

Highly Efficient Hydrogen Storage System Based on Ammonium Bicarbonate/Formate Redox Equilibrium over Palladium Nanocatalysts

Ji Su, Lisha Yang, Mi Lu, and Hongfei Lin*^[a]

A highly efficient, reversible hydrogen storage–evolution process has been developed based on the ammonium bicarbonate/formate redox equilibrium over the same carbon-supported palladium nanocatalyst. This heterogeneously catalyzed hydrogen storage system is comparable to the counterpart homogeneous systems and has shown fast reaction kinetics of both the hydrogenation of ammonium bicarbonate and the dehydrogenation of ammonium formate under mild operating conditions. By adjusting temperature and pressure, the extent of hydrogen storage and evolution can be well controlled in the same catalytic system. Moreover, the hydrogen storage system based on aqueous-phase ammonium formate is advantageous owing to its high volumetric energy density.

The demand for highly efficient energy storage systems is imminent due to the rapid growth of production of renewable energies as these are usually intermittent due to the dependence on unpredictable factors such as the availability of solar light, wind speed, among others. As the cleanest chemical energy carrier, H₂ has received high interest during the past decades. However, the advancement of sustainable H_2 economy is hindered by the lack of the successful integration of H₂ generation from renewable materials, its storage, and its conversion into electrical energy.^[1] Although research on H₂ production and conversion, such as photocatalytic splitting water^[2] or proton exchange membrane (PEM) fuel cells,^[3] has entered a sophisticated stage, the hydrogen storage technology is still waiting for its breakthrough. Significant challenges of H₂storage stems from its inherent low volumetric energy density at ambient conditions. In this regard, high pressure and low temperature are required to obtain a balanced gravimetric and volumetric energy density of H₂ for storage. Recently, alternative approaches for the storage of H₂ are the development of adsorptive materials or the transformation of H₂ into other chemical carriers that can reversibly absorb and release H₂.^[1b] In particular, formic acid (FA), if obtained from CO₂ hydrogenation, is a promising source for carbon-neutral hydrogen storage.^[4]

 [a] Dr. J. Su, L. Yang, M. Lu, Prof. H. Lin Department of Chemical and Material Engineering University of Nevada, Reno,
 1664 N. Virginia St. M/S388, Reno, NV 89557 (USA) Fax: (+1)7753275059
 E-mail: hongfeil@unr.edu

Supporting Information for this article is available on the WWW under http://dx.doi.org/10.1002/cssc.201403251.

dehydrogenation of FA to release H₂ can be achieved using suitable catalytic systems. If the same catalyst can be used for both CO₂ hydrogenation and FA dehydrogenation at mild reaction conditions, then a "hydrogen battery" can be constructed for mobile device applications. Beller and co-workers recently designed a reversible hydrogen storage cycle by controlling the temperature using a Ru-based homogeneous catalyst.^[5] In their work, the hydrogenation of NaHCO₃ to HCO₂Na was performed in a 96% yield at 70°C in the water/THF solution, while dehydrogenation of HCO₂Na was achieved at a high conversion (>90%) at 30°C. Using similar catalyst as Beller et al., Joó et al. first constructed a rechargeable hydrogen storage device without using organic solvents that showed excellent stability upon prolonged use.^[6] Fujita's group reported a reversible hydrogen storage system with a proton-switchable homogeneous Ir catalyst.^[7] Recently, Plietker's group designed a prototype of the reversible H₂ battery by reversibly converting a formic acid amine adduct under different H₂ pressures using a Rucomplex catalyst in an organic solvent.^[8] To the best of our knowledge, up to date the current FA-based hydrogen storage media are homogeneous systems, in which an important aspect is missing, that is, the significant challenge related to separation, reuse, deactivation, and regeneration of the catalysts. Practically, a heterogeneous system is much easier to handle than a homogeneous one and thus could be a better option. However, compared to the homogeneous systems, the development of heterogeneous catalysts for FA-based hydrogen storage is limited. Sasson et al. first proposed the idea of using sodium formate salts as the chemical carrier for hydrogen storage using Pd supported on carbon as catalyst.^[9] However, the efficiency of the hydrogenation of sodium bicarbonate was rather low.[10]

