}O_6Si$ (M⁺) 548.3533, found 548.3530.

1-Methyl-4-[(1-methyl-1-triethylsilyloxy)ethyl]-3-phenyl-1-cyclohexene (31a). According to the procedure for synthesis of **31b** (below), methylation of enol phosphate **12a** (90 mg, 0.186 mmol) in THF (2 mL) was carried out with MeMgCl (0.17 mL, 2.80 M in THF, 0.48 mmol) and Ni(acac)₂ (5 mg, 0.019 mmol) in THF (2 mL) to afford **31a** (60 mg, 94% yield): IR (neat) 1601, 1456 cm⁻¹; ¹H NMR δ 0.55 (q, J = 8 Hz, 6 H), 0.94 (t, J = 8 Hz, 9 H), 1.05 (s, 3 H), 1.13 (s, 3 H), 1.49–1.64 (m, 1 H), 1.68 (s, 3 H), 1.73–1.85 (m, 1 H), 1.87–2.06 (m, 3 H), 3.39–3.47 (m, 2 H), 5.21 (br s, 1 H), 7.09–7.32 (m, 5 H); ¹³C NMR δ 7.0, 7.4, 22.6, 23.7, 28.6, 29.5, 30.0, 43.9, 51.3, 76.3, 125.5, 125.8, 128.2, 128.3, 133.3, 148.6. Anal. Calcd for C₂₂H₃₆OSi: C, 76.68; H, 10.53. Found: C, 76.66; H, 10.56.

3-[(2,6-Bis(methoxymethoxy)-4-pentyl)phenyl]-1-methyl-4-[(1-methyl-1-triethylsilyloxy)ethyl]-1-cyclohexene (31b). To an ice-cold solution of Ni(acac)₂ (8 mg, 0.03 mmol) in THF (5 mL) was added MeMgCl (0.27 mL, 2.80 M in THF, 0.76 mmol). After 10 min at 0 °C, a solution of enol phosphate 12b (200 mg, 0.297 mmol) in THF (5 mL) was added. The solution was stirred at ambient temperature overnight and diluted with saturated NaHCO₃ at 0 °C. The product was extracted with EtOAc twice. The combined organic layers were dried and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish 31b (146 mg, 92% yield): IR (neat) 1608, 1579 cm⁻¹; ¹H NMR δ 0.44-0.55 (m, 6 H), 0.85-0.96 (m, 15 H), 1.11 (s, 3 H), 1.22-1.64 (m, 10 H), 1.84-2.20 (m, 3 H), 2.38-2.54 (m, 3 H), 3.46 (br s, 6 H), 3.93 (d, J = 9 Hz, 1 H), 4.96-5.15 (m, 5 H), 6.57 (s, 2 H); $^{13}\mathrm{C}$ NMR δ 7.0, 7.4, 14.3, 22.7, 23.5, 25.4, 26.4, 30.1, 30.9, 31.2, 31.9, 34.6, 36.4, 47.3, 56.1 (br s), 76.6, 94.3, 95.0, 108.4, 108.9, 122.9, 125.7, 132.3, 142.0, 154.8 (br s), 156.5 (br s). Anal. Calcd for C₃₁H₅₄O₅Si: C, 69.62; H, 10.18. Found: C, 69.20; H, 10.09.

