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Organic reactions in the aqueous environment have recently emerged as a promising research area. The generation of nascent-HBr from the slow hydrolysis 
of the dispersed catalyst, benzyl bromide with the interior water present in the hydrophobic core of the confined micellar medium in aqueous surfactant is 
described for the first time. The sustained-release nascent-HBr enabled the chemoselective cleavages of acid-sensitive orthogonal functionalities present in 
carbohydrates, amino alcohols and hydroxylated acyclic compounds in good to excellent yields.

Masking and demasking of organic functional groups1 with high 
chemoselectivity, mildness and efficiency is a challenging task in 
synthetic organic chemistry. It is due to the consequences of 
undesired breaking and making of bonds and side reactions, 
particularly for hydroxy, amine and polyhydroxylated compounds. In 
general, the protocols for orthogonal protection need to be milder 
because selective deprotection is governed by alternative cleavage 
mechanisms rather than by reaction rates. The functional groups, for 
example, acetals/ketals,2 benzylidene, MOM/PMB/silyl ethers,3 
trityl,4 and tert-butyl carbamate5 etc. are extensively used in 
contemporary organic synthesis. The organic reactions in water as 
green media6 have greatly attracted the attention of many researchers 
for many years. Although many methods for deprotection of the 
above-cited functional groups under acidic environments are well 
documented; however, the lacking of compatibility of several 
functionalities, mild reaction condition and proper solubility of 
organic compounds in water favored the reactions in organic 
solvents. Herein, we have demonstrated a remarkable report of the 
chemoselective cleavages of acid-sensitive orthogonal functionalities 
by the sustained-release nascent-HBr from the catalytic amount of 
benzyl bromide (BnBr) with the interior water present in the 
hydrophobic core of the confined micellar medium (micelle centre) 
in aqueous surfactant.7a,b Recently, Steflova et al. also reported that, 
SDS has a positive effect on the rate of cycloadditions reaction with 
highly hydrophobic compounds in aq. solution.7c  In addition, the 
surfactant in water also acts as a phase-transfer catalyst for the 
shuttling of organic molecules and water into the micellar 
microenvironment from the solution and vice versa to facilitate the 
reaction.8 
For the asymmetric synthesis of natural products and 
pharmaceutically active ingredients,9 the most widely useful chiral 
pools, monosaccharides are generally encountered with multiple 
protection and deprotection steps to form the final targets.10 In this 
context, we set out to explore our perspective for the chemoselective 
cleavage of 5,6-O-isopropylidene and cyclohexylidene 
functionalities of α-D-glucofuranosides (1a-1c) in aq. anionic 
surfactant, sodium dodecyl sulfate (SDS) and cationic surfactants, 
cetyltrimethylammonium bromide (CTAB), and dodecyl 
trimethylammonium bromide (DTAB); these are well-known to form 
self-assembled micelles in water. Initially, a set of reactions were 
performed in different concentrations (0.06, 0.10, 0.14, 0.18 and 0.22 
M) of 10.0 mL aqueous anionic surfactant, SDS in the presence of 

BnBr (~0.15 mmol) as the precursor of the acid catalyst. 
Surprisingly, the reaction in 0.14 M aq. SDS provided the desired 
compound 2a-2c exclusively without affecting 1,2-O-isopropylidene 
and cyclohexylidene as well as MOM group, mostly within 10-12 h 
at room temperature (Table 1). In a simple workup process, ethyl 
acetate was added as an external trigger to destabilise the micelles 
and the product was soluble in ethyl acetate, reducing interfacial 
tension. Encouraged by these observations, the same set of reactions 
was investigated in other aq. surfactants, CTAB, and DTAB; 
however, the result came out with a slower rate, longer reaction time 
and with comparatively lower yields (Figure S1, Table S1). The 
most effective results viewed at the concentration of ~0.14 M aq. 
SDS was further corroborated by the outcome of pH and specific 
conductance measurements of aq. SDS at different concentrations
Table 1. Nascent-HBr catalysed selective removal of 5,6-O-ketal
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(0.06-0.22 M) on various temperature (25, 40, 50, 60, 70, and 80 °C) 
(Figure S2, S3). In this study, surprisingly, the phenomenal 
abnormalities were observed in the concentration range 0.10-0.18 M 
(effective conc. ~0.14 M) of aqueous SDS; the formation of a 
compact domain of micelle in this range might be the reason for 
effective collisions leading to the formation of an activated complex 
for facilitating the chemical reaction.
These opportunistic and interesting consequences prompted us to 
find out the acidic behavior of nascent-HBr, formed in situ from the 
entrapment of catalytic amount of benzyl bromide in the micellar 
medium of aq. surfactant. The pH gradients overtime of 0.14 M aq. 
SDS solution (initial pH~7.88) gradually changes to acidic pH on the 
addition of various amounts of BnBr (Figure 1), indicating the slow-
release nascent-HBr through hydrolysis. On a serious note, it is 
important to know that on continuous stirring for 24 h, the final pH 
of the solution reached to ~3.0 to 1.5 at 25 °C depending on the 
amount of catalyst. 
To investigate the effective concentration of the catalyst, the 
endeavour for cleavage reaction of compound 1a with different 
amounts of catalyst (0.05, 0.15, 0.25, 0.35, and 0.45 mmol) in 0.14 
M aq. SDS at rt. (Figure S4) was executed. We found that 0.05-0.15 
mmol BnBr (cat.) in 10 mL 0.14 M aq. SDS produced enough 
nascent-HBr for developing the acidic reaction medium (pH ~3.8-
3.0) for selective and efficient hydrolysis of the ketal functionality in 
1a-1c.
Even though, 0.15 mmol BnBr in 10 mL 0.14 M aq. CTAB and 
DTAB each generated the pH ~1.4 within 10 h; however, the 
cleavage reactions were not as promising as SDS solution. In this 
regards, it is relevant to mention that the larger space between head 
ionic groups of SDS (anionic) micelles compared to those of CTAB 
and DTAB (cationic) facilitates the easier penetration of the organic 
molecules into the micelle core.11
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Figure 1. Study on pH gradient of freshly prepared aq. SDS (0.14 M, 10 mL, pH 
7.88) upon addition of various concentration of BnBr (cat.) at 25 °C
Further attention was edified towards the generation of nascent-HCl 
from the catalyst benzyl chloride in aq. surfactant and its acid 
catalysing behaviour for the selective ketal deprotection of 1a; 
nonetheless, the outcome of the reaction was not noteworthy. The 
higher average bond enthalpy of C–Cl (330 kJ/mol) bond than C–Br 
(275 kJ/mol) in benzyl bromide lowers the hydrolysis efficiency of 
benzyl chloride in aq. surfactant. Next, the effect of electrolyte on 
the rate of the cleavage reaction was examined, and it was noticed 
that with an increasing amount of electrolyte like NaCl, the rate of 
the cleavage reaction of 1a decreases as the concentration of micelle 
in aq. surfactant reduces on the addition of electrolytes (Figure S5).12

The slow hydrolysis of BnBr for in-situ generation of hydrobromic 
acid was supported by the 1H NMR study of 0.15 mmol of PhCH2Br 
(BnBr) dispersed in 1.0 mL 0.14 M SDS in D2O in different time 
intervals with continuous stirring. In the 1H NMR experiment, over a 
period of time, the shifting of signals at  7.00 and 4.16 ppm (C6H5 
and CH2, respectively) of PhCH2Br to 7.23 and 4.48 ppm (C6H5 and 
CH2) of PhCH2OH with a gradual increase of their intensities 
confirmed the slow hydrolysis of PhCH2Br.