Efficient hydrogenation of CO₂ to produce FA and reversible

Most previous studies also ignored an important factor that determines the potential of liquid-phase hydrogen storage systems: the volumetric hydrogen density. For the bicarbonate/ formate hydrogen storage system, the volumetric hydrogen density depends on the solubility of formate salts.^[6,11] The solubility of ammonium formate is >84 molL⁻¹ in water at 80 °C. In contrast, the solubility of sodium formate is only ~19 molL⁻¹ at the same temperature. Even at room temperature, the solubility of ammonium formate (~22 molL⁻¹) is nearly double that of sodium formate (~12 molL⁻¹). The solubility difference, as seen in Figure S2 in the Supporting Information, motivated us to construct a reversible hydrogen storage–evolution system based on the ammonium bicarbonate/ formate equilibrium.

ChemSusChem 0000, 00, 0 – 0 Wiley Online Library

Table 1. Catalytic hydrogenation of bicarbonates and carbonates. ^[a]						
Entry	Reagent	Catalyst ^[b]	Reaction co p _{H2} [MPa]	onditions t [h]	Yield [%]	TON ^[c]
1	NaHCO ₃	Pd/AC	2.75	1	28.6	527
2	Na_2CO_3	Pd/AC	2.75	1	0.05	< 1
3	KHCO₃	Pd/AC	2.75	1	30.8	567
4	K ₂ CO ₃	Pd/AC	2.75	1	0.07	< 1
5	NH₄HCO ₃	Pd/AC	2.75	1	42.4	782
6	$(NH_4)_2CO_3$	Pd/AC	2.75	1	15.1	278
7	NH₄HCO ₃	Pd/AC	2.75	6	84.9	1571
8	NH₄HCO ₃	Pd/AC	2.75	15	95.6	1769
9	NH₄HCO ₃	Pd/AC	0.69	1	16.9	312
10	NH₄HCO ₃	Pd/AC	1.38	1	31.3	579
11	NH₄HCO ₃	Pd/AC	4.14	1	53.1	982
12	NH₄HCO ₃	Pd/AC	5.52	1	59.6	1103
13	NH₄HCO ₃	Pd/AC	5.52	2	90.4	1672
14	NH_4HCO_3	Ru/AC	2.75	1	0.2	3
15	NH₄HCO ₃	Rh/AC	2.75	1	0.2	3
16	NH₄HCO ₃	Pt/AC	2.75	1	0	0
17	NH_4HCO_3	Ni/AC	2.75	1	0	0
18	NH₄HCO ₃	Pd/Al_2O_3	2.75	1	8.9	278
19	NH_4HCO_3	$Pd/CaCO_3$	2.75	1	0.6	20
20	NH ₄ HCO ₃	$Pd/BaSO_4$	2.75	1	2.9	212
[a] Reaction conditions: 20 mL distilled H ₂ O, 20 mmol reagent salt, 0.1 g catalyst, 20 °C. [b] All catalyst loadings were 5% metal, Ni/AC sample was prepared by impregnation method (nickel nitrate as the precursor). [c] TON is turnover number and it was calculated by the formula: total moles of formate formed/(total moles of Pd adatoms $\times D$ %), where D% is the dimension of metal atoms on the support surface. The D% values are						

calculated from the CO chemisorption (Table S1).

