Asymmetric Synthesis of Stigmatellin and Crocacin C

Carolina Infante-Rodriguez, Lisianne Domon, Pascal Breuilles, and Daniel Uguen*,\#
Laboratoire de Synthèse Organique (associé au CNRS; UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
E-mail: uguen@unistra.fr
Received: September 10, 2014; Accepted: November 17, 2014; Web Released: November 26, 2014

The crystalline sulfone 18 (X-ray analysis), prepared from the monoacetate product [i.e., (+)-12; 98.2\% ee] of the lipase PS-catalyzed acetylation of anti,anti-2,4-dimethyl-1,3,5-pentantriol (19a), has been elaborated either to crocacin C $\mathbf{(1 0)}$ or stigmatellin (1), thereby providing a convenient divergent access to these two natural antibiotics.

Stigmatellin (1), a potent inhibitor of electron flow within the mitochondrial cytochrome $b c_{1}$ and the thylakoid $\mathrm{b}_{6} \mathrm{f}$ complex, ${ }^{1}$ was isolated from a strain of the myxobacterium Stigmatella aurentiaca by Reichenbach and Höfle. ${ }^{2}$ Owing both to poor stability in acidic conditions-slow decomposition was noticed in aqueous solution at below pH 5 -and toxicity, using this product as a phytosanitory agent is precluded. However, the ability of the stigmatellin molecule to form stable adducts with the aforementioned complexes makes this compound an invaluable tool for studying the respiration system. ${ }^{3}$ The absolute configuration of stigmatellin (1) was established by Enders, at first by identifying the diacid (i.e., 3) formed along the diphenol $\mathbf{2 a}$ by degradation of natural stigmatellin with a sample, ${ }^{4 \mathrm{a}}$ and next by synthesizing stigmatellin (1) from the monoacid 4a (Scheme 1). ${ }^{4 \mathrm{~b}}$ As shown, alkylation of 3pentanone with the O-PMB derivative of 3-iodopropanol by means of the SAMP [i.e., (S)-1-amino-2-methoxymethylpyrrolidine]hydrazone methodology was followed by titanium(IV)mediated aldol condensation of the resulting ketone and benzyloxyacetaldehyde. Anti reduction of the main aldol product then afforded the indicated anti,anti,syn-stereotetrad diol, which was converted into the acid $\mathbf{4 a}$ in a few steps. Condensing $\mathbf{4 a}$ and the MOM derivative $\mathbf{2 b}$ then gave the ester 5a, which was cyclized to the chromone $\mathbf{6 a}$ under basic conditions. Hydrogenation of the benzyl group of $\mathbf{6 a}$ was followed by oxidation of the formed alcohol $\mathbf{6 b}$ to the aldehyde 7 to furnish, after hydrolysis of the MOM group, the sensitive aldehyde $\mathbf{8}$, which was elaborated to stigmatellin (1) by HornerWittig olefination with the phosphonate 9 a.

Further examination of myxobacteria has resulted in the isolation of crocacin $C(\mathbf{1 0})$, alongside a mixture of the crocacins A, B, and D from strains of Chondromyces crocatus and Chondromyces pediculatus (Scheme 2). ${ }^{5}$ Not too surprisingly, given the similarities of the crocacin and the stigmatellin molecule, these cytotoxic compounds also inhibit the flow of electrons in the bc_{1} and the $\mathrm{b}_{6} \mathrm{f}$ complexe. ${ }^{5,6}$ Various approaches to the crocacins have been reported, ${ }^{7,8}$ and discussed in reviews. ${ }^{9}$ The absolute configuration of crocacin C (10) has been established by Rizzacasa. ${ }^{7}$ As shown, condensation of the depicted ketone and cinnamaldehyde was followed by
anti reduction of the main aldol product to obtain, after Omethylation of the resulting diol and desilylation, the indicated anti-anti-syn-stereotetrad alcohol, which was elaborated to $(+)$-crocacin C (10) via the methyl ester 11.

Previously, we had attempted to synthesize stigmatellin (1) by using a sulfone-mediated alkylation procedure $[a]$ strategy in Scheme 3]. ${ }^{10 a}$ To this end, the monoacetate $(+)-\mathbf{1 2}$, the $2 R, 3 S, 4 S$ configuration of which had previously been established, ${ }^{10 \mathrm{~b}}$ had been converted to the aldehyde $\mathbf{1 3}$ by way of the diolsulfide 14a. Coupling 13 and the dienyl sulfone 9 b under the conditions of the Julia olefination reaction had indeed afforded the unsaturated sulfide 15a. However, owing to the sensitivity of the hexatrienyl residue, oxidizing this sulfide into the corresponding sulfone 15b had proved unfeasible. Using the b) strategy was no more rewarding. ${ }^{10 \mathrm{c}}$ Thus, reacting the chromone aldehyde 16, prepared in a few steps from 14a, with the organolithium generated by treating the stannane $\mathbf{1 7}$ with butyllithium, and then quenching the reaction mixture with MeI had afforded a trienyl chromone that could not be strictly identified with a sample of the O-benzyl derivative of stigmatellin.

Bearing all preceding observations in mind with a view to designing a divergent approach to stigmatellin (1) and to crocacin $\mathrm{C}(\mathbf{1 0})$, the alternate plan depicted in Scheme 3 [i.e., c) strategy] has been examined, and we describe in this publication the results of this study.

Results and Discussion

Central in this plan was the stereocontrolled elaboration of the aldehyde $\mathbf{1 3}$ to the key sulfone intermediate $\mathbf{1 8}$ (Scheme 4). Keeping with the strategy previously used to prepare the sulfide 15a, the anti,anti-stereotriad triol 19a, which was obtained in pure state by methanolysis of the known ${ }^{11}$ silyl ether 19b (see Experimental), was reacted with vinyl acetate in THF and added Pseudomonas fluorescens lipase (PFL) at rt for ca. 5-6 d to obtain, as reported, ${ }^{10 \mathrm{~b}}$ the monoacetate (+)-12 [70\%; 97.0\% ee (by GC on Cyclodextrin B^{\circledR})]. Brief screening of available lipases showed the rate of this esterification to be significantly increased by using Amano lipase PS (PSL) as a catalyst, the reaction then going to completion in ca .1 h at rt , at the expense

Scheme 1. Enders synthesis of stigmatellin (1). ${ }^{4 \mathrm{~b}}$

Scheme 2. Rizzacasa synthesis of crocacin C (11). ${ }^{7}$
of the selectivity however (91% ee), a problem that was solved by lowering temperature. Thus, reacting 19a with vinyl acetate in THF with added PSL 6 h at $\mathrm{ca} .-15^{\circ} \mathrm{C}$, and then at $0^{\circ} \mathrm{C}$ for a further 6 h , when the variation of the enantiomeric ratio was insignificant in GC, afforded, after separation of the bisacetylation product 20 (31%) by column chromatography, the monoacetate (+)-12 (69\%) with acceptable selectivity (98.2% ee). Interestingly, treating 20 with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol gave the triol 19a in good yield (92\%).

Another possibility was to submit the O-TBDMS derivative 19b to the preceding acetylation conditions. Pseudomonas lipase was verified not to be selective: the corresponding bisacetate was the main product. By contrast, a good selectivity (97% ee) has been observed with Candida rugosa lipase (CRL) as a catalyst, the pro-S branch being affected in this case. ${ }^{12}$ However, possibly due to discrepancy in the grade of the enzyme used, this result could not be perfectly reproduced. Treating, as described, the monoacetate product thus obtained

16

17
c) strategy
(present work)

4b

18

13

Crocacin C (10)

Scheme 3.
with buffered TBAF indeed afforded the monoacetate (- - $\mathbf{- 1 2}$ but the optical purity of this product was only moderate (54% ee; by GC) and no more effort was expended in this direction. Although effective on milligram scale, changing the primary hydroxy group of $(+) \mathbf{- 1 2}$ to a phenylthio substituent by using the $\mathrm{PhSSPh} \cdot \mathrm{PPh}_{3}$ reagent proved problematic on scale-up: after two days, the reaction was incomplete and a little racemization of the used acetate was observed by GC. Accordingly, the conversion of this monoacetate to the diolsulfide 14a was realized by means of the indicated tosylation/nucleophilic displacement reaction sequence [conditions c) and d) in Scheme 4] to obtain successively the tosylate 21a and the light-sensitive iodide 21b, which was immediately reacted with sodium thiophenoxide in EtOH. In situ addition of $\mathrm{K}_{2} \mathrm{CO}_{3}$ to hydrolyse the acetate then afforded 14a in good yield [overall 92%, from (+)-12]. Importantly, the optical purity of the used acetate was not altered during the tosylation process, as evidenced by ${ }^{1} \mathrm{H}$ NMR analysis of $\mathbf{1 4 a}$ with added $\left[\mathrm{Eu}(\mathrm{hfc})_{3}\right] .{ }^{13}$ Next, diolsulfide 14a was reacted with DPTBSCl to give $\mathbf{1 4 b}$, which was methylated to $\mathbf{1 4 c}$ by treatment with methyl iodide and freshly sublimed potassium t-butoxide; this was easier to manipulate, and gave a better result in this case, than potassium hydride. Treating $\mathbf{1 4 c}$ with TBAF then afforded the hydroxysulfide 14d (95\% overall, from 14a), which was quantitatively oxidized to $\mathbf{1 3}$ under Swern conditions, with DIPEA used as a base to avoid epimerization. ${ }^{14}$
Of the various options available to install the styryl residue, condensing the aldehyde $\mathbf{1 3}$ and phenylacetylene, then reducing the carbon-carbon triple bond of the resulting acetylenic
alcohol appeared as the most convenient. Various conditions have been designed to control the stereochemical course of the addition of terminal acetylenes onto the aldehyde carbonyl group. ${ }^{15}$ Of great concern to us was the reagent matchingmismatching effect observed by Marshall in a strongly related case. ${ }^{16}$ As shown, whereas the condensation of the depicted anti,anti aldehyde and a zinc derivative of trimethylsilylacetylene (TMSA) proceeded with poor selectivity, a variation of the isomeric ratio was observed by using the $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4} /$ BINOL complex as a catalyst, ${ }^{17}$ with the syn condensation product favoured when the S-BINOL ligand was used; both the effect and the yield were only moderate, however. Deceptively, reacting 13 with phenylacetylene under these conditions resulted in extensive decomposition with loss of the methoxy group (by NMR) and a similar observation was made by using Carreira conditions [viz. $\mathrm{Zn}(\mathrm{OTf})_{2}-\mathrm{N}$-methylephedrine complex in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$]. ${ }^{18}$ It is likely that, due to bidentate coordination of the sulfur and the methoxy oxygen atom to a zinc ion, ${ }^{19}$ Lewis acid-assisted elimination of the methoxy group occurred and a possibility would have been to convert acetate $(+)-\mathbf{1 2}$ to the Marshall substrate. A more practical solution was found by reacting 13 with the lithio derivative of phenylacetylene in ether at low temperature to obtain an approximately $2: 3$ mixture (by ${ }^{1} \mathrm{HNMR}$) of the diastereomeric alcohols 22a and 22b in good yield (94% from 14c). Owing to a large difference in the polarity of the two components on TLC, separation of this mixture was efficiently realized on a multi-gram scale by column chromatography to afford successively 22a (39.5\%) and its epimer 22b (54.5\%); these structures were attributed

(+)-12 (98.2\% ee)

$[(+)-12: 20=7: 3]$

OH

$d \underset{ }{\square}$ 21a, $\mathrm{X}=\mathrm{OTs}$

Scheme 4. Reagents and conditions: a) Vinyl acetate (2 equiv), PSL ($143 \mathrm{mg} \mathrm{mmol}{ }^{-1}$), THF; $-15^{\circ} \mathrm{C}, 6 \mathrm{~h}$, then $0^{\circ} \mathrm{C}, 6 \mathrm{~h}(69 \%)$. b) 0.7 M (in MeOH$) \mathrm{K}_{2} \mathrm{CO}_{3}$ (1 equiv); rt , $16 \mathrm{~h}\left(92 \%\right.$). c) Tosyl chloride (1.1 equiv), pyridin (6.2 equiv); $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then 18 h in a refrigerator (100%). d) NaI (3.1 equiv), acetone; rt, 4 h , then $50^{\circ} \mathrm{C}, 2 \mathrm{~h}\left(100 \%\right.$). e) $\mathrm{NaSPh}\left(2\right.$ equiv), $\mathrm{EtOH} ; \mathrm{rt}, 5 \mathrm{~h}$, then $\mathrm{K}_{2} \mathrm{CO}_{3}$, rt, $1 \mathrm{~h}(92 \%)$. f) Vinyl acetate, CRL, then TBAF $\cdot 3 \mathrm{H}_{2} \mathrm{O} / \mathrm{HOAc}$ as described in Ref. 12 (47%). g) DPTBSCl (1 equiv), imidazole (2.5 equiv), DMF; rt, $14 \mathrm{~h}\left(100 \%\right.$). h) KO- t-Bu (2 equiv), MeI (1.8 equiv), THF; $-78^{\circ} \mathrm{C}, 15 \mathrm{~min}$, then $\mathrm{rt}, 2 \mathrm{~h}\left(95 \%\right.$). i) TBAF $\cdot 3 \mathrm{H}_{2} \mathrm{O}$ (2 equiv), THF, rt, $16 \mathrm{~h}(100 \%)$. j) Oxalyl chloride (1.5 equiv), DMSO (2.4 equiv), DIPEA (5.1 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then $\left.0^{\circ} \mathrm{C}, 30 \mathrm{~min} . \mathrm{k}\right)$ Lithium phenylacetylide (1.5 equiv), $1: 6$ hexane/ether; $-78^{\circ} \mathrm{C}, 2 \mathrm{~h}(94 \%$, from 14 c); 1) Benzoic acid (2.5 equiv), DEAD (2.1 equiv), PPh_{3} (2.7 equiv), benzene; $\mathrm{rt}, 22 \mathrm{~h}$, then 1 M (in MeOH) KOH (9 equiv), $\mathrm{rt}, 1.5 \mathrm{~h}(70 \%$). m) 30% $\mathrm{H}_{2} \mathrm{O}_{2}$ (5 equiv), $\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (0.05 equiv), $1: 10.2 \mathrm{M}$ aqueous $\mathrm{NaHCO}_{3} /$ acetonitrile; rt, 16 h (98%). n) 70% (in toluene) Red-Al (1.6 equiv), ether; $-20^{\circ} \mathrm{C}, 5 \mathrm{~h}(100 \%)$. o) $\mathrm{KO}-t-\mathrm{Bu} / \mathrm{MeI}$ in conditions h) (90%).
later. Reacting the more polar component 22b with benzoic acid under the conditions of the Mitsunobu reaction, ${ }^{20}$ and then hydrolyzing the resulting benzoate product afforded additional sulfide 22a (70%; total 77.6%). Oxidation of this sulfide using the mild conditions designed by Nàjera ${ }^{21}$ then provided the acetylenic sulfone $\mathbf{2 3}$ in good yield (98%). Mono-hydrogenation of the carbon-carbon triple bond of $\mathbf{2 3}$ was conveniently realized by using Red-Al in a toluene/ether mixture at $-20^{\circ} \mathrm{C}^{22}$ to give almost quantitatively the pure E (NMR) sulfone 24. Reacting this product in preceding methylation conditions (MeI/KO-t-Bu) then afforded, after a brief purification by column chromatography, and recrystallization from ether of the solid product thus obtained, the sulfone $\mathbf{1 8}$ (90%) as white crystals that could be analyzed by X-ray crystallography. The Mercury structure generated from the collected data showed this compound to have the desired anti,anti,syn configuration (Figure 1). Since the monoacetate (+)-12 used as a precursor was $2 R, 3 S, 4 S$, it follows that the structure of this sulfone was indeed 18, that the less polar product of the $\mathbf{1 3}$ / phenylacetylene condensation was 22a, and that the more polar product was 22 b . This was further confirmed by converting $\mathbf{1 8}$ into crocacin C (10) (Scheme 5).

Synthesis of Crocacin C. Not too surprisingly, given the low acidity of this sulfone, almost no conversion was observed by reacting 18 with the bromoester 25 under the conditions

Figure 1. X-ray structure of sulfone 18.
originally designed by Julia for preparing retinoic acid (viz. excess $\mathrm{KO}-t-\mathrm{Bu} / \mathrm{THF}$ at rt); ${ }^{23}$ a poor result was also obtained by first deprotonating 18 with BuLi , and reacting the resulting sulfone anion with 25: the product mainly consisted of $\mathbf{1 8}$, together with a complex mixture of unidentified polar products (TLC). A better result was acquired by using the O-TBDMS derivative 26a of γ-bromoprenol 26b as an isoprenylation reagent. ${ }^{24}$

Thus, reacting the lithium anion of $\mathbf{1 8}$ with 26a at ca. $-78^{\circ} \mathrm{C}$ in a THF/HMPT mixture afforded the sulfone $\mathbf{2 7 a}$ (65\%) as a

Scheme 5. a) 1.6 M (in hexane) BuLi (1.3 equiv), 26a (1.5 equiv), HMPT (1.3 equiv), THF; $-78^{\circ} \mathrm{C}$, then rt , 2 h (65%). b) TBAF $3 \mathrm{H}_{2} \mathrm{O}$ (1.1 equiv), THF; $0^{\circ} \mathrm{C}$, $2 \mathrm{~h}\left(95 \%\right.$). c) MnO_{2} (20 equiv), $5: 1$ hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} ; 0^{\circ} \mathrm{C}, 2 \mathrm{~h}\left(82 \%\right.$). d) MnO_{2} (20 equiv), NaCN (5.3 equiv), MeOH ; rt, $1 \mathrm{~h}(69 \%)$. e) KO- t-Bu (1.8 equiv), THF; $-5^{\circ} \mathrm{C}, 1.5 \mathrm{~h}(67 \%)$.

Scheme 6. a) $\mathrm{O}_{3} / \mathrm{O}_{2}, 4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} ;-78^{\circ} \mathrm{C}$, then NaBH_{4} (2 equiv), rt, $5 \mathrm{~h}\left(89 \%\right.$). b) 0.15 M aqueous OsO_{4} (0.2 equiv), NMO (1.1 equiv), 10:3:1 t - $\mathrm{BuOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}\left(33 \mathrm{~mL} \mathrm{mmol}^{-1}\right.$); $\mathrm{rt}, 15 \mathrm{~h}(100 \%)$. c) 2-methoxypropene (2 equiv), PPTS (0.1 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; rt, $48 \mathrm{~h}(67 \%)$. d) NaIO_{4} (2 equiv), $10: 3: 1 \mathrm{t}$ - $\mathrm{BuOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O} ; 35-40^{\circ} \mathrm{C}, 15 \mathrm{~h}$. e) NaBH_{4} (2 equiv), MeOH ; rt, 3 h (92%, from 18). f) $\operatorname{TIPSOTf}$ (1.1 equiv), 2,6 -lutidine (2.2 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; rt, $30 \mathrm{~min}(98 \%)$ g) $n-\mathrm{BuLi}$ (1.3 equiv), HMPA (1.3 equiv), allyl bromide (1.5 equiv); $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}(93 \%)$. h) Mg (20 equiv), MeOH ; reflux, $3 \mathrm{~h}(88 \%)$. i) $\mathrm{RuCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ (0.2 equiv), NaIO_{4} (4.1 equiv), 3:3:2 $\mathrm{CCl}_{4} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$; rt, $15 \mathrm{~h}(60 \%)$. j) TMSDM (1.5 equiv), 2:3 toluene $/ \mathrm{MeOH}, \mathrm{rt}, 1 \mathrm{~h}(98 \%)$. k) 3 M aqueous $\mathrm{KOH}, \mathrm{MeOH}$ $(1.5 \mathrm{M}) ; 35-40^{\circ} \mathrm{C}, 15 \mathrm{~h}$, then $(\mathrm{COCl})_{2}$ (2 equiv), DMF (3 drops), ether; rt, $3 \mathrm{~h}(99 \%)$. l) $\mathbf{2 b}$ (1 equiv), $\mathrm{NBu}_{4} \mathrm{HSO}_{4}$ (0.06 equiv), $1: 1$ 20% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ /benzene; rt, 20 h (84%).
mixture of diastereomers (ratio $9: 1$ by ${ }^{1} \mathrm{HNMR}$); $\mathbf{1 8}$ (9\%) was also isolated. Treating 27a with TBAF then afforded the hydroxy sulfone 27b (95%; same isomeric ratio). Owing to the sensitivity of the styryl residue to strong oxidants, oxidation of $\mathbf{2 7 b}$ to the methyl ester $\mathbf{2 8}$ was attempted using the mild conditions designed by Corey to convert allylic alcohols into corresponding methyl acrylates. ${ }^{25 a}$ Reacting, as described, 27b with activated MnO_{2} in methanol with added sodium cyanide afforded a complex mixture (by TLC) and no more success was encountered by using a thiazolium salt in place of the cyanide. ${ }^{25 b}$ However, oxidizing 27b with MnO_{2}, and then
reacting the isolated aldehyde 29 (83%) under the aforementioned oxidation conditions afforded the sulfone 28 in acceptable yield (69%). Finally, treating 28 with potassium t-butoxide in THF furnished the methyl ester $\mathbf{1 1}$ (67%; same NMR features and optical properties as reported), which has been converted to crocacin C 10. ${ }^{7 \mathrm{~b}}$ Attempt to convert directly the aldehyde $\mathbf{2 9}$ to $\mathbf{1 0}$ by using a Gilman modification ${ }^{25 c}$ of the Corey procedure resulted only in decomposition.