Figure 2. 1H NMR of catalyst BnBr in 1.4M SDS solution in D2O at a different 
time interval 
Literature precedents reported that in aq. acidic medium (aq. H2SO4) 
the hydrolysis of SDS produces dodecanol (signal at  ~3.5 ppm for 
–CH2OH) over a prolonged period.13 Fortunately, in our method, no 
peaks were observed for dodecanol even after two days at 50 °C in 
the presence of a high concentration of catalyst (Figure 2). 
To shed light on the excellent properties shown by the sustained-
release nascent-HBr in the selective cleavage reaction, pH study was 
performed. The gradual addition of commercial 48% aq. HBr in 
different amounts (~ 0.04, 0.06, 0.07, 0.08 and 0.09 mmol) in 10 mL 
0.14 M aq. SDS solution (initial ~pH 7.9) produced the 
instantaneous pH of the medium ~4.0, 3.2, 2.9, 2.4 and 2.1, 
respectively (inset A, Figure 3) that led to a either non-responsive or 
non-selective cleavage reaction.
From the NMR study, it was observed that the partial hydrolysis of 
0.15 mmol BnBr (4.2 %) in 3 h in a D2O solution of SDS generated 
0.006 mmol of nascent-HBr (~pH 5.6) adequate to start the cleavage 
reaction. The complete hydrolysis of 0.15 mmol BnBr produced 0.15 
mmol of nascent-HBr, making the SDS medium strong acidic (inset 
A and B, Figure 3). Thus, it can be seen that reaction time has a 
significant influence on the reaction yield, i.e. with an increase of 
time, yield increases even in the presence of a lower concentration of 
BnBr.
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Figure 3. Rate of hydrolysis of BnBr in D2O solution of SDS vs. time 
Furthermore, the scope and limitation of the optimal reaction 
conditions were examined by adding the protected mannose, 
glucose, galactose and xylose derivatives (1d-1j) (1.0 mmol each) in 
presence of 0.1-0.15 mmol of BnBr in 10 mL SDS (Table 2: entry 1-
8).  It was gratifying to find that the acidic cleavages at rt. are highly 
selective at the 5,6-position, and produced 2d-2j in 87-96% yield 
after chromatographic purification. The literature precedent 
demonstrated that 1,2-ketal cleavage at the anomeric position of 
glucose, galactose, xylose and sterically hindered 2,3-ketal of 
mannose derivatives require strong acidic medium. To our delight, 
the removal of said functionalities using nascent-HBr in a higher 

0 20 40 60 80
0

Time (h)

C
on

c.
 o

f H
B

r 
(m

m
ol

)

0.03 0.05 0.07 0.09
2

conc. of HBr (in mmol)  

pH

(Inset A)

(Inset B)

Page 2 of 10

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



concentration of surfactant was achieved successfully at 45-50 °C 
yielding 79-85% of products (Table 2, entry 9-12) after purification. 
At a higher temperature, there may be the possibilities of decreasing 
the micellar number or their sizes14 and subsequently the reduced 
solubility of hydrophobic organic compounds. The nascent-HBr 
mediated mild method for the deprotection of acid-sensitive ketal 
and acetal functionalities in open-chain hydroxylated as well as in 
amino alcohol derivatives proceeded smoothly with good results 
even in presence of TBS, MOM, tert-Boc and PMB group (Table 3). 
Herein, we are even more delighted to report that alkenes and 
alkynes under this condition remain unaffected from 
hydrohalogenation reactions.  The substrates bearing acid-labile t-
Boc and MOM group required longer time and higher reaction 
temperature. 
For orthogonal protection study, the compound 14a (1.0 mmol) 
containing both MOM and t-Boc functionalities was found to be 
highly stable at r.t. in presence of cat. BnBr (0.15 mmol) in 1.4 M 
aq. SDS (10 mL), however, there was lacking of tolerance of both 
the groups at ~45 °C in the above reaction medium (Table 3, entry 
10). 
In the meantime, we have attempted to optimize the cleavage 
reaction for a few selected compounds employing electron-donating 
and electron-withdrawing group substituted benzyl bromide (p-
methyl benzyl bromide and p-nitrobenzyl bromide) as the source of 
nascent-HBr (Table S2). It is worthy to note that the rate and yield of 
the reaction are found to be higher for BnBr and p-MeBnBr 
compared to p-NO2BnBr (BnBr ~ p-MeBnBr >> p-NO2BnBr).
Further, the investigation with non-aromatic halides, t-BuBr has 
demonstrated the faster rate of cleavage of 5,6-ketals of glucose and 
2,3-ketals of mannose in comparison to BnBr compromising the 
orthogonal selectivity for the functional groups TBS, PMB, and 
MOM. The systematic pH study of the four halides (BnBr, p-
MeBnBr, p-NO2BnBr and t-BuBr) in 1.4 M aq. SDS was conducted, 
and surprisingly, an initial burst-release HBr from the t-BuBr-
mediated catalytic system (Figure S6) was observed leading to the 
generation of strong acidic environment in the confined micellar 
medium. The NMR studies of t-BuBr (Figure S7) hydrolysis in a 
D2O solution of SDS revealed the faster release of nascent-HBr 
(Figure S8) relative to that of BnBr (Figure 3).
Table 2. Selective deprotection in compound 1d-1j and 3a-3d
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O
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11.

 

O
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O

OHO 3d

O
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OH

OHHO 4d

0.1 18 79

Reaction condition: aq. SDS (10-15 mL); 1d-1j (1.0 mmol), rt; 3a and 3b-3d (0.50 
mmol), 45-50 °C. 

In general, at least 2-3 h is required for the inclusions or 
encapsulation of hydrophobic organic substrates and catalyst as 
guest molecules in the core of micelles (by overcoming the large 
hydrophilic-hydrophobic interface area) in aq. surfactants to initiate 
the reaction. The slow-release nascent-HBr gradually increases the 
proton (H+) concentration towards the comparatively most reactive 
site of the molecule in acidic medium, causing the selective removal 
of the most acid-labile functionalities.

Table 3. Scope of deprotection in compounds 5a-13a
Entry Substrates Product Catalys

t 
BnBr 
(mmol)

Tim
e 
(h)

yiel
d 
(%)

1.
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O
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O O
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OH
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0.15 7 88 

7. CH(OMe)2MeO

11a

CHOMeO
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0.10 8 92 

8.
NHBoc

OH
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NH2

OH

12b

0.15 48 76

9. MOMO
OBn

13a
HO

OBn
13b

0.15 24 93 

10. NHBoc

CO2Me
MOMO

14a
(S)

NH2

CO2Me
HO

14b

0.20 18 58

Reaction condition: 1.4 M aq. SDS (10-15 mL), 5a-11a (1.0 mmol), rt; 10b, 13a 
and 14a (1.0 mmol), 45-50 °C. 

Finally, the 5,6-O-isopropylidene acetal of the advanced building 
block 15 (preparation, supporting information, Scheme  S1) was 
selectively removed by the newly developed mild and efficient 
catalyst system forming compound 16a (80%) along with lactone 
16b (10%) via Pinner-cyclization of -hydroxy nitrile 16a.15 The 
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same deprotection of the acetal in traditional methods provided 
either less amount of desired product (16a) or a mixture of both (16a 
and 16b) (Scheme 1). The structure of compound 16a and 16b was 
confirmed by NMR, Mass and FTIR spectroscopy. 

O
O

O

O

O

CN

NHBoc

O
HO

HO

O

O

CN

BocHN

O
HO

O

O

O
NHBoc

O

+
reagents

16a 16b

rt

Method Reagents Products
16a 16b

Method A Amberlyst IR120 (H+)/MeOH 40% trace amount
Method B p-TSA/MeOH 50% 40%
Method C Nascent-HBr (cat.BnBr) 85% 10%

15

Scheme 1. Selective isopropylidene hydrolysis of δ-hydroxy nitrile derivative

Mechanistic considerations. The hydrophobic organic molecules in 
the water remain on the surface of the water where the limited 
collision of reacting partners inhibited the chemical reactions. 
Generally, the surfactant molecules approach to assemble into 
micelles (spherical aggregates) in water and maintain equilibrium 
with free surfactant monomers.16 The literature report on high-
resolution NMR experiments predicted that the center of the micelle 
is similar to liquid hydrocarbon and perhaps, the first few carbons 
from the ionic group, is exposed to the solvent, facilitating to 
penetrate water into the micelle core.17 From our experimental results 
and the literature reports, we propose that the surfactant acts as a 
phase transfer catalyst in water for the dispersion of hydrophobic 
organic molecules, lowering the surface tension of water and 
interfacial tension between hydrophobic and hydrophilic materials 
whereas the interior water present in the hydrophobic micelle core 
assists in generating the nascent-HBr (Figure 4).18
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Figure 4: Pictorial diagram for the sequential steps involved in the chemoselective 
reaction
In summary, we have developed the micellar-assisted slow-release 
nascent-HBr from the dispersed catalyst BnBr in aqueous SDS. This 
catalytic system was successfully applied for chemoselective 
removal of acid-sensitive functionalities like ketals, acetals, MOM, 
tert-Boc functionalities present in carbohydrates, hydroxylated 
acyclic compounds and amino alcohol in good to excellent yield. We 
have also optimized the reactions using other halides, such as p-
MeBnBr, p-NO2BnBr and t-BuBr as sources of bromide and it was 
found that the rate of cleavage reaction was faster and the orthogonal 
selectivity was reduced with t-BuBr than that of BnBr and p-
MeBnBr. The chemoselectivity and the tolerance toward orthogonal 
functionalities combined with the effective conversion in mild 
conditions, and the ease of the operation should make our catalytic 
system in aqueous medium potentially useful in the synthesis of 
natural product and active pharmaceutical ingredients.