We first compared various bicarbonate and carbonate salts with different cations, Na^+ , K^+ , and NH_4^+ , for hydrogenation. As shown in Table 1, over Pd nanocatalyst formates could be easily produced from the hydrogenation of bicarbonates with all three different cations but not from carbonates [except for (NH₄)₂CO₃] at room temperature. It was much more difficult to hydrogenate carbonate salts than bicarbonate ones as the protonation of carbonate ions was considered to be the rate-limiting step in aqueous solutions, especially at low temperatures.^[12] The equilibrium between bicarbonate and carbonate ions highly depends on the pH value of the solution. On increasing the pH value, the equilibrium shifted from bicarbonate to carbonate and thus the formate yield decreased (Figure S3). In a typical hydrogenation reaction system, 1м NH₄HCO₃ aqueous solution (20 mmol NH₄HCO₃ in 20 mL H₂O and the pH value was 7.7) using the Pd/AC nanocatalyst (AC stands for activated carbon support, 5 wt % Pd), a high yield of ammonium formate, ~59.6%, with a turnover number (TON) of 1103 was achieved after reacting for 1 h when the initial H_2 pressure was 5.5 MPa. By extending the reaction time to 2 h, a 90.4% formate yield with a TON of 1672 was obtained. Furthermore, higher concentrations of NH₄HCO₃ also increased the formate yields, for example, a high turnover frequency (TOF) of 1221 h^{-1} was achieved using a 2.5 $\ensuremath{\mathsf{M}}$ NH_4HCO3 solution and 2.75 MPa initial H₂ pressure, as seen in Figure S4. In comparison, Beller and co-workers reported that, under similar reaction conditions (5 MPa initial H₂ pressure and a 2 h reaction time) and using the [{RuCl₂(benzene)}₂] homogeneous catalyst, a 35% formate yield with a TON of 807 was achieved from hydrogenating 24 mmol NaHCO₃ in a solution of 25 mL H₂O and 5 mL THF (reagent concentration <1 mol L⁻¹).^[5a] Our results suggest that the hydrogen storage process based on the reduction of ammonium bicarbonate over the Pd/AC heterogeneous catalyst is more efficient than the homogeneous counterpart that Beller et al. reported.

The hydrogenation of ammonium bicarbonate with different supported metal catalysts was also investigated. Transition metals supported carbon such as Pd/AC, Ru/AC, Rh/AC, Pt/AC, and Ni/AC have been proven to be active towards hydrogenation or hydrogenolysis reactions. But due to the different properties of the metals themselves, they often show different activities in response to a specific reaction.^[13] In the hydrogenation of NH₄HCO₃, we found that only Pd catalysts showed a clear catalytic activity, whereas other transition metals such as Ru, Rh, Pt, and Ni were inactive under the test conditions (Table 1, entries 8 and 14-17). The activated carbon support was superior to other supports including Al₂O₃, CaCO₃, and BaSO₄ (Table 1, entries 18-20). Because the hydrogenation of aqueous NH₄HCO₃ is a multiphasic reaction (gas/liquid/solid), the diffusion of the reactant, H₂, could be rate limiting due to its low solubility in water. Activated carbon is commonly a hydrophobic support and can store H₂.^[14] H₂ could be locally enriched in the carbon channels or on the surface of the carbon support from H₂ spillover from the Pd metal. Localized higher H₂ concentrations on the surface of the Pd/AC catalyst may thus be attributed to the higher formate yields. On the other hand, the dispersion of Pd nanoparticles (NPs) on AC was higher than that on other supports such as AI_2O_3 , $CaCO_3$, and BaSO₄ (Table S1) or other supported metal catalysts (Figure S5), and a higher dispersion implies more active Pd sites that favor hydrogenation.

In addition to the catalyst materials (metals and supports), process conditions such as initial H₂ pressure and reaction temperature are also the key influencing factors on the hydrogenation of ammonium bicarbonate. Stalder et al. found that a 1:1 hydrogenation reaction equilibrium ratio of formate/bicarbonate was obtained when purging the NaHCO₃ solution with 0.1 MPa H₂ gas for a long time (40–90 h).^[15] In our reaction at a higher H₂ gas pressure of 2.75 MPa, the equilibrium ratio of HCO₂NH₄ to NH₄HCO₃ was shifted significantly to approximately 95:5 in 15 h (Table 1, entry 8). On the other hand, on increasing the reaction temperature from 20 to 80°C, the hydrogenation rate was increased but the equilibrium yield of formates was decreased from \sim 95% to \sim 50%, as shown in Figure 1. Higher reaction temperatures favor the dehydrogenation reaction and shift the equilibrium to hydrogen evolution, which is in agreement with previous studies.^[4d, 9, 10] Our results show that the equilibrium position of the hydrogen storage and evolution process depends on both the reaction temperature and the hydrogen pressure in the heterogeneously catalytic system. Note that the highest formate yield was achieved at room temperature, implying that our hydrogenation reaction system does not need additional external energy for heating.^[7] However, in practice, a higher H₂ pressure might be needed to