3-[(2,6-Bis(methoxymethoxy)-4-pentyl)phenyl]-1-[(dimethyl(propyloxy)silyl)methyl]-4-[(1-methyl-1-triethylsilyloxy)ethyl]-1-cyclohexene (33b). To an ice-cold solution of Ni(acac)_2 (0.10 mg, 0.039 mmol) in THF (5 mL) was added ClMgCH₂Si(Me)₂(OPr-*i*) (1.01 mL, 0.95 M in THF, 0.96 mmol). After 10 min of stirring at 0 °C, a solution of enol phosphate 12b (260 mg, 0.386 mmol) in THF (5 mL) was added and stirring was continued overnight at ambient temperature. The reaction was cooled to 0 °C and quenched with saturated NaHCO₃. The product was extracted with EtOAc twice. The combined organic layers were dried and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish 33b (220 mg, 88% yield): IR (neat) 1608, 1579 cm⁻¹; ¹H NMR δ 0.09 and 0.10 2s, 6 H), 0.45–0.56 (m, 6 H), 0.85-0.97 (m, 15 H), 1.07-1.18 (m, 9 H), 1.25-1.64 (m, 9 H), 1.88-2.18 (m, 3 H), 2.37-2.56 (m, 3 H), 3.46 (s, 3 H), 3.48 (s, 3 H), 3.89-4.04 (m, 2 H), 4.86 (s, 1 H), 5.02-5.26 (m, 4 H), 6.57 (s, 2 H); ¹³C NMR δ –1.1, –1.0, 7.0, 7.4, 14.3, 22.7, 25.6, 25.9, 26.6, 27.3, 30.1, 31.2, 31.6, 31.9, 34.6, 36.3, 47.1, 56.0, 56.2, 64.9, 76.5, 94.4, 95.1, 108.5, 108.9, 123.0, 124.3, 132.4, 141.8, 154.8, 156.6. Anal. Calcd for $C_{36}H_{66}O_6Si_2$: C, 66.41; H, 10.22. Found: C, 66.13; H, 10.11.

3-[(2,6-Dimethoxy-4-pentyl)phenyl]-1-[(dimethyl(propyloxy)silyl)methyl]-4-[(1-methyl-1-triethylsilyloxy)ethyl]-1-cyclohexene (33c). According to the procedure for synthesis of 33b, the silvlmethylation of enol phosphate 12c (350 mg, 0.571 mmol) in THF (5 mL) was carried out with ClMgCH2-Si(Me)₂(OPr-i) (1.32 mL, 1.08 M in THF, 1.43 mmol) and Ni(acac)₂ (15 mg, 0.058 mmol) in THF (5 mL) to afford 33c (286 mg, 85% yield): IR (neat) 1607, 1579, 1456 cm⁻¹; ¹H NMR δ 0.06 (s, 3 H), 0.12 (s, 3 H), 0.45–0.54 (m, 6 H), 0.85–0.95 (m, 15 H), 1.05 (br s, 3 H), 1.11 (d, J = 6 Hz, 3 H), 1.12 (d, J = 6 Hz, 3 H), 1.27-1.67 (m, 9 H), 1.81-1.94 (m, 1 H), 2.03-2.23 (m, 2 H), 2.32–2.45 (m, 1 H), 2.53 (t, *J* = 8 Hz, 2 H), 3.70 (br s, 3 H), 3.77 (br s, 3 H), 3.88-3.97 (m, 2 H), 4.83 (br s, 1 H), 6.47 (br s, 2 H); 13 C NMR δ –1.4, –0.9, 7.0, 7.4, 14.3, 22.8, 25.7, 26.0, 26.4, 27.8, 30.1, 31.3, 31.8, 31.9, 34.2, 36.6, 46.8, 55.3, 55.9, 64.9, 76.6, 104.1, 104.7, 121.1, 124.4, 132.3, 141.5, 157.0, 158.8. Anal. Calcd for C₃₄H₆₂O₄Si₂: C, 69.09; H, 10.57. Found: C, 69.04; H, 10.22.

3-[(2,6-Bis(methoxymethoxy)-4-pentyl)phenyl]-1-hydroxymethyl-4-[(1-methyl-1-triethylsilyloxy)ethyl]-1-cyclohexene (34b). To a solution of **33b** (200 mg, 0.307 mmol), NaHCO₃ (103 mg, 1.23 mmol), and KF (124 mg, 2.13 mmol) in THF/MeOH (1:1) (5 mL) was added 35% H₂O₂ (0.24 mL, 2.74 mmol). The reaction mixture was stirred at 50 °C for 4 h, cooled to 0 °C, and poured into saturated Na₂S₂O₃. The resulting mixture was stirred vigorously at ambient temperature for 1 h and diluted with EtOAc. The organic layer was separated, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were dried and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish 34b (98 mg, 58% yield: IR (neat) 3420, 1608, 1433 cm⁻¹; ¹H NMR δ 0.51 (q, J = 8 Hz, 6 H), 0.86–0.98 (m, 15 H), 1.12 (s, 3 H), 1.20–1.70 (m, 8 H), 2.02-2.28 (m, 3 H), 2.37-2.56 (m, 3 H), 3.46 (s, 6 H), 3.93–4.04 (m, 3 H), 4.97–5.24 (m, 4 H), 5.28 (s, 1 H), 6.47– 6.64 (m, 2 H); ¹³C NMR δ 7.0, 7.4, 14.3, 22.7, 25.2, 26.4, 26.6, 30.0, 31.2, 31.9, 34.2, 36.4, 47.8, 56.3, 67.7, 76.4, 94.6, 95.0, 108.4, 108.8, 122.0, 127.9, 136.1, 142.4, 154.9, 156.5. Anal. Calcd for C₃₁H₅₄O₆Si: C, 67.59; H, 9.88. Found: C, 67.34; H, 9.80.