EXPERIMENTAL SECTION:

General Information: NMR spectra were recorded on a Bruker 
Avance 500 spectrometer (500 MHz). Multiplicities are abbreviated 
as s = singlet, d = doublet, t = triplet, quart = quartet, quint = quintet, 
sext = sextet and m = multiplet.  Optical rotation was measured at a 
concentration of g/100 mL with a Polarimeter (M/s Anton Paar, 
model: MCP-200). Mass spectra were recorded with an Agilent 
Technologies Q-TOF LC/MS G6520B mass spectrometer with the 
electrospray ionisation (ESI+) technique. Perkin-Elmer Spectrum 65 
FT-IR Spectrometer was used for recording IR spectra, and the 
values are expressed as % transmittance. Analytical thin-layer 
chromatography was performed on an Aluminum TLC plate, silica 
gel coated with fluorescent indicator F254 (1.0554, silica gel 60 
F254, Merck). Elemental analysis (C/H/N/S) was performed by Euro 
Vector elemental analyser (EA-3000). Chromatographic separations 
were performed on a silica gel column by flash chromatography. 
Yields are given after purification unless differently stated. All the 
reagents and solvents were used as received without any further 
purification. Compounds were named following IUPAC rules as 
applied by Beilstein-Institute AutoNom (version 2.1) software for 
systematic names in organic chemistry. Compound 11a was 
purchased from Sigma-Aldrich. All the starting materials are 
prepared in our laboratory and used for cleavage reaction.
General procedure for the synthesis of compounds 2a-2j, 4a-4d, 
and 5b-13b: The catalytic amount of benzyl bromide was added to a 
solution of protected compounds (1a-1j, 3a-3d, and 5a-13a) (shown 
in Table 2 and 3) in 10.0-15.0 mL aq. SDS solution with vigorous 
stirring at room temperature. On completion of the reaction 
monitoring through TLC, the reaction mixture was destabilised with 
ethyl acetate, and the two layers were separated. The organic layer 
was extracted and dried over Na2SO4, concentrated and purified 
through flash column chromatography using silica gel (200-400 
mess) to offer the products 2a-2j, 4a-4d, and 5b-13b. 
Characterization data of compound 2a-2j:
1,2-O-Isopropylidene-α-D-glucofuranose (2a):19 white solid, 97% 
(213.4 mg); mp156-160 °C; 1H NMR (500 MHz, CDCl3/DMSO-d6 
(99:1) δ (ppm): 5.92 (d, 1H, J = 3.4 Hz), 4.83 (d, 1H, J = 3.4 Hz), 
4.52 (d, 1H, J = 4.4 Hz), 4.49 (d, 1H, J = 3.4 Hz), 4.30 (br s, 1H), 
4.05-3.92 (m, 2H), 3.80-3.75 (m, 1H), 3.65-3.62 (m, 2H), 1.48 (s, 
3H), 1.30 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3/DMSO-d6) δ 
(ppm): 111.2, 104.9, 85.1, 80.4, 74.7, 69.7, 64.2, 26.7, 26.1. 
1,2-O-Isopropylidene-3-O-methoxymethyl-α-D-glucofuranose 
(2b):20 colorless semisolid, 90% (237 mg); 1H NMR (500 MHz, 
CDCl3) δ (ppm): 5.84 (d, 1H, J = 3.5 Hz), 4.68 (ABq, 2H, J = 6.4 
Hz), 4.51 (d, 1H, J = 3.5 Hz), 4.16 (br d, 1H, J = 2.4 Hz), 4.06 (dd, 
1H, J1 = 2.4 Hz, J2 = 8.6 Hz), 3.89-3.84 (m, 1H), 3.79 (dd, 1H, J1 = 
2.6 Hz, J2 = 11.7 Hz), 3.67 (dd, 1H , J1 = 5.8 Hz, J2 = 11.7 Hz), 3.37 
(s, 3H), 1.43 (s, 3H), 1.25 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3) 
δ (ppm): 111.9, 105.1, 96.9, 83.3, 80.9, 79.7, 68.6, 64.2, 56.1, 26.6, 
26.1. 
1,2-O-Cyclohexylidene-α-D-glucofuranose (2c):21 white solid, yield 
= 88% (229 mg); mp 148-152°C; 1H NMR (500 MHz, 
CDCl3/DMSO-d6 (99:1)) δ (ppm): 5.92 (d, 1H, J = 3.5 Hz), 4.78 (d, 
1H, J = 3.5 Hz), 4.51 (d, 1H J = 6.3 Hz), 4.48 (d, 1H, J = 3.5 Hz), 
4.30 (br s, 1H), 4.01-3.99  (m, 2H), 3.84-3.80 (m, 1H), 3.68-3.61 (m, 
2H), 1.72-1.43 (m, 10H); 13C{1H} NMR (125 MHz, CDCl3/DMSO-
d6 (99:1)) δ (ppm): 112.0, 104.6, 84.6, 80.2, 74.9, 69.7, 64.2, 36.3, 
35.5, 24.8, 23.8, 23.5. 
3-O-Acetyl-1,2-O-isopropylidene-α-D-glucofuranose (2d):22 
colorless semisolid, 87% (228 mg), 1H NMR (500 MHz, CDCl3) δ 
(ppm): 5.91 (d, 1H, J = 3.4 Hz), 5.27 (br s, 1H), 4.60 (d, 1H, J = 3.4 
Hz), 4.18 (dd, 1H, J1 = 2.6 Hz, J2 = 9.0 Hz), 3.86 (dd, 1H, J1 = 2.6 
Hz, J2 = 11.7 Hz), 3.73 (dd, 1H,  J1 = 6.3 Hz, J2 = 11.7 Hz), 3.68-3.63 
(m, 1H), 2.18 (s, 2H), 2.16 (s, 3H), 1.52 (s, 3H), 1.32 (s, 3H); 
13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 171.2, 112.3, 104.8, 
83.0, 79.1, 68.1, 64.0, 29.7, 26.5, 26.1, 20.6. 
3-O-Benzyl-1,2-O-cyclohexylidene-α-D-glucofuranose (2e):23 
colorless, viscous liquid, 95% (332 mg); 1H NMR (500 MHz, 
CDCl3) δ (ppm): 7.39-7.30 (m, 5H), 5.95 (d, 1H, J = 3.5 Hz), 4.74 
(d, 1H, J = 11.6 Hz), 4.63 (d, 2H, J = 3.1 Hz), 4.56 (ABq, 1H, J = 
10.9 Hz), 4.14-4.10 (m, 2H), 4.03-3.97 (m, 1H), 3.81 (dd, 1H , J1 = 
3.5 Hz, J2 =11.6 Hz), 3.69 (dd, 1H, J1 = 5.0 Hz, J2 =11.6 Hz), 1.71-
1.33 (m, 10H); 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 137.2, 
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128.8-127.2 (5C), 112.5, 104.7, 82.1, 81.6, 79.8, 72.1, 69.3, 64.4, 
36.3, 35.7, 24.8, 23.8, 23.5. 
2,3-O-Isopropylidene-α-D-manno-furanose (2f):20 white semisolid, 
90% (211 mg); 1H NMR (500 MHz, CDCl3) δ (ppm): 5.28 (s, 1H), 
4.82-4.79 (m, 1H), 4.53 (d, 1H, J = 5.9 Hz,), 4.35 (br s, 1H), 4.20 (br 
s, 1H), 4.06 (d, 1H, J = 7.5 Hz), 3.88 (br s, 1H), 3.74 (d, 1H, J = 11.2 
Hz), 3.65 (d, 1H, J = 11.2 Hz), 3.51-3.48  (m, 1H), 1.38 (s, 3H), 1.26 
(s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 112.5, 100.8, 
85.3, 79.8, 78.7, 69.5, 63.7, 25.9, 24.6. 
1-O-Benzyl-2,3-O-isopropylidene-α-D-manno-furanose (2g):24 
white crystal, 87% (270 mg), mp 80-82°C; 1H NMR (500 MHz, 
CDCl3) δ (ppm): 7.37-7.28 (m, 5H), 5.11 (s, 1H), 4.85 (t, 1H , J = 
4.4 Hz), 4.63 (d, 1H , J = 5.7 Hz), 4.62 (d,  1H, J = 11.3 Hz), 4.50 (d, 
1H, J = 12.0 Hz), 4.01-3.94 (m, 1H), 3.95 (dd, 1H, J1 = 3.3 Hz, J2 = 
7.9 Hz), 3.82 (dd, 1H, J1 = 3.3 Hz, J2 = 11.3 Hz), 3.69-3.63 (m, 1H), 
3.07 (br s, 1H), 2.40 (br s, 1H), 1.48 (s, 3H), 1.33 (s, 3H); 13C{1H} 
NMR (125 MHz, CDCl3) δ (ppm): 137.3, 128.5-127.9 (5C), 112.7, 
105.4, 84.8, 80.1, 79.2, 70.3, 69.2, 64.4, 25.9, 24.6. 
1,2-O-Isopropylidene-α-D-galactofuranose (2h):25 colorless viscous 
liquid, 96% (211 mg); 1H NMR (500 MHz, CDCl3) δ (ppm): 5.86 (d, 
1H, J = 3.6 Hz), 4.75 (s, 1H), 4.52 (d, 1H, J = 3.6 Hz), 4.23-4.16 (m, 
2H), 4.06 (br s, 1H) 3.94 (d,  1H, J = 7.3 Hz), 3.80 (br s, 1H), 3.69 
(d, 1H,  J = 11.6 Hz), 3.60 (dd, 1H, J1 = 4.2 Hz, J2 = 11.6 Hz), 1.45 
(s, 3H), 1.26 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 
112.9, 105.2, 87.7, 87.0, 75.4, 71.0, 63.1, 26.8, 26.1. 
 1,2-O-Isopropylidene-α-D-xylofuranose (2i):20 colorless viscous 
liquid, 94% (178 mg); 1H NMR (500 MHz, CDCl3) δ (ppm): 5.98 (d, 
1H, J = 3.5 Hz), 4.51 (d, 1H, J = 3.5 Hz), 4.30 (s, 1H), 4.17 (dd, 1H, 
J1 = 4.0 Hz, J2  = 6.9 Hz), 4.05 (d, 1H, J = 11.2 Hz), 4.02 (d, 1H, J = 
11.2 Hz), 3.71 (br s, 1H), 1.49 (s, 3H), 1.32 (s, 3H); 13C{1H} NMR 
(125 MHz, CDCl3) δ (ppm): 111.8, 104.7, 85.4, 79.1, 76.3, 60.8, 
26.7, 26.1. 
Methyl-β-D-glucopyranoside (2j):26 white solid, 90% (174 mg), mp 
195-199°C; 1H NMR (500 MHz, D2O) δ (ppm): 4.68 (d, 1H, J = 3.6 
Hz), 3.74 (dd, 1H, J1 = 2.4 Hz,  J2 = 11.8 Hz), 3.63 (dd, 1H, J1 = 5.6 
Hz,  J2 = 11.8 Hz), 3.61-3.53 (m, 2H), 3.44 (dd, 1H, J1 = 3.6 Hz,  J2 = 
9.5 Hz), 3.29 (s, 3H), 3.26 (d, 1H, J = 9.5 Hz). 
Characterization data of compounds (4a-4d):
1,5,6-Tri-O-benzyl-α-D-mannofuranose (4a): viscous liquid, 84% 
(378 mg); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.25-7.11 (m, 15H), 
4.81 (d, 1H, J = 11.4 Hz), 4.72 (d, 1H, J = 11.4 Hz ), 4.52 (s, 1H), 
4.51 (s, 1H), 4.46-4.38 (m, 2H), 4.33 (s, 1H), 3.82 (s, 1H), 3.69-3.59 
(m, 2H), 3.57-3.47 (m, 2H), 3.27-3.21 (m, 1H), 2.75 (br s, 2H); 
13C{1H} NMR (125 MHz, CDCl3) δ (ppm):139.2, 139.1, 137.7, 
129.4-128.7 (15C), 99.2, 76.9, 75.8, 75.7, 75.6, 74.5, 72.0, 71.6, 
70.1;  -40.0 (c = 0.8, CHCl3); LC-MS (ESI+) m/z Calcd. for [𝛼]25