Figure 1. Effect of temperature on the hydrogenation of ammonium bicarbonate. Reaction conditions: 20 mL distilled H₂O, 1 mol L⁻¹ NH₄HCO₃, 0.1 g Pd/AC catalyst, 2.75 MPa initial H₂ pressure.

obtain a reasonably fast hydrogenation rate at room temperature.

It is interesting to find that the hydrogenation efficiency of ammonium bicarbonate is much higher than that of sodium bicarbonate, for example, the TOFs were 782 and 527 h^{-1} for the hydrogenation of NH₄HCO₃ and NaHCO₃, respectively, under identical reaction conditions (Table 1, entries 1 and 5). We hypothesize that the cations of bicarbonate salts may shift the equilibrium between carbonate or bicarbonate ions. To verify our hypothesis, C13 NMR spectra were recorded. The peaks from 155 to 170 ppm in the C¹³ NMR spectra were assigned to the bicarbonate/carbonate ion pair with fast proton exchange. The ratio of HCO_3^{-} to CO_3^{2-} has an effect on the chemical shift. As the ratio increases, the peak of the bicarbonate/carbonate ion pair shifts to lower ppm values.^[16] As shown in Figure S6, the bicarbonate salts have a higher HCO₃⁻ concentration than the corresponding carbonate salts since the peaks of the HCO_3^{-}/CO_3^{2-} ion pair are located at lower ppm values for bicarbonate salts. The peak positions also suggest that the concentrations of bicarbonate ions are in the order: NaHCO₃ (0.61 м) < КНСО₃ (0.89 м) < NH₄HCO₃ (0.92 м) (Table S2). Thus, NH₄HCO₃ has the highest concentration of HCO₃⁻ in the aqueous solution, which leads to the highest formate yield of the hydrogenation reaction.

Another important aspect of our work is the dehydrogenation of ammonium formate that closes the hydrogen storage/ evolution cycle. We conducted the dehydrogenation of HCO₂NH₄ at a relatively high temperature range in the N₂ atmosphere with an initial pressure of 0.1 MPa. As shown in Figure 2, no decomposition reaction occurred at 20 °C. As the reaction temperature increased to 80°C, the yield of H₂ reached 63% and 77% after 20 and 40 min, respectively, and increased to 92.1% with a TON of 1698 after 1.5 h reaction (Table S3). As the reaction temperature increased further, the generation of H₂ from HCO₂NH₄ became much faster. For example, when the reaction temperature reached 120 °C, the yield of H_2 reached 97% within 20 min and $\sim\!100\,\%$ after 40 min. A comparison of the H₂ evolution efficiencies of HCO₂NH₄ and HCO₂Na, as shown in Figure 2, revealed that the yield of H₂ from HCO₂Na only reached 44% after 20 min at

Figure 2. Effect of temperature on the dehydrogenation of ammonium formate and sodium formate (Reaction conditions: 20 mL distilled H₂O, 1 м formate, 0.1 g Pd/AC catalyst, and 0.1 MPa initial N₂ pressure.)