3-[(2,6-Dimethoxy-4-pentyl)phenyl]-1-hydroxymethyl-4-[(1-methyl-1-triethylsilyloxy)ethyl]-1-cyclohexene (34c). According to the preceding procedure, a mixture of 33c (250 mg, 0.423 mmol), 35% H₂O₂ (0.33 mL, 3.8 mmol), NaHCO₃ (142 mg, 1.69 mmol), and KF (171 mg, 2.95 mmol) in THF/MeOH (1:1) (5 mL) was stirred at 50 °C for 4 h to afford 34c (107 mg, 52% yield) after chromatography on silica gel (hexane/EtOAc): IR (neat) 3361, 1607, 1578, 1458 cm^{-1}; $^1\rm H$ NMR δ 0.51 (q, J = 8 Hz, 6 H), 0.87-0.95 (m, 15 H), 1.06 (s, 3 H), 1.20-2.51 (m, 5 H), 1.54-1.68 (m, 3 H), 2.03-2.25 (m, 3 H), 2.39 (ddd, J = 13, 10, 3 Hz, 1 H), 2.54 (t, J = 8 Hz, 2 H), 3.75 (br s, 6 H), 3.97 (br s, 3 H), 5.24 (br s, 1 H), 6.33 (m, 2 H); ¹³C NMR & 7.0, 7.4, 14.3, 22.8, 25.2, 26.2, 26.7, 30.0, 31.3, 31.9, 33.6, 36.6, 47.4, 55.7 (br s), 67.7, 76.5, 104.2 (br s), 105.2 (br s), 120.5, 127.8, 136.1, 141.9, 156.9 (br s), 158.8 (br s). Anal. Calcd for C₂₉H₅₀O₄Si: C, 70.97; H, 10.27. Found: C, 70.72; H, 9.96

6,6-Dimethylnorpinan-2-one (44). A stream of ozonized oxygen was gently bubbled into a solution of (+)- β -pinene (**43**) (2.00 g, 12.7 mmol) in MeOH (30 mL) at -78 °C for 2.5 h. Argon was then bubbled to the solution at -78 °C to remove excess of O₃, and the reaction was quenched with (CH₃)₂S (1.60 mL, 22.0 mmol) at -78 °C. The solution was warmed to ambient temperature, stirred overnight, and diluted with H₂O. The product was extracted with EtOAc twice. The combined organic layers were washed with H₂O and brine, dried, and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish **44** (1.57 g, 78% yield): $[\alpha]^{28}_{D} -33$ (*c* 0.56, MeOH); lit.⁴² $[\alpha]^{22}_{D} +36.5$ (*c* 4.0, MeOH) for the enantiomer; updated ¹H NMR δ 0.80 (s, 3 H), 1.28 (s, 3 H), 1.54 (d, *J* = 10 Hz, 1 H), 1.83-2.07 (m, 2 H), 2.14-2.36 (m, 2 H) 2.42-2.60 (m, 3 H).

