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Abstract: In this work, we consider the inverse spectral problem for the impulsive Sturm–Liouville problem
on (0, π) with the Robin boundary conditions and the jump conditions at the point π

2 . We prove that the
potential M(x) on the whole interval and the parameters in the boundary conditions and jump conditions
can be determined from a set of eigenvalues for two cases: (i) the potentialM(x) is given on (0, (1+α)π4 ); (ii) the
potentialM(x) is given on ( (1+α)π4 , π), where 0 < α < 1, respectively. It is also shown that the potential and all
the parameters can be uniquely recovered by one spectrum and some information on the eigenfunctions at
some interior point.
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1 Introduction
Define

ρ(x) =
{
{
{

1, x < π2 ,
α2, x > π2 ,

(0 < α < 1).

Consider the following impulsive Sturm–Liouville problem:

ly := −y(x) +M(x)y(x) = λρ(x)y(x), x ∈ (0, π2 ) ∪ (
π
2 , π), (1.1)

with the boundary conditions

U(y) := y(0) − hy(0) = 0, (1.2)
V(y) := y(π) + Hy(π) = 0, (1.3)
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and the jump conditions

{{{
{{{
{

y(π2 + 0) = βy(
π
2 − 0),

y(π2 + 0) = β−1y(π2 − 0) + ay(π2 − 0). (1.4)

Here λ is the spectral parameter, M(x) is a real-valued function in L2(0, π), h, H, β, a are real, and β > 0.
Problem (1.1)–(1.4), denoted by L = L(M(x), ρ(x), h, H, β, a), is called a boundary value problem for the
Sturm–Liouville equation with the discontinuity conditions at π2 .

The boundary value problems with a discontinuous point inside the interval frequently appear in math-
ematics, physics, geophysics, and other aspects of natural sciences (see [1, 2, 6, 10, 14]). Generally, such
problems are related to discontinuous material characters of a intermediary. This kind of problem has been
studied by many authors (see, e.g., [3, 5, 7, 23, 27]).

In general, for reconstructing the potential on the whole interval and all parameters about the Sturm–
Liouville operator, it is necessary to specify two spectra of the problem with different boundary conditions
(see, e.g., [16, 17, 26]). Hochstadt and Lieberman (see [8]) showed that if the potentialM(x) is known a priori
on the half-interval ( π2 , π), then a single spectrum is sufficient to determine M(x) on the half-interval (0, π2 ).
This is the so-called half-inverse problem which has been generalized into many cases (see [9, 11, 18, 20–
22, 24, 25] and the references therein).

Nabiev and Amirov (see [14]) studied the boundary value problem L = L(M(x), ρ(x), h, H, 1, 0), where
β = 1 and a = 0, and gave some integral representations for the solutions of equation (1.1). In 2008,
Shieh and Yurko (see [19]) gave the uniqueness theorem of the half-inverse problem for the problem
L = L(M(x), 1, h, H, β, a), where ρ(x) ≡ 1, β, a and H are assumed to be known a priori. In [28], Yurko
studied the problem L = L(M(x), ρ(x), h, H, β, a), and proved that the potential M(x) and the coefficients in
the boundary conditions and the jump conditions can be uniquely determined from the Weyl-type function
or from two spectra.

In 2001, Mochizuki and Trooshin (see [12]) studied the problem L(M(x), 1, h, H, 0, 1), where ρ(x) ≡ 1,
a = 1 and β = 0, and proved that a set of values of the logarithmic derivative of eigenfunctions at some
an internal point and spectrum can uniquely determine the potential M(x) on (0, π). They used the same
method for reconstructing the potential for Dirac operator (see [13]). Yang (see [25]) considered the problem
L(M(x), 1, h, H, β, a), where ρ(x) ≡ 1, and showed that the potential M(x) can uniquely be determined by
a set of values of eigenfunctions at some an internal point π2 and one spectrum. For the Dirac operator, the
similar problems were studied in [6, 24].