Synthesis of Stigmatellin. The elaboration of the sulfone $\mathbf{1 8}$ to stigmatellin (1) by way of the acid $\mathbf{4 b}$ was next examined (Scheme 6). In a first mmol-scale experiment, 18 was treated

Figure 2. X-ray structure of diol 31a.

Figure 3. X-ray structure of acetonide 31c.
with ozonised oxygen under standard conditions ($\mathrm{MeOH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$) to give, after treatment with sodium borohydride, the hydroxy sulfone 30a in good yield (89\%). Surprisingly, extensive decomposition occurred on scale-up, as evidenced by TLC analysis. Having failed to identify the origin of this discrepancy, we experimented with various oxidative cleavage methodologies ${ }^{26}$ but none of them proved satisfactory, giving either over-oxidized products $\left(\mathrm{KMnO}_{4}\right)$ NaIO_{4}) or, after treatment with NaBH_{4}, partially epimerised 30a $\left(\mathrm{OsO}_{4} / \mathrm{NaIO}_{4}\right)$. A better result was observed by proceeding in two steps.

Reacting 18 with OsO_{4} in a t - $\mathrm{BuOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture with added N -methylmorpholine N -oxide ($\mathrm{NMO} \mathrm{)} \mathrm{resulted} \mathrm{in} \mathrm{the}$ progressive precipitation of the dihydroxy sulfone 31a (73\%), as established by X-ray analysis (Figure 2). Treating the filtrate with sodium sulfite and then processing the resulting mixture gave additional 31a, admixed with an isomeric diol whose structure is, by deduction, 31b (100% total; ratio 9:1); an X-ray structure was also obtained for the acetonide (i.e., 31c) derived from diol 31a by treatment with excess 2-methoxypropene and added PPTS (Figure 3).

This oxidation deserves a few comments. Using a low concentration (ca. 0.03 M) proved essential: attempts at lowering the dilution in order to complete the precipitation of the diol 31a resulted in the formation of a grey gummy product containing osmium and treatment with sodium sulfite afforded the diol product in moderate yield (56%). Lower yields were also observed using NMO monohydrate as a co-reagent, or aqueous acetone as a solvent. Surprisingly, Sharpless reagent conditions $\left[\mathrm{Fe}(\mathrm{CN})_{6} \mathrm{~K}_{3} / \mathrm{OsO}_{4}\right]$ were ineffective. Finally, reacting the 31a/31b mixture with NaIO_{4} at ca. $30-35^{\circ} \mathrm{C}$ in the preceding ternary solvent system afforded the sensitive aldehyde 32, which was immediately reduced into the alcohol 30a with sodium borohydride (overall 92% from 18) to obtain, after treatment with TIPSOTf under standard conditions, the O-TIPS
derivative 30b in good yield (98\%). Treating 30b with butyllithium at low temperature, and then reacting the resulting lithium derivative with allyl bromide afforded the sulfone 33a (93%), which was heated with magnesium in methanol to give 33b (88%). Cleavage of the $\mathrm{C}=\mathrm{C}$ bond of $\mathbf{3 3 b}$ was then realized using the $\mathrm{RuCl}_{3} / \mathrm{NaIO}_{4}$ reagent to give the acid $\mathbf{4 b}$ in satisfactory yield (60%). An attempt at converting $\mathbf{4 b}$ into the acid chloride $\mathbf{4 c}$ by treatment with oxalyl chloride resulted in partial decomposition into aldehydic compounds (NMR). A better result was acquired by first reacting $\mathbf{4 b}$ with trimethylsilyldiazomethane (TMSDM) to obtain the methyl ester $\mathbf{4 d}$ (98%). Next, treating 4 d with methanolic KOH afforded, after removal of the solvents in vacuo, a salt mixture that was thoroughly dried (see Experimental) before being reacted with oxalyl chloride to give pure $4 \mathbf{c}$ in excellent yield (99\%). Condensing $\mathbf{2 b}$ and $\mathbf{4 c}$ in a two-phase solvent system (aqueous $\mathrm{K}_{2} \mathrm{CO}_{3} /$ benzene) with added $\mathrm{NBu}_{4} \mathrm{HSO}_{4}{ }^{27}$ then afforded the keto-ester $\mathbf{5 b}$ in good yield (84%). Although the final steps to stigmatellin (1) were realized in line with Enders' indications, a few modifications proved useful (Scheme 7).

Notwithstanding the sensitivity of the MOM group to acids, Hirao chromonisation conditions, ${ }^{28}$ which had proved efficient in a related case, ${ }^{10 a}$ were attempted but, as anticipated, a complex mixture of polar products was shown by TLC. Accordingly, 5b was heated with excess sodium methoxide in methanol for two hours, the reaction mixture then being processed as described for keto-ester 5a. Deceptively, the chromone $\mathbf{6 c}$ was obtained in low yield (35%), which can be compared with the 75% yield achieved with 5a. However, acidifying the aqueous phase afforded, after extraction and separation by chromatography, the phenol $\mathbf{2 b}$ and the acid 4b (63% each) and by recycling these compounds three times the yield could be increased to 90%. The Baker-Vankataraman rearrangement, which is basically a Claisen condensation reaction, ${ }^{29}$ was attempted with $\mathbf{5 b}$ by targeting the corresponding titanium enolate. ${ }^{30}$ The only result was the selective cleavage of the MOM group, an observation that offered the possibility to circumvent the difficulties experienced by Enders to hydrolyse the MOM group by installing a more suitable protection. This was efficiently realized by reacting the chromone $\mathbf{6 c}$ with TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at low temperature in dilute conditions ($-5^{\circ} \mathrm{C}$, 0.05 M). Neutralizing the medium with aqueous sodium bicarbonate as soon as the reaction was complete by TLCprolonged contact with TiCl_{4} resulted in cleavage of the silyl ether-afforded quantitatively the hydroxychromone 34. Prevailing conditions for cleaving sensitive allylic carbonates ${ }^{31}$ having been estimated to be compatible with the hexatrienyl residue, $\mathbf{3 4}$ was converted into the mixed carbonate $\mathbf{3 5 a}$ (85%) by using allyl l-benzotriazoyl carbonate (AllocOBT) as a reagent. ${ }^{32}$ Treating 35a with buffered TBAF then afforded the primary alcohol $\mathbf{3 5 b}$, which was oxidized to aldehyde $\mathbf{3 6}$ under Swern conditions (100%). Adding 36 to the lithium derivative of the phosphonate $\mathbf{9 a}$ as described with $\mathbf{8}$ was not so effective. The best result was obtained by slowly adding the phosphonate anion to the aldehyde to furnish the O-Alloc derivative of stigmatellin 37 in moderate yield (34%); aldehyde 36 was also isolated (25%). Finally, the Alloc protecting group was smoothly removed by treating 37 with 2-ethylhexanoic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with added $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ to give, after chromatography

5b

Synthetic 1:
Mp 120~124 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}+36(\mathrm{c}=0.6, \mathrm{MeOH})$
Lit.:4b thick oil, $[\alpha]_{D}+37.7(\mathrm{c}=0.7, \mathrm{MeOH})$
Natural stigmatellin: ${ }^{2 b}$
Mp 128~130 ${ }^{\circ} \mathrm{C},[\alpha]_{D}+38(\mathrm{c}=0.7, \mathrm{MeOH})$

Scheme 7. a) MeONa (20 equiv), MeOH ; reflux, $2 \mathrm{~h}\left(35 \%\right.$). b) TiCl_{4} (3 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 0^{\circ} \mathrm{C}, 10 \mathrm{~min}$, then saturated NaHCO_{3} (100%). c) Alloc-OBT (3 equiv), DMAP (1 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; rt, $15 \mathrm{~h}\left(85 \%\right.$). d) TBAF $\cdot 3 \mathrm{H}_{2} \mathrm{O}$ (4.8 equiv), HOAc (6 equiv), THF; rt, $5 \mathrm{~d}(100 \%)$. e) DMSO (2.4 equiv), $(\mathrm{COCl})_{2}$ (1.5 equiv), DIPEA (5.1 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then $0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}(100 \%)$. f) 9 (1.1 equiv), LDA (1.2 equiv), THF; $-78^{\circ} \mathrm{C}, 12 \mathrm{~h}(34 \%)$. g) 2-Ethylhexanoic acid (1.5 equiv), $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ (0.1 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; rt, $2 \mathrm{~h}(85 \%)$.
on buffered silica gel, a colorless thick oil mainly constituted of $\mathbf{1}$, along traces of triphenylphosphine oxide, as revealed by TLC and ${ }^{1} \mathrm{H}$ NMR analyses (85%). Further purification of this product by chromatography on silica gel, followed by slow diffusion of hexane into a concentrated toluene solution of the glassy product thus obtained then afforded a white powder showing data in good agreement with those reported for stigmatellin (1).

Conclusion

Persevering in the use of sulfone chemistry proved to be a good option, resulting in a convenient divergent access to stigmatellin (1) and crocacin C (10). Interestingly, the key stereotetrad sulfone $\mathbf{1 8}$ was obtained in crystalline form, thus allowing for structure assignment by X-ray analysis. Also worthy of interest is the use of a sulfone isoprenylation/ elimination sequence to elaborate this sulfone to crocacin C (10). Although the cyanide-catalyzed oxidation of the allylic alcohol $\mathbf{2 7 b}$ into the ester $\mathbf{2 8}$ would merit further investigation, this procedure compares quite favourably with the previously used $\mathrm{C}_{2} / \mathrm{C}_{3}$ homologation process.

Moreover, in comparison with the aldol condensation methodologies that have been used in early syntheses of these two antibiotic compounds to introduce asymmetry, the lipasecatalyzed acetylation of the readily available meso triol 19a offers a few advantages. Good levels of diastereo- and enantioselectivity were achieved simply by optimizing the homogeneity of this triol by recrystallization and by prolonging the acetylation process-i.e. "The meso trick"-respectively. In addition, the coproduced bis-acetate 20, easily separated from
the mono-acetate product by column chromatography, could be recycled. Altogether, the results presented herein further illustrate the potential of the meso strategy, ${ }^{33}$ and of sulfone chemistry, in organic synthesis.

Experimental

General. Unless otherwise indicated, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance-300 instrument at 300 and 75 MHz , respectively; Bruker AC-200 and Bruker DPX-400 for $200 / 50$ and $400 / 100 \mathrm{MHz}$ for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR experiments. Chemical shifts (δ) are reported in parts per million relative to the solvent resonance as the internal standard $\left[\mathrm{CD}(\mathrm{H}) \mathrm{Cl}_{3}, 7.26\right.$ and 77 ppm respectively]. Signal multiplicity is described as s , singlet; d , doublet; t , triplet; m , multiplet; br, broad. X-ray and elemental analyses were realized at the laboratory of crystallography and the laboratory of analyses of the Faculty of Chemistry of the University of Strasbourg, respectively. Optical rotations were measured at $20^{\circ} \mathrm{C}$ using a Perkin-Elmer 341 polarimeter equipped with a sodium lamp $(589.3 \mathrm{nM})$. GC analyses were performed on a HP 6890 apparatus equipped with a J\&W Cyclodextrin B column ($30 \mathrm{~m} \times$ $0.32 \mathrm{~m} \times 0.25 \mathrm{~mm}$). Melting points were measured on an Electrothermal apparatus. TLC analyses were performed on silica gel (60 GF254 Merck), with spot visualisation by exposure to UV light (254 nm) or treatment with the $\mathrm{H}_{2} \mathrm{SO}_{4} /$ vanillin reagent. Column chromatography refers to the Stille method using Merck 60 H silica gel; unless otherwise stated, a slow gradient elution was utilised. All experiments were performed in dried glassware, under an argon atmosphere (three freeze/ pump/thaw cycles for all anionic condensation and alkylation
experiments) with magnetic stirring. All solvents used were freshly distilled from an appropriate reagent [Na benzophenone (ether, THF, DME, benzene, toluene); $\mathrm{Mg}(\mathrm{MeOH}, \mathrm{EtOH}), \mathrm{K}$ (t - BuOH), CaH_{2} (DMSO, DMF, pyridine, diisopropylamine, triethylamine, tributylamine, 2,6-lutidine); $\mathrm{K}_{2} \mathrm{CO}_{3}$ (EtOAc); CaH_{2}, then $\mathrm{P}_{4} \mathrm{O}_{10}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, acetonitrile); $\mathrm{P}_{4} \mathrm{O}_{10}$ (hexane, $\mathrm{CHCl}_{3}, \mathrm{CCl}_{4}$); KMnO_{4} (acetone, $\mathrm{HOAc}, \mathrm{H}_{2} \mathrm{O}$)]. Tosyl chloride, benzoic acid and PPh_{3} were recrystallized from hexane. KO- t - Bu was sublimed just before use. Allyl bromide, allyl chloroformate, oxalyl chloride, TMSCl , thiophenol, and TiCl_{4} were freshly distilled from CaH_{2}. Methyl iodide was distilled from CaH_{2} and kept over $\mathrm{K}_{2} \mathrm{CO}_{3}$ with added copper bronze under argon in a sealed flask protected from light. Vinyl acetate was freshly distilled over CaCl_{2} in a flask equipped with a $25-$ cm Vigreux column; only middle cuts with constant boiling point (bp $71^{\circ} \mathrm{C}$) were used. t-Butyldimethylsilyl chloride, triisopropylsilyl triflate, imidazole, Redal (70% in toluene), $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$, trimethylsilyldiazomethane (2 M in ether), diethyl azodicarboxylate, OsO_{4}, hydroxybenzotriazole, and Amano lipase PS were used as received (all reagents from Fluka-Sigma-Aldrich). All other reagents were available. n - BuLi solutions (in hexane; only freshly-opened bottles were used) were titrated with N -pivaloyl-o-toluidine. ${ }^{34}$ Diethyl phosphonate 9 a (bp $86^{\circ} \mathrm{C}$ at 0.05 Torr) was prepared from tiglinaldehyde as described. ${ }^{4 b}$ Alloc-OBT was prepared according to Ref. 32 and stored under argon in the dark. Active manganese dioxide was prepared from KMnO_{4} and MnSO_{4} as described. ${ }^{35}$ $0.15 \mathrm{M} \mathrm{OsO}_{4}$ solution was prepared just before use by diluting $\mathrm{OsO}_{4}(1 \mathrm{~g}, 3.93 \mathrm{mmol})$ with $\mathrm{H}_{2} \mathrm{O}(26.5 \mathrm{~mL}) . \mathrm{pH} 2$ and pH 5 tartaric buffers were prepared by adding NaOH pellets to 0.7 M tartaric acid (Universal paper as an indicator), and pH 7 phosphate buffer by mixing $0.06 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}(500 \mathrm{~mL})$ and 0.06 M $\mathrm{KH}_{2} \mathrm{PO}_{4}(500 \mathrm{~mL})$. Buffered silica gel was prepared by suspending $60-\mathrm{H}$ Merck silica gel in $10 \% \mathrm{NaHCO}_{3}$ and siphoning off the supernatant. The resulting slurry was thoroughly rinsed with water, until almost neutral (pH 8), and dried in air. The crusty solid thus obtained was heated at ca. $110-120^{\circ} \mathrm{C}$ in an oven for 4 d before being finely ground with a mortar.
(2R,3s,4S)-3-[(t-Butyldimethylsilyl)oxy]-2,4-dimethylpen-tane-1,5-diol (19b). This compound was prepared, as described in Ref. 11c, by reacting the O-TBDMS derivative of 2,4-dimethyl-1,5-hexadien-3-ol ($10 \mathrm{~g}, 44 \mathrm{mmol}$) with excess $9-\mathrm{BBN}$ and then treating the resulting hydroboration product with alkaline $\mathrm{H}_{2} \mathrm{O}_{2}$ to obtain, after chromatography on silica gel (hexane/EtOAc), followed by recrystallization from hot hexane, the diol 19b as a white solid ($8.32 \mathrm{~g} ; 73 \%$). Although practically pure in NMR, this product was dissolved in warm EtOAc (ca. $4-5 \mathrm{~mL}$) and hexane (ca. 40 mL) was cautiously added so as two layers were formed, and then allowed to slowly diffuse at rt for 2 d to obtain 19b as white crystals $(5.7 \mathrm{~g}$; 49.4%). Mp $87-90^{\circ} \mathrm{C}$ (Lit.: ${ }^{11 \mathrm{c}} \mathrm{mp} 45-45.5^{\circ} \mathrm{C}$); TLC (hexane:EtOAc $=1: 1) R_{f}=0.45 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.14(\mathrm{~s}, 6 \mathrm{H})$, $0.93(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.89-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.28$ (br s, $2 \mathrm{H}, \mathrm{OH}$), $3.64(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.72(\mathrm{t}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right): \delta-4.2,15.0,18.4,26.0,38.9,65.4$, 79.6.
($2 R, 3 s, 4 S$)-2,4-Dimethylpentane-1,3,5-triol (19a). Owing to difficulties experienced to fully eliminate residual $\mathrm{H}_{2} \mathrm{O}$, the procedure described in Ref. 11b was modified as follows.

In a flame-dried flask connected to a column of CaCl_{2}, dry HCl (generated by adding $96 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ to NaCl , and dried over CaCl_{2}) was passed into anhydrous methanol with cooling (ice/ methanol bath) and the concentration of the resulting solution was estimated by titration with 0.1 M aqueous NaOH using phenolphthalein as indicator. In a flask connected to an argon line, with stirring, 0.77 M methanolic $\mathrm{HCl}(13 \mathrm{~mL}, 9.5 \mathrm{mmol})$ was added dropwise to a cooled (ice bath) stirred solution of diol 19b ($4.93 \mathrm{~g}, 19 \mathrm{mmol}$) in anhydrous methanol (55 mL). The resulting mixture was stirred at rt for a further 2 h before being evaporated to dryness in vacuo at ca. $10-15^{\circ} \mathrm{C}$ (water bath). The colored solid residue thus obtained was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ methanol) to give, after removal of the solvents in vacuo, a white powder that was further dried for 5 d at ca. 10^{-1} Torr in a desiccator over $\mathrm{P}_{4} \mathrm{O}_{10}$ and KOH , renewing periodically the drying reagents. Recrystallization from hot anhydrous acetone (ca. $8-9 \mathrm{~mL}$) then afforded the triol 19a as white crystals ($2.66 \mathrm{~g} ; 94 \%$). Mp 92$93{ }^{\circ} \mathrm{C}\left(\right.$ Lit.: $\left.{ }^{10 \mathrm{~b}} \mathrm{mp} 87-90^{\circ} \mathrm{C}\right)$; TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=9: 1\right) R_{f}=$ $0.25 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.87-1.99$ $(\mathrm{m}, 2 \mathrm{H}), 3.09(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OH}), 3.55(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.69(\mathrm{~m}, 2 \mathrm{H})$, 3.89-3.94 (m, 2H), $4.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{CNMR}(\mathrm{MHz}$, CDCl_{3}): $\delta 14.3,36.8,66.9,83.4$.
N. B. Drying 19a as indicated proved essential to avoid the formation of acetonide during the recrystallization process.