𝐷
[C27H30O6]+: 450.20 (M)+, Found: 450.49; Elemental analysis Anal. 
Calcd for C27H30O6: C, 71.98; H, 6.71. Found: C, 71.87; H, 6.79.
3,5,6-Tri-O-benzyl-α-D-glucofuranose (4b):27 colorless semisolid, 
85% (382 mg); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.23-7.15 (m, 
15H), 4.94 (br s, 1H), 4.67 (dd, 2H, J1 = 8.0 Hz, J2 = 11.6 Hz), 4.56 
(d, 1H,  J = 11.6 Hz), 4.50 (br s, 2H), 4.45-4.42  (m, 2H), 4.41 (d, 
1H, J = 6.3 Hz), 4.39-4.36 (m, 1H), 4.29 (s, 1H), 4.03-3.98 (m, 1H), 
3.95 (d, 1H , J = 10.6 Hz), 3.79 (d, 1H, J = 10.6 Hz), 3.62 (dd, 1H, J1 
= 5.4 Hz, J2 = 10.6 Hz); 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 
138.8 (2C), 138.5, 138.0, 137.8, 128.3 (2C), 128.2, 127.6 (3C), 127.4 
(3C), 125.8, 107.7, 82.9, 80.2, 78.3, 78.3, 73.3, 72.5, 71.9, 70.8, 
70.7, 69.5 (2C). 
3,5,6-Tri-O-propargyl-α-D-glucofuranose (4c): colorless semisolid, 
82% (241 mg); 1H NMR (500 MHz, CDCl3) δ (ppm): 5.50 (br s, 
1H), 4.39-4.36 (m, 1H), 4.32-4.27 (m, 5H), 4.25-4.21 (m, 2H), 4.12 
(m, 1H), 4.01 (d, 1H, J = 10.6 Hz), 3.95 (d, 1H, J = 10.6 Hz), 3.94 
(m, 1H), 3.75-3.72 (m, 1H), 3.69-3.66 (m, 1H), 2.44 (br s, 3H); 
13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 96.8, 83.2, 79.6, 79.5, 
79.4, 77.5, 75.4, 75.0 (2C), 74.5, 74.3, 69.9, 58.7, 57.9, 57.3;  [𝛼]25

𝐷
+25.0 (c = 1.2, CHCl3); LC-MS (ESI+) m/z Calcd. for [C15H18O6]+: 
294.11 (M)+, Found: 294.23. Elemental analysis Anal. Calcd for 
C15H18O6: C, 61.22; H, 6.17. Found: C, 61.19; H, 6.22.
5-O-(4-Methoxybenzyl)-α-D-xylofuranose (4d): colorless semisolid, 
79% (213 mg); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.73-7.70 (m, 
2H), 7.54-7.51 (m, 2H), 5.82 (d, 1H, J = 6.3 Hz), 4.99 (d, 2H, J = 
16.1 Hz), 4.92 (d, 2H, J = 10.4 Hz), 4.67 (s, 1H), 4.32 (d, 2H, J = 

11.5 Hz), 4.30 (s, 3H), 4.09 (d, 1H, J = 6.3 Hz);  +28.0 (c = 0.9, [𝛼]25
𝐷

CHCl3); LC-MS (ESI+) m/z Calcd. for [C13H18O6]+: 270.11 (M)+, 
Found: 270.33; Elemental analysis Anal. Calcd for C13H18O6: C, 
57.77; H, 6.71. Found: C, 57.83; H, 6.80.
Characterization data of compounds (5b-13b) 
(±)-4-(methoxymethoxy)butane-1,2-diol (5b):28 colorless semisolid, 
81% (350 mg); 1H NMR (500 MHz, CDCl3) δ (ppm): 4.63 (s, 2H), 
4.19-4.15 (m, 1H), 4.03 (t, 1H, J = 6.9 Hz), 3.76-3.73 (m, 2H), 3.62-
3.59 (m, 2H), 3.40-3.36 (m, 1H), 3.34 (s, 3H), 1.93-1.77 (m, 2H).
  (±)-5-((tert-Butyldimethylsilyl)oxy)pentane-1,2-diol (6b):29 