In [15], Ozkan,Keskin andCakmak considered theproblem L(M(x), ρ(x), 0, 0, β, 0),where h, H and a are
assumed to be zero. They showed that if the potential M(x) is prescribed on (0, π2 ) (see Figure 1), then only
one spectrum is sufficient to determine M(x) on the interval (0, π) and ρ(x), β. The assumptions proposed
in [15] to reconstruct the potential are overdetermined. In fact, it is enough to assume that the potentialM(x)
is given on a smaller interval (0, (1+α)π4 ) (see Figure 2).

In this paper, we consider the problem L = L(M(x), ρ(x), h, H, β, a) and prove that if the potential M(x)
on (0, (1+α)π4 ) (see Figure 2) and h are given, then only a single spectrum is sufficient to determine M(x) on
(0, π), ρ(x), H, β and a. We also consider the case that the potentialM(x) is given on the right “half-interval”
(see Figure 3), and prove a uniqueness theorem. Also it is shown that potential M(x) on (0, π), ρ(x), β, a, h

Figure 1: The case in [15]. Figure 2: Case (i) in this paper.
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Figure 3: Case (ii) in this paper. Figure 4: The interior point.

and H can be uniquely determined by one spectrum and some information on eigenfunctions at the internal
point (1+α)π4 (see Figure 4).

2 Preliminaries
Let φ(x, λ) and ψ(x, λ) be the solutions of equation (1.1), satisfying the initial conditions φ(0, λ) = 1,
φ(0, λ) = h, ψ(π, λ) = 1, ψ(π, λ) = −H and the jump condition (1.4). Denote

σ(x) =
x

∫
0

√ρ(t) dt, k = √λ, τ = Im k.

Lemma 2.1. The following asymptotic relations hold as |k|→∞. For π2 < x < π,

φ(x, λ) = β+ cos kσ(x) + β− cos k(π − σ(x)) + O(k−1 exp(|τ|σ(x))), (2.1)
φ(x, λ) = −kαβ+ sin kσ(x) + kαβ− sin k(π − σ(x)) + O(exp(|τ|σ(x)). (2.2)

For 0 < x < π2 ,

ψ(x, λ) = A+ cos k(σ(π) − σ(x)) + A− cos k(σ(π) + σ(x) − π) + O(k−1 exp(|τ|(σ(π) − σ(x)))), (2.3)
ψ(x, λ) = kA+ sin k(σ(π) − σ(x)) − kA− sin k(σ(π) + σ(x) − π) + O(exp(|τ|(σ(π) − σ(x)))), (2.4)

where β± = 1
2 (β ±

1
αβ ), A

± = 1
2 (

1
β ± αβ).

Proof. Let us prove (2.1) and (2.2). Relations (2.3) and (2.4) can be obtained similarly. For 0 < x < π2 the
solution φ(x, λ) satisfies the following standard asymptotic formulas (see, e.g., [5]) as |k|→∞:

φ(x, λ) = cos kx + O(k−1 exp(|τ|x)), (2.5)
φ(x, λ) = −k sin kx + O(exp(|τ|x)). (2.6)

Consider the solutions C(x, λ) and S(x, λ) of equation (1.1) on ( π2 , π), satisfying the initial conditions
C( π2 , λ) = 1, C

( π2 , λ) = 0, S( π2 , λ) = 0, S( π2 , λ) = 1. They satisfy the following standard asymptotic relations:

C(x, λ) = cos kα(x − π2 ) + O(k
−1 exp(|τ|(x − π2 ))), (2.7)

C(x, λ) = −kα sin kα(x − π2 ) + O(exp(|τ|(x − π2 ))), (2.8)

S(x, λ) =
sin kα(x − π2 )

kα
+ O(k−2 exp(|τ|(x − π2 ))), (2.9)

S(x, λ) = cos kα(x − π2 ) + O(k−1 exp(|τ|(x − π2 ))), (2.10)

as |k|→∞.
For π2 < x < π, the solution φ(x, λ) can be represented in the following form:

φ(x, λ) = D1(λ)C(x, λ) + D2(λ)S(x, λ). (2.11)

Substituting (2.5), (2.6) and (2.11) into the jump conditions (1.4), we get

D1(λ) = β cos kπ2 + O(k
−1 exp(|τ| π2 )), (2.12)

D2(λ) = −β−1k sin kπ
2 + O(exp(|τ|

π
2 )), (2.13)
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as |k|→∞. Substituting asymptotics (2.12), (2.13) together with (2.7), (2.8), (2.9), (2.10) into (2.11) and
into the relation

φ(x, λ) = D1(λ)C(x, λ) + D2(λ)S(x, λ), π
2 < x < π,

we arrive at (2.1) and (2.2).

