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Molecular oxygen is kinetically inert and rarely used as a primary oxidant for low temperature selective oxygenation reactions. Here we show that Oz is
converted into H202 in almost quantitative yields (98%) at ambient temperature and atmospheric pressure in the presence of bis(trimethylsilyl)-1,4-
cyclohexadiene (1). Similarly, the reaction of Oz with dihydro-bis(trimethylsilyl) viologen (2) and pyrazine (3) yields bis(trimethylsilyl) peroxide (BTSP) in
excellent yields (up to 99%) at low temperature. Both processes demonstrate that readily available organosilicon reagents enable chemistry typically
observed with mono-oxygenase co-enzymes, such as FADH2 and FMNH, in biological systems or at higher pressure via the industrial anthraquinone
process. This efficient synthesis of H2O2 and BTSP directly from Oz is particularly attractive for the preparation of the corresponding O-17 and O-18 labelled
reagents without the need of large excess amounts of O,. These are showcased in O-atom transfer reactions to various organic or inorganic substrates, in

a two-step one-pot process, making the rapid and on-demand synthesis of large libraries of O-labelled compounds readily possible.
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. Scheme 1. A representative scheme of the mono-oxygenation reaction using O: as the oxygen
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atom source with typical (a-b) and proposed (this work, ¢) Q2 activators, the corresponding

peroxides, and byproducts that form during the mono-oxygenation process.
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Oxygenation is one of the most fundamental chemical

transformations, with key applications in industrial processes.

Ideally, Oz is the most atom-economical and environmentally AR

kinetically inert triplet ground state. Most processes still rely on  [SYEEIEIE oH o
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02 to form an hydroperoxide intermediate. These activated H20,
forms of O, are then used in oxygen-atom transfer in reactions MesSi H SiMes

such as phenol hydroxylation, Baeyer-Villiger oxidation, olefin

epoxidation,  hypochlorite  formation  (Scheme  1a).” IN\

Analogously, in industrial processes O: is reacted with - Z
Organosilicon (Me3Si),0,

hydrocarbons to generate alkyl hydroperoxide intermediates or TS | X
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transformed into H20: via the anthraquinone process (Scheme
1b)® 9, although the direct synthesis of H20: from H2 and O
gases has been an active area of research for a few decades."”
In the anthraquinone process, dihydroanthraquinone, which is

N
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generated by hydrogenation of anthraquinone, undergoes

autoxidation with O to generate Hx02. This oxidant is used in
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paper bleaching and industrial organic synthesis, the latter typically in

combination with transition-metal catalysts in homogeneous or
heterogeneous phases for selective oxidation reactions, including for the
large-scale production of propylene oxide from propylene using titanium-
silicalites as catalysts.!"

Both biological and the industrial processes rely on a common
aromatization-dearomatization recursive sequence as a key step for
dioxygen activation and reduction. We thus reasoned that organosilicon
reagents such as 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (1),
N,N"bis(trimethylsilyl)-4,4"-dihydrobipyridine (2), and N,N'-
bis(trimethylsilyl)-2,3,5,6-tetramethyldihydropyrazine  (3), which are
readily available and efficient reducing reagents for a broad range of
organic and inorganic derivatives,'?'® could constitute useful and
convenient reagents to produce X202 (X = H and SiMes) from Oz, the

primary oxidant (Scheme 1c).

Results and Discussion

We first focused on using a trimethylsilyl-substituted 1,4-cyclohexadiene
derivative 1 to convert O; into H202. Reaction of 1 with 1 equivalent of O
in a bi-phasic solution of CH2Cl2/HO produces H,O: in up to 81% yield
1-4, Table 1). The
bis(trimethylsilyl)toluene (96% recovered), which is dissolved in the CH.Cl,

(entry only detected byproduct is 14-
layer and can be easily separated from H:0: in the water layer. Other
biphasic solvent combinations can be used such as toluene/H2O (entry 5)
and MTBE/H:O (entry 6), or alternatively water alone (entry 7). The
presence of H;O is necessary to obtain H;O: in good yield from 1 in
nonpolar solvents (entry 1 vs. entry 4). When using polar solvents such as
t-butanol (entry 8), CH3CN (entry 9), NMP (entry 10), and THF (entry 11),
H20; is generated in excellent yields (up to 98%) in all cases. Synthetic air
(gas mixture of 20% Oz and 80% N.) can be also used to generate H20, with
good selectvity, although the rate of the reaction decreases, leading to a

Table 1. H:0; formation by the reaction of 1 with Q.