colorless liquid, 85% (127 mg); 1H NMR (500 MHz, CDCl3) δ 
(ppm): 3.88-3.83 (m, 1H), 3.82-3.77 (m, 1H), 3.74 (t, 2H, J = 5.4 
Hz), 3.56-3.51 (m, 1H), 3.46-3.41 (m, 1H), 3.40-3-35 (m, 1H), 1.60-
1.56 (m, 2H), 0.81 (s, 9H), -0.01 (s, 6H). 
(±)-4-(Allyloxy)butane-1,2-diol (7b):30 colorless viscous liquid, 93% 
(204 mg); 1H NMR (500 MHz, CDCl3) δ (ppm): 5.96-5.86 (m, 1H), 
5.28-5.19 (m, 2H), 4.12 (dd, 1H, J1 = 6.9 Hz,  J2 = 14.4 Hz), 4.01 (d, 
2H, J = 5.2 Hz), 3.95-3.89 (m, 1H), 3.69-3.62 (m, 2H), 3.55-3.49 (m, 
1H), 3.10 (s, 1H), 1.89-1.80 (m, 1H), 1.75-1.68 (m, 1H). 
 (±)-3-(Methoxymethoxy)propane-1,2-diol (8b):31 colorless viscous 
liquid, 87% (118 mg); 1H NMR (500 MHz, CDCl3) δ (ppm): 4.67 (s, 
2H), 3.89 (br s, 1H), 3.71 (t, 2H, J = 8.6 Hz), 3.67-3.59 (m, 2H), 
3.40 (s, 3H), 2.95 (br s, 1H), 2.15 (br s, 1H); 13C{1H} NMR (125 
MHz, CDCl3) δ (ppm): 97.2, 70.7, 70.5, 63.9, 55.6. 
(±)-2,3-Dihydroxypropyl acetate (9b):32 colorless viscous liquid, 
75% (100 mg); 1H NMR (500 MHz, CDCl3) δ (ppm) : 4.12 (quintet, 
2H), 3.92 (br s, 2H), 3.67 (d, 1H, J  = 11.4 Hz), 3.57 (dd, 1H, J1 = 5.9 
Hz, J2 = 11.4 Hz), 3.48 (br s, 1H), 2.10 (s, 3H); 13C{1H} NMR (125 
MHz, CDCl3) δ (ppm): 171.9, 70.6, 65.0, 63.5, 21.0. 
tert-Butyl(S)-(1-hydroxy-3-phenylpropan-2-yl)carbamate 
(10b):33 white solid, 88% (221 mg); mp 93-98 °C. 1H NMR (500 
MHz, CDCl3) δ (ppm) : 7.29-7.17 (m, 5H), 5.18 (br s, 1H), 3.86 (s, 
1H), 3.59 (dd, 1H, J1 = 3.8 Hz, J2 = 11.2 Hz), 3.50 (dd, 1H, J1 = 4.3 
Hz , J2 = 10.3 Hz), 2.81 (d, 2H, J = 6.5 Hz), 1.39 (s, 9H); 13C{1H} 
NMR (125 MHz, CDCl3) δ (ppm): 156.2, 138.0, 129.3 (2C), 128.6 
(2C), 126.3, 79.5, 63.5, 53.6, 37.4, 28.4 (3C); 
4-Methoxybenzaldehyde (11b): colorless liquid, 92% (125 mg); 1H 
NMR (500 MHz, CDCl3) δ (ppm): 9.88 (s, 1H), 7.83 (d, 2H, J = 8.2 
Hz), 7.00 (d, 2H, J = 8.2 Hz), 3.90 (s, 3H); 13C{1H} NMR (125 
MHz, CDCl3) δ (ppm): 190.8, 164.4, 132.0 (2C), 130.0, 114.0 (2C), 
55.5.
 (S)-2-Amino-3-phenylpropan-1-ol (12b):34 white solid, 76% (115 
mg); m. 93-95 °C; 1H NMR (500 MHz, CDCl3) δ (ppm) : 7.33-7.17 
(m, 5H), 3.65 (dd, 1H, J1 = 3.2 Hz, J2 = 10.7 Hz), 3.40 (dd, 1H, J1 = 
7.9 Hz, J2 = 10.7 Hz), 3.14 (dd, 1H, J1 = 5.3 Hz, J2 = 12.6 Hz), 2.80 
(dd, 1H, J1 = 5.3 Hz, J2 = 12.6 Hz), 2.54 (dd, 1H, J1 = 8.7 Hz, J2 = 
12.6 Hz), 2.33 (br s, 2H). 
(4-(Benzyloxy)butan-1-ol (13b):35 colorless viscous liquid, 93% 
(167 mg); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.39-7.32 (m, 5H), 
4.52 (s, 2H), 3.60 (t, 2H, J = 5.7 Hz), 3.51 (t, 2H, J  = 5.4 Hz), 1.71 
(m, 2H), 1.64 (m, 2H); 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 
138.3, 128.5 (2C), 127.8 (2C), 127.7, 72.9, 70.3, 62.2, 29.7, 26.5. 
Methyl 2-amino-3-hydroxypropanoate (14b):36 colorless 
semisolid, 58% (69 mg), 1H NMR (500 MHz, D2O/CD3OD 
(19:1)), δ (ppm): 4.19 (br s, 1H), 3.99 (d, 1H, J = 12.9 Hz), 3.89 
(d, 1H, J = 12.5 Hz), 3.74 (s, 3H). 
Methods for 5,6-O-isopropylidene cleavage of compound 15 
(Scheme 1)
Method A: To a solution of compound 15 (500 mg, 1.30 mmol) in 
methanol (10.0 mL), Amberlite IR120 (H+) (100 mg) was added and 
stirred slowly at room temperature for 24 h. The reaction mixture 
was filtered off, the filtrate was concentrated and purified using 
silica gel flash column chromatography to get the diol 16a.
Method B: To a solution of compound 15 (500 mg, 1.30 mmol) in 
methanol (10.0 mL), a catalytic amount of pTSA (22.3 mg, 0.13 
mmol) was added and stirred at room temperature for 24 hr. The 
solvent was removed, and the residue was partitioned between 
EtOAc and water. The organic layer was separated, washed with 
satd. NaHCO3, brine, and dried over anhydrous Na2SO4 and 
concentrated. The crude residue was purified using silica gel flash 
column chromatography to afford the diol 16a and lactone 16b.
Method C: To a compound 15 (500 mg, 1.30 mmol) in 1.4 M SDS 
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solution (10.0 mL), a catalytic amount of BnBr (0.15 mmol) was 
added and stirred for 24h at room temperature. Ethyl acetate was 
added to the reaction mixture, the organic layer was separated, dried 
over anh. Na2SO4, concentrated and purified using silica gel flash 
column chromatography to form diol 16a and lactone 16b.
Characterization data of compound 16a and 16b:
tert-butyl ((3aR,5S,6R,6aR)-6-cyano-5-((R)-1,2-dihydroxyethyl)-
2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)carbamate (16a): 
colorless semisolid, 85% (357 mg);  1H NMR (500 MHz, CDCl3) δ 
(ppm): 5.95 (d, 1H, J = 3.6 Hz), 5.68 (br s, 1H), 5.08 (s, 1H), 4.12 
(dd, 1H, J1 = 3.6 Hz, J2 = 9.3 Hz), 3.90 (d, 2H, J = 9.3 Hz), 3.73 (dd, 
1H, J1 = 5.1 Hz, J2 = 11.2 Hz), 1.56 (s, 3H), 1.49 (s, 5H), 1.37 (s, 
3H), 1.25 (s, 4H); 13C{1H} NMR (125 MHz, CD3OD) δ (ppm): 
156.2 (Boc, C=O), 113.0 (CN), 107.0, 106.9, 85.4, 84.7, 82.5, 80.1, 
72.4, 64.9, 28.1 (3C), 27.2 (2C);  32.0 (c = 0.9, CHCl3); FTIR [𝛼]25 

𝐷
(KBr): 3414 (OH, NH), 1731.1 (>C=O Boc) and 2242 (less intense 
CN) cm-1; LC-MS (ESI+) m/z [C15H24NaN2O7]+ 367.15; Found 
367.24; Elemental analysis Anal. Calcd for C15H24N2O7: C, 52.32; 
H, 7.02; N, 8.13. Found: C, 52.49; H, 7.15; N, 8.21.
 tert-butyl ((3aR,4aS,5R,8aR,8bR)-5-hydroxy-2,2-dimethyl-8-
oxotetrahydro-6H-[1,3]dioxolo[4',5':4,5]furo[3,2-c]pyran-8a(8H)-
yl)carbamate (16b): colorless semisolid, 10% (41 mg); 1H NMR 
(500 MHz, CDCl3) δ (ppm): 5.94 (d, J = 3.4 Hz, 1H), 5.76 (br s, 1H), 
4.84 (s, 1H), 4.75 (d, 1H, J = 3.4 Hz), 4.50-4.45 (m, 1H), 4.02 (dt, 
1H, J =  3.4, 11.6 Hz), 3.94-3.89 (m, 1H), 3.21 (s, 1H), 1.60 (s, 3H), 
1.44 (s, 12H); 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 172.2 
(lactone C=O), 154.9 (Boc, C=O), 114.6, 105.2, 85.7, 84.0, 83.8, 
82.1, 66.8, 62.0, 28.1 (3C), 27.3, 27.2;  +45.0 (c = 1.3, CHCl3); [𝛼]25 

𝐷
FTIR (KBr): 3432.2 (OH, NH), 1784.9 (C=O lactone), 1710.1 (C=O 
Boc) cm-1; LC-MS (ESI+) m/z [C15H23NaNO8]+ 368.13, Found 
368.19; Elemental analysis Anal. Calcd for C15H23NO8: C, 52.17; 
H, 6.71; N, 4.06. Found: C, 52.29; H, 6.81; N, 4.11.
Preparation and characterization of starting materials:
Characterization data of compounds (1a-1j):
1,2:5,6-Di-O-isopropylidene-α-D-glucofuranose (1a).37 white solid, 
77% (15.0 g); mp 107-110 °C; 1H NMR (500 MHz, CDCl3) δ (ppm): 
5.95 (br s, 1H), 4.54 (br s, 1H), 4.38-4.31 (m, 2H), 4.20-4.14 (m, 
1H), 4.09-4.05 (m, 1H), 3.97 (dd, 1H, J1  = 4.6 Hz, J2 = 9.4 Hz),  
2.70 (s, 1H), 1.50 (s, 3H), 1.44 (s, 3H), 1.36 (s, 3H), 1.32 (s, 3H); 