Define
⟨φ(x, λ), ψ(x, λ)⟩ := φ(x, λ)ψ(x, λ) − φ(x, λ)ψ(x, λ).

It is easy to verify that if y(x) and z(x) satisfy equation (1.1) and the jump condition (1.4), then ⟨y, z⟩ is
independent of x, and

⟨y, z⟩x= π2 −0 = ⟨y, z⟩x= π2 +0.
Denote

∆(λ) = ⟨φ, ψ⟩ = V(φ) = −U(ψ). (2.14)
The function ∆(λ) is called the characteristic function of L, which is entire in λ, and it has an atmost countable
set of zeros {λn}n≥0.
Lemma 2.2. The following statements hold:
(1) The zeros {λn}n≥0 of the characteristic function ∆(λ) coincide with the eigenvalues of the boundary value

problem L.
(2) The functions φ(x, λn) and ψ(x, λn) are corresponding eigenfunctions and exists a sequence {δn}, δn ̸= 0,

such that
ψ(x, λn) = δnφ(x, λn). (2.15)

(3) For each n ≥ 0, the eigenvalues λn and the corresponding eigenfunctions φ(x, λn), ψ(x, λn) are real.

Proof. Similar to the proof of [14], so we omit the proof.

Next, we denote by L2((0, π); ρ(x)) a space which has the inner product

(φ, ψ) =
π

∫
0

φ(x)ψ(x)ρ(x) dx.

Let αn(n ≥ 0) be the normalized constants, which are defined as

αn :=
π

∫
0

ρ(x)φ2(x, λn) dx for all n ≥ 0.

Lemma 2.3. The following relation holds:
αnδn = −∆̇(λn), (2.16)

where ∆̇(λn) = d
dλ ∆(λ).

Proof. Note that
−φ(x, λ) +M(x)φ(x, λ) = λρ(x)φ(x, λ)

and
−ψ(x, λn) +M(x)ψ(x, λn) = λnρ(x)ψ(x, λn).

Multiplying the two equations byψ(x, λn) andφ(x, λ), respectively, and subtracting the second equation from
the first equation, it follows that

ψ(x, λn)φ(x, λ) − φ(x, λ)ψ(x, λn) = d
dx
⟨φ(x, λ), ψ(x, λn)⟩ = (λ − λn)ρ(x)φ(x, λ)ψ(x, λn).

Integrating the above equality from 0 to π and considering the jump point, we can obtain that

⟨φ(x, λ), ψ(x, λn)⟩
π
2 −0
0 + ⟨φ(x, λ), ψ(x, λn)⟩


π
π
2 +0 = (λ − λn) π∫

0

ρ(x)φ(x, λ)ψ(x, λn) dx

= −Hφ(π, λ) − φ(π, λ) − ψ(0, λn) + hψ(0, λn)
= −∆(λ).
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Dividing the two sides by λ − λn and letting λ → λn yields
π

∫
0

ρ(x)φ(x, λn)ψ(x, λn) dx = −∆̇(λn).

Combining (2.15) with the definition of αn, we arrive at (2.16).

Remark 2.1. It follows from Lemma 2.3 that all eigenvalues λn are simple.

From (2.1), (2.2) and (2.14), we have that as |k|→∞,

∆(λ) = αk[β+ sin kσ(π) − β− sin k(π − σ(π))] + O(exp |τ|σ(π)). (2.17)

Define the sector Sε,k∗ := {k ∈ ℂ : |k| ≥ k∗, ε < arg k < π − ε} for ε > 0, k∗ > 0. The asymptotic formula (2.17)
implies

|∆(k2)| ≥ Cε,k∗ |k| exp(|τ|σ(π)), k ∈ Sε,k∗ , (2.18)

where Cε,k∗ is a constant.