(R)-4-[(1-Acetoxy-1-methyl)ethyl]-2-cyclohexenone (46). The procedure for synthesis of the enantiomer of 46 reported by Razdan⁴⁴ was followed. Briefly, a solution of 44 (1.20 g, 8.68 mmol), BF3·OEt2 (0.76 mL, 6.05 mmol), and Zn(OAc)2 (2.70 g, 14.7 mmol) in Ac_2O (20 mL) was stirred at 0 $^\circ C$ for 3 h and poured into a 1:1 mixture of ice and Et₂O. After 30 min of vigorous stirring, the organic layer was separated, and the aqueous layer was extracted with Et₂O twice. The combined organic layers were stirred with saturated NaHCO₃ to neutralize the solution, washed with H₂O and brine, dried, and concentrated to afford a oily residue, which was purified by chromatography (hexane/EtOAc) to furnish 45 (1.50 g, 72% yield): $[\alpha]_{D}^{26} + 45$ (*c* 0.47, EtOH); lit.^{44a} $[\alpha]_{D}^{29.5} - 48.3$ (*c* 0.0325, EtOH) for the enantiomer. The ¹H NMR (300 MHz) spectrum of 45 was identical with the ¹H NMR (400 MHz) data reported in lit.^{44a} Additional data of **45**: IR (neat) 3440, 1756, 1730 cm⁻¹; ¹³C NMR δ 20.8, 22.2, 23.0, 23.2, 23.3, 24.4, 27.1, 42.0, 83.8, 112.8, 147.8, 168.8, 169.8.

To a solution of $Pd(OAc)_2$ (67 mg, 0.299 mmol), **45** (1.44 g, 5.99 mmol), DPPE (119 mg, 0.299 mmol), and allyl ethyl carbonate (1.57 mL, 11.9 mmol) in MeCN (20 mL) was added Bu₃SnOMe (0.34 mL, 1.18 mmol). The reaction mixture was stirred at 80 °C for 5 h, cooled to 0 °C, and poured into a 1:1

mixture of brine and Et₂O. The reaction mixture was filtered through a pad of Celite. The organic layer was separated, and the aqueous layer was extracted with Et₂O twice. The combined organic layers were washed with saturated NaHCO₃, dried, and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish **46** (1.00 g, 85% yield): $[\alpha]^{26}_{D}$ +42 (*c* 0.41, EtOH); lit.^{44a} $[\alpha]^{27}_{D}$ -49 (*c* 0.06015, EtOH) for the enantiomer. The ¹H NMR (300 MHz) spectrum of **46** was identical with the ¹H NMR (400 MHz) data reported in lit.^{44a} Additional data of **46**: IR (neat) 1731, 1682 cm⁻¹; ¹³C NMR δ 22.3, 23.2, 23.6, 24.2, 37.2, 44.8, 83.0, 130.1, 150.0, 169.9, 198.7.

(*R*)-4-[(1-Hydroxy-1-methyl)ethyl]-2-cyclohexen-1one (48). To a solution of enone 46 (1.00 g, 5.10 mmol) in THF (20 mL) at -78 °C was added DIBAL (29.8 mL, 0.95 M in hexane, 28.3 mmol). The reaction was carried out at -78 °C for 1.5 h and was quenched with THF/H₂O (1:1, 20 mL). After 1 h of stirred at ambient temperature, NaF (3.0 g) was added to the reaction mixture. The resulting mixture was stirred for additional 1 h and filtered through a pad of Celite. The filtrate was concentrated to afford an oily residue, which was purified by chromatography (CH₂Cl₂/acetone) to furnish diol 47 (750 mg, 94% yield): IR (Nujol) 3290 cm⁻¹; ¹H NMR δ 1.05 (s, 3 H), 1.11 (s, 3 H), 1.70–1.86 (m, 2 H), 1.90–2.20 (m, 3 H), 2.38 (br s, 1 H), 3.20 (br s, 1 H), 4.12 (br s, 1 H), 5.65–5.80 (m, 2 H).