By Hydrolysis of the Diacetate 20. $\mathrm{K}_{2} \mathrm{CO}_{3}$ (dried 24 h at $110^{\circ} \mathrm{C}$ in an oven; $1.36 \mathrm{~g}, 10 \mathrm{mmol}$) was added to a solution of $20(1.66 \mathrm{~g}, 7.16 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(10 \mathrm{~mL})$ and the resulting mixture was stirred at rt for 16 h before being evaporated to dryness in a vacuum. The residue was diluted with $1: 1$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (ca. $25-30 \mathrm{~mL}$) and the resulting suspension was filtered on a sintered funnel (washings with $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ $\mathrm{MeOH})$. The pooled filtrates were evaporated and the oily residue was chromatographed on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to give, after recrystallization from hot acetone, the triol 19a as white crystals $(0.97 \mathrm{~g} ; 92 \%)$.
(2R,3S,4S)-3,5-Dihydroxy-2,4-dimethylpentyl Acetate $[(+)-12]$. In a flask connected to an argon line, and equipped with a tube containing Amano lipase PS (1 g), triol $\mathbf{1 9 a}$ (1.05 g , 7.1 mmol) was diluted with THF (15 mL). Vinyl acetate (1.3 $\mathrm{mL}, 14.2 \mathrm{mmol}$) was added with a syringe and the flask was immersed in an ice/methanol bath, and protected from light with a foil of aluminium. The lipase was added and the resulting mixture was stirred 6 h at $-15^{\circ} \mathrm{C}$, and then allowed to warm to $0^{\circ} \mathrm{C}$ in ca. 2 h . TLC analysis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=9: 1\right)$ then indicated that 19a was mostly reacted. Stirring was pursued at $0^{\circ} \mathrm{C}$ (ice bath) and, 6 h later, when variation of the enantiomeric ratio was insignificant (GC), the reaction mixture was diluted with ether $(50 \mathrm{~mL})$ and filtered on a bed of Celite (previously washed with ether). The solids were washed with ether and the pooled filtrates were evaporated in vacuo at ca. $10-15^{\circ} \mathrm{C}$ (water bath). Chromatography of the residue on silica gel (hexane/EtOAc), followed by elimination of the solvents as above, afforded successively the diacetate 20 (493 $\mathrm{mg} ; 31 \%)$ and the monacetate $(+)-\mathbf{1 2}(875 \mathrm{mg} ; 69 \%) .(+)-12$: Colorless oil. $[\alpha]_{\mathrm{D}}+26.0\left(c 5.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ Lit. $.^{10 \mathrm{~b}}[\alpha]_{\mathrm{D}}+25.6(c$ $\left.4.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=9: 1\right) R_{f}=0.41 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.99(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.80-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.16-3.66$
(m, 3H, in which OH), $3.83-3.88(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.5,14.8,20.9,35.9,36.6,66.2$, $66.9,79.4,171.6$; $\mathrm{GC}\left(130^{\circ} \mathrm{C}\right.$, isotherm) $R_{\mathrm{t}}=64.5$ and 62.8 min for (+)-12 (99.1\%) and (-)-12 (0.9\%), respectively; Anal. Found: C, $56.80, \mathrm{H}, 9.53 \%$. Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{4}$: C, $56.82 ; \mathrm{H}$, 9.54\%. 20: colorless oil. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=9: 1\right) R_{f}=$ $0.64 ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right): \delta 14.9,20.9,35.5,66.2,76.4,171.3$; Anal. Found: C, $56.74, \mathrm{H}, 9.04 \%$. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{5}$: C, 56.88 ; H, 8.68%.

Conversion of the Monoacetate (+)-12 to the Diolsulfide 14a. Since being only briefly described in the literature, ${ }^{10 b}$ the procedures used are described thereafter.
(2R,3R,4S)-3-Hydroxy-2,4-dimethyl-5-(tosyloxy)pentyl Acetate (21a). In a flask connected to an argon line, with stirring, tosyl chloride ($3.1 \mathrm{~g}, 16.5 \mathrm{mmol}$) was added portionwise to a cooled (ice bath) solution $(+)-\mathbf{1 2}(2.75 \mathrm{~g}, 14.5 \mathrm{mmol})$ in pyridine ($7.5 \mathrm{~mL}, 91 \mathrm{mmol}$). Stirring was continued 1 h at ca. $5^{\circ} \mathrm{C}$ and the flask was placed in a refrigerator for 18 h . Sodium tetraborate ($1.65 \mathrm{~g}, 4.35 \mathrm{mmol}$) was added and the resulting mixture was stirred 2 h at ca. $0^{\circ} \mathrm{C}$ before being diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and poured into iced $1 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ with stirring. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \times 50 \mathrm{~mL})$ and the pooled organic extracts were washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 50 \mathrm{~mL}), 1 \% \mathrm{CuSO}_{4}(4 \times 50 \mathrm{~mL})$, brine $(4 \times 50$ $\mathrm{mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were evaporated and the residue was dried in a vacuum (ca. 10^{-2} Torr) for a few hours to give 21 a as a pale-yellow oil $(4.81 \mathrm{~g} ; 100 \%)$. $[\alpha]_{\mathrm{D}}-13.5(c 0.2$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); TLC (ether) $R_{f}=0.51 ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.94(\mathrm{~d}$, $J=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.86-2.05(\mathrm{~m}, 5 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.24-3.33(\mathrm{~m}, 1 \mathrm{H})$, $4.06(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 14.6,14.9,20.9,21.6,35.2,35.9,65.9,72.5,74.9,127.9$, 129.9, 132.9, 144.9, 171.4; Anal. Found: C, 55.67, H, 7.35\%. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 55.80 ; \mathrm{H}, 7.02 \%$.
(2R,3R,4R)-3-Hydroxy-5-iodo-2,4-dimethylpentyl Acetate (21b). $\mathrm{NaI}(6.41 \mathrm{~g}, 42.8 \mathrm{mmol})$ was weighed in a flask and a magnetic stirring bar was added. Air was evacuated to ca. 0.1 Torr and the flask was flamed 15 min before being filled with argon and immersed in an ice bath. In the dark, with stirring, a degassed solution of tosylate 21a ($4.74 \mathrm{~g}, 13.8 \mathrm{mmol}$) in anhydrous acetone (27 mL) was added with a syringe and the resulting mixture was stirred 30 min at $0^{\circ} \mathrm{C}$, then 2 h at rt , and finally 4 h at $50^{\circ} \mathrm{C}$ (bath). After cooling, the reaction mixture was diluted with hexane $(100 \mathrm{~mL})$ and poured into iced water $(100 \mathrm{~mL})$. The aqueous phase was extracted with hexane $(3 \times$ 50 mL) and the pooled organic extracts were washed with 10% $\mathrm{Na}_{2} \mathrm{SO}_{3}(2 \times 50 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL})$, and dried in a flask wrapped in a foil of aluminium $\left(1: 1 \mathrm{~K}_{2} \mathrm{CO}_{3} / \mathrm{Na}_{2} \mathrm{SO}_{3}\right)$. Still protected from light, the solvents were evaporated and the residue was dried in a desiccator over $\mathrm{P}_{4} \mathrm{O}_{10}$ and KOH to give the iodide 21 b as a pale-yellow oil $(4.09 \mathrm{~g} ; 100 \%)$. $[\alpha]_{\mathrm{D}}-14.7$ (c 8.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); TLC (hexane:ether $=1: 1$) $R_{f}=0.30 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1,06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.58-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.99$ $2.12(\mathrm{~m}, 5 \mathrm{H}), 3.27-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.43(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.21$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.3,15.2,18.1,22.6,34.9$, 37.4, 65.9, 77.4, 171.3.
N. B. Owing to sensitivity to light, this product was immediately used for the next step.
(2R,3R,4R)-2,4-Dimethyl-5-(phenylthio)pentane-1,3-diol (14a). Iodide 21b ($4.09 \mathrm{~g}, 13.6 \mathrm{mmol}$) was diluted with anhydrous ethanol $(16 \mathrm{~mL})$ in a flask connected to an argon line, and equipped with a funnel with a pressure-equalizing system. Anhydrous ethanol was added with a syringe to a flask charged with sodium $(0.69 \mathrm{~g})$, and connected to an argon line. When most of the metal was reacted, thiophenol ($2.8 \mathrm{~mL}, 27.3$ mmol) was added with a syringe and the resulting solution was siphoned into the funnel with a cannula, and then added dropwise to the cooled (ice bath) iodide solution with stirring. The bath was removed and the stirring was pursued until TLC analysis (ether) showed the reaction was complete (ca. 5 h). $\mathrm{K}_{2} \mathrm{CO}_{3}(1.85 \mathrm{~g}, 13.65 \mathrm{mmol})$ was added and the resulting mixture was further stirred at rt for 1 h before being diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and brine (100 mL each). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the pooled organic extracts were washed with $2 \mathrm{M} \mathrm{NaOH}(1 \times 50 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL})$, and dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. The residue left by evaporation of the solvents was purified by column chromatography (hexane/ether) and the oily residue left by elimination of the solvents was dried in a desiccator over $\mathrm{P}_{4} \mathrm{O}_{10}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ to give the diolsulfide $\mathbf{1 4 a}$ as a clear colorless oil $(2.99 \mathrm{~g} ; 92 \%)$. $[\alpha]_{\mathrm{D}}-64.0\left(c\right.$ 2.1, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; Lit.: ${ }^{10 \mathrm{~b}}[\alpha]_{\mathrm{D}}-65.0\left(c 2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; TLC (hexane:ether $=3: 7$) $R_{f}=0.20 ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.88$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.82-2.02(\mathrm{~m}$, 2H), 2.43 (bs, 2H, OH), 2.78 (dd, $J=9.0,12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (dd, $J=3.5,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=$ $6.6,10.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (dd, $J=3.4,10.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.13-7.37$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.2,16.9,36.0,36.1,36.6$, 67.3, 81.1, 125.9, 128.9, 129.2, 137.0; Anal. Found: C, 64.80, $\mathrm{H}, 8.13 \%$. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 64.96$; $\mathrm{H}, 8.39 \%$.
(2R,3R,4R)-1-t-Butyldiphenylsilyloxy-2,4-dimethyl-5-(phenylthio)pentan-3-ol (14b). In a flask connected to an argon line, $\operatorname{DPTBSCl}(1.75 \mathrm{~mL}, 6.73 \mathrm{mmol})$ and imidazole $(1.13 \mathrm{~g}, 16.6 \mathrm{mmol})$ were added to DMF (4.6 mL). After 30 min stirring at rt , a solution of the diolsulfide $\mathbf{1 4 a}(1.6 \mathrm{~g}, 6.66 \mathrm{mmol})$ in DMF (24 mL) was added with a syringe and the resulting mixture was stirred for 14 h at rt before being diluted with hexane $(100 \mathrm{~mL})$ and poured into brine $(100 \mathrm{~mL})$. The aqueous phase was extracted with hexane $(3 \times 30 \mathrm{~mL})$ and the pooled organic extracts were washed with brine $(2 \times 70 \mathrm{~mL})$, and dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. The residue left by evaporation of the solvents was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford, after drying in a vacuum, $\mathbf{1 4 b}$ as a colorless oil $(3.2 \mathrm{~g} ; 100 \%)$. $[\alpha]_{\mathrm{D}}=-58.2 \quad\left(c \quad 1.2, \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \quad R_{f}=0.46$; ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$, $1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.86-1.96(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{dd}, J=9.8$, $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{dd}, J=6.3,10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH})$), $3.80(\mathrm{dd}, J=3.6,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-$ $7.68(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.3,16.9,19.1,26.8$, $35.9,36.5,36.6,68.4,80.6,125.6,127.8,128.8,128.9,129.9$, 132.6, 135.6, 137.4; Anal. Found: C, 72.38 ; H, 8.31%. Calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{SSi}$: C, $72.75 ; \mathrm{H}, 8.00 \%$.
($2 R, 3 R, 4 R$)-1- t-Butyldiphenylsilyloxy-2,4-dimethyl-3-me-thoxy-5-(phenylthio)pentane (14c). Freshly sublimed KO-t$\mathrm{Bu}(224 \mathrm{mg}, 2 \mathrm{mmol})$ was charged in a flask connected to an argon/vacuum line. THF (5 mL) was added with a syringe and the resulting mixture was thoroughly degassed (three freeze/ pump/thaw cycles) before being cooled to $-78^{\circ} \mathrm{C}$ (dry ice/
acetone bath). With stirring, a degassed solution of the hydroxysulfide $\mathbf{1 4 b}(478 \mathrm{mg}, 1 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was added with a syringe, followed 45 min later by methyl iodide $(0.09 \mathrm{~mL}$, 1.8 mmol). The reaction mixture was stirred 15 min at $-78^{\circ} \mathrm{C}$, then 2 h at rt before being diluted with ether $(20 \mathrm{~mL})$ and poured into iced brine $(30 \mathrm{~mL})$. The aqueous layer was extracted with ether $(3 \times 30 \mathrm{~mL})$ and the pooled organic phases were washed with brine $(3 \times 5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4} / \mathrm{Na}_{2} \mathrm{SO}_{3}\right)$, and filtered on a short column of silica gel (washings with ether). The residue left by evaporation of the solvents was dried in a vacuum to give 14 c as a colorless oil $(467 \mathrm{mg} ; 95 \%) .[\alpha]_{\mathrm{D}}=-11.7$ (c 2.8, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) R_{f}=0.66 ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.93$ (d, $J=6,8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.82-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{dd}, J=9.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}$, $J=5.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=3.4,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}$, $3 \mathrm{H}), 3.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.46(\mathrm{~m}, 10 \mathrm{H}), 7.63-7.68$ (m, 5H); NMR ${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right): \delta 14.8,17.3,19.3,27.0,35.4,36.3$, $38.5,61.2,65.4,87.0,125.6,127.6,128.8,129.0,129.6,133.9$, 135.7, 137.4; Anal. Found: C, 73.11; H, 8.24\%. Calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{2}$ SSi: C, $73.12 ; \mathrm{H}, 8.18 \%$.
($2 R, 3 R, 4 R$)-3-Methoxy-2,4-dimethyl-5-(phenylthio)-pentan-1-ol (14d). In a flask connected to an argon line, TBAF $\cdot 3 \mathrm{H}_{2} \mathrm{O}(9 \mathrm{~g}, 28.5 \mathrm{mmol})$ diluted with THF $(28 \mathrm{~mL})$ was added with a syringe to a solution of sulfide $\mathbf{1 4 c}(7.02 \mathrm{~g}, 14.45$ $\mathrm{mmol})$ in THF $(18 \mathrm{~mL})$. After 16 h stirring at rt , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ and poured into iced brine (350 mL). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 50 \mathrm{~mL})$ and the pooled organic extracts were washed with brine $(2 \times 200 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The residue left by evaporation of the solvents was purified by column chromatography (hexane/ether) to give $\mathbf{1 4 d}$ as a colorless oil $(3.61 \mathrm{~g}$; 100%). $[\alpha]_{\mathrm{D}}=-33.6\left(c 3.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); TLC (ether) $R_{f}=0.38$; ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.84-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{bs}$, $1 \mathrm{H}, \mathrm{OH}), 2.77(\mathrm{dd}, J=9.0,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-3.10(\mathrm{~m}, 1 \mathrm{H})$, $3.22(\mathrm{dd}, J=3.8,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{dd}, J=5.5$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=3.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.37(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 15.4,17.0,36.1,36.6,37.1,61.5$, 65.9, 90.7, 125.8, 128.9, 129.1, 137.0; Anal. Found: C, 65.87; H, 9.09%. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 66.10 ; \mathrm{H}, 8.72 \%$.