3 Extension of the half-inverse problem and proofs
Together with the problem L we consider a boundary value problem L̃ = L(M̃(x), ρ̃(x), h̃, H̃, β̃, ã) of the same
form but with the different coefficients M̃(x), ρ̃(x), h̃, H̃, β̃, and ã. We agree that if a certain symbol υ denotes
an object related to L, then υ̃ denote the analogous object related to L̃.

Theorem 3.1. If λn = λ̃n for all n ≥ 0, M(x) = M̃(x) on (0, (1+α)4 π) and h = h̃, then M(x) = M̃(x) almost every-
where on (0, π), H = H̃, ρ(x) = ρ̃(x), β = β̃ and a = ã.

Theorem 3.2. If λn = λ̃n for all n ≥ 0, M(x) = M̃(x) on ( (1+α)4 π, π), a = ã and H = H̃, then M(x) = M̃(x) almost
everywhere on (0, π), ρ(x) = ρ̃(x), β = β̃ and h = h̃.

In order to prove the both Theorems 3.1 and 3.2 we need the following lemma.

Lemma 3.3. If λn = λ̃n for all n ≥ 0, then ρ(x) = ρ̃(x) and β = β̃.

Proof. The characteristic functions ∆(λ) and ∆̃(λ) are entire functions of λ of order 1
2 . By the Hadamard fac-

torization theorem, they can be uniquely determined by their zeros up tomultiplicative constants. Since their
zeros coincide, i.e., λn = λ̃n for all n ≥ 0, we have ∆(λ) = C∆̃(λ), where C ̸= 0 is a constant. In view of (2.17)
and the similar asymptotic formula for ∆̃(λ), we conclude that α = α̃, β+ = Cβ̃+ and β− = Cβ̃−, so

1
2(β ±

1
αβ)
=
C
2(β̃ ±

1
αβ̃
).

Consequently, β = Cβ̃, β−1 = Cβ̃−1. Since β > 0 and β̃ > 0, we get β = β̃.
Proof of Theorem 3.1. Let the boundary value problems L and L̃ satisfy the conditions of Theorem 3.1. By
virtue of Lemma 3.3, α = α̃ and β = β̃. For brevity, denote c = 1+α

4 π. Relation (2.14) implies

∆(λ) = φ(c, λ)ψ(c, λ) − φ(c, λ)ψ(c, λ).
Substituting λ = λn, we get

φ(c, λn)ψ(c, λn) − φ(c, λn)ψ(c, λn) = 0, n ≥ 0.

Consequently, if φ(c, λn) ̸= 0, we have
ψ(c, λn)
ψ(c, λn)

=
φ(c, λn)
φ(c, λn)

, n ≥ 0. (3.1)

A similar relation holds for L̃:
ψ̃(c, λn)
ψ̃(c, λn)

=
φ̃(c, λn)
φ̃(c, λn)

, n ≥ 0. (3.2)
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SinceM(x) = M̃(x) on (0, c) and h = h̃, we have φ(x, λ) ≡ φ̃(x, λ) for x ∈ [0, c]. Hence relations (3.1) and (3.2)
yield

ψ(c, λn)ψ̃(c, λn) − ψ(c, λn)ψ̃(c, λn) = 0, n ≥ 0. (3.3)

Note that φ(c, λn) = 0 implies ψ(c, λn) = ψ̃(c, λn) = 0, so this case also leads to (3.3).
Thus, we have proved that the entire function

H(λ) := ψ(c, λ)ψ̃(c, λ) − ψ(c, λ)ψ̃(c, λ)
has zeros {λn}n≥0. Consequently, the function H(λ)

∆(λ) is entire. In view of (2.3), (2.4) and similar relations for
ψ̃(x, λ), we have

H(λ) = O(exp(2|τ|(σ(π) − σ(c)))) = O(exp(|τ|σ(π))), |λ|→∞.