80 °C, which means that the H₂ evolution efficiency of HCO₂Na was only ~70% of that of HCO_2NH_4 in the initial stage of reaction (0–20 min). The NH_4^+ ion effect on the dehydrogenation reaction may be attributed to the H₂ evolution efficiency being higher for HCO₂NH₄ than for HCO₂Na. For the dehydrogenation of HCO_2NH_4 , the conjugate acid ion, NH_4^+ , can easily supply $\mathsf{H}^{\scriptscriptstyle +}$ to complete the reaction, whereas $\mathsf{H}^{\scriptscriptstyle +}$ has to be derived from H₂O for the dehydrogenation of HCO₂Na, which is more difficult.^[17]

An advantage of ammonium formate as H₂ storage material is its high solubility in water. As shown in Figure S7, on increasing the initial concentration of HCO_2NH_4 from 1 to 15 m, the TOF of dehydrogenation of HCO₂NH₄ at 80 °C increased from 2135 to 5061 h⁻¹, which is comparable to that of FA dehydrogenation in the presence of nano-Pd on nanoporous carbon $\mathsf{MSC-30}\ \mathsf{catalyst}^{\scriptscriptstyle[13f]}$ at low temperatures. In contrast, the saturated solubility of HCO₂Na is only 11.6 м at 20 °C as seen in Figure S2. Therefore, a H₂ battery with a high volumetric energy density could be realized by using the highly concentrated HCO₂NH₄ aqueous solutions with appropriate loading of the commercial Pd/AC catalyst; the performance of such a H₂ battery system may be further enhanced by developing new Pdon-carbon catalysts.

At elevated temperatures, HCO₂NH₄ can be decomposed to $\mathsf{NH}_3,\ \mathsf{H}_2\mathsf{O},\ \mathsf{and}\ \mathsf{CO}_2$ and then rehydrated to form $\mathsf{NH}_4\mathsf{HCO}_3.$ In general, formic acid or its derived formate salts can be decomposed through either a dehydrogenation or a dehydration pathway. For the subsequent conversion of H₂ into electrical energy, the latter pathway should be avoided as it produces CO as impurity, which is toxic to fuel cell catalysts.^[18] Figure S8 indicates that H₂, N₂, and CO₂ were the gaseous products and that the volume percentage of H_2 was 93.6%. No CO was detected, implying that the Pd/AC catalyst selectively catalyzed the dehydrogenation reaction. The very small amount of CO₂ and trace amount of NH₃ are the by-products of the decomposition of HCO₂NH₄ or NH₄HCO₃ at elevated reaction temperatures. Note that even a trace amount of NH₃ in the H₂ fuel could severely decrease the performance of a proton exchange membrane (PEM) fuel cell.^[19] Therefore, NH₃ must be removed

3

before use in a fuel cell. Unlike CO, NH_3 is a basic gas and can be removed easily by passing the gas stream through a scrubber containing acidic solutions.^[20]

ChemPubSoc

Europe

Similar to the hydrogenation of ammonium bicarbonate, the Pd/AC catalyst also possesses the best performance among the tested catalysts towards the dehydrogenation of ammonium formate (Table S3), which makes it feasible to build a reversible hydrogen storage-evolution system based on the same catalytic system if the catalyst stability issue is addressed. The TEM images and XRD patterns both indicated that the Pd/AC catalysts were stable. As shown in Figure S9, after one cycle (hydrogenation of NH₄HCO₃ and then dehydrogenation of HCO₂NH₄ without regenerating the spent catalyst), no clear sintering or aggregation of the Pd NPs was observed. The XRD patterns of the Pd/AC catalyst (shown in Figure S10) reveal that the peaks, which are assigned to the lattice planes [111], [220], [311], and [200] of Pd, are almost unchanged before and after reactions. Even after five cycles, the activity of the spent catalyst was still as high as that of the fresh catalyst, as shown in Table S4. The XPS spectra of the fresh and spent Pd/AC samples (Figure S11) show that Pd²⁺ in the fresh catalyst was completely reduced to Pd⁰ after one cycle.