(2S,3R,4R)-3-Methoxy-2,4-dimethyl-5-(phenylthio)pentanal (13). In a flask connected to an argon line, oxalyl chloride $(0.57 \mathrm{~mL}, 6.38 \mathrm{mmol})$ was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.5$ mL). The flask was immersed in a dry ice/acetone bath and DMSO ($0.87 \mathrm{~mL}, 10.2 \mathrm{mmol}$) was added, followed 30 min later by the hydroxy sulfide $\mathbf{1 4 d}(1.08 \mathrm{~g}, 3 \mathrm{mmol})$ diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$. After 30 min stirring, DIPEA (3.58 mL , 21.68 mmol) was added and the stirring was continued 30 min . The reaction mixture was allowed to warm to ca. $0-5^{\circ} \mathrm{C}$, and then further stirred 30 min before being diluted with ether (50 $\mathrm{mL})$ and poured into a mixture of iced brine $(100 \mathrm{~mL})$ and ether (50 mL) with vigorous stirring. After 10 min stirring, the aqueous layer was extracted with ether $(4 \times 50 \mathrm{~mL})$ and the pooled organic phases were washed with water $(10 \mathrm{~mL})$, brine $(3 \times 10 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvents were evaporated in vacuo and the residue was dried in a good vacuum (ca. 10^{-2} Torr) for 30 min to give $\mathbf{1 3}$ as a strongly-smelling yellow oil $(1.09 \mathrm{~g})$. TLC (ether): $R_{f}=0.70$; ($9: 1$ hexane/ EtOAc) $R_{f}=0.23 ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}$,
$3 \mathrm{H}), 1.09$ (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.99-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.70(\mathrm{~m}$, $1 \mathrm{H}), 2.83(\mathrm{dd}, J=8.5,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=4.0,12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.36-3.41(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.37(\mathrm{~m}, 5 \mathrm{H}), 9.74(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.0,16.3,35.8,36.9,48.4,60.0$, 85.9, 126.0, 128.9, 129.1, 136.9, 204.0.
N. B. This sensitive product was immediately used for the next step.
(3R,4R,5R,6R)-5-Methoxy-4,6-dimethyl-1-phenyl-7-(phenylthio)hept-1-yn-3-ol (22a); (3S,4R,5R,6R)-5-methoxy-4,6-dimethyl-1-phenyl-7-(phenylthio)hept-1-yn-3-ol (22b). In a flask connected to an argon/vacuum line, phenylacetylene $(5.5 \mathrm{ml}, 49.9 \mathrm{mmol})$ was diluted with ether $(71 \mathrm{~mL})$ and the resulting solution was degassed (three freeze/pump/thaw cycles) before being cooled to $-78^{\circ} \mathrm{C}$ (dry ice/acetone bath). With stirring, 1.5 M (in hexane) BuLi ($27.1 \mathrm{~mL}, 43.29 \mathrm{mmol}$) was added with a syringe and the resulting yellow solution was stirred for a further 90 min . A degassed solution of aldehyde $\mathbf{1 3}(8.4 \mathrm{~g}, 33.3 \mathrm{mmol})$ in ether $(67 \mathrm{~mL})$ was added progressively with a cannula and the stirring was continued 2 h at $-78^{\circ} \mathrm{C}$. Cooled (ice/methanol bath) 2 M aqueous $\mathrm{HCl}(26 \mathrm{~mL})$ was added dropwise with vigorous stirring and the resulting mixture was allowed to warm to rt. The aqueous layer was extracted with ether $(4 \times 150 \mathrm{~mL})$ and the pooled organic phases were washed with brine $(4 \times 50 \mathrm{~mL})$, and dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. The residue left by evaporation of the solvents was chromatographed on silica gel (hexane/ether) to give successively the acetylenic alcohol 22a ($4.68 \mathrm{~g} ; 39.5 \%$) and its epimer 22b $(6.45 \mathrm{~g} ; 54.5 \%) .22 \mathrm{a}$: Thick colorless oil. $[\alpha]_{\mathrm{D}}=-20.6$ (c 1.2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); TLC (hexane:ether $=7: 3$) $\quad R_{f}=0.46 ; \quad{ }^{1} \mathrm{H} N M R$ $\left(\mathrm{CDCl}_{3}\right): \delta 1.01(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}),, 1.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.99-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=9.4$, $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=4.0,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=$ $3.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 4.71(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 7.16-7.48(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{RMN}\left(\mathrm{CDCl}_{3}\right)$: $\delta 13.8\left(\mathrm{C}^{4} \mathrm{CH}_{3}\right), 17.6\left(\mathrm{C}^{6} \mathrm{CH}_{3}\right), 35.5\left(\mathrm{C}^{6}\right), 36.8\left(\mathrm{C}^{7}\right), 41.0\left(\mathrm{C}^{4}\right)$, $61.2\left(\mathrm{OCH}_{3}\right), 66.3\left(\mathrm{C}^{3}\right), 85.6\left(\mathrm{C}^{1}\right), 89.1\left(\mathrm{C}^{5}\right), 89.3\left(\mathrm{C}^{2}\right), 122.9$ $\left(\mathrm{C}_{\text {arom }}\right), 126.0\left(\mathrm{C}_{\text {arom }}\right), 128.3\left(\mathrm{C}_{\text {arom }}\right), 128.6\left(\mathrm{C}_{\text {arom }}\right), 129.1$ $\left(\mathrm{C}_{\text {arom }}\right)$, $129.4\left(\mathrm{C}_{\text {arom }}\right)$, $131.7\left(\mathrm{C}_{\text {arom }}\right), 136.8\left(\mathrm{C}_{\text {arom }}\right)$; Anal. Found: C, 74.85 ; $\mathrm{H}, 7.15 \%$. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}$: C, 74.54; $\mathrm{H}, 7.39 \%$. 22b: Thick colorless oil. $[\alpha]_{\mathrm{D}}=-37.1$ (c 1.2, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); TLC (hexane:ether $=7: 3$) $\quad R_{f}=0.26 ; \quad{ }^{1} \mathrm{HRMN}$ $\left(\mathrm{CDCl}_{3}\right): \delta 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 2.04-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.77(\mathrm{~m}, 1 \mathrm{H})$, $3.12-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 4.88(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.14-7.45 (m, 10H); ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right): \delta 12.8\left(\mathrm{C}^{4} \mathrm{CH}_{3}\right), 17.5$ $\left(\mathrm{C}^{6} \mathrm{CH}_{3}\right), 35.6\left(\mathrm{C}^{6}\right), 35.9\left(\mathrm{C}^{7}\right), 42.1\left(\mathrm{C}^{4}\right), 61.6\left(\mathrm{OCH}_{3}\right), 65.2$ $\left(\mathrm{C}^{3}\right), 86.4\left(\mathrm{C}^{1}\right), 88.3\left(\mathrm{C}^{2}\right), 88.9\left(\mathrm{C}^{5}\right), 122.7\left(\mathrm{C}_{\text {arom }}\right), 126.0$ $\left(\mathrm{C}_{\text {arom }}\right), 128.3\left(\mathrm{C}_{\text {arom }}\right), 128.4\left(\mathrm{C}_{\text {arom }}\right), 128.9\left(\mathrm{C}_{\text {arom }}\right), 129.5$ $\left(\mathrm{C}_{\text {arom }}\right), 131.7\left(\mathrm{C}_{\text {arom }}\right), 136.9\left(\mathrm{C}_{\text {arom }}\right)$.
($3 R, 4 R, 5 R, 6 R$)-5-Methoxy-4,6-dimethyl-1-phenyl-7-(phenylthio)hept-1-yn-3-ol 22a by Epimerization of 22b. Alcohol 22b ($1.04 \mathrm{~g}, 2.94 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(2.11 \mathrm{~g}, 8.05 \mathrm{mmol})$ were charged in a flask connected to an argon line, and equipped with a funnel with a pressure-equalizing system. Benzene (13 mL) was added with a syringe and the resulting solution was cooled to ca. $10^{\circ} \mathrm{C}$ (cold-water bath). A degassed solution of benzoic acid ($0.90 \mathrm{~g}, 7.4 \mathrm{mmol}$) and DEAD (1.14 $\mathrm{mL}, 6.23 \mathrm{mmol}$) in benzene (21 mL) was charged in the funnel with a cannula, and then added portionwise over a period of
ca. 10 h with stirring. The bath was removed and the reaction mixture was further stirred at rt for 16 h . The solvents were removed in vacuo (cold-water bath) and 1 M methanolic KOH $(26.2 \mathrm{~mL})$ was added to the crude benzoate product. After 1.5 h stirring at rt , the resulting mixture was diluted with iced brine $(100 \mathrm{~mL})$ and extracted with ether $(3 \times 100 \mathrm{~mL})$. The pooled organic extracts were washed with brine ($3 \times 20 \mathrm{~mL}$), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The yellow oil left by evaporation of the solvents $(5.4 \mathrm{~g})$ was chromatographed on silica gel (ether/hexane) to give pure 22a (730 mg ; 70\%).
(3R,4R,5R,6R)-5-Methoxy-4,6-dimethyl-1-phenyl-7-(phen-ylsulfonyl)hept-1-yn-3-ol (23). In a flask connected to an argon line, and equipped with a dropping funnel with a pressure-equalizing system, $\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(0.11 \mathrm{~g})$ was added to a stirred solution of hydroxysulfide $22 \mathrm{a}(4.68 \mathrm{~g}, 13.2 \mathrm{mmol}$) in acetonitrile (264 mL). With cooling (ice/brine bath), 0.2 M sodium bicarbonate (230 mL) was added to 30% hydrogen peroxide ($6.56 \mathrm{~mL}, 66.0 \mathrm{mmol}$) and the resulting solution was transferred into the funnel, and then added dropwise over ca. 30 min with vigorous stirring. The resulting mixture was further stirred at rt until TLC analysis (hexane/EtOAc) indicated the reaction was complete (ca. 16 h$). \mathrm{NaCl}(30 \mathrm{~g})$ was added and, after 30 min stirring, the resulting mixture was extracted with EtOAc $(3 \times 150 \mathrm{~mL})$. The pooled organic extracts were washed with brine $(3 \times 50 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2}-\right.$ SO_{4}). The residue left by evaporation of the solvents was chromatographed on silica gel (hexane/EtOAc) to give, after drying in a vacuum, the sulfone $\mathbf{2 3}$ as a colorless oil (5 g ; $98 \%) .[\alpha]_{\mathrm{D}}=+9.5\left(c \quad 1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; TLC (hexane:EtOAc $=$ 7:3) $R_{f}=0.27 ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.83-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.47(\mathrm{~m}$, $1 \mathrm{H}), 2.97$ (dd, $J=9.2,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=2.1,14.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=1.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.59(\mathrm{dd}, J=2.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.96$ (m, 10H); ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right): \delta 13.7\left(\mathrm{C}^{4} \mathrm{CH}_{3}\right), 19.6\left(\mathrm{C}^{6} \mathrm{CH}_{3}\right)$, $31.2\left(\mathrm{C}^{4}\right), 41.5\left(\mathrm{C}^{6}\right), 58.1\left(\mathrm{C}^{7}\right), 61.6\left(\mathrm{OCH}_{3}\right), 66.4\left(\mathrm{C}^{3}\right), 85.5$ $\left(\mathrm{C}^{1}\right), 88.8\left(\mathrm{C}^{2}\right), 89.6\left(\mathrm{C}^{5}\right), 122.6\left(\mathrm{C}_{\text {arom }}\right), 127.9\left(\mathrm{C}_{\text {arom }}\right), 128.4$ $\left(\mathrm{C}_{\text {arom }}\right), 128.5\left(\mathrm{C}_{\text {arom }}\right), 129.4\left(\mathrm{C}_{\text {arom }}\right), 131.6\left(\mathrm{C}_{\text {arom }}\right), 133.7$ $\left(\mathrm{C}_{\text {arom }}\right), 139.9\left(\mathrm{C}_{\text {arom }}\right)$; Anal. Found: C, $67.98 ; \mathrm{H}, 7.04 \%$. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}$: C, $68.37 ; \mathrm{H}, 6.78 \%$.
(3S,4R,5R,6R,E)-5-Methoxy-4,6-dimethyl-1-phenyl-7-(phenylsulfonyl)hept-1-en-3-ol (24). 70\% (in toluene) RedAl $(3.39 \mathrm{~mL}, 12.14 \mathrm{mmol})$ was diluted with ether $(30 \mathrm{~mL})$ in a flask connected to an argon/vacuum line and the resulting solution was thoroughly degassed (three freeze/pump/thaw cycles), then cooled to $-30^{\circ} \mathrm{C}$ (bath equipped with a refrigeration system). In a flask connected to an argon/vacuum line, a solution of sulfone $\mathbf{2 3}(2.92 \mathrm{~g}, 7.59 \mathrm{mmol})$ in ether (19 mL) was degassed similarly, and then added in ca. 5 min to the stirred Redal solution with a cannula. The reaction mixture was warmed to $-20^{\circ} \mathrm{C}$ and, after 5 h stirring, cooled to $-30^{\circ} \mathrm{C}$ before being diluted with ether $(200 \mathrm{~mL})$ and poured into iced pH 2 tartaric buffer $(200 \mathrm{~mL})$ with vigorous stirring. The aqueous layer was extracted with ether $(3 \times 150 \mathrm{~mL})$ and the pooled organic extracts were washed with $10 \% \mathrm{NaHCO}_{3}(75 \mathrm{~mL})$, brine $(2 \times 75 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvents were evaporated in vacuo and the residue was dried in a good vacuum (ca. 10^{-2} Torr) for a few hours to give 24 as a colored oil $(2.95 \mathrm{~g})$ that was used for the next step without further
purification. TLC (hexane:EtOAc 1:1) $R_{f}=0.39 ;{ }^{1} \mathrm{H} N M R$ $\left(\mathrm{CDCl}_{3}\right): \delta 0.86(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.72-1.82(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OH}), 2.98(\mathrm{dd}, J=9.4,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=3.6,7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.27(\mathrm{dd}, J=2.3,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 4.50(\mathrm{~m}$, $1 \mathrm{H}), 6.21$ (dd, $J=5.2,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ (dd, $J=1.5$, $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.96(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 11.6$ $\left(\mathrm{C}^{4} \mathrm{CH}_{3}\right), 18.8\left(\mathrm{C}^{6} \mathrm{CH}_{3}\right), 31.3\left(\mathrm{C}^{6}\right), 40.7\left(\mathrm{C}^{4}\right), 58.2\left(\mathrm{C}^{7}\right), 61.6$ $\left(\mathrm{OCH}_{3}\right), 72.6\left(\mathrm{C}^{3}\right), 89.0\left(\mathrm{C}^{5}\right), 126.4\left(\mathrm{C}_{\text {arom }}\right), 127.5\left(\mathrm{C}_{\text {arom }}\right)$, $127.9\left(\mathrm{C}_{\text {arom }}\right), 128.6\left(\mathrm{C}_{\text {arom }}\right), 129.4\left(\mathrm{C}_{\text {arom }}\right), 130.2\left(\mathrm{C}^{1}\right), 130.7$ $\left(\mathrm{C}^{2}\right), 133.7\left(\mathrm{C}_{\text {arom }}\right), 136.8\left(\mathrm{C}_{\text {arom }}\right), 140.0\left(\mathrm{C}_{\text {arom }}\right)$.
N. B. Using perfectly deaerated solvents was essential to observe a good yield. ${ }^{22 b}$
$\{[(2 R, 3 R, 4 R, 5 S, E)$-3,5-Dimethoxy-2,4-dimethyl-7-phenyl-hept-6-en-1-yl]sulfonyl\}benzene (18). With cooling (dry ice/acetone bath), a degassed solution of crude 24 (2.95 g) in THF (75 mL) was added with stirring to freshly sublimed $\mathrm{KO}-t-\mathrm{Bu}(1.70 \mathrm{~g} ; 15.18 \mathrm{mmol})$ diluted with THF (75 mL), followed 45 min later by methyl iodide ($0.85 \mathrm{~mL}, 13.66 \mathrm{mmol}$). The resulting mixture was further stirred 15 min at $-78^{\circ} \mathrm{C}$, then 10 min at rt before being poured into iced pH 7 phosphate buffer $(200 \mathrm{~mL})$. The aqueous phase was extracted with ether $(4 \times 100 \mathrm{~mL})$ and the pooled organic extracts were washed with an iced mixture of pH 7 buffer and 10% sodium NaHSO_{3} $(2 \times 50 \mathrm{~mL})$, brine $(3 \times 50 \mathrm{~mL})$, and dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. The solid residue left by evaporation of the solvents was purified by column chromatography (hexane/ether) to give, after recrystallization from hot ether, the sulfone $\mathbf{1 8}$ as white prisms $\left(2.75 \mathrm{~g} ; 90 \%\right.$ from 23). Mp $112^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}=-1.8$ (c 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); TLC (hexane:ether $=1: 1$) $\quad R_{f}=0.31 ; \quad{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.76(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.43-1.54(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=9.8$, $14.3 \mathrm{~Hz}, 3.11-3.17(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.96-$ $4.00(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=7.5,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23-7.93(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right): \delta 9.7$ $\left(\mathrm{C}^{4} \mathrm{CH}_{3}\right)$, $19.4\left(\mathrm{C}^{6} \mathrm{CH}_{3}\right), 30.6\left(\mathrm{C}^{6}\right), 42.0\left(\mathrm{C}^{4}\right), 56.4\left(\mathrm{C}^{5} \mathrm{OCH}_{3}\right)$, $57.7\left(\mathrm{C}^{7}\right), 61.6\left(\mathrm{C}^{3} \mathrm{OCH}_{3}\right), 80.9\left(\mathrm{C}^{3}\right), 86.9\left(\mathrm{C}^{5}\right), 126.4\left(\mathrm{C}_{\text {arom }}\right)$, $127.7\left(\mathrm{C}_{\text {arom }}\right), 127.8\left(\mathrm{C}_{\text {arom }}\right), 128.6\left(\mathrm{C}_{\text {arom }}\right), 129.0\left(\mathrm{C}^{2}\right), 129.3$ $\left(\mathrm{C}_{\text {arom }}\right), 132.3\left(\mathrm{C}^{2}\right), 133.5\left(\mathrm{C}_{\text {arom }}\right), 136.6\left(\mathrm{C}_{\text {arom }}\right), 140.2\left(\mathrm{C}_{\text {arom }}\right)$.
(E)-[(4-Bromo-3-methylbut-2-en-1-yl)oxy] \boldsymbol{t}-butyl)dimethylsilane (26a). γ-Bromoprenol 26b (85:15 mixture of the E and the Z isomer; by ${ }^{1} \mathrm{HNMR}$) was prepared from isoprene as described in the literature. ${ }^{36 a}$ The procedure described thereafter is adapted from Ref. 36b.