Together with (2.18), the latter estimate yields

H(k2)
∆(k2)

≤ Cε,k∗ |k|−1, k ∈ Sε,k∗ ,

for some positive constants ε and k∗. Applying the Phragmen–Lindelöf Theorem [4], we show that the func-
tion H(λ)

∆(λ) is bounded in the whole λ-plane. Then by Liouville’s Theorem, we conclude that H(λ) ≡ 0. Hence

ψ(c, λ)
ψ(c, λ) = ψ̃(c, λ)ψ̃(c, λ) . (3.4)

Note that ψ(c,λ)
ψ(c,λ) is the Weyl function, defined in [28], of the boundary value problem for equation (1.1) on

the interval (c, π)with the boundary conditions y(c) = 0, V(y) = 0 and the jump conditions (1.4). It has been
shown in [28] that the Weyl function uniquely specifies the functionM(x) on (c, π) and the coefficients a, H.
Consequently, relation (3.4) impliesM(x) = M̃(x) a.e. on (c, π), a = ã, H = H̃, so the assertion of the theorem
is proved.

Proof of Theorem 3.2. By Lemma 3.3 and the conditions of Theorem 3.2, we have α = α̃, β = β̃, H = H̃, a = ã,
M(x) = M̃(x) on (c, π). Consequently, ψ(x, λ) ≡ ψ̃(x, λ) on (c, π). Using (3.1) and (3.2), we show that

φ(c, λn)φ̃(c, λn) − φ(c, λn)φ̃(c, λn) = 0, n ≥ 0,

so the entire function
G(λ) := φ(c, λ)φ̃(c, λ) − φ(c, λ)φ̃(c, λ)

has zeros {λn}n≥0. In view of the asymptotic formulas (2.5), (2.6) and similar relations for φ̃(x, λ), we have

G(λ) = O(exp(2|τ|c)) = O(exp(|τ|σ(π))), |λ|→∞.

Following the proof of Theorem3.1 and applying the Phragmen–Lindelöf Theorem to the entire function G(λ)
∆(λ) ,

we show that G(λ) ≡ 0, so
φ(c, λ)
φ(c, λ) = φ̃(c, λ)φ̃(c, λ) .

The fraction φ(c,λ)
φ(c,λ) is the Weyl function of the boundary value problem for equation (1.1) on (0, c) with

boundary conditions U(y) = 0, y(c) = 0 and without discontinuity (see [5]). By [5, Theorem 1.4.7], the Weyl
function uniquely specifies M(x) on (0, c) and the coefficient h, so Theorem 3.2 is proved.

4 An interior inverse problem
We consider the interior inverse problem for the same boundary value problem L = L(M(x), ρ(x), h, H, β, a)
and obtain the corresponding result. To this end, we introduce a sequence {κn}n≥0 defined by

κn =
d
dx

log |φ(x, λn)|x=c ,
where c = (1+α)π4 .
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Theorem 4.1. If, for all n ≥ 0, λn = λ̃n and κn = κ̃n, then M(x) = M̃(x) almost everywhere on (0, π), H = H̃,
h = h̃, ρ(x) = ̃ρ(x), β = β̃ and a = ã.

Proof. Firstly, the assumption that λn = λ̃n can determine α = α̃ and β = β̃ by Lemma 3.3. From κn = κ̃n, we
see that

φ(c, λn)
φ(c, λn) = φ̃(c, λn)φ̃(c, λn) .

Then the entire function
G(λ) = φ(c, λ)φ̃(c, λ) − φ(c, λ)φ̃(c, λ)

has zeros {λn}n≥0. Similarly to the proof of Theorem 3.2, we have that M(x) = M̃(x) on (0, c) and h = h̃.
Oncewe get thatM(x) = M̃(x) on (0, c) and h = h̃, by Theorem3.1wehave thatM(x) = M̃(x) a.e. on (0, π),

H = H̃, and a = ã. This completes the proof.
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