MesSi H
O, (1 atm, 1 equiv.)
H20;
Solvent, rt, 16 h
MesSi H — 1,4-bis(trimethylsilyl)toluene

1(cis:trans=1:6)

Entry Solvent Yield(%) of H,O,
1 CH,Cl, (9 mL) / H,0 (1 mL) 81
2 CH,Cl, (9 mL) / H,0 (0.4 mL) 80
3 CH,Cl, (9 mL) / H,0 (0.1 mL) 74
4 CH,Cl, (9 mL) 40
5 toluene (9 mL) / H,O (1 mL) 79
6 MTBE (9 mL) / H,0 (1 mL) 75
7 H,0 (10 mL) 78
8 t-butanol (9 mL) 93
9 CH3CN (9 mL) 98
10 NMP (9 mL) 97
11 THF (9 mL) 88
122 CH,Cl, (9 mL) / H,0 (1 mL) 46b

2The reaction is carried out under flow of synthetic air (1 atm).
b The conversion of 1 is 50%.
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lower yield (entry 12). In sharp contrast to 1, 1,4-cyclohexadiene does not
provide H20O, under otherwise identical reaction conditions, indicating that
the trimethylsilyl groups located at the allylic position in 1 are essential for
high reactivity and/or selectivity (entry 1, Table $2).1'7.18 |t is noteworthy
that 1 does not react with H.O, under the conditions described here, which
enable us to obtain H202 in a high yield and selectivity. This method is
particularly interesting in the laboratory scale and to synthetize
isotopically labeled compound (vide infra), because it does not require the
use of large excess of O, and/or autoclave!'? Although 1,2-
diphenylhydrazine is reported to generate H:0: under continuous
bubbling of O, at ambient condition, the reaction with a stoichiometric
amount of O, gives H.O: in lower yield than 1 (entry 2, Table §2).123!

Replacing organosilicon reagent 1 with 2 or 3 allows, in the absence of
water, for the transfer of two trimethylsilyl groups to O, yielding directly
bis(trimethylsilyl)peroxide (BTSP), which is a water(proton)-free analogue
of H.02 and a highly efficient source of oxygen atom in O-transfer reactions
such as epoxidation, N-oxide formation, Baeyer Villiger oxidation, and
sulfoxidation (Table 2).2428! For instance, the reaction of 2 with 0. (1.3
equiv.) in CH2Cl at —78 °C produces BTSP in nearly quantitative yield (99%)
along with 4,4'-bipyridine (entry 1), which can be separated by trap-to-trap
vacuum distillation to give a BTSP solution in CH>Cl2 (0.39 M). This reaction
can be carried out in a broad range of solvents such as toluene, pentane,
Et;O, THF, giving solutions of BTSP in quantitative yield in the
corresponding solvents (entries 2-5). Similarly, the reaction of 3 with O,
(1.3 equiv) in CHxCl: affords BTSP in 93% yield along with
tetramethylpyrazine (entry 6). A small amount of hexamethyldisiloxane
and octamethyltrisiloxane, which are generated by a side reaction of BTSP
with 2 or 3, are also detected by NMR spectroscopy and GC-MS. The
formation of these siloxane byproducts increases when using sub-
stoichiometric amounts of O or when the reaction is carried out at room
temperature.

We also examined the reaction of 1-ds and 1 with O2. The use of 1-ds
provides access to D20, and comparison of the kinetics of both reactions

shows a kinetic isotope effect — kn/ko (KIE) — of 7.9 in t-butanol, which

Table 2. BTSP formation by the reaction of 2 or 3 with 0.

‘SiMe3
SiMes
N 0O, (1 atm, 1.3 equiv.)
or || (Me3Si),05
N Solvent, -78 °C to rt
éiMeg — 4,4'-bipyridine
3 or
— Meypyrazine
2
Entry Reductant Solvent Yield (%) of (Me3Si),0,
1 2 CH,Cl, 99
2 2 CeHg 99
3 2 Et,0 99
4 2 THF 99
5 2 pentane 99
6 3 CH,Cl, 93
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MesSi H MesSi D
D CD; 0, (1 atm, const.)
or —————————————> H(D):0; )
D D t-butanol, rt Klkop = 7.9
MesSi H MesSi D
1 1-dg
SiMes Sity
O, (excess)
———— > Et;Si00SiMe; + (EtSi),0, + (Me3Si),0,
THF-dg, -78 °C to 1t 2 : 1 1 @
— 4,4-bipyridine
| |
SiMes SiEty
2 4

indicates that the abstraction of allylic hydrogen is involved in the rate
determining step (eq. 1 and Fig. S1).

To further probe the reaction mechanism, we have also investigated this
reaction in the presence of various amount of 2,6-tBu-4-Me-phenol, up to
1 equiv, as a radical trapping agent. Under these conditions, 1 was
consumed to the extent of only 2% in the presence of 2,6-tBu-4-Me-phenol
(1 mol%) after 2 hours, while higher amount of 2,6-tBu-4-Me-phenol (10-
100 mol%) lead to no conversion, suggesting the involvement of a radical
chain mechanism (Fig. S2). Noteworthy, the reaction of 2 and its
bis(triethylsilyl) analogue 4 (1:1) with excess of O yields Et:SiO0SiMes as
well as (MesSi2202 and (Et:Si)202 in a 2:1:1 ratio (eq. 2 and Fig S3). The same
products are observed when pyrazine-based compounds, 3 and its
bis(triethylsilyl) analogue, are used (Scheme S1). Et3SiOOSiMes is not
formed by mixing a solution of (Me3Si)20. and (Et3Si)20; in the presence of
4,4"-bipyridine. These results indicate that Et3SiOOSiMes is generated
during the O; activation process, and trialkylsilyl groups are transferred in
a stepwise fashion to the O; fragment via the formation of
mono(trialkylsilyl)peroxide species.