A mixture of diol **47** (400 mg, 2.56 mmol), PCC (662 mg, 3.07 mmol), and Celite (2.5 g) in CH₂Cl₂ (10 mL) was stirred for 2 h at ambient temperature and filtered through a pad of Celite. The filtrate was concentrated under reduced pressure to afford a crude mixture, which was purified by chromatography (CH₂Cl₂/acetone) to furnish **48** (300 mg, 76% yield): $[\alpha]^{29}_{D}$ +72 (*c* 0.44, MeOH); lit.^{44b} $[\alpha]^{22}_{D}$ +58.76 (*c* 0.0573, MeOH). The spectral data of **48**: IR (neat) 3430, 1668 cm⁻¹; ¹H NMR δ 1.22 (s, 3 H), 1.31 (s, 3 H), 1.68–1.85 (m, 1 H), 2.10–2.21 (m, 1 H), 2.30–2.62 (m, 4 H), 6.08 (ddd, J = 11, 3, 1 Hz, 1 H), 7.20 (dt, J = 11, 2 Hz, 1 H); ¹³C NMR δ 24.7 26.0, 28.3, 37.4, 47.9, 72.0, 129.9, 152.2, 199.9.

(*R*)-4-[(1-Methyl-1-triethylsilyloxy)ethyl]-2-cyclohexen-1-one ((+)-5a). A solution of alcohol **48** (300 mg, 1.94 mmol), TESCl (0.50 mL, 2.94 mmol), and imidazole (238 mg, 3.50 mmol) in DMF (5 mL) was stirred overnight at ambient temperature and diluted with saturated NaHCO₃ and hexane (1:1) at 0 °C. The organic layer was separated, and the aqueous layer was extracted with hexane twice. The combined organic extracts were dried and concentrated under reduced pressure to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish (+)-5a (443 mg, 85% yield): [α]²⁴_D +67 (*c* 0.49, MeOH).

(*R*)-2-Iodo-4-[1-methyl-1-(triethylsilyloxy)ethyl]-2-cyclohexen-1-one ((–)-22a). The procedure described for synthesis of racemic 22a (vide supra) was repeated with enone 5a (500 mg, 1.86 mmol) in CCl₄ (5 mL) and pyridine (5 mL), a solution of I₂ (1.42 g, 5.59 mmol) dissolved in CCl₄ and pyridine (1:1, 10 mL) to afford (–)-22a (537 mg, 73% yield) after chromatography (hexane/EtOAc): $[\alpha]^{28}_{\rm D}$ –5 (*c* 0.96, MeOH).

(*R*)-3-[(2,6-Dimethoxy-4-pentyl)phenyl]-2-iodo-4-[(1methyl-1-triethylsilyloxy)ethyl]-1-cyclohexanone ((+)-23c). According to the procedure for synthesis of 23b, cuprate 10c was prepared from the bis methyl ether of olivetol (850 mg, 4.08 mmol) in Et₂O (5 mL), *n*-BuLi (1.73 mL, 2.51 M in hexane, 4.34 mmol), CuCN (182 mg, 2.04 mmol) in Et₂O (5 mL), and submitted to the reaction with a solution of enone (-)-22a (537 mg, 1.35 mmol) and BF₃·Et₂O (0.17 mL, 1.35 mmol) in Et₂O (5 mL) to afford (+)-23c (510 mg, 62% yield) after purification by chromatography (hexane/EtOAc): $[\alpha]^{30}_{\rm D}$ +37 (*c* 0.44, CHCl₃).

Phosphate (-)-12c. By using the procedure for synthesis of 12b, iodoketone (+)-23c (240 mg, 0.398 mmol) in THF (5 mL), EtMgBr (0.60 mL, 1.0 M in THF, 0.59 mmol), and ClP-(O)(OEt)₂ (0.145 mL, 0.991 mmol) afforded (-)-12c (161 mg,

66% yield) after purification by chromatography: $[\alpha]^{30}{}_{\rm D}$ –43 (c 0.53, CHCl_3).

(3*R*,4*R*)-3-[(2,6-Dimethoxy-4-pentyl)phenyl]-1-methyl-4-[(1-methyl-1-triethylsilyloxy)ethyl]-1-cyclohexene ((-)-31c). According to the procedure for synthesis of 31b, methylation of enol phosphate (-)-12c (140 mg, 0.228 mmol) in THF (2 mL) was carried out with MeMgCl (0.16 mL, 2.80 M in THF, 0.45 mmol) and Ni(acac)₂ (6 mg, 0.023 mmol) in THF (2 mL) to afford (-)-31c (100 mg, 93% yield): $[\alpha]^{28}_{D}$ -84 (*c* 0.49, CHCl₃).