13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 111.8, 109.7, 105.3, 
85.1, 81.1, 75.2, 73.4, 67.6, 26.9, 26.8, 26.2, 25.1. 
1,2:5,6-Di-O-isopropylidene-3-O-methoxymethyl-α-D-
glucofuranose (1b).38 colorless semisolid, 79% (3.16 g); 1H NMR 
(500 MHz, CDCl3) δ (ppm): 5.85 (d, 1H, J = 3.5 Hz), 4.71 (s, 2H), 
4.56 (d, 1H, J = 3.5 Hz), 4.29-4.23 (m, 1H), 4.20 (d, 1H, J = 2.7 Hz), 
4.08 (dd, 2H, J1 = 3.5 Hz, J2 = 6.3 Hz), 3.96 (dd, 1H, J1 = 5.6 Hz, J2 
= 8.6 Hz), 3.39 (s, 3H), 1.48 (s, 3H), 1.40 (s, 3H), 1.32 (s, 3H), 1.30 
(s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 111.8, 109.1, 
105.2, 95.9, 83.2, 81.0, 78.9, 72.2, 67.5, 55.7, 26.8 (2C), 26.2, 25.3. 
1,2:5,6-Di-O-cyclohexylidene-α-D-glucofuranose (1c).39 white solid 
69% (7.0 g); mp 134-137°C, 1H NMR (500 MHz, CDCl3) δ (ppm): 
5.97 (d, 1H, J = 3.4 Hz), 4.53 (d, 1H, J = 3.4 Hz), 4.36-4.33 (m, 2H), 
4.16 (dd, 1H, J1 = 6.3 Hz, J2 = 8.6 Hz), 4.06 (dd, 1H, J1 = 2.4 Hz, J2 
= 8.6 Hz), 3.97 (dd, 1H, J1 = 5.4 Hz, J2 = 8.6 Hz), 1.77-1.49 (m, 
20H); 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 112.2, 104.3, 84.6, 
81.3, 80.2, 64.2, 40.1, 39.9, 39.7, 39.6, 36.3, 35.6, 34.6, 25.0, 24.8, 
24.0, 23.7, 23.5. 
3-O-Acetyl-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (1d).40 

white solid, 70% (2.19 g); mp 61-65 °C; 1H NMR (500 MHz, 
CDCl3) δ (ppm): 5.80 (d, 1H, J = 3.4 Hz), 5.16 (br s, 1H), 4.44 (d, 
1H, J = 3.4 Hz), 4.16-4.10 (m, 2H), 3.99 (dd, 1H, J1 = 4.9 Hz, J2 = 
8.5 Hz), 3.94 (dd, 1H, J1 = 4.9 Hz, J2 = 8.5 Hz), 2.03 (s, 3H), 1.43 (s, 
3H), 1.33 (s, 3H), 1.24 (s, 3H), 1.23 (s, 3H); 13C{1H} NMR (125 
MHz, CDCl3) δ (ppm): 169.4, 112.0, 109.1, 104.9, 83.2, 79.9, 75.5, 
72.3, 66.9, 26.7, 26.6, 26.0, 25.1, 20.7. 
3-O-Benzyl-1,2:5,6-di-O-cyclohexylidene-α-D-glucofuranose 
(1e).41 colorless semisolid, 82% (1.87 g); 1H NMR (500 MHz, 
CDCl3) δ (ppm): 7.39-7.31 (m, 5H), 5.90 (d, 1H, J = 3.3 Hz), 4.71 
(d, 1H,  J1 = 11.5 Hz), 4.69 (d, 1H, J1 = 11.5 Hz), 4.58 (d, 1H, J = 3.3 
Hz), 4.40-4.37 (m, 1H), 4.12 (dd, 2H, J1 = 4.2 Hz, J2 = 7.8 Hz), 4.05 
(d, 1H, J = 3.3 Hz), 4.00 (dd, 1H, J1 = 5.5 Hz, J2 = 8.7 Hz), 1.58 (m, 
20H); 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): δ 137.7, 128.4 

(2C), 127.8, 127.6, 112.4, 109.6, 104.9, 82.3, 81.7, 81.5, 79.6, 72.3, 
72.1, 67.2, 36.6, 36.5, 35.7, 34.9, 25.2, 24.9, 24.1, 23.9, 23.9, 23.6. 
2,3:5,6 Di-O-isopropylidene-D-manno-furanose (1f).42 white solid, 
89%; (1.84 g); mp 121-125 °C; 1H NMR (500 MHz, CDCl3) δ 
(ppm):5.38 (s, 1H), 4.82 (dd, 1H, J1 = 3.5 Hz, J2 = 5.5 Hz), 4.62 (d, 
1H, J = 5.5 Hz), 4.41 (dd, 1H, J1 = 5.8 Hz, J2 = 11.5 Hz), 4.19 (dd, 
1H, J1 = 3.5 Hz, J2 = 7.6 Hz), 4.11-4.03 (m, 2H), 2.80 (d, 1H, J = 2.2 
Hz), 1.48 (s, 3H), 1.47 (s, 3H), 1.39 (s, 3H), 1.33 (s, 3H); 13C{1H} 
NMR (125 MHz, CDCl3) δ (ppm): 112.6, 109.1, 101.1, 85.4, 80.2, 
79.6, 73.2, 66.5, 26.8, 25.8, 25.1, 24.4. 
1-O-Benzyl-2,3:5,6-di-O-isopropylidene-α-D-manno-furanose 
(1g).43 white crystal; 82% (2.16 g); mp 81-83 °C; 1H NMR (500 
MHz, CDCl3) δ (ppm):7.37-7.29 (m, 5H), 5.07 (s, 1H), 4.80 (dd, 1H,  
J1 = 4.2 Hz, J2 = 5.5 Hz), 4.66 (d,  1H, J = 5.5 Hz), 4.63 (s, 1H), 4.48 
(dd, 1H, J1 = 5.5, J2 = 7.8 Hz), 4.43-4.38 (m, 1H), 4.11 (t, 1H, J = 7.8 
Hz), 3.98-3.90 (m, 2H), 1.46 (s, 6H), 1.38 (s, 3H), 1.32 (s, 3H). 
13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 137.3, 128.5-127.8 (5C), 
112.6, 109.3, 105.6, 85.1, 80.4, 79.5, 73.1, 69.1, 66.9, 26.9, 25.8, 
25.2, 24.5. 
1,2:5,6-Di-O-isopropylidene-α-D-galactofuranose (1h).44 colorless, 
viscous liquid; 55% (1.95 g); 1H NMR (500 MHz, CDCl3) δ (ppm): 
5.81 (s, 1H), 4.49 (s, 1H), 4.29-4.23 (m, 1H), 4.00-3.98 (m, 2H), 
3.75 (m, 1H), 3.73 (br t, 1H, J = 7.2 Hz), 1.46 (s, 3H), 1.36 (s, 3H), 
1.29 (s, 3H), 1.25 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 
(ppm): 113.1, 109.7, 105.0, 87.3, 86.8, 75.6, 68.3, 65.6, 27.1, 26.4, 
25.8, 25.3. 
1,2:3,5-Di-O-isopropylidene-α-D-xylofuranose (1i).45 colorless 
solid, 60% (1.77 g); mp 43-45 °C; 1H NMR (500 MHz, CDCl3) δ 
(ppm):6.00 (d,  1H,  J = 3.4 Hz), 4.52 (d, 1H, J = 3.3 Hz), 4.26 (br s, 
1H), 4.13-4.01 (m, 3H), 1.49 (s, 3H), 1.44 (s, 3H), 1.38 (s, 3H), 1.32 
(s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 111.6, 105.2, 
97.4, 84.6, 73.1, 71.6, 60.1, 28.9, 26.7, 26.1, 25.9. 
Methyl 4,6-benzylidene-β-D-glucopyranoside (1j).46 white solid, 
87% (2.30 g); mp 197-201 °C; 1H NMR (500 MHz, CDCl3) δ 
(ppm):7.39 (d, 2H, J = 8.4 Hz), 7.26 (s, 1H), 6.80 (d, 2H, J = 8.7 
Hz), 5.47 (s, 1H), 4.76 (d, 1H, J = 3.5 Hz), 4.26 (dd, 1H, J1 = 4.2 Hz,  
J2 = 10.1 Hz), 3.90 (t, 1H, J = 10.1 Hz), 3.80 (s, 3H), 3.78-3.74 (m, 
1H), 3.72 (d, 1H, J = 10.1 Hz), 3.47 (s, 3H); 13C{1H} NMR (125 
MHz, CDCl3) δ (ppm): 160.3, 129.4, 127.5, 113.6, 101.8, 99.8, 96.1, 
80.8, 72.8, 71.8, 68.8, 62.3, 55.5, 55.2.  
Characterization data of compounds (3a-3d):
1,5,6-Tri-O-benzyl-2,3-O-isopropylidene-α-D-manno-furanose 
(3a). A solution of  2,3-O-isopropylidine-α-D-manno-furanose (0.5 
g, 4.5 mmol) (2f) in DMF (5.0 mL), sodium hydride (60 % w/w in 
mineral oil, 0.46 g, 22.7 mmol) was added at 0 ºC and stirred at room 
temperature for 1 h. Again, the reaction mixture was cooled to the 0 
ºC followed by the addition of benzyl bromide (1.4 mL, 22.5 mmol) 
and tetra-butyl ammonium iodide (catalytic amount) and stirred at 
room temperature for 10 h. The reaction mixture was suspended in 
ice cold water (10.0 mL), and extracted with EtOAc (2×10.0 mL). 
The combined organic layers were dried over sodium sulfate and 
concentrated under vacuum. The remaining crude was purified by 
column chromatography (EtOAc: petroleum ether 15%) to afford 3a 
as a colorless semi solid, 88% (1.81 g). 1H NMR (500 MHz, CDCl3) 
δ (ppm): 7.36-7.24 (m, 15H), 4.95 (d, 1H, J = 11.5 Hz), 4.81 (d, 1H, 
J = 11.5 Hz), 4.73 (d, 1H, J = 11.5 Hz), 4.71 (s, 1H), 4.61 (ABq, 2H, 
J = 11.5 Hz), 4.54 (d, 1H, J = 11.5 Hz), 4.26 (t, 1H, J = 6.3 Hz), 4.21 
(d, 1H, J = 6.3 Hz), 3.80 (d, 1H, J = 10.3 Hz), 3.72 (dd, 1H, J1 = 6.3 
Hz, J2 = 10.3 Hz), 3.66-3.62 (m, 1H), 3.54 (t, 1H, J = 7.6 Hz), 1.55 
(s, 3H), 1.40 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 
138.4, 138.0, 136.9, 128.5-127.6 (15C), 110.8, 96.0, 79.9, 75.7, 74.5, 
74.3, 73.5 (2C), 70.2, 70.1, 27.6, 26.2.  +27.0 (c = 0.8, CHCl3); [𝛼]25 