In conclusion, we have demonstrated that the ammonium bicarbonate/formate redox equilibrium system is feasible for reversible hydrogen storage and evolution. High yields of formates and hydrogen were obtained from the hydrogenation of ammonium bicarbonate and the dehydrogenation of ammonium formate, respectively, using the same Pd/AC nanocatalyst. Reaction temperature and H₂ pressure are key factors in controlling the hydrogen storage-evolution equilibrium in this system. Up to 96% yield of ammonium formate was achieved when the hydrogenation reaction was carried out at room temperature at an initial hydrogen pressure of 2.75 MPa, whereas nearly 100% hydrogen yield was obtained from the dehydrogenation of ammonium formate at 80°C at an initial nitrogen pressure of 0.1 MPa. Compared to the homogeneous catalytic system, this heterogeneous system has the following advantages: no organic solvents or inorganic additives are needed; high volumetric energy density of hydrogen (stored in concentrated ammonium formate aqueous solutions) is achieved; the solid salts or their aqueous solutions can be easily transported and distributed; and the Pd/AC catalyst is stable, being more easily recycled and handled than homogeneous catalysts. We are working on the design and test of the first hydrogen battery device based on this heterogeneous catalytic system.

Experimental Section

Experimental details can be found in the Supporting Information.

Keywords: carbamate \cdot co₂ conversion \cdot efficiency hydrogenation \cdot palladium