(3R,4R)-3-[(2-Hydroxy-6-methoxy-4-pentyl)phenyl]-1methyl-4-[(1-methyl-1-triethylsilyloxy)ethyl]-1-cyclohexene ((-)-38). To a solution of (-)-31c (100 mg, 0.211 mmol) in DMF (2 mL) was added NaSEt (265 mg, 80% content, 2.52 mmol). After stirring for 12 h at 140 °C, the mixture was cooled to 0 °C and diluted with saturated NaHCO3. The product was extracted with Et₂O twice. The combined organic layers were dried and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish (-)-**38** (53 mg, 73% yield): $[\hat{\alpha}]^{26}_{D}$ –44 (*c* 0.20, CHCl₃); IR (Nujol) 3524, 3209 cm⁻¹; ¹H NMR δ 0.89 (t, J = 7 Hz, 3 H), 1.12 (s, 3 H), 1.14 (s, 3 H), 1.25-1.40 (m, 4 H), 1.44-1.69 (m, 3 H), 1.75 (s, 3 H), 1.90-2.27 (m, 5 H), 2.50 (t, J = 8 Hz, 2 H), 3.82 (br s, 3 H), 4.03 (br s, 1 H), 5.41 (br s, 1 H), 6.03 (br s, 1 H), 6.29 (s, 1 H), 6.34 (s, 1 H); 13 C NMR δ 14.2, 22.7, 23.5, 25.3, 26.2, 28.9, 30.2, 31.0, 31.7, 33.2, 36.1, 48.1, 55.8, 73.7, 103.6, 110.7, 116.3, 124.8, 139.0, 143.4, 155.8, 156.3.

 Δ^9 -**THC ((–)-2).** To a solution of (–)-**38** (40 mg, 0.116 mmol) in CH₂Cl₂ (5 mL) were added ZnBr₂ (52 mg, 0.23 mmol) and MgSO₄ (100 mg). The mixture was stirred at ambient temperature for 12 h and diluted with saturated NaHCO₃. The mixture was extracted with Et₂O twice. The combined organic layers were dried and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish methyl ether of Δ^9 -THC ((-)- $\mathbf{\hat{39}}$)^{**6**h} (32 mg, 84% yield): $[\alpha]^{27}$ _D -112 (*c* 0.16, CHCl₃); IR (neat) 1615, 1575 cm⁻¹; ¹H NMR δ 0.89 (t, J = 7 Hz, 3 H), 1.08 (s, 3 H), 1.41 (s, 3 H), 1.67 (s, 3 H), 1.2-1.8 (m, 7 H), 1.84-1.98 (m, 2 H), 2.09-2.20 (m, 2 H), 2.50 (t, J = 8 Hz, 2 H), 3.17 (d, J = 11 Hz, 1 H), 3.84 (s, 3 H), 6.23 (br s, 1 H), 6.27 (br s, 1 H), 6.31 (br s, 1 H); $^{13}\mathrm{C}$ NMR δ 14.2, 19.3, 22.7, 23.6, 25.3, 27.7, 31.0, 31.4, 31.8, 34.1, 36.2, 46.0, 55.3, 77.3, 103.0, 110.2, 110.4, 124.8, 133.4, 142.5, 154.3, 158.3.

To a solution of (–)-**39** (20 mg, 0.061 mmol) in DMF (5 mL) was added NaSEt (51 mg, 80% content, 0.485 mmol). After stirring at 120 °C for 8 h, the mixture was cooled to 0 °C and diluted with saturated NaHCO₃. The product was extracted with Et₂O twice. The combined organic layers were dried and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish (–)-**2** (13 mg, 68% yield): $[\alpha]^{30}_{\rm D}$ –145 (*c* 0.11, CHCl₃); lit.^{6b} $[\alpha]^{28}_{\rm D}$ –150 (*c* 1.0, CHCl₃). The IR, ¹H NMR, and ¹³C NMR spectra were in good agreement with those reported in the literature^{6i,23} for the enantiomer.