𝐷
LC-MS (ESI+) m/z Calcd for [C30H34O6]+: 490.24 (M)+, Found: 
490.31; Elemental analysis Anal.Calcd for C30H34O6: C, 73.45; H, 
6.99. Found: C, 73.53; H, 7.01. 
3,5,6-Tri-O-benzyl-1,2-O-isopropylidene-α-D-glucofuranose (3b).47 

colorless semisolid, 91% (2.72 g); 1H NMR (500 MHz, CDCl3) δ 
(ppm): 7.30-7.23  (m, 15H), 5.91 (d, 1H, J = 3.5 Hz), 4.82 (d, 1H, J 
= 11.2 Hz), 4.63 (d, 1H, J = 11.2 Hz), 4.60 (d, 1H, J = 3.5 Hz), 4.58 
(s, 2H), 4.48 (d, 2H, J = 11.2 Hz), 4.30 (dd, 1H, J1 = 3.5 Hz, J2 = 9.3 
Hz), 4.13 (d, 1H, J = 3.5 Hz), 4.09-4.04 (m, 1H), 3.91 (d, 1H, J  = 
10.5 Hz), 3.68 (dd, 1H, J1 = 5.6 Hz, J2 = 10.5 Hz), 1.48 (s, 3H), 1.30 
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(s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 138.7 (3C), 
138.5, 137.6, 128.4 (3C), 128.3 (2C), 128.2, 127.9 (2C), 127.8, 
127.6, 127.5, 127.4 (2C), 111.8, 105.1, 81.8 (2C), 79.0, 75.5, 73.4, 
72.7, 72.0, 71.3, 26.8, 26.3. 
1,2-O-Cyclohexylidene-3,5,6-tri-O-propargyl-α-D-glucofuranose 
(3c). 1,2-O-Cyclohexylidene-α-D-glucofuranose (1.30 g, 3.8 mmol) 
(2c) was dissolved in dry DMF (5.0 mL) and sodium hydride (1.02 
g, 19.0 mmol) was added at 0 ºC and stirred at room temperature for 
1h. Propargyl bromide (2.2 mL, 23.0 mmol) was introduced at 0 ºC 
and the mixture was warmed to room temperature and stirred for 12 
h. The reaction mixture was reverse-quenched with ice and diluted 
with EtOAc (3×10.0 mL). The combined organic layers were dried 
over sodium sulfate and evaporated. The residue was 
chromatographed on silica gel (elution with EtOAc-petroleum ether 
25%) as a colorless semisolid, 66% (1.31 g); 1H NMR (500 MHz, 
CDCl3) δ (ppm): 5.88 (d, 1H, J = 3.4 Hz), 4.61 (br s, 1H), 4.44-4.40 
(m, 1H), 4.33-4.26 (m, 3H,), 4.22-4.14 (m, 4H), 3.97-3.93 (m, 2H), 
3.65-3.61 (m, 1H), 2.52 (s, 1H), 2.45 (d, 2H, J = 8.5 Hz), 1.60-1.35 
(m, 10H); 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 112.6, 104.6, 
81.4, 81.2, 80.0, 79.7, 79.1, 78.4, 75.1, 74.5, 74.3, 70.3, 58.6, 57.8 
(2C), 57.7, 36.3, 35.8, 24.8, 23.8, 23.5.  -41.0 (c = 1.3, CHCl3); [𝛼]25 

𝐷
LC-MS (ESI+) m/z Calcd for [C21H26O6]+: 374.17 (M)+, Found: 
374.28; Elemental analysis Anal. Calcd for C21H26O6: C, 67.36; H, 
7.00. Found: C, 67.47; H, 6.97.
1,2-O-Isopropylidene-5-O-(4-methoxybenzyl)-α-D-xylofuranose 
(3d).48 colorless semisolid, 68% (1.37 g); 1H NMR (500 MHz, 
CDCl3) δ (ppm): 7.25 (d, 2H, J = 8.0 Hz), 6.89 (d, 2H, J = 8.5 Hz), 
5.99 (d, 1H, J = 3.5 Hz), 4.68-4.64 (m, 2H), 4.59-4.47 (m, 1H), 4.41 
(d, 1H, J = 11.2 Hz), 4.28-4.21 (m, 1H), 4.00 (d, 1H, J = 3.5 Hz), 
3.92 (dd, 1H, J1 =5.5 Hz, J2 = 11.2 Hz), 3.83-3.80 (m, 1H), 3.81 (s, 
3H), 1.48 (s, 3H), 1.33 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 
(ppm):159.6, 129.5 (2C), 129.0, 114.0 (2C), 111.7, 105.1, 82.5, 82.4, 
79.9, 71.5, 61.0, 55.3, 26.8, 26.3;  -32 (c = 1.0, CHCl3), LC-MS [𝛼]25

𝐷
(ESI+) m/z Calcd. for [C16H22O6]+: 310.14 (M)+, Found: 310.22; 
Elemental analysis Anal. Calcd for C16H22O6: C, 61.92; H, 7.15. 
Found: C, 62.01; H, 7.19. 
Characterization data of compounds (5a-13a):
(±)-4-(3-(Methoxymethoxy)propyl)-2,2-dimethyl-1,3-dioxolane 
(5a).49  yellowish liquid, 95% (1.96 g); 1H NMR (500 MHz, CDCl3) δ 
(ppm): 4.60 (s, 2H), 4.20 (quintet, 1H), 4.05 (t, 1H, J = 6.9 Hz), 3.61 
(t, 2H, J = 5.5 Hz,), 3.56 (t, 1H, J = 7.5 Hz), 3.34 (s, 3H), 1.93-1.77 
(m, 2H), 1.39 (s, 3H), 1.34 (s, 3H); 13C{1H} NMR (125 MHz, 
CDCl3) δ (ppm): 108.1, 96.0, 73.4, 69.1, 64.0, 54.6, 33.5, 26.6, 25.3. 
(±)-tert-Butyl(3-(2,2-dimethyl-1,3-dioxolan-4-yl)propoxy) 
dimethylsilane (6a).50 colorless oil, 80% (2.51g); 1H NMR (500 
MHz, CDCl3) δ (ppm): 4.13 (quintet, 1H), 4.01 (t, 1H,  J = 6.8 Hz), 
3.37-4.36 (m, 2H), 3.50 (t, 1H, J  = 7.4 Hz), 1.83-1.75 (m, 1H), 1.74-
1.64 (m, 1H), 1.34 (s, 3H), 1.30 (s, 3H), 0.84 (s, 9H), 0.003 (s, 6H); 
13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 108.0, 73.6, 69.6, 59.7, 
36.5, 26.8, 25.7 (3C), 25.6 (2C), 18.0, -5.5. 
(±)-4-(2-(Allyloxy)ethyl)-2,2-dimethyl-1,3-dioxolane (7a).51 