- a) U. Eberle, M. Felderhoff, F. Schüth, Angew. Chem. Int. Ed. 2009, 48, 6608–6630; Angew. Chem. 2009, 121, 6732–6757; b) H.-L. Jiang, S. K. Singh, J.-M. Yan, X.-B. Zhang, Q. Xu, ChemSusChem 2010, 3, 541–549; c) M. Yadav, Q. Xu, Energy Environ. Sci. 2012, 5, 9698–9725.
- [2] a) C. Liu, J. Tang, H. M. Chen, B. Liu, P. Yang, *Nano Lett.* 2013, *13*, 2989–2992; b) K. Maeda, K. Domen, *J. Phys. Chem. Lett.* 2010, *1*, 2655–2661; c) F. E. Osterloh, *Chem. Soc. Rev.* 2013, *42*, 2294–2320.
- [3] a) M. K. Debe, Nature 2012, 486, 43-51; b) S. Zhang, Y. Shao, G. Yin, Y. Lin, J. Mater. Chem. A 2013, 1, 4631-4641.
- [4] a) M. Grasemann, G. Laurenczy, Energy Environ. Sci. 2012, 5, 8171–8181;
 b) F. Joó, ChemSusChem 2008, 1, 805–808; c) S. Enthaler, J. von Langermann, T. Schmidt, Energy Environ. Sci. 2010, 3, 1207–1217; d) I. Jószai, F. Joó, J. Mol. Catal. A 2004, 224, 87–91.
- [5] a) A. Boddien, F. Gärtner, C. Federsel, P. Sponholz, D. Mellmann, R. Jackstell, H. Junge, M. Beller, Angew. Chem. Int. Ed. 2011, 50, 6411–6414; Angew. Chem. 2011, 123, 6535–6538; b) B. Loges, A. Boddien, H. Junge, M. Beller, Angew. Chem. Int. Ed. 2008, 47, 3962–3965; Angew. Chem. 2008, 120, 4026–4029.
- [6] G. Papp, J. Csorba, G. Laurenczy, F. Joó, Angew. Chem. Int. Ed. 2011, 50, 10433–10435; Angew. Chem. 2011, 123, 10617–10619.
- [7] J. F. Hull, Y. Himeda, W.-H. Wang, B. Hashiguchi, R. Periana, D. J. Szalda, J. T. Muckerman, E. Fujita, *Nat. Chem.* 2012, *4*, 383–388.
- [8] S.-F. Hsu, S. Rommel, P. Eversfield, K. Muller, E. Klemm, W. R. Thiel, B. Plietker, Angew. Chem. Int. Ed. 2014, 53, 7074–7078; Angew. Chem. 2014, 126, 7194–7198.
- [9] a) B. Zaidman, H. Wiener, Y. Sasson, Int. J. Hydrogen Energy 1986, 11, 341–347; b) B. Zaidman, H. Wiener, Y. Sasson, Sol. Energy 1989, 43, 291–296.
- [10] H. Wiener, Y. Sasson, J. Blum, J. Mol. Catal. 1986, 35, 277-284.
- [11] J. H. Lee, J. Ryu, J. Y. Kim, S.-W. Nam, J. H. Han, T.-H. Lim, S. Gautam, K. H. Chae, C. W. Yoon, J. Mater. Chem. A 2014, 2, 9490.
- [12] F. Joó, L. Nádasdi, J. Elek, G. Laurenczy, Chem. Commun. 1999, 971–972.
- [13] a) F. Zhao, R. Zhang, M. Chatterjee, Y. Ikushima, M. Arai, Adv. Synth. Catal. 2004, 346, 661–668; b) E. P. Maris, R. J. Davis, J. Catal. 2007, 249, 328–337; c) E. Bailón-García, F. J. Maldonado-Hódar, A. F. Pérez-Cadenas, F. Carrasco-Marín, Catalysts 2013, 3, 853–877; d) B. Yoon, H. Pan, C. M. Wai, J. Phys. Chem. C 2009, 113, 1520–1525; e) B. Zhao, J. Chen, X. Liu, Z. Liu, Z. Hao, J. Xiao, Z. Liu, Ind. Eng. Chem. Res. 2012, 51, 11112– 11121; f) Q. Zhu, N. Tsumori, Q. Xu, Chem. Sci. 2014, 5, 195–199.
- [14] a) A. C. Dillon, M. J. Heben, *Appl. Phys. A* 2001, *72*, 133–142; b) M. a. de La Casa-Lillo, F. Lamari-Darkrim, D. Cazorla-Amorós, A. Linares-Solano, *J. Phys. Chem. B* 2002, *106*, 10930–10934; c) A. Ansón, E. Lafuente, E. Urriolabeitia, R. Navarro, A. M. Benito, W. K. Maser, M. T. Martínez, *J. Phys. Chem. B* 2006, *110*, 6643–6648.
- [15] C. J. Stalder, S. Chao, D. P. Summers, M. S. Wrighton, J. Am. Chem. Soc. 1983, 105, 6318–6320.
- [16] a) F. Mani, M. Peruzzini, P. Stoppioni, *Green Chem.* 2006, *8*, 995–1000;
 b) H. W. Papenguth, R. J. Kirkpatrick, B. Montez, P. A. Sandberg, *Am. Mineral.* 1989, *74*, 1152–1158; c) J. E. Pelkie, P. J. Concannon, D. B. Manley, B. E. Poling, *Ind. Eng. Chem. Res.* 1992, *31*, 2209–2215; d) N. Wen, M. H. Brooker, *J. Phys. Chem.* 1995, *99*, 359–368.
- [17] S. Rajagopal, M. K. Anwer, A. F. Spatola in *Peptides Design, Synthesis and Biological Activity*, **1994**, pp. 11–26.
- [18] K. V. Kordesch, G. R. Simader, Chem. Rev. 1995, 95, 191–207.
- [19] X. Zhang, U. Pasaogullari, T. Molter, Int. J. Hydrogen Energy 2009, 34, 9188–9194.
- [20] P. F. Foley, J. L. Preston, Jr.; F. J. Luczak, C. R. Teeling, EP 0798799A2, 1997.

Received: November 9, 2014 Published online on ■■ ■, 0000

COMMUNICATIONS

Revolution of H₂ **evolution?** A highly efficient hydrogen storage–evolution process has been developed based on the ammonium bicarbonate/formate redox equilibrium over a carbon-supported palladium nanocatalyst. Ammonium ion improves the efficiencies of both the hydrogenation of bicarbonate and the dehydrogenation of formate. By adjusting the reaction temperature and pressure, the extent of chemical reaction of hydrogen storage and evolution can be well controlled within the same catalytic system.

J. Su, L. Yang, M. Lu, H. Lin*

Highly Efficient Hydrogen Storage System Based on Ammonium Bicarbonate/Formate Redox Equilibrium over Palladium Nanocatalysts