(3*R*,4*R*)-3-(3-Hydroxy-1-methoxynaphthalene-2-yl)-1-methyl-4-[(1-methyl-1-triethylsilyloxy)ethyl]-1-cyclohex-

ene (41). A mixture of **31e** (135 mg, 0.297 mmol) and NaSEt (249 mg, 80% content, 2.37 mmol) in DMF (5 mL) was stirred at 120 °C for 12 h and diluted with saturated NaHCO₃. The product was extracted with Et₂O twice. The combined organic layers were dried and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish **40** (80 mg, 62% yield): IR (neat) 3441, 1634, 1464 cm⁻¹; ¹H NMR (diagnostic signals) δ 1.78 (s, 3 H), 3.89 (s, 3 H), 4.11–4.22 (m, 1 H), 5.39 (br s, 1 H).

To an ice-cold solution of **40** (63 mg, 0.143 mmol) in THF (2 mL) was added TBAF (0.17 mL, 1.0 M in THF, 0.17 mmol). After 12 h at ambient temperature, the reaction was quenched with saturated NaHCO₃, and the product was extracted with EtOAc twice. The combined organic extracts were dried and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish **41** (36 mg, 78% yield): IR (neat) 3419, 1736, 1631, 1598, 1577, 1504 cm⁻¹; ¹H NMR δ 1.12 (br s, 6 H), 1.52–1.70 (m, 2 H), 1.82 (br s, 3 H), 2.02–2.35 (m, 4 H), 3.95 (s, 3 H), 4.14–4.28 (m, 1 H), 5.51 (br s, 1 H), 6.70 (br s, 1 H), 6.77 (s, 1 H), 7.23–7.44 (m, 2 H), 7.64 (d, *J* = 8 Hz, 1 H), 8.08 (d, *J* = 8 Hz, 1 H). HRMS (CI) *m/z* calcd for C₂₁H₂₆O₃ (M⁺) 326.1882, found 326.1873.

Naphthalene Analogue 42. To a solution of 41 (35 mg, 0.107 mmol) in CH₂Cl₂ (5 mL) was added ZnBr₂ (36 mg, 0.16 mmol) and MgSO₄ (150 mg). After 12 h at ambient temperature, saturated NaHCO₃ was added to the mixture and the product was extracted with Et₂O twice. The combined organic layers were dried and concentrated to afford an oily residue, which was purified by chromatography (hexane/EtOAc) to furnish 42 (30 mg, 91% yield): IR (neat) 1739, 1628, 1598, 1577, 1500, 1457, 1403 cm⁻¹; ¹H NMR δ 1.12 (s, 3 H), 1.56 (s, 3 H), 1.69 (s, 3 H), 0.9–2.3 (m, 5 H), 3.32 (d, J = 11 Hz, 1 H), 3.95 (s, 3 H), 6.23 (br s, 1 H), 6.72 (br s, 1 H), 7.23-7.42 (m, 2 H), 7.63 (d, J = 8 Hz, 1 H), 8.12 (d, J = 8 Hz, 1 H); ¹³C NMR δ 19.2, 23.5, 25.2, 27.6, 31.4, 34.5, 46.1, 55.1, 77.6, 97.2, 110.5, 121.8, 121.9, 122.5, 124.9, 125.8, 126.1, 133.3, 133.6, 149.5, 156.9. HRMS (CI) m/z calcd for C₂₁H₂₄O₂ (M⁺) 308.1776, found 308.1777.

Acknowledgment. We thank professor Y. Shoyama at Kyushu University for informing the guidelines to start this project. This work was supported by a Grantin-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Government of Japan. A.W. is grateful for the Sasakawa Scientific Research Grant from The Japan Science Society. We thank Mr. Yasumasa Tashiro of Nippon Chemiphar for measuring the high resolution mass spectra.

Supporting Information Available: Experimental procedures of closely related compounds and the ¹H NMR spectra of new compounds lacking elemental analyses. This material is available free of charge via the Internet at http://pubs.acs.org.

JO020457M