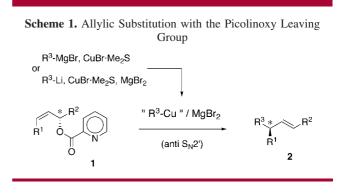

Synthesis of the Active Form of Loxoprofen by Using Allylic Substitutions in Two Steps

Tomonori Hyodo, Yohei Kiyotsuka, and Yuichi Kobayashi*

Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan

ykobayas@bio.titech.ac.jp


Received December 23, 2008

ABSTRACT

High regioselectivity for allylic substitution of the cyclopentenyl picolinate 5 with benzylcopper reagent was attained with ZnBr₂, and the finding was applied to the p-BrC₆H₄CH₂ reagent. The cyclopentene moiety in the product was reduced to the cyclopentane, and the p-BrC₆H₄ was converted to the "Cu"C₆H₄ for the second allylic substitution with picolinate 8 to furnish the title compound after oxidative cleavage of the resulting olefin moiety.

Copper-assisted substitution of secondary allylic esters with alkyl reagents usually produces anti S_N2' products with efficient regioselectivity and chirality transfer.¹ However, substitution with aryl and alkenyl anions has suffered from insufficient regioselectivity due to the low nucleophilicity. To improve the inconvenience, we have reported the picolinoxy leaving group (2-PyCO₂-), with which aryl and alkenyl copper reagents afforded the anti S_N2' products highly efficiently (Scheme 1).² The electron withdrawal by the pyridyl unit and the chelation of the group to MgBr₂ are responsible for the activation of the group. To demonstrate the new allylation system, we chose the active form of anti-inflammatory loxoprofen, i.e., 4,³ as a target,⁴ for which we envisioned substitution of picolinate 8 and aryl copper reagent 9 as delineated in Scheme 2. In addition, we studied substitution of the picolinate 5 with benzylic copper reagent 6 for synthesis