In a flask connected to an argon line, and equipped with a tube containing 60% (in paraffin) $\mathrm{NaH}(226.8 \mathrm{mg}, 5.66 \mathrm{mmol}$), the γ-bromophenol $\mathbf{2 6 b}(465 \mathrm{mg}, 2.83 \mathrm{mmol})$ was diluted with THF $(40 \mathrm{~mL})$. The flask was immersed in a cold-water bath and NaH was added with stirring. After 45 min stirring at ca. $10-$ $15^{\circ} \mathrm{C}$, when the Z alkoxide was fully reacted, as evidenced by quenching an aliquot with excess TMSCl and examining the resulting product in ${ }^{1} \mathrm{HNMR}$ [diagnostic signal for the Z product: s at $\delta 1.0 \mathrm{ppm}(200 \mathrm{MHz})]$, TBDMSCl $(427.3 \mathrm{mg}, 2.83$ mmol) was added. After 2 h stirring at rt , the reaction mixture was poured into iced $10 \% \mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and extracted with ether $(3 \times 20 \mathrm{~mL})$. The pooled organic extracts were washed with brine $(2 \times 10 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. The residue left by evaporation of the solvents was diluted with pentane and filtered on a short column of silica gel (washings with ether) to
give, after removal of the solvents, a colorless oil that was further purified by bulb-to-bulb distillation to give the pure E bromide 26 a ($473 \mathrm{mg} ; 59 \%$). $\mathrm{Bp} 65-70^{\circ} \mathrm{C}$ (bath) at 0.2 Torr; Lit.: ${ }^{24 \mathrm{a}} \mathrm{Bp} 103{ }^{\circ} \mathrm{C}$ at 3 Torr , TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) R_{f}=0.66$; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H})$, $3.96(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.2,15.0,18.3,25.9,40.6$, 61.2, 130.7, 132.7.
t-Butyl $[[(2 E, 5 R / 5 S, 6 R, 7 R, 8 R, 9 S, 10 E)$-7,9-dimethoxy-3,6,8-trimethyl-11-phenyl-5-(phenylsulfonyl)undeca-2,10-dien-1-yl]oxy\}dimethylsilane (27a). In a flask connected to an argon/vacuum line, a solution of sulfone $\mathbf{1 8}(91 \mathrm{mg}, 0.226$ $\mathrm{mmol})$ in THF (1 mL) was thoroughly degassed (three freeze/ pump/thaw cycles), and then cooled to $-78^{\circ} \mathrm{C}$ (dry ice/acetone bath). With stirring, 1.6 M (in hexane) BuLi $(0.18 \mathrm{~mL}$, $0.288 \mathrm{mmol})$ was added, followed 1 h later by HMPA $(0.05 \mathrm{~mL}$, 0.294 mmol), and the bromide 26 a ($94.4 \mathrm{mg}, 0.339 \mathrm{mmol}$) diluted with THF $(0.5 \mathrm{~mL})$. The resulting mixture was further stirred 1 h at $-78^{\circ} \mathrm{C}$, then 2 h at rt before being diluted with ether $(10 \mathrm{~mL})$ and poured into iced $10 \% \mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous phase was extracted with ether $(3 \times 20 \mathrm{~mL})$ and the pooled organic extracts were washed with brine $(3 \times 5 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The residue left by evaporation of the solvents was chromatographed on silica gel (hexane/EtOAc) to give successively $\mathbf{2 7 a}(80.7 \mathrm{mg} ; 65 \%$) as a $9: 1$ mixture of two diastereomers $\left({ }^{1} \mathrm{HNMR}\right)$ and the sulfone $\mathbf{1 8}(8 \mathrm{mg} ; 9 \%)$. TLC (1:1 hexane:EtOAc) $R_{f}=0.64 ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $0.01 / 0.03(\mathrm{~s}, 6 \mathrm{H}), 0.87 / 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.95 / 1.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.20-1.29(\mathrm{~m}, 6 \mathrm{H}), 1.68-1.77(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.82(\mathrm{~m}, 3 \mathrm{H})$, 3.19 (dd, $J=4.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.28 / 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.42 / 3.45$ $(\mathrm{s}, 3 \mathrm{H}), 3.67-4.05(\mathrm{~m}, 4 \mathrm{H}), 5.23-5.27(\mathrm{~m}, 1 \mathrm{H}), 6.11 / 6.15(\mathrm{dd}$, $J=7.5,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.53 / 6.59(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-$ $7.89(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.2\left(\mathrm{SiCH}_{3}\right)$, $10.3 / 11.8\left(\mathrm{C}^{8} \mathrm{CH}_{3}\right), 12.8 / 14.1\left(\mathrm{C}^{6} \mathrm{CH}_{3}\right), 15.1\left(\mathrm{C}^{3} \mathrm{CH}_{3}\right), 18.3$ $\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.9\left[\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 32.6 / 37.2\left(\mathrm{C}^{6}\right), 35.1 / 37.9\left(\mathrm{C}^{4}\right)$, $41.2 / 42.0\left(\mathrm{C}^{8}\right), 56.2 / 56.3\left(\mathrm{C}^{9} \mathrm{OCH}_{3}\right), 59.4\left(\mathrm{C}^{5}\right), 59.8 / 59.9$ $\left(\mathrm{C}^{1}\right), 60.9\left(\mathrm{C}^{7} \mathrm{OCH}_{3}\right), 81.5 / 83.3\left(\mathrm{C}^{9}\right), 84.3 / 87.0\left(\mathrm{C}^{7}\right), 126.4 /$ $126.5\left(\mathrm{C}_{\text {arom }}\right), 127.5 / 127.7\left(\mathrm{C}^{11}\right), 127.9 / 128.2\left(\mathrm{C}_{\text {arom }}\right), 128.5 /$ $128.6\left(\mathrm{C}_{\text {arom }}\right), 128.7 / 128 / 8\left(\mathrm{C}^{2}\right), 128.9 / 129.0\left(\mathrm{C}^{10}\right), 129.2 /$ $129.6\left(\mathrm{C}_{\text {arom }}\right), 131.6 / 132.6\left(\mathrm{C}^{3}\right), 132.3 / 132.4\left(\mathrm{C}_{\text {arom }}\right), 133.1 /$ $133.2\left(\mathrm{C}_{\text {arom }}\right), 136.6 / 136.8\left(\mathrm{C}_{\text {arom }}\right), 140.3 / 140.5\left(\mathrm{C}_{\text {arom }}\right)$.
(2E,5R/5S,6R,7R,8R,9S,10E)-7,9-Dimethoxy-3,6,8-tri-methyl-11-phenyl-5-(phenylsulfonyl)undeca-2,10-dien-1-ol (27b). The sulfone 27 a $(80.7 \mathrm{mg}, 0.135 \mathrm{mmol})$ was reacted with TBAF $\cdot 3 \mathrm{H}_{2} \mathrm{O}(0.148 \mathrm{mmol})$ in THF $(0.4 \mathrm{~mL}) 1 \mathrm{~h}$ at $0^{\circ} \mathrm{C}$, then 2 h at rt . The reaction mixture was processed as described above for the $\mathbf{1 4} \mathbf{c} / \mathbf{1 4 d}$ conversion to give, after purification by column chromatography (hexane/ether), the hydroxy sulfone 27b ($62.4 \mathrm{mg} ; 95 \%$) as a mixture of two diastereomers (same ratio; by ${ }^{1} \mathrm{HNMR}$). TLC (hexane $\mathrm{EtOAc}=1: 1$) $R_{f}=0.22$; ${ }^{1} \mathrm{HNMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.88 / 1.19(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.27-1.41(\mathrm{~m}, 6 \mathrm{H}), 1.55-1.78(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.83(\mathrm{~m}, 3 \mathrm{H}), 3.16$ (dd, $J=3.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25 / 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.39 / 3.55(\mathrm{~s}, 3 \mathrm{H})$, $3.65-3.90(\mathrm{~m}, 4 \mathrm{H}), 5.30-5.39(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=7.8$, $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50 / 6.53(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.87(\mathrm{~m}$, $10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.1 / 11.8\left(\mathrm{C}^{8} \mathrm{CH}_{3}\right), 13.3 /$ $14.0\left(\mathrm{C}^{6} \mathrm{CH}_{3}\right), 15.1 / 15.2\left(\mathrm{C}^{3} \mathrm{CH}_{3}\right), 32.6 / 37.2\left(\mathrm{C}^{6}\right), 34.8 / 37.9$ $\left(\mathrm{C}^{4}\right), 40.8 / 40.9\left(\mathrm{C}^{8}\right), 56.2 / 56.4\left(\mathrm{C}^{9} \mathrm{OCH}_{3}\right), 58.8 / 58.9\left(\mathrm{C}^{1}\right)$, 59.7/60.4 (C^{5}), 60.8/60.9 $\left(\mathrm{C}^{7} \mathrm{OCH}_{3}\right), 81.5 / 83.6\left(\mathrm{C}^{9}\right), 84.8 /$
$86.8\left(\mathrm{C}^{7}\right), 126.3 / 126.4\left(\mathrm{C}_{\text {arom }}\right), 126.5 / 127.5\left(\mathrm{C}^{11}\right), 127.7 / 127.9$ $\left(\mathrm{C}_{\text {arom }}\right), 128.1 / 128.5\left(\mathrm{C}_{\text {arom }}\right), 128.6 / 128.7\left(\mathrm{C}^{2}\right), 128.9 / 129.0$ $\left(\mathrm{C}^{10}\right), 129.1 / 129.4\left(\mathrm{C}_{\text {arom }}\right), 132.2 / 132.5\left(\mathrm{C}_{\text {arom }}\right), 133.2\left(\mathrm{C}_{\text {arom }}\right)$, 134.0//135.3 (C^{3}), 136.5/136.8 ($\mathrm{C}_{\text {arom }}$), 140.0/140.4 ($\mathrm{C}_{\text {arom }}$); Anal. Found: C, 68.78 ; $\mathrm{H}, 8.29 \%$. Calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{~S}$: C, 69.10; H, 7.87\%.
(2E,5R/5S,6R,7R, $8 R, 9 S, 10 E)$-7,9-Dimethoxy-3,6,8-tri-methyl-11-phenyl-5-(phenylsulfonyl)undeca-2,10-dienal (29). In a flask connected to an argon line, freshly prepared $\mathrm{MnO}_{2}(223.4 \mathrm{mg}, 2.57 \mathrm{mmol})$ was added progressively to a cooled (ice bath) solution of alcohol 27b $(62.4 \mathrm{mg}, 0.128$ $\mathrm{mmol})$ in a mixture of hexane $(2.5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ with stirring. The resulting mixture was further stirred at $0^{\circ} \mathrm{C}$ for 2 h before being diluted with ether (5 mL) and filtered on a short column of Celite (washings with ether). Evaporation of the solvents in vacuo afforded the aldehyde $29(51.5 \mathrm{mg} ; 83 \%)$ as an $88: 12$ mixture of diastereomers (${ }^{1} \mathrm{H} N M R$). TLC (hexane: $\mathrm{EtOAc}=1: 1) \quad R_{f}=0.52,0.47 ;{ }^{1} \mathrm{HNMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 0.77 / 1.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.14-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.67$ $(\mathrm{m}, 1 \mathrm{H}), 1.74 / 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.99-2.73(\mathrm{~m}, 3 \mathrm{H}), 3.02-3.31(\mathrm{~m}$, $4 \mathrm{H}), 3.41-4.03(\mathrm{~m}, 5 \mathrm{H}), 5.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.07 / 6.10(\mathrm{~d}$, $J=8.2,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.50 / 6.53(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-$ $7.87(\mathrm{~m}, 10 \mathrm{H}), 9.65 / 9.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.7 / 11.7\left(\mathrm{C}^{8} \mathrm{CH}_{3}\right), 14.0 / 14.3\left(\mathrm{C}^{6} \mathrm{CH}_{3}\right), 16.5 /$ $17.0\left(\mathrm{C}^{3} \mathrm{CH}_{3}\right), 32.4 / 38.3\left(\mathrm{C}^{6}\right), 35.8 / 38.8\left(\mathrm{C}^{4}\right), 40.7 / 42.1\left(\mathrm{C}^{8}\right)$, $56.1 / 56.2\left(\mathrm{C}^{9} \mathrm{OCH} 3\right), 59.9\left(\mathrm{C}^{5}\right), 61.3 / 61.4\left(\mathrm{C}^{7} \mathrm{OCH}_{3}\right), 81.0 /$ $83.5\left(\mathrm{C}^{9}\right), 85.0 / 87.5\left(\mathrm{C}^{7}\right), 126.4\left(\mathrm{C}^{2}\right), 127.7 / 127.6\left(\mathrm{C}^{11}\right), 128.1$ $\left(\mathrm{C}_{\text {arom }}\right), 128.5 / 128.6\left(\mathrm{C}_{\text {arom }}\right), 128.9\left(\mathrm{C}_{\text {arom }}\right), 129.1 / 129.2\left(\mathrm{C}^{10}\right)$, $129.7\left(\mathrm{C}_{\text {arom }}\right), 132.5 / 132.6\left(\mathrm{C}_{\text {arom }}\right), 133.6 / 133.8\left(\mathrm{C}_{\text {arom }}\right), 136.4 /$ $136.6\left(\mathrm{C}_{\text {arom }}\right), 138.7 / 140.0\left(\mathrm{C}_{\text {arom }}\right), 157.5 / 160.2\left(\mathrm{C}^{3}\right), 190.4 /$ $190.5\left(C^{1}\right)$.
(2E,5R/5S,6R,7R,8R,9S,10E)-Methyl 7,9-Dimethoxy-3,6,8-trimethyl-11-phenyl-5-(phenylsulfonyl)undeca-2,10dienoate (28). In a flask connected to an argon line, NaCN $(27.5 \mathrm{mg}, 0.106 \mathrm{mmol})$ and freshly prepared $\mathrm{MnO}_{2}(193.3 \mathrm{mg}$, 2.22 mmol) were added sequentially with stirring to a cooled (ice bath) solution of aldehyde $29(51.4 \mathrm{mg}, 0.106 \mathrm{mmol})$ in $\mathrm{MeOH}(1.3 \mathrm{~mL})$. After 5 min stirring at $0^{\circ} \mathrm{C}$, the bath was removed and the reaction mixture was stirred for a further 1 h at rt before being diluted with ether $(10 \mathrm{~mL})$ and poured into iced brine (10 mL). Celite (spatula) was added and the resulting mixture was vigorously stirred before being filtered on a short column of Celite (washings with ether). The aqueous layer was extracted with ether $(3 \times 10 \mathrm{~mL})$ and the pooled organic extracts were washed with brine $(3 \times 5 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. The residue left by evaporation of the solvents was chromatographed on silica gel (hexane/EtOAc) to afford 28 (same diastereomeric ratio as above) as a colorless paste (37.6 mg ; 69%). TLC (hexane:EtOAc $=1: 1$) $R_{f}=0.56 ;{ }^{1} \mathrm{HNMR}(200$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87 / 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24 / 1.30(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.47-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.82 / 1.85(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, $3 \mathrm{H}), 2.03-3.03(\mathrm{~m}, 3 \mathrm{H}), 3.19(\mathrm{dd}, J=3.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24 /$ $3.29(\mathrm{~s}, 3 \mathrm{H}), 3.41-4.05(\mathrm{~m}, 8 \mathrm{H}), 5.62(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.12 / 6.15(\mathrm{dd}, J=7.5,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50 / 6.56(\mathrm{~d}, J=15.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20-7.90(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 9.9/11.9 $\left(\mathrm{C}^{8} \mathrm{CH}_{3}\right), \quad 13.2 / 14.3\left(\mathrm{C}^{6} \mathrm{CH}_{3}\right), \quad 17.0\left(\mathrm{C}^{3} \mathrm{CH}_{3}\right)$, $32.4 / 37.9\left(\mathrm{C}^{6}\right), 36.3 / 39.1\left(\mathrm{C}^{4}\right), 41.0 / 42.1\left(\mathrm{C}^{8}\right), 50.7 / 50.9$ $\left(\mathrm{C}^{1} \mathrm{OCH}_{3}\right), 56.2 / 56.3\left(\mathrm{C}^{9} \mathrm{OCH}_{3}\right), 59.7 / 60.0\left(\mathrm{C}^{5}\right), 61.1 / 61.2$ $\left(\mathrm{C}^{7} \mathrm{OCH}_{3}\right), 81.2 / 83.4\left(\mathrm{C}^{9}\right), 84.8 / 87.2\left(\mathrm{C}^{7}\right), 117.7 / 118.5\left(\mathrm{C}^{2}\right)$,
126.4/126.5 ($\left.\mathrm{C}^{11}\right), 127.5 / 127.7\left(\mathrm{C}_{\text {arom }}\right), 128.2 / 128.6\left(\mathrm{C}_{\text {arom }}\right)$, 128.5/128.7 ($\mathrm{C}_{\text {arom }}$), 129.0/129.1 ($\left.\mathrm{C}^{10}\right)$, 129.2/129.5 ($\left.\mathrm{C}_{\text {arom }}\right)$, $132.2 / 132.5\left(\mathrm{C}_{\text {arom }}\right), 133.4 / 133.5\left(\mathrm{C}_{\text {arom }}\right), 136.5 / 136.7\left(\mathrm{C}_{\text {arom }}\right)$, 139.3/140.1 ($\mathrm{C}_{\text {arom }}$), 154.2/155.9 ($\left.\mathrm{C}^{3}\right), 161.4 / 166.4\left(\mathrm{C}^{1}\right)$; Anal. Found: C, $67.81 ; \mathrm{H}, 7.31 \%$. Calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{~S}$: C, 67.68; H, 7.44\%.
(2E,4E,6S,7S, $8 R, 9 S, 10 E$)-Methyl 7,9-Dimethoxy-3,6,8-trimethyl-11-phenylundeca-2,4,10-trienoate (11). In a flask connected to an argon/vacuum line, and equipped with a tube charged with freshly sublimed KO- $t-\mathrm{Bu}(14.6 \mathrm{mg}, 0.13 \mathrm{mmol}$), a solution of sulfone $\mathbf{2 8}(37.3 \mathrm{mg}, 0.72 \mathrm{mmol})$ in THF (1.3 mL) was thoroughly degassed (three freeze/pump/thaw cycles) before being cooled to $-15^{\circ} \mathrm{C}$ (ice/methanol bath). With stirring, $\mathrm{KO}-t-\mathrm{Bu}$ was added and the resulting mixture was allowed to warm to $-5^{\circ} \mathrm{C}$ over 1.5 h before being diluted with ether $(10 \mathrm{~mL})$ and poured into iced brine $(10 \mathrm{~mL})$. The aqueous phase was extracted with ether $(3 \times 10 \mathrm{~mL})$ and the pooled organic extracts were washed with brine ($3 \times 5 \mathrm{~mL}$), and dried $\left(\mathrm{MgSO}_{4}\right)$. The residue left by evaporation of the solvents was purified by column chromatography (hexane/EtOAc) to give the ester $\mathbf{1 1}$ as a colorless oil ($18.1 \mathrm{mg} ; 67 \%) .[\alpha]_{\mathrm{D}}=+57.2$ (c 0.3, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Lit.: ${ }^{7 \mathrm{~b}}[\alpha]_{\mathrm{D}}=+58.0$ (c 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); TLC (hexane:EtOAc =1:1) $\quad R_{f}=0.65$; (hexane:ether $=7: 3$) $\quad R_{f}=$ $0.38 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.19(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-1.59(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=$ $1.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.52-2.66(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=2.0,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.31(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{dd}, J=1.0$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.68$ (br s, 1H), 6.07 (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.15$ (dd, $J=7.5,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.16$ (dd, $J=8.5,15.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.56(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.7\left(\mathrm{C}^{3} \mathrm{CH}_{3}\right), 14.0\left(\mathrm{C}^{8} \mathrm{CH}_{3}\right), 18.7\left(\mathrm{C}^{6} \mathrm{CH}_{3}\right)$, $40.1\left(\mathrm{C}^{6}\right), 42.7\left(\mathrm{C}^{8}\right), 50.9\left(\mathrm{C}^{1} \mathrm{OCH}_{3}\right), 56.3\left(\mathrm{C}^{9} \mathrm{OCH}_{3}\right), 61.5$ $\left(\mathrm{C}^{7} \mathrm{OCH}_{3}\right) ; 81.1\left(\mathrm{C}^{9}\right), 86.4\left(\mathrm{C}^{7}\right), 117.6\left(\mathrm{C}^{2}\right), 126.4\left(\mathrm{C}_{\text {arom }}\right)$, $127.4\left(\mathrm{C}_{\text {arom }}\right), 128.6\left(\mathrm{C}_{\text {arom }}\right), 129.1\left(\mathrm{C}^{10}\right), 132.0\left(\mathrm{C}^{11}\right), 133.9$ $\left(\mathrm{C}^{4}\right), 136.8\left(\mathrm{C}^{5}\right), 138.3\left(\mathrm{C}_{\text {arom }}\right), 153.9\left(\mathrm{C}^{3}\right), 167.6\left(\mathrm{C}^{1}\right)$.
(1R,2S,3R,4S,5R,6R)-3,5-Dimethoxy-4,6-dimethyl-1-phenyl-7-(phenylsulfonyl)heptane-1,2-diol (31a); (1S,2R,3R,4S,5R,6R)-3,5-dimethoxy-4,6-dimethyl-1-phenyl-7-(phenylsulfonyl)heptane-1,2-diol (31b). In a flask connected to an argon line, with stirring, anhydrous NMO $(1.03 \mathrm{~g}$, 8.75 mmol) and 0.15 M aqueous $\mathrm{OsO}_{4}(10.6 \mathrm{~mL}, 1.59 \mathrm{mmol})$ were added sequentially to the sulfone $18(3.22 \mathrm{~g}, 8.0 \mathrm{mmol})$ diluted with 10:3:1 $t-\mathrm{BuOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(265 \mathrm{~mL})$. A white precipitate was formed progressively. After 15 h stirring at rt, the solids were filtered on a sintered funnel, and then thoroughly washed with water before being dried in a desiccator over $\mathrm{P}_{4} \mathrm{O}_{10}$ and KOH . Although practically pure in NMR, this product was re-crystallized from hot ether to give the diol 31a as white crystals $(2.55 \mathrm{~g} ; 73 \%)$. All of the aqueous and the ethereal filtrates were pooled and 10% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ (350 mL) was added. After 30 min vigorous stirring at rt , the resulting mixture was extracted with $\mathrm{EtOAc}(3 \times 350 \mathrm{~mL})$ and the pooled organic extracts were washed with $10 \% \mathrm{NaHCO}_{3}$ $(200 \mathrm{~mL})$, brine $(2 \times 200 \mathrm{~mL})$, and dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. The solvents were evaporated to give, after drying of the residue in a vacuum, a $68: 32$ mixture (by ${ }^{1} \mathrm{HNMR}$) of the diols 31a and 31b respectively ($0.95 \mathrm{~g} ; 27 \%, 100 \%$ total). 31a: Mp $179^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}=-26.4 \quad\left(c \quad 0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ TLC (hexane:ether $=1: 2$) $R_{f}=0.18 ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.83(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.31$
(d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.86-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OH}), 2.41-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH})$, 2.94-3.04 (m, 2H), $3.24(\mathrm{dd}, J=2.2,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.49$ $(\mathrm{m}, 7 \mathrm{H}), 3.69(\mathrm{dd}, J=2.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27-7.96(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 10.9\left(\mathrm{C}^{4} \mathrm{CH}_{3}\right)$, $19.2\left(\mathrm{C}^{6} \mathrm{CH}_{3}\right), 31.0\left(\mathrm{C}^{6}\right), 37.2\left(\mathrm{C}^{4}\right), 58.0\left(\mathrm{C}^{7}\right), 60.0\left(\mathrm{C}^{5} \mathrm{OCH}_{3}\right)$, $61.2\left(\mathrm{C}^{3} \mathrm{OCH}_{3}\right), 72.6\left(\mathrm{C}^{1}\right), 75.2\left(\mathrm{C}^{2}\right), 80.3\left(\mathrm{C}^{3}\right), 88.2\left(\mathrm{C}^{5}\right)$, $126.1\left(\mathrm{C}_{\text {arom }}\right), 127.7\left(\mathrm{C}_{\text {arom }}\right), 127.9\left(\mathrm{C}_{\text {arom }}\right), 128.5\left(\mathrm{C}_{\text {arom }}\right), 129.3$ $\left(\mathrm{C}_{\text {arom }}\right), 133.5\left(\mathrm{C}_{\text {arom }}\right), 140.2\left(\mathrm{C}_{\text {arom }}\right), 141.8\left(\mathrm{C}_{\text {arom }}\right) .31 \mathrm{~b}$: TLC (hexane:ether $=1: 2) R_{f}=0.11 ;{ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}\right): \delta 0.74(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-1.60(\mathrm{~m}, 2 \mathrm{H})$, 2.23-2.34 (m, 1H), 2.81-2.93 (m, 3H), 3.09 (dd, $J=2.1$, $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.25(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.29(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.57$ (dd, $J=5.9,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57$ (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.89(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 11.3\left(\mathrm{C}^{4} \mathrm{CH}_{3}\right), 19.2\left(\mathrm{C}^{6} \mathrm{CH}_{3}\right), 30.9\left(\mathrm{C}^{6}\right), 39.1\left(\mathrm{C}^{4}\right), 57.9\left(\mathrm{C}^{7}\right)$, $60.5\left(\mathrm{C}^{5} \mathrm{OCH}_{3}\right), 60.8\left(\mathrm{C}^{3} \mathrm{OCH}_{3}\right), 75.7\left(\mathrm{C}^{1}\right), 77.0\left(\mathrm{C}^{2}\right), 79.6$ $\left(\mathrm{C}^{3}\right), 87.9\left(\mathrm{C}^{5}\right), 127.2\left(\mathrm{C}_{\text {arom }}\right), 127.9\left(\mathrm{C}_{\text {arom }}\right), 128.1\left(\mathrm{C}_{\text {arom }}\right)$, $128.5\left(\mathrm{C}_{\text {arom }}\right), 129.3\left(\mathrm{C}_{\text {arom }}\right), 133.6\left(\mathrm{C}_{\text {arom }}\right), 140.1\left(\mathrm{C}_{\text {arom }}\right), 141.8$ ($\mathrm{C}_{\text {arom }}$).
($4 R, 5 R$)-4-[(1R,2S,3R,4R)-1,3-Dimethoxy-2,4-dimethyl-5-(phenylsulfonyl)pentyl]-2,2-dimethyl-5-phenyl-1,3-dioxolane (31c). In a flask connected to an argon line, 2-methoxypropene $(0.04 \mathrm{~mL}, 0.42 \mathrm{mmol})$ and PPTS $(5.28 \mathrm{mg}, 0.021$ mmol) were added sequentially to a cooled (ice bath) solution of diol 31a $(90 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.42 \mathrm{~mL})$. After 30 min stirring at $0^{\circ} \mathrm{C}$, the bath was removed and the reaction mixture was stirred at rt overnight. TLC analysis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ then indicated the reaction was not complete. Methoxypropene $(0.02 \mathrm{~mL})$ and PPTS $(5.28 \mathrm{mg})$ were added and the stirring was pursued at rt for 2 d . Although residual diol was shown by TLC, the reaction mixture was diluted with EtOAc $(2 \mathrm{~mL})$ and washed with $10 \% \mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$ and the pooled organic extracts were washed with water $(1 \mathrm{~mL})$, brine $(3 \times 5 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvents were removed in a vacuum and the residue was dissolved in ether. Hexane was added cautiously so as two layers were formed, and then allowed to slowly diffuse to give the acetonide 31c as white crystals ($66 \mathrm{mg} ; 67 \%$). Mp $135^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+4.2\left(c 1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); TLC (hexane:ether $=1: 1) R_{f}=0.55 ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.74(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}$, $3 \mathrm{H}), 1.73-1.83(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.88-3.00(\mathrm{~m}, 2 \mathrm{H})$, $3.20(\mathrm{dd}, J=1.6,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.47$ (dd, $J=2.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (dd, $J=5.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.93(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 10.8,19.1,27.2,30.6,37.4,58.0,59.7,60.8,80.3,80.8,83.1$, $87.5,109.2,127.1,127.9,128.2,128.5,129.3,133.6,138.7$, 140.1.
(2R,3S,4R,5R)-2,4-Dimethoxy-3,5-trimethyl-6-(phenylsulfonyl)hexanal (32). In a flask connected to an argon line, a mixture of diols 31a and 31b ($3.5 \mathrm{~g}, 8.02 \mathrm{mmol}$) was diluted with 10:3:1 $t-\mathrm{BuOH} / \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(160 \mathrm{~mL})$ and the resulting mixture was warmed to ca. $35-40^{\circ} \mathrm{C}$ (hot water bath). With stirring, $\mathrm{NaIO}_{4}(3.43 \mathrm{~g}, 8.02 \mathrm{mmol})$ was added and, after 15 h stirring, the solids were eliminated by filtration on a sintered funnel (washings with ether). The pooled filtrates were evaporated to dryness in vacuo at ca. $10-15^{\circ} \mathrm{C}$ (cold water bath) and the oily residue was further dried in a good vacuum
(ca. 10^{-2} Torr) for 30 min to give crude $32(2.75 \mathrm{~g})$ as a paleyellow oil. TLC (hexane:ether $=1: 1$) $R_{f}=0.45 ;{ }^{1} \mathrm{H} N M R$ $\left(\mathrm{CDCl}_{3}\right): \delta 0.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.83-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=9.5$, $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02$ (dd, $J=1.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=2.1$, $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41$ (s, 3H), 3.70 (s, 3H), 3.71 (d, $J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53-7.93(\mathrm{~m}, 5 \mathrm{H}), 9.55(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $11.3,19.4,30.5,37.8,57.7,58.3,61.3,85.9,86.6,127.8$, 129.3, 133.6, 137.0, 203.1.
N. B. This sensitive product was immediately reduced into 30a (see below) without further purification.
(2R,3S,4R,5R)-2,4-Dimethoxy-3,5-dimethyl-6-(phenyl-sulfonyl)hexan-1-ol (30a). By Ozonolysis of the Sulfone 18: Ozonised oxygen was passed into a stirred solution of sulfone $18(250 \mathrm{mg}, 0.627 \mathrm{mmol})$ in $1: 4 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ (dry ice/bath) until the characteristic blue color persisted for 5 min . The reaction mixture was then flushed with nitrogen and $\mathrm{NaBH}_{4}(47.4 \mathrm{mg}, 1.254 \mathrm{mmol})$ was added with stirring. The cooling bath was removed and the reaction mixture was further stirred for 5 h at rt before being poured in iced $10 \% \mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$ and the pooled organic extracts were washed with brine ($4 \times 5 \mathrm{~mL}$), and dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$. The solvents were eliminated in a vacuum and the residue was chromatographed on silica gel (hexane/ether) to give the hydroxy sulfone 30a as a colorless oil ($182 \mathrm{mg} ; 89 \%$). $[\alpha]_{\mathrm{D}}=+5.3$ (c 1.3, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); TLC (ether) $R_{f}=0.15 ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 0.70(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.65$ $(\mathrm{m}, 1 \mathrm{H}), 2.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.30-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{dd}$, $J=9.6,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=2.4,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}$, $J=1.8,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.49$ $(\mathrm{m}, 1 \mathrm{H}), 3.53-3.68(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.91(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 10.5\left(\mathrm{C}^{3} \mathrm{CH}_{3}\right), 15.3\left(\mathrm{C}^{5} \mathrm{CH}_{3}\right), 30.8\left(\mathrm{C}^{5}\right), 37.9$ $\left(\mathrm{C}^{3}\right), 57.8\left(\mathrm{C}^{6}\right), 58.4\left(\mathrm{C}^{2} \mathrm{OCH}_{3}\right), 61.3\left(\mathrm{C}^{4} \mathrm{OCH}_{3}\right), 62.8(\mathrm{C1})$, 80.6 (C2), $87.3(\mathrm{C} 4), 127.8\left(\mathrm{C}_{\text {arom }}\right), 129.3\left(\mathrm{C}_{\text {arom }}\right), 133.6$ $\left(\mathrm{C}_{\text {arom }}\right), 140.1$ ($\mathrm{C}_{\text {arom }}$); Anal. Found: C, 57.83 ; H, 8.31%. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 58.16 ; \mathrm{H}, 7.93 \%$.