All data point to a reaction mechanism involving a radical chain
mechanism as shown in Scheme 217! The reaction between 1 and O;
probably leads to the radical intermediate A, via a direct H-abstraction or
through a single-electron transfer (SET) as proposed for other reducing
agent (vide infra). The radical chain continues with the reaction of
hydroperoxy radical with 1, and A with O.. Termination takes place with
the reaction of hydroperoxy radical and A to generate hydrogen peroxide
and 14-bis(trimethylsilyl)toluene. The presence of trimethylsilyl groups??!
and two olefins is probably important to stabilize the radical intermediate
A.The concerted abstraction of the two allylic hydrogens of 1 with O2 may
be ruled out because trans-1is also converted at almost the same reaction
rate. For BTSP, the transfer of trimethylsilyl group of 2 and 3 to the O
fragment probably takes place sequentially and involves a SET process
(Scheme S1). The faster formation of BTSP than Hz0: is consistent with a
SET process since 2 and 3 possess more negative redox potential than 1

and are able to reduce acceptor molecules like tetracyanoethylene (TCNE)

Scheme 2. Proposed reaction mechanism for H.Q: formation by 1 and O..

and etracyanoquinodimethane (TCNQ).3%-31

initiation radical chain

MegSi. H 0, HOO* MesSi. H 0, HOO* SiMe3
(7 —><— O~
) HOO* H,0; HOO* H20,
MesSi H radical chain SiMes termination SiMeg
1 A
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Scheme 3. (a) Generation of 0-18 H0: and subsequent oxidation to produce
labeled oxygen incorporated compounds. (b) Generation of 0-17 or O-18
(MesSi)}0: and subsequent Baeyer-Villiger type oxidation and preparation of
MeRe(=0)(*-"702)(0H:).

a)

Me;Si. H

*0, (0 = 180) substrates
(1 atm, 1 equivto 1) cat. MeReO3 (3 mol%)
H,*O, - > S—*0
t-butanol —Hy*O
MesSi H — bis(trimethylsilyl)toluene
1 0 0~
Nt
N
| *O—PPhg
=

Ph
75% (1 equiv. of 1)
96% (2 equiv. of 1)

88% (1 equiv. of 1)
99% (2 equiv. of 1)

86% (1 equiv. of 1)
99% (2 equiv. of 1)

oo

cat. TMSOTF (5 mol%)
NS T —— *0
— (Me3Si),*0

*0, (*0 = 170, 180)
(1 atm, 1.5 equiv to 2)

CH,Cl,, -78 °C to 1t

— 4,4-bipyridine 40% (1.2 equiv of 2)
MeReOj3 (0.3 equiv)
H,0 (10 equiv.) O 9/*0
5 *érﬁeslo
s
OH

detected by 1770 NMR
Formation of trimethylsilyl radical can be ruled out in this system since the

trimethylsilyltoluene and/or bis(trimethylsilyl)toluene isomers are not
observed in the reaction mixture.?

The method we have described to prepare H.0O, and BTSP from O; is
particularly convenient in a laboratory scale, especially for the preparation
of O-17 and 0-18 labeled X;0, compounds (X = H, D, and SiMes), because
the reaction proceeds in high yield with only a stoichiometric or slight
excess amount of O. For instance, H20:2 generated in situ is readily used to
prepare a broad range of labeled organic and inorganic compounds —
Scheme 3. As illustrative examples, we demonstrate the preparation of the
0-18 labeled cyclooctene oxides, 4-phenylpyridine N-oxide, and
triphenylphosphine oxide using MeReOs as a catalyst from O-18 H20-, and
8-valerolactone via the Baeyer-Villiger oxidation from O-18 BTSP.533:34 The
70 NMR spectrum of the reaction mixture of 2 with 7O, in CD,Cl, shows a
broad signal at 216.8 ppm for O-17 labeled BTSP. The generated O-17
labeled BTSP can be used to generate O-17 labeled bis(peroxo) rhenium
complex, MeRe(=0)(77-02)2(0OHz), which show O-17 signals at 420.1 and
364.8 ppm in CDxCla.

Conclusions

We have developed a straightforward method to produce H20, and BTSP
by the reaction of organosilicon reducing reagents with O2. This method
only requires stoichiometric amounts of reagents (no excess of O2) and is
thus particularly useful for rapid and on-demand synthesis of the
corresponding O-17 and O-18 labeled compounds, which can be then
used to install labeled oxygen in organic and inorganic substrates. This
work also shows that riboflavin co-enzymes — essential for the activation
of Oz in mono-oxygenase processes found in nature — can be replaced by
organosilicon reagents, which are readily prepared on multi-gram scale, in

a simple reaction flask used in synthetic chemistry laboratories.
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