colorless oil, 75% (1.46 g); 1H NMR (500 MHz, CDCl3) δ (ppm): 
5.96-5.82 (m, 1H), 5.27 (d, 1H, J = 16.5 Hz), 5.17 (br t, 1H, J = 9.2 
Hz), 4.22-4.15 (m, 1H), 4.09-4.03 (m, 1H), 3.99-3.91 (m, 2H), 3.59-
3.48 (m, 3H), 1.86-1.80 (m, 2H), 1.40 (s, 3H), 1.35 (s, 3H); 13C{1H} 
NMR (125 MHz, CDCl3) δ (ppm): 134.7, 116.7, 108.5, 73.8, 71.8, 
69.6, 66.9, 33.8, 26.9, 25.7. 
(±)-4-((Methoxymethoxy)methyl)-2,2-dimethyl-1,3-dioxolane 
(8a).31 colorless viscous liquid, 78% (2.77 g); 1H NMR (500 MHz, 
CDCl3) δ (ppm): 4.67 (s, 2H), 4.31 (quintet, 1H), 4.09 (t, 1H, J = 6.8 
Hz), 3.74 (t, 1H, J = 6.8 Hz), 3.59 (br d, 2H, J = 5.7 Hz), 3.37 (s, 
3H), 1.44 (s, 3H), 1.38 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ 
(ppm): 109.5, 96.7, 74.7, 68.6, 66.6, 55.3, 26.8, 25.4. 
(±)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl acetate (9a).52 colorless 
liquid, 82% (2.58 g); 1H NMR (500 MHz, CDCl3) δ (ppm): 4.33 
(quintet, 1H), 4.18 (dd, 1H, J1 = 4.4 Hz, J2 = 11.6 Hz), 4.11-4.04 (m, 
2H), 3.74 (dd, 1H, J1 = 6.2 Hz, J2 = 8.5 Hz), 2.10 (s, 3H), 1.44 (s, 
3H), 1.37 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3) δ (ppm): 170.8, 
109.9, 73.6, 66.4, 64.9, 26.6, 25.3, 20.8. 
(S)-tert-Butyl 4-benzyl-2,2-dimethyloxazolidine-3-carboxylate 
(10a). The tert-butyl (S)-(1-hydroxy-3-phenylpropan-2-yl)carbamate 
(1.0 g, 3.9 mmol) (10b) was dissolved in dry acetone (7.0 mL), 2,2-

dimethoxypropane (2.1 mL, 17.2 mmol) and boron trifluoride 
etherate (BF3.OEt2, 30 µL, 0.2 mmol) was added. The reaction was 
stirred for 3 h. The reaction was neutralized with aq. NaHCO3, 
extracted with ethyl acetate and the solvent was removed under 
reduced pressure. The compound was purified through column 
chromatography (EtOAc/petroleum ether, 25%) to get yellowish 
liquid 10a (93%, 1.94 g);  -36.0 (c = 1.2, CHCl3); 1H NMR [𝛼]25

𝐷
(500 MHz, CDCl3) δ (ppm): 7.32-7.14 (m, 5H), 4.04 (d, 1H, J = 7.6 
Hz), 3.74-3.71 (m, 2H), 3.17 (dd, 1H, J1 = 11.0 Hz, J2 = 11.0 Hz), 
2.65-2.62 (m, 1H), 1.67-1.44 (m, 15H); 13C{1H} NMR (125 MHz, 
CDCl3) δ (ppm): 151.6, 138.5, 129.5, 129.2, 128.6, 128.4, 126.4, 
93.9, 79.5, 66.0, 59.1, 39.7, 28.5, 27.5, 26.8, 24.5, 23.2. LC-MS 
(ESI+) m/z Calcd for [C17H25NO3]+: 291.18 (M)+, Found: 291.20; 
Elemental analysis Anal. Calcd for C17H25NO3: C, 70.07; H, 8.65; 
N, 4.81. Found: C, 70.11; H, 8.71; N, 4.77.
((4-(Methoxymethoxy)butoxy)methyl)benzene (13a).53 colorless 
liquid, 78% (1.53 g); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.34-7.31 
(m, 5H), 4.60 (br s, 2H), 4.50 (br s, 2H), 3.53 (t, 2H, J  = 5.7 Hz), 
3.50 (t, 2H, J  = 5.3 Hz), 3.34 (s, 3H), 1.69 (m, 4H); 13C{1H} NMR 
(125 MHz, CDCl3) δ (ppm): 138.6, 128.3 (2C), 127.6, 127.5 (2C), 
96.4, 72.9, 70.1, 67.5, 55.1, 26.6, 26.5. 
(S)-methyl 2-((tert-butoxycarbonyl)amino)-3-
(methoxymethoxy)propanoate (14a).54 yellowish, semisolid, 78% 
(300 mg); 1H NMR (500 MHz, CDCl3), δ (ppm): 5.52 (d, 1H, J = 8.2 
Hz), 4.59 (s, 2H), 4.46 (d, 1H, J = 8.1 Hz), 3.99 (d, 1H, J = 9.8 Hz), 
3.77 (s, 3H), 3.74 ( d, 1H, J = 10.2 Hz), 3.32 (s, 3H), 1.45 (s, 9H). 
Characterization data of compound 15: (Scheme shown in 
supporting information)
Synthesis of 1,2:5,6-di-O-isopropylidene-3-deoxy-3-amino-3-
cyano--D-glucofuranose (18).55 yellowish semisolid, 50% (3.22 
g). 1H NMR (500 MHz, CDCl3) δ (ppm): 5.92 (d, 1H, J = 7.1 Hz), 
4.78 (d, 1H, J = 3.0 Hz), 4.36 (quintet, 1H), 4.18 (dd, 1H, J1 = 6.3 
Hz, J2 = 8.7 Hz), 4.00 (dd, 1H, J1 = 3.9 Hz, J2 = 9.1 Hz), 3.68 (d, 1H, 
J = 8.7 Hz), 2.18 (br s, 2H), 1.57 (s, 3H), 1.46 (s, 3H), 1.38 (s, 3H) 
1.38 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3): 118.6, 113.7, 110.1, 
103.9, 83.3, 81.6, 75.0, 67.5, 62.7, 26.7, 26.4, 26.3, 24.8.
1,2:5,6-Di-O-isopropylidene-3-deoxy-3-N-tert-butyloxycarbonyl-3-
cyano-α-D-glucofuranose (15). 1,2:5,6-Di-O-isopropylidene-3-
deoxy-3-amino-3-cyano--D-glucofuranose (18) (1.0 g, 3.5 mmol) 
was dissolved in acetonitrile (2.0 mL) followed by addition of di-
tert-butyl dicarbonate (1.2 mL, 5.2 mmol) and 4-
dimethylaminopyridine (0.825 g, 0.5 mmol) and stirred at rt. for 24 
h. The reaction mixture was partitioned between EtOAc and water. 
The organic layer was dried over sodium sulfate, evaporated and 
purified through column chromatography (EtOAc:Petroleum ether, 
25%) to furnish pure yellowish semisolid compound 15 (85%, 1.68 
g).  +31.0 (c = 1.2, CHCl3); 1H NMR (500 MHz, CDCl3) δ [𝛼]25

𝐷
(ppm): 5.91 (d, 1H, J = 2.3 Hz), 5.43 (s, 1H), 5.28 (s, 1H), 4.43 (s, 
1H), 4.20 (t, 1H, J = 8.0 Hz), 4.03 (s, 1H), 3.77 (d, 1H, J = 5.9 Hz), 
1.54 (s, 6H), 1.49 (s, 9H), 1.39 (s, 3H), 1.36 (s, 3H); 13C{1H} NMR 
(125 MHz, CDCl3) δ (ppm):  153.7, 116.3, 113.8, 110.6, 104.2, 82.2, 
81.5, 79.4, 74.3, 67.5, 62.2, 28.2, 26.7, 26.5, 26.4, 24.7 (3C); FTIR 
(KBr): 3414 (NH), 2242 (CN), 1731 (CO) cm-1; LC-MS (ESI+) m/z 
[C18H28N2O7Na]+: 407.18 [M+Na]+, Found: 407.41; Elemental 
analysis Anal. Calcd for C18H28N2O7: C, 56.24; H, 7.34; N, 7.29. 
Found: C, 56.32; H, 7.29; N, 7.24. 
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