By Reduction of the Aldehyde 32: In a flask connected to an argon line, $\mathrm{NaBH}_{4}(0.6 \mathrm{~g}, 16.04 \mathrm{mmol})$ was added with stirring to a cooled (ice bath) solution of crude $32(2.75 \mathrm{~g})$ in methanol $(160 \mathrm{~mL})$. The stirring was pursued for 30 min at $0^{\circ} \mathrm{C}$, then 30 min at rt and the reaction mixture was poured into iced $10 \% \mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The pooled organic phases were washed with brine $(2 \times 200$ $\mathrm{mL})$, and dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$). Evaporation of the solvents in vacuo was followed by a chromatography on silica gel (hexane/ether) to afford, after drying in a vacuum, the hydroxysulfone $\mathbf{3 0 a}$ as a colorless oil (2.41 g ; 92% from 31a/31b).
\{I(2R,3S,4R,5R)-2,4-Dimethoxy-3,5-dimethyl-6-(phenylsulfonyl)hexyl]oxy\}triisopropylsilane (30b). In a flask connected to an argon line, 2,6-lutidine ($1.87 \mathrm{~mL}, 16.04 \mathrm{mmol}$) and TIPSOTf ($2.42 \mathrm{~mL}, 8.69 \mathrm{mmol}$) were added sequentially with a syringe to a cooled (ice bath) solution of $\mathbf{3 0 a}(2.41 \mathrm{~g}$, 7.29 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14.6 \mathrm{~mL})$. Stirring was continued for 30 min and the reaction mixture was poured into iced 10% $\mathrm{NH}_{4} \mathrm{Cl}(125 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{~mL})$. The pooled organic phases were washed with iced 0.1 M $\mathrm{HCl}(75 \mathrm{~mL}), 10 \% \mathrm{NH}_{4} \mathrm{Cl}(125 \mathrm{~mL})$, brine $(3 \times 125 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The residue left by elimination of the solvents
was purified by column chromatography (hexane/ether) to give, after drying in a good vacuum (ca. 10^{-2} Torr), the silyl ether 30b as a colorless oil $(3.5 \mathrm{~g} ; 98 \%) .[\alpha]_{\mathrm{D}}=+12.0(c 1.1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); TLC (hexane:ether $=1: 1$) $\quad R_{f}=0.40 ; \quad{ }^{1} \mathrm{H} N M R$ $\left(\mathrm{CDCl}_{3}\right): \delta 0.64(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-1.06(\mathrm{~m}, 21 \mathrm{H})$, $1.30(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.43(\mathrm{~m}$, $1 \mathrm{H}), 2.95$ (dd, $J=9.8,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=1.9,9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=1.6,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.50(\mathrm{~m}$, $8 \mathrm{H}), 3.85(\mathrm{dd}, J=5.7,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.89(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right): \delta 9.5,11.9,18,19.4,30.7,37.1,57.9,58.3$, 61.4, 63.7, 80.2, 87.2, 127.8, 129.2, 133.4, 140.3; Anal. Found: C, $62.02 ; \mathrm{H}, 9.61 \%$. Calcd for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{SSi}: \mathrm{C}, 61.68 ; \mathrm{H}$, 9.52%.
\{[(2R,3S,4R,5R,6R/6S)-2,4-Dimethoxy-3,5-dimethyl-6-(phenylsulfonyl)non-8-en-1-yl]oxy\}triisopropylsilane (33a). In a flask connected to an argon/vacuum line, a solution of sulfone $\mathbf{3 0 b}(1.92 \mathrm{~g}, 3.9 \mathrm{mmol})$ in THF $(13 \mathrm{~mL})$ was thoroughly degassed before being cooled to $-78^{\circ} \mathrm{C}$ (dry ice/acetone bath). With stirring, 1.5 M (in hexane) BuLi ($3.2 \mathrm{~mL}, 5.1 \mathrm{mmol}$) was added dropwise. After 1 h stirring, HMPA $(0.89 \mathrm{~mL})$ was added, followed 10 min later by allyl bromide $(0.5 \mathrm{~mL}, 5.9$ mmol). The reaction mixture was further stirred at $-78^{\circ} \mathrm{C}$ for 1 h before being diluted with ether $(150 \mathrm{~mL})$ and poured into iced $10 \% \mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$. The aqueous phase was extracted with ether $(4 \times 75 \mathrm{~mL})$ and the pooled organic extracts were washed with brine $(3 \times 50 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The residue left by evaporation of the solvents was purified by column chromatography (hexane/ether) to give, after drying in a desiccator, the sulfone 33a (9:1 mixture of two diastereomers; by $\left.{ }^{1} \mathrm{HNMR}\right)$ as a thick colorless oil $(1.93 \mathrm{~g} ; 93 \%)$. TLC (hexane:ether $=1: 1) R_{f}=0.59 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.73(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-1.07(\mathrm{~m}, 21 \mathrm{H}), 1.18(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.78-1.87(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.81(\mathrm{~m}, 3 \mathrm{H}), 3.02(\mathrm{dd}, J=4.7$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.44(\mathrm{~m}, 8 \mathrm{H}), 3.52-3.82(\mathrm{~m}, 2 \mathrm{H}), 4.79-4.95$ $(\mathrm{m}, 2 \mathrm{H}), 5.55-5.68(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.92(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$, major isomer: $\delta 10.2,11.9,17.6,18.0,28.9,33.3$, $36.6,58.1,61.3,63.0,64.1,80.2,87.6,116.3,128.8,129.0$, 133.4, 136.0, 139.2; Anal. Found: C, 64.04; H, 9.68\%. Calcd for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{5} \mathrm{SSi}$ C, 63.83 ; $\mathrm{H}, 9.57 \%$.
\{[(2R,3S,4S,5S)-2,4-Dimethoxy-3,5-dimethylnon-8-en-1yl]oxy\}triisopropylsilane (33b). In a flask equipped with a condenser connected to an argon line, the sulfone $\mathbf{3 3 a}$ (3.2 g , $6.1 \mathrm{mmol})$ was refluxed with stirring in $\mathrm{MeOH}(200 \mathrm{~mL})$ with magnesium turnings $(3.4 \mathrm{~g})$. After 2 h , TLC analysis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ showed the reaction was incomplete. Magnesium (3.4 g) was added and reflux was pursued for ca. $2-3 \mathrm{~h}$. After cooling, the reaction mixture was diluted with ether $(150 \mathrm{~mL})$ and poured into iced pH 2 tartaric buffer $(600 \mathrm{~mL})$. The aqueous layer was extracted with ether $(4 \times 300 \mathrm{~mL})$ and the pooled organic extracts were washed with $10 \% \mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL})$, brine $(3 \times 100 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvents were removed in a vacuum and the residue (2.17 g) was chromatographed on silica gel (hexane/ether) to give 33b as a colorless oil $(2.07 \mathrm{~g}$; $88 \%) .[\alpha]_{\mathrm{D}}=+7.9\left(c \quad 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ TLC (hexane:ether $=1: 1$) $R_{f}=0.62 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.77(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.03$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-1.07(\mathrm{~m}, 21 \mathrm{H}), 1.19-1.32(\mathrm{~m}, 1 \mathrm{H})$, $1.44-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.89(\mathrm{~m}, 1 \mathrm{H})$, $1.91-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.24(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=2.4$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.89$
(dd, $J=5.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-5.04(\mathrm{~m}, 2 \mathrm{H}), 5.73-5.86(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 10.4,11.9,17.6,18.0,29.0,31.8$, 34.4, 37.1, 58.7, 61.1, 64.8, 80.9, 87.7, 114.2, 139.2; Anal. Found: C, 68.53; H, 12.13\%. Calcd for $\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}$: C, 68.33; H, 11.99%.
(4S,5S,6S,7R)-5,7-Dimethoxy-4,6-dimethyl-8-[(triisopropylsilyl)oxyloctanoic acid (4b). In a flask connected to an argon line, a solution of $\mathbf{3 3 b}(603 \mathrm{mg}, 1.56 \mathrm{mmol})$ in $1: 1 \mathrm{CCl}_{4} /$ $\mathrm{CH}_{3} \mathrm{CN}(6.6 \mathrm{~mL})$ was cooled to ca. $0^{\circ} \mathrm{C}$ (ice bath). With vigorous stirring, $\mathrm{NaIO}_{4}(1.37 \mathrm{~g}, 6.4 \mathrm{mmol})$ diluted with $\mathrm{H}_{2} \mathrm{O}(4.4$ mL) was added, followed by $\mathrm{RuCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}(62 \mathrm{mg}, 0.3 \mathrm{mmol})$. The resulting mixture was vigorously stirred 15 h at rt before being diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$ and the pooled organic extracts were washed with brine $(35 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. The residue left by evaporation of the solvents was chromatographed on silica gel ($2: 1$ hexane/ether) to give $\mathbf{4 b}$ as a colorless oil (380 mg ; 60\%). [$\alpha]_{\mathrm{D}}=+4.1$ (c 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); TLC (hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:ether $\left.=7: 7: 1\right) \quad R_{f}=0.69 ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 0.78(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-1.07$ $(\mathrm{m}, 21 \mathrm{H}), 1.43-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.90(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.35$ $(\mathrm{m}, 1 \mathrm{H}), 2.41-2.51(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=2.4,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.48(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.7(\mathrm{dd}, J=6.0$, $9.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right): \delta 10.3,11.9,17.4,18.0,24.9$, $31.9,34.3,37.3,58.7,61.2,64.8,80.9,87.5,179.5$.
(4S,5S,6S,7R)-Methyl 5,7-Dimethoxy-4,6-dimethyl-8[(triisopropylsilyl)oxy]octanoate (4d). Under argon, 2 M (in ether) TMSDM ($1.31 \mathrm{~mL}, 2.62 \mathrm{mmol}$) was added dropwise to a cooled (ice bath) stirred solution of acid $\mathbf{4 b}(706 \mathrm{mg}, 1.74$ $\mathrm{mmol})$ in 2:3 toluene/ $\mathrm{MeOH}(1.8 \mathrm{~mL})$. After 1 h stirring at rt , the solvents were evaporated and the residue was purified by column chromatography ($7: 7: 1$ hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ether) to give the methyl ester $\mathbf{4 d}$ as a colorless oil (712 mg ; 98%). $[\alpha]_{\mathrm{D}}=$ +4.2 (c 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); TLC (hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:ether $=7: 7: 1$) $R_{f}=0.70 ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.78(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.03$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-1.09(\mathrm{~m}, 21 \mathrm{H}), 1.41-1.54(\mathrm{~m}, 1 \mathrm{H})$, $1.65-1.89(\mathrm{~m}, 3 \mathrm{H}), 2.21-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.47(\mathrm{~m}, 1 \mathrm{H}), 3.01$ (dd, $J=2.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.68$ $(\mathrm{m}, 5 \mathrm{H}), 3.88(\mathrm{dd}, J=6.1,9.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 10.2,11.9,17.4,18.0,25.2,32.1,34.3,37.3,51.4,58.7,61.3$, 64.9, 80.9, 87.4, 174.4; Anal. Found: C, 63.20; H, 11.25\%. Calcd for $\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 63.11$; H, 11.07%.
(4S,5S,6S,7R)-5,7-Dimethoxy-4,6-dimethyl-8-[(triisopropylsilyl)oxy]octanoyl Chloride (4c). In a flask connected to an argon line, a solution of $\mathrm{KOH}(1.7 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added to a solution of ester $\mathbf{4 d}(0.9 \mathrm{~g}, 2.15 \mathrm{mmol})$ in MeOH $(8.6 \mathrm{~mL})$ and the resulting mixture was stirred at ca. $35-40^{\circ} \mathrm{C}$ (hot-water bath) for 15 h before being evaporated to dryness in vacuo. The residue was slurried in toluene and the solvents were distilled out in a vacuum at ca. $45-50^{\circ} \mathrm{C}$ (bath). These operations were repeated twice and the residue finally obtained was further dried in a good vacuum (ca. $10^{-2} \mathrm{Torr}$) at $50^{\circ} \mathrm{C}$ for a few hours. The flask was filled with argon and ether $(26 \mathrm{~mL})$ was added. With cooling (ice bath), freshly distilled oxalyl chloride $(0.37 \mathrm{~mL}, 4.3 \mathrm{mmol})$ was added with a syringe, followed by DMF (3 drops). The resulting mixture was stirred 3 h at rt before being filtered in a Schlenk tube equipped with a sintered funnel, and connected to an argon/vacuum line. The solids were washed with CCl_{4} and the pooled filtrates were
evaporated to dryness in vacuo. The residue was further dried in a vacuum (ca. 10^{-2} Torr) to give $\mathbf{4 c}$ as a pale-yellow oil $(0.9 \mathrm{~g} ; 99 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.79(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.04-1.11(\mathrm{~m}, 24 \mathrm{H}), 1.53-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.91(\mathrm{~m}, 3 \mathrm{H})$, 2.81-2.91 (m, 1H), 2.96-3.07 (m, 2H), $3.48(\mathrm{~s}, 6 \mathrm{H}), 3.54-3.67$ $(\mathrm{m}, 2 \mathrm{H}), 3.89(\mathrm{dd}, J=5.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 10.2,11.9,17.6,18.0,25.3,33.8,37.2,45.2,58.5,61.5,64.3$, 80.6, 87.2, 174.1.

1-[2-Hydroxy-4,6-dimethoxy-3-(methoxymethoxy)phen-yllpropan-1-one (2b). As described, ${ }^{4 \mathrm{~b}}$ the bis-phenol 2a $(1.5 \mathrm{~g}, 6.63 \mathrm{mmol})$ was reacted with $\mathrm{MOMCl}(0.65 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ with added DIPEA ($7.5 \mathrm{~mL}, 43.1 \mathrm{mmol}$) for 15 h at rt to obtain $\mathbf{2 b}$ as a yellow solid ($1.7 \mathrm{~g} ; 95 \%$). TLC (hexane: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOAc}=10: 10: 1\right) R_{f}=0.67 ;{ }^{1} \mathrm{H}$ NMR: $\delta 1.16$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.03(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.90$ $(\mathrm{s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 13.91(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right): \delta 8.5,37.7,55.6,55.8,57.2,86.4$, 98.0, 106.1, 126.8, 158.3, 158.8, 159.2, 207.0.

4S,5S,6S,7R)-3,5-Dimethoxy-2-(methoxymethoxy)-6-propionylphenyl 5,7-Dimethoxy-4,6-dimethyl-8-[(triisopropylsilyl)oxyloctanoate (5b). In a flask connected to an argon line, 20% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(4.7 \mathrm{~mL})$ and $\mathrm{NBu}_{4} \mathrm{HSO}_{4}(24 \mathrm{mg}$, $0.07 \mathrm{mmol})$ were added to a stirred solution of $\mathbf{2 b}(310 \mathrm{mg}$, $1.16 \mathrm{mmol})$ in benzene $(4.7 \mathrm{~mL})$. Chloride $4 \mathrm{c}(490 \mathrm{mg}, 1.16$ $\mathrm{mmol})$ diluted with benzene $(2 \mathrm{~mL})$ was added with a syringe and the resulting mixture was vigorously stirred at rt for 20 h before being diluted with ether $(20 \mathrm{~mL})$ and poured into iced $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$. The aqueous phase was extracted with ether $(3 \times 10 \mathrm{~mL})$ and the pooled organic extracts were washed with brine $(2 \times 10 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. The residue left by evaporation of the solvents in vacuo was chromatographed on silica gel (EtOAc) to give the ester $\mathbf{5 b}$ as a pale-yellow oil (630 $\mathrm{mg} ; 84 \%) .[\alpha]_{\mathrm{D}}=+1.7\left(c \quad 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; TLC (hexane: $\mathrm{EtOAc}=$ 3:2) $R_{f}=0.89 ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.96-1.03(\mathrm{~m}, 27 \mathrm{H}), 1.42-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.82(\mathrm{~m}, 3 \mathrm{H})$, $2.36-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{dd}, J=2.4$, $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.60(\mathrm{~m}, 11 \mathrm{H}), 3.60-3.81(\mathrm{~m}, 7 \mathrm{H}), 4.91(\mathrm{~s}$, $2 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.1,10.3,11.9,17.3$, 18.0, 24.6, 31.6, 34.1, 37.4, 56.1 (2C), 57.2, 58.8, 61.2, 65.4, 81.0, 87.4, 94.4, 98.6, 117.6, 132.1, 142.3, 153.7, 154.7, 171.5, 174.1, 202.5; Anal. Found: C, 61.82; H, 9.53\%. Calcd for $\mathrm{C}_{34} \mathrm{H}_{60} \mathrm{O}_{10}$ Si: C, 62.16 ; H, 9.21%.

2-[(3S,4S,5S,6R)-4,6-Dimethoxy-3,5-dimethyl-7-\{(triiso-propylsilyl)oxy\}heptyl]-5,7-dimethoxy-8-(methoxymeth-oxy)-3-methyl-4H-chromen-4-one (6c). In a flask equipped with a condenser connected to an argon line, sodium (3.18 g , $0.138 \mathrm{mmol})$ was added to $\mathrm{MeOH}(230 \mathrm{~mL})$ with cooling (ice bath). After the metal was reacted, a degassed solution of ester $\mathbf{5 b}(1.195 \mathrm{~g}, 1.82 \mathrm{mmol})$ in $\mathrm{MeOH}(90 \mathrm{~mL})$ was added with a syringe and the resulting mixture was refluxed 2 h . TLC analysis (EtOAc) showed the reaction was complete. The solvents were evaporated to dryness in a vacuum and the residue was dissolved in EtOAc (125 mL) and washed with $1 \mathrm{M} \mathrm{HCl}(2 \times$ 50 mL), brine (75 mL), and dried $\left(\mathrm{MgSO}_{4}\right)$. The residue left by evaporation of the solvents was chromatographed on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right)$ to afford successively the chromone $\mathbf{6 c}$ as a colorless oil (403 mg ; 35%), the phenol 2b (310 mg ; 63.2%) and the acid $\mathbf{4 b}(472 \mathrm{mg} ; 63.7 \%) .[\alpha]_{\mathrm{D}}=+4.4\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; TLC (EtOAc) $R_{f}=0.50 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.73(\mathrm{~d}, J=7.1$
$\mathrm{Hz}, 3 \mathrm{H}), 1.05-1.06(\mathrm{~m}, 21 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-$ $1.65(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.52-2.62(\mathrm{~m}$, $1 \mathrm{H}), 2.71-2.80(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=2.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}$, $6 \mathrm{H}), 3.53-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.83-3,96(\mathrm{~m}, 7 \mathrm{H})$, $5.09(\mathrm{~s}, 2 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.7,10.3,11.9$, 17.8, 18.0, 27.7, 30.1, 34.8, 37.4, 56.1, 56.4, 57.2, 58.7, 61.3, $65.9,80.9,87.4,92.1,98.7,108.1,117.0,126.7,151.8,155.8$, 156.6, 162.6, 177.3; Anal. Found: C, 63.49 ; H, 9.03%. Calcd for $\mathrm{C}_{34} \mathrm{H}_{58} \mathrm{O}_{9} \mathrm{Si}: \mathrm{C}, 63.92 ; \mathrm{H}, 9.15 \%$.
2-[(3S,4S,5S,6R)-4,6-Dimethoxy-3,5-dimethyl-7-\{(triiso-propylsilyl)oxy\}heptyl]-8-hydroxy-5,7-dimethoxy-3-methyl-4H-chromen-4-one (34). In a flask connected to an argon/ vacuum line, a solution of chromone $\mathbf{6 c}(440 \mathrm{mg}, 0.69 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was thoroughly degassed, and then cooled to ca. $-5^{\circ} \mathrm{C}$ (ice/brine bath). With stirring, freshly distilled TiCl_{4} $(0.23 \mathrm{~mL}, 2.07 \mathrm{mmol})$ was added with a syringe. A red-brown color immediately developed and, 10 min later, when TLC analysis showed the reaction was complete, cold $10 \% \mathrm{NaHCO}_{3}$ $(35 \mathrm{~mL})$ was rapidly added, the stirring being continued at $0^{\circ} \mathrm{C}$ until discoloration (ca. $5-10 \mathrm{~min}$). The aqueous phase was extracted $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the pooled organic extracts were washed with brine $(2 \times 50 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvents, followed by drying of the residue in a vacuum, afforded the hydroxychromone 34 as a paleyellow oil ($410 \mathrm{mg} ; 100 \%$). TLC (EtOAc) $R_{f}=0.26 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-1.05(\mathrm{~m}, 21 \mathrm{H}), 1.11$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.48-1.99(\mathrm{~m}, 7 \mathrm{H}), 2.59-2.70(\mathrm{~m}, 1 \mathrm{H})$, $2.76-2.85(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=3.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.54$ (m, 7H), 3.62 (dd, $J=5.9,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=6.0$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 5.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH})$, $6.43(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.7,10.5,11.9,17.6,17.9$, $27.5,29.7,34.9,37.2,56.4,56.8,58.6,61.2,64.5,80.9,87.7$, $92.4,108.0,116.9,127.3,145.9,149.2,153.0,162.4,177.4$.
N. B. Monitoring the reaction by TLC was essential to avoid the cleavage of the silyl ether. Owing to sensitivity on silica gel, this crude product was used immediately for the next step.

Allyl \{2-[(3S,4S,5S,6R)-4,6-Dimethoxy-3,5-dimethyl-7-|(triisopropylsilyl)oxy|heptyl]-5,7-dimethoxy-3-methyl-4-oxo-4H-chromen-8-yl\} Carbonate (35a). Under argon, Alloc-OBT ($420 \mathrm{mg}, 2.07 \mathrm{mmol}$) and DMAP ($84 \mathrm{mg}, 0.69$ $\mathrm{mmol})$ were added to a solution of chromone $34(409 \mathrm{mg}, 0.69$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$. After 15 h stirring at rt , the reaction mixture was evaporated to dryness in a vacuum and the residue was chromatographed on silica gel (EtOAc) to give the carbonate $\mathbf{3 5 a}$ as a thick colorless oil (400 mg ; 85%). $[\alpha]_{\mathrm{D}}=+3.1$ (c 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); TLC (EtOAc) $R_{f}=0.51 ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $0.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-1.06(\mathrm{~m}, 21 \mathrm{H}), 1.10(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.97(\mathrm{~s}$, $3 \mathrm{H}), 2.50-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.77(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=2.3$, $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.63$ (dd, $J=5.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=6.3,10.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.96 (s, 3H), 3.97 (s, 3H), 4.76 (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.33$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{ddt}, J=5.5$, $10.5,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.6$, $10.3,11.9,17.6,18.0,27.5,29.8,34.7,37.4,56.3,56.5,58.7$, $61.2,65.0,69.5,81.0,87.4,91.6,107.7,117.3,119.1,121.2$, 131.2, 150.6, 152.9, 154.7, 158.4, 162.5, 176.8; Anal. Found: C, $63.31 ; \mathrm{H}, 8.81 \%$. Calcd for $\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{O}_{10} \mathrm{Si}: \mathrm{C}, 63.69$; H , 8.61\%.

Allyl \{2-[(3S,4S,5S,6R)-7-Hydroxy-4,6-dimethoxy-3,5-di-methylheptyl]-5,7-dimethoxy-3-methyl-4-oxo-4H-chromen-8-yl\} Carbonate (35b). Under argon, with stirring, HOAc ($0.2 \mathrm{~mL}, 3.51 \mathrm{mmol}$) was added to 1 M (in THF) TBAF $\cdot 3 \mathrm{H}_{2} \mathrm{O}$ $(2.81 \mathrm{~mL}, 2.81 \mathrm{mmol})$ and the resulting mixture was added with a syringe to a degassed solution of chromone 35a (397 mg , 0.585 mmol) in THF (1 mL). After 5 d stirring at rt , the solvents were eliminated in a vacuum and the residue was chromatographed on silica gel ($50: 1 \mathrm{EtOAc} / \mathrm{MeOH}$) to give the chromone 35b as a thick colorless oil $(306 \mathrm{mg} ; 100 \%) .[\alpha]_{\mathrm{D}}=$ -3.4 (c 1, EtOAc); TLC (EtOAc: $\mathrm{MeOH}=50: 1) R_{f}=0.24$; ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.49-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H})$, 2.07 (br s, $1 \mathrm{H}, \mathrm{OH}), 2.53-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.77(\mathrm{~m}, 1 \mathrm{H})$, 2.98 (dd, $J=3.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.49(\mathrm{~m}, 7 \mathrm{H}), 3.65(\mathrm{~m}$, $2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 4.76(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.33$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00$ (ddt, $J=5.7,10.5,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 9.7,11.4,17.7,27.6,29.6,34.6,37.7,56.3,56.5,58.4,61.3$, $62.9,69.6,81.2,87.9,91.5,107.6,117.5,119.3,121.1,131.1$, $150.5,152.9,154.7,158.4,162.2,176.7$; Anal. Found: C, $61.87 ; \mathrm{H}, 7.67 \%$. Calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{10}$: C, $62.05 ; \mathrm{H}, 7.33 \%$.

Allyl $\{2-[(3 S, 4 S, 5 S, 6 R)-4,6$-Dimethoxy-3,5-dimethyl-7-oxoheptyl]-5,7-dimethoxy-3-methyl-4-oxo-4H-chromen-8$\mathbf{y l}$ \} Carbonate (36). Using the conditions described above for the oxidation of $\mathbf{1 4 d}$ to $\mathbf{1 3}$, DMSO $(0.123 \mathrm{~mL}, 1.61 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ was treated at $-78^{\circ} \mathrm{C}$ with oxalyl chloride $(0.13 \mathrm{~mL}, 1.43 \mathrm{mmol})$ before adding chromone $\mathbf{3 5 b}(350 \mathrm{mg}$, $0.67 \mathrm{mmol})$ diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$, followed by DIPEA $(0.592 \mathrm{~mL}, 3.42 \mathrm{mmol})$. After 30 min stirring at $-78^{\circ} \mathrm{C}$, the reaction mixture was diluted with ether $(15 \mathrm{~mL})$ and poured into iced brine (15 mL) and ether (15 mL) with vigorous stirring. The aqueous phase was extracted with ether $(4 \times 15$ $\mathrm{mL})$. The pooled extracts were washed with $10 \% \mathrm{NH}_{4} \mathrm{Cl}(2 \times$ 15 mL), brine ($3 \times 15 \mathrm{~mL}$), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Elimination of the solvents in a vacuum then afforded the aldehyde $\mathbf{3 6}$ as a smelly yellow oil ($346 \mathrm{mg} ; 100 \%$). TLC (EtOAc) $R_{f}=0.34$; ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.20(\mathrm{~m}$, $1 \mathrm{H}), 2.53-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.79(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=2.4$, $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{dd}, J=1.3$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 4.76(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 5.33(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.00$ (ddt, $J=5.6,10.5,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 9.57(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 9.7,11.6,17.5,27.1,29.5$, $34.3,37.3,56.3,56.5,58.3,61.0,69.5,86.7,86.9,91.6,107.6$, $117.5,119.2,121.2,131.1,150.5,152.9,154.8,158.4,161.9$, 176.7, 202.6.
N. B. Owing to sensitivity on silica gel, this product was used for the next step without purification.

Allyl $\{2-[(3 S, 4 S, 5 S, 6 S, 7 E, 9 E, 11 E)-4,6$-Dimethoxy-3,5,11-trimethyltrideca-7,9,11-trien-1-yl]-5,7-dimethoxy-3-methyl-4-oxo-4H-chromen-8-yl\} Carbonate (37). In a flask connected to an argon/vacuum line, 1.56 M (in hexane) BuLi (0.49 $\mathrm{mL}, 0.76 \mathrm{mmol}$) was added with a syringe to a cooled (ice bath) degassed solution of di-i-propylamine ($97 \mathrm{~mL}, 0.69 \mathrm{mmol}$) in THF (9.9 mL). After 30 min stirring at $0^{\circ} \mathrm{C}$, the flask was immersed in a dry ice/acetone bath and a degassed solution of phosphonate $9 \mathrm{a}(0.160 \mathrm{~g}, 0.69 \mathrm{mmol})$ in THF $(9.9 \mathrm{~mL})$ was
added with a cannula. The stirring was continued 1 h at $-78^{\circ} \mathrm{C}$ and a degassed solution of aldehyde $36(328 \mathrm{mg}, 0.63 \mathrm{mmol})$ in THF (18 mL) was slowly added with a cannula. The reaction mixture was further stirred 12 h at $-78^{\circ} \mathrm{C}$, then 24 h at rt before being diluted with ether (25 mL) and poured into iced 10% $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The aqueous phase was extracted with ether (50 $\mathrm{mL})$ and EtOAc $(4 \times 50 \mathrm{~mL})$, and the pooled organic extracts were washed with brine $(2 \times 30 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The residue left by evaporation of the solvents in vacuo was chromatographed on buffered silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right)$ to give successively the aldehyde $\mathbf{3 6}(40 \mathrm{mg} ; 25 \%)$ and the chromone 37 ($127 \mathrm{mg} ; 34 \%)$. $[\alpha]_{\mathrm{D}}=+20\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: ~ \mathrm{EtOAc}=1: 1\right) \quad R_{f}=0.60 \quad$ (2 elutions); ${ }^{1} \mathrm{H} N M R$ $\left(\mathrm{CDCl}_{3}\right): \delta 0.74(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.49-1.85(\mathrm{~m}, 10 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.76$ $(\mathrm{m}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=1.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}$, $3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=17.1 \mathrm{~Hz}$, 1 H), $5.56-5.69$ (m, 2H), 5.98 (ddt, $J=5.6,10.3,17.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.09-6.27 (m, 3H), $6.39(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 10.1$, $10.4,12.3,14.4,18.0,27.2,30.1,34.8,42.2,56.6,56.7,56.9$, $61.8,69.9,81.4,87.3,91.9,108.0,117.7,119.5,121.5,125.6$, $128.1,131.5,132.1,133.4,135.0,138.0,151.0,153.3,155.1$, 158.8, 162.8, 177.2; Anal. Found: C, 68.53; H, 8.12\%. Calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{O}_{9}$: C, $68.21 ; \mathrm{H}, 7.74 \%$.

Stigmatellin (1). In a flask connected to an argon line, PPh_{3} ($4 \mathrm{mg}, 0.016 \mathrm{mmol}),\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](6.6 \mathrm{mg}, 0.006 \mathrm{mmol})$, and 2-ethylhexanoic acid (13.5 mL) were added sequentially to a solution of $\mathbf{3 7}(34 \mathrm{mg}, 0.057 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$. After 2 h stirring at rt , TLC analysis (EtOAc) showed the reaction was complete. The reaction mixture was deposited onto a column of de-activated silica gel (washings with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Eluting with a gradient $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /EtOAc, and then eliminating the solvents in a good vacuum (ca. 10^{-2} Torr) for a few hours afforded stigmatellin (1) as a thick oil polluted with traces of triphenylphosphine oxide, as evidenced by TLC and ${ }^{1} \mathrm{H} N M R$ analyses (25 mg ; 85%). This product was further purified by chromatography over a thick layer of silica gel (EtOAc; 2 elutions). The colorless glass thus obtained (10 mg) was diluted in a tube with toluene $(0.5 \mathrm{~mL})$ and hexane $(1 \mathrm{~mL})$ was cautiously added so as two layers were formed. The tube was placed in a refrigerator to obtain, after 5 d , stigmatellin (1) as a white powder $(4 \mathrm{mg})$. $\mathrm{Mp} 120-124^{\circ} \mathrm{C}\left(\mathrm{Lit} .:^{2} 128-130^{\circ} \mathrm{C}\right)$; $[\alpha]_{\mathrm{D}}=+36.0(c \quad 0.6, \mathrm{MeOH}) ;$ Lit. $:{ }^{2}[\alpha]_{\mathrm{D}}=+38.0$ (c 0.7 , MeOH); Lit. $:^{4 \mathrm{~b}}[\alpha]_{\mathrm{D}}=+37.7$ (c 0.7, MeOH); TLC (EtOAc) $R_{f}=0.40$ (Lit.: $\left.{ }^{2} 0.40\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.79(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.48-1.78(\mathrm{~m}$, $9 \mathrm{H}), 1.87-1.98(\mathrm{~m}, 4 \mathrm{H}), 2.57-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.83(\mathrm{~m}, 1 \mathrm{H})$, 3.10 (dd, $J=3.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ (s, 3 H), 3.49 (s, 3 H), 3.92 $(\mathrm{s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 5.28(\mathrm{dd}, J=2.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{OH}), 5.56-5.65(\mathrm{~m}, 2 \mathrm{H}), 6.10-6.31(\mathrm{~m}, 3 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.1,10.7,12.3,14.4,18.0$, $27.4,29.9,35.1,42.1,56.6,56.8,57.2,61.7,81.7,87.6,92.8$, 108.4, 117.3, 125.6, 127.7, 128.2, 132.1, 133.6, 135.0, 138.1, 146.3, 149.5, 153.4, 162.7, 177.7.

Crystallographic data have been deposited with Cambridge Crystallographic Data Centre: Deposition numbers CCDC1021898, CCDC-1021891, and CCDC-1021895 for compounds 18, 31a, and 31c respectively. Copies of the data can be
obtained free of charge via http://www.ccdc.cam.ac.uk/conts/ retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2 1EZ, UK; Fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

The results presented herein are taken in part from the thesis dissertation of Carolina Infante-Rodriguez (The University of Strasbourg; 2009), and have been presented in short at the IVth New Year's Symposium (RWTH Aachen University, January 2012). Thanks are due to Pr. Jean-Yves Lallemand (ICSN, Gif-sur-Yvette) for generous support (grant to C. I.-R.), and to Dr. Tim Wallace (The University of Manchester) for helpful suggestions. Thanks are also due to Drs. André De Cian and Lydia Karmazin (Faculty of Chemistry of the University of Strasbourg) for X-ray analyses.

Supporting Information

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of synthetic stigmatellin (1). This material is available free of charge on J-STAGE.

References

\# In memoriam, this paper is dedicated to Pr. Marc Julia, who passed away on June 2010, as a tribute to his incomparable talent, both as teacher and research scientist, and as an acknowledgement of his scientific legacy.

1 G. Thierbach, B. Kunze, H. Reichenbach, G. Höfle, Biochim. Biophys. Acta, Bioenerg. 1984, 765, 227; W. Oettmeier, D. Godde, B. Kunze, G. Höfle, Biochim. Biophys. Acta, Bioenerg. 1985, 807, 216; G. von Jagow, T. Ohnishi, FEBS Lett. 1985, 185, 311.

2 a) B. Kunze, T. Kemmer, G. Höfle, H. Reichenbach, J. Antibiot. 1984, 37, 454; G. Höfle, B. Kunze, C. Zorzin, H. Reichenbach, Liebigs Ann. Chem. 1984, 1883. For isolation of stigmatellin from another myxobacterium species, see: b) S . Rachid, F. Sasse, S. Beyer, R. Müller, J. Biotechnol. 2006, 121, 429.

3 P. A. Postila, K. Kaszuba, M. Sarewicz, A. Osyczka, I. Vattulainen, T. Róg, Biochim. Biophys. Acta, Bioenerg. 2013, 1827, 761; T. Kleinschroth, M. Castellani, C. H. Trinh, N. Morgner, B. Brutschy, B. Ludwig, C. Hunte, Biochim. Biophys. Acta, Bioenerg. 2011, 1807, 1606; W. A. Cramer, S. S. Hasan, E. Yamashita, Biochim. Biophys. Acta, Bioenerg. 2011, 1807, 788; N. Seddiki, B. Meunier, D. Lemesle-Meunier, G. Brasseur, Biochemistry 2008, 47, 2357; D. Xia, L. Esser, M. Elberry, F. Zhou, L. Yu, C.-A. Yu, J. Bioenerg. Biomembr. 2008, 40, 485; L. Esser, M. Elberry, F. Zhou, C.-A. Yu, L. Yu, D. Xia, J. Biol. Chem. 2008, 283, 2846; E. Yamashita, H. Zhang, W. A. Cramer, J. Mol. Biol. 2007, 370, 39; S. Devanathan, Z. Salamon, G. Tollin, J. C. Fitch, T. E. Meyer, E. A. Berry, M. A. Cusanovich, Biochemistry 2007, 46, 7138; C. R. D. Lancaster, C. Hunte, J. Kelley, B. L. Trumpower, R. Ditchfield, J. Mol. Biol. 2007, 368, 197; M. Elberry, K. Xiao, L. Esser, D. Xia, L. Yu, C.-A. Yu, Biochim. Biophys. Acta, Bioenerg. 2006, 1757, 835; J. Yan, W. A. Cramer, J. Mol. Biol. 2004, 344, 481; L. Esser, B. Quinn, Y.-F. Li, M. Zhang, M. Elberry, L. Yu, C.-A. Yu, D. Xia, J. Mol. Biol. 2004, 341, 281; C. Hunte, J. Koepke, C. Lange, T. Roßmanith, H. Michel, Structure 2000, 8, 669; C. Breyton, Biochim. Biophys. Acta, Bioenerg. 2000, 1459, 467; C. Breyton, J. Biol. Chem. 2000, 275, 13195; C. Hunte, J. Koepke, C. Lange, T. Roßmanith, H. Michel, Structure 2000, 8, 669; A. R. Crofts, B. Barquera, R. B.

Gennis, R. Kuras, M. Guergova-Kuras, E. A. Berry, Biochemistry 1999, 38, 15807; A. R. Crofts, M. Guergova-Kuras, L. Huang, R. Kuras, Z. Zhang, E. A. Berry, Biochemistry 1999, 38, 15791; A. R. Crofts, S. Hong, N. Ugulava, B. Barquera, R. Gennis, M. Guergova-Kuras, E. A. Berry, Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 10021; H. Kim, D. Xia, C.-A. Yu, J.-Z. Xia, A. M. Kachurin, L. Zhang, L. Yu, J. Deisenhofer, Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 8026; Z. Zhang, L. Huang, V. M. Shulmeister, Y.-I. Chi, K. K. Kim, L.-W. Hung, A. R. Crofts, E. A. Berry, S.-H. Kim, Nature 1998, 392, 677.

4 a) D. Enders, S. Osborne, J. Chem. Soc., Chem. Commun. 1993, 424. b) D. Enders, G. Geibel, S. Osborne, Chem.-Eur. J. 2000, 6, 1302.

5 B. Kunze, R. Jansen, G. Höfle, H. Reichenbach, J. Antibiot. 1994, 47, 881; R. Jansen, P. Washausen, B. Kunze, H. Reichenbach, G. Höfle, Eur. J. Org. Chem. 1999, 1085; H. Reichenbach, G. Höfle, R. Jansen, B. Kunze, Ger. Pat. Appl. DE 4324672, 1995; H. Reichenbach, G. Höfle, R. Jansen, B. Kunze, Chem. Abstr. 1995, 122, 237917.

6 P. J. Crowley, E. A. Berry, T. Cromartie, F. Daldal, C. R. A. Godfrey, D.-W. Lee, J. E. Phillips, A. Taylor, R. Viner, Bioorg. Med. Chem. 2008, 16, 10345; E. A. Berry, L.-S. Huang, Biochim. Biophys. Acta, Bioenerg. 2011, 1807, 1349.

7 a) J. T. Feutrill, M. J. Lilly, M. A. Rizzacasa, Org. Lett. 2000, 2, 3365. b) J. T. Feutrill, M. J. Lilly, M. A. Rizzacasa, Org. Lett. 2002, 4, 525. c) J. T. Feutrill, M. A. Rizzacasa, Aust. J. Chem. 2003, 56, 783. d) J. T. Feutrill, M. J. Lilly, J. M. White, M. A. Rizzacasa, Tetrahedron 2008, 64, 4880.

8 a) A. E. Pasqua, F. D. Ferrari, C. Hamman, Y. Liu, J. J. Crawford, R. Marquez, J. Org. Chem. 2012, 77, 6989. b) M. Chen, W. R. Roush, Org. Lett. 2012, 14, 1880. c) A. E. Pasqua, F. D. Ferrari, J. J. Crawford, R. Marquez, Tetrahedron Lett. 2012, 53, 2114. d) G. Sirasani, T. Paul, R. B. Andrade, Bioorg. Med. Chem. 2010, 18, 3648. e) M. Candy, G. Audran, H. Bienaymé, C. Bressy, J.-M. Pons, J. Org. Chem. 2010, 75, 1354. f) A. Fürstner, J.-A. Funel, M. Tremblay, L. C. Bouchez, C. Nevado, M. Waser, J. Ackerstaff, C. C. Stimson, Chem. Commun. 2008, 2873. g) E. P. Gillis, M. D. Burke, J. Am. Chem. Soc. 2008, 130, 14084. h) G. Sirasani, T. Paul, R. B. Andrade, J. Org. Chem. 2008, 73, 6386. i) J. S. Yadav, M. S. Reddy, P. P. Rao, A. R. Prasad, Synlett 2007, 2049. j) J. S. Yadav, P. V. Reddy, L. Chandraiah, Tetrahedron Lett. 2007, 48, 145. k) M. Besev, C. Brehm, A. Fürstner, Collect. Czech. Chem. Commun. 2005, 70, 1696. 1) L. C. Dias, L. G. de Oliveira, J. D. Vilcachagua, F. Nigsch, J. Org. Chem. 2005, 70, 2225. m) S. Raghavan, S. R. Reddy, Tetrahedron Lett. 2004, 45, 5593. n) M. K. Gurjar, T. P. Khaladkar, R. G. Borhade, A. Murugan, Tetrahedron Lett. 2003, 44, 5183. o) T. K. Chakraborty, P. Laxman, Tetrahedron Lett. 2003, 44, 4989. p) T. K. Chakraborty, P. Laxman, Tetrahedron Lett. 2002, 43, 2645. q) L. C. Dias, L. G. de Oliveira, Org. Lett. 2001, 3, 3951. r) T. K. Chakraborty, S. Jayaprakash, P. Laxman, Tetrahedron 2001, 57, 9461. s) T. K. Chakraborty, S. Jayaprakash, Tetrahedron Lett. 2001, 42, 497.

9 S. L. Birkett, D. A. Loits, S. Wimala, M. A. Rizzacasa, Pure Appl. Chem. 2012, 84, 1421; C. F. Nising, S. Hillebrand, L. Rodefeld, Chem. Commun. 2011, 47, 4062; R. B. Andrade, Org. Prep. Proced. Int. 2009, 41, 359; L. G. de Oliveira, L. C. Dias, G. B. Rosso, Quim. Nova 2008, 31, 854; L. C. Dias, L. G. de Oliveira, P. R. R. Meira, Pure Appl. Chem. 2007, 79, 163.
10 a) N. Adjé, L. Domon, F. Vogeleisen-Mutterer, D. Uguen, Tetrahedron Lett. 2000, 41, 5495. b) L. Domon, F. Vogeleisen, D. Uguen, Tetrahedron Lett. 1996, 37, 2773. c) L. Domon, D. Uguen, Tetrahedron Lett. 2000, 41, 5501.

11 a) T. Harada, Y. Kagamihara, S. Tanaka, K. Sakamoto, A. Oku, J. Org. Chem. 1992, 57, 1637. b) T. Harada, A. Inoue, I. Wada, J. Uchimura, S. Tanaka, A. Oku, J. Am. Chem. Soc. 1993, 115, 7665. c) J. S. Tullis, L. Vares, N. Kann, P.-O. Norrby, T. Rein, J. Org. Chem. 1998, 63, 8284.

12 R. Chênevert, G. Courchesne, Tetrahedron: Asymmetry 1995, 6, 2093; N. Pelchat, D. Caron, R. Chênevert, J. Org. Chem. 2007, 72, 8484.

13 See footnote 7 in Ref. 10b.
14 D. A. Evans, R. P. Polniaszek, Tetrahedron Lett. 1986, 27, 5683.

15 For leading references, see: P. Aschwanden, E. M. Carreira, in Acetylene Chemistry: Chemistry, Biology and Material Science, ed. by F. Diederich, P. J. Stang, R. R. Tykwinski, Wiley-VCH, Weinheim, 2005, p. 101. doi:10.1002/3527605487.ch3; S. Kotani, K. Kukita, K. Tanaka, T. Ichibakase, M. Nakajima, J. Org. Chem. 2014, 79, 4817; B. M. Trost, A. H. Weiss, Adv. Synth. Catal. 2009, 351, 963; L. Pu, Tetrahedron 2003, 59, 9873; P. G. Cozzi, R. Hilgraf, N. Zimmerman, Eur. J. Org. Chem. 2004, 4095; D. E. Frantz, R. Fässler, C. S. Tomooka, E. M. Carreira, Acc. Chem. Res. 2000, 33, 373.

16 J. A. Marshall, M. P. Bourbeau, Org. Lett. 2003, 5, 3197.
17 D. Moore, L. Pu, Org. Lett. 2002, 4, 1855; G. Gao, D. Moore, R.-G. Xie, L. Pu, Org. Lett. 2002, 4, 4143; M.-H. Xu, L. Pu, Org. Lett. 2002, 4, 4555; J. Balsells, T. J. Davis, P. Carroll, P. J. Walsh, J. Am. Chem. Soc. 2002, 124, 10336.

18 D. E. Frantz, R. Fässler, E. M. Carreira, J. Am. Chem. Soc. 2000, 122, 1806; N. K. Anand, E. M. Carreira, J. Am. Chem. Soc. 2001, 123, 9687; D. Boyall, D. E. Frantz, E. M. Carreira, Org. Lett. 2002, 4, 2605; R. Fässler, C. S. Tomooka, D. E. Frantz, E. M. Carreira, Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5843.
19 For an example of 1,6-coordination of a sulfur and an oxygen atom to a zinc ion, see: H. L. van Maanen, H. Kleijn, J. T. B. H. Jastrzebski, G. van Koten, Recl. Trav. Chim. Pays-Bas 1994, 113, 567.
20 a) O. Mitsunobu, M. Yamada, Bull. Chem. Soc. Jpn. 1967, 40, 2380 . b) D. L. Hughes, Org. React. 1992, 42, 335. c) K. C. K. Swamy, N. N. B. Kumar, E. Balaraman, K. V. P. P. Kumar, Chem. Rev. 2009, 109, 2551. For inversion of configuration of acetylenic alcohols in these conditions, see, for instance: d) S. Jarosz, J. Głodek, A. Zamojski, Carbohydr. Res. 1987, 163, 289. e) M. T. Crimmins, J. M. Pace, P. G. Nantermet, A. S. Kim-Meade, J. B. Thomas, S. H. Watterson, A. S. Wagman, J. Am. Chem. Soc. 1999, 121, 10249.
21 D. A. Alonso, C. Nájera, M. Varea, Tetrahedron Lett. 2002, 43, 3459.
22 a) T. K. Jones, S. E. Denmark, Org. Synth. 1986, 64, 182, and cited references. b) P. Wipf, T. H. Graham, J. Am. Chem. Soc. 2004, 126, 15346.
23 M. Julia, D. Arnould, Bull. Soc. Chim. Fr. 1973, 746; M. Julia, D. Arnould, Bull. Soc. Chim. Fr. 1973, 743; D. Arnould, P. Chabardès, G. Farges, M. Julia, Bull. Soc. Chim. Fr. 1985, 130.
24 a) H. Miyaoka, Y. Isaji, H. Mitome, Y. Yamada, Tetrahedron 2003, 59, 61. b) A. Yajima, K. Toda, S. D. Molli, M. Ojika, T. Nukada, Tetrahedron 2011, 67, 8887. c) S. Kurosawa, K. Mori, Eur. J. Org. Chem. 2000, 955. d) H. Miyaoka, Y. Isaji, Y. Kajiwara, I. Kunimune, Y. Yamada, Tetrahedron Lett. 1998, 39, 6503. For use of the O-TMS analog in synthesis of conjugated dienols by a related sulfone alkylation/elimination reactions sequence, see: e) J. P. Férézou, M. Julia, Tetrahedron 1990, 46, 475.

25 a) E. J. Corey, N. W. Gilman, B. E. Ganem, J. Am. Chem. Soc. 1968, 90, 5616. b) B. E. Maki, K. A. Scheidt, Org. Lett. 2008,

10, 4331. c) N. W. Gilman, J. Chem. Soc. D 1971, 733; see also: J. S. Foot, H. Kanno, G. M. P. Giblin, R. J. K. Taylor, Synlett 2002, 1293; J. S. Foot, H. Kanno, G. M. P. Giblin, R. J. K. Taylor, Synthesis 2003, 1055; R. J. K. Taylor, M. Reid, J. Foot, S. A. Raw, Acc. Chem. Res. 2005, 38, 851.
26 For leading references, see: T. K. M. Shing, in Comprehensive Organic Synthesis, ed. by B. M. Trost, I. Fleming, Pergamon Press, Oxford, 1991, Vol. 7, p. 703. doi:10.1016/B978-0-08-052349-1.00209-2; B. R. Travis, R. S. Narayan, B. Borhan, J. Am. Chem. Soc. 2002, 124, 3824; P. Viski, Z. Szeverenyi, L. I. Simandi, J. Org. Chem. 1986, 51, 3213; R. Pappo, D. S. Allen, Jr., R. U. Lemieux, W. S. Johnson, J. Org. Chem. 1956, 21, 478; O. P. Anderson, A. G. M. Barrett, J. J. Edmunds, S.-I. Hachiya, J. A. Hendrix, K. Horita, J. W. Malecha, C. J. Parkinson, A. Van Sickle, Can. J. Chem. 2001, 79, 1562.
27 D. M. S. Rao, E. V. S. B. Rao, A. V. S. Rao, Synth. Commun. 1990, 20, 817; P. K. Jain, J. K. Makrandi, S. K. Grover, Synthesis 1982, 221.
28 I. Hirao, M. Yamaguchi, M. Hamada, Synthesis 1984, 1076.
29 G. P. Ellis, Chromenes, Chromanones, and Chromones, in Chemistry of Heterocyclic Compounds, ed. by G. P. Ellis,

Wiley, Chichester, New-York, 1977, Vol. 31, p. 1. doi:10.1002/ 9780470187012.ch1.

30 Y. Tanabe, Bull. Chem. Soc. Jpn. 1989, 62, 1917; Y. Yoshida, R. Hayashi, H. Sumihara, Y. Tanabe, Tetrahedron Lett. 1997, 38, 8727; Y. Yoshida, N. Matsumoto, R. Hamasaki, Y. Tanabe, Tetrahedron Lett. 1999, 40, 4227; Y. Tanabe, R. Hamasaki, S. Funakoshi, Chem. Commun. 2001, 1674; Y. Tanabe, A. Makita, S. Funakoshi, R. Hamasaki, T. Kawakusu, Adv. Synth. Catal. 2002, 344, 507; T. Misaki, R. Nagase, K. Matsumoto, Y. Tanabe, J. Am. Chem. Soc. 2005, 127, 2854.
31 P. D. Jeffrey, S. W. McCombie, J. Org. Chem. 1982, 47, 587.

32 Y. Hayakawa, H. Kato, M. Uchiyama, H. Kajino, R. Noyori, J. Org. Chem. 1986, 51, 2400.
33 For another meso approach to crocacin C (10), see Ref. 8e.
34 J. Suffert, J. Org. Chem. 1989, 54, 509.
35 J. Attenburrow, A. F. B. Cameron, J. H. Chapman, R. M. Evans, B. A. Hems, A. B. A. Jansen, T. Walker, J. Chem. Soc. 1952, 1094; A. J. Fatiadi, Synthesis 1976, 65.
36 a) T. N. Van, N. De Kimpe, Tetrahedron 2000, 56, 7969.
b) J. M. Babler, W. J. Buttner, Tetrahedron Lett. 1976, 17, 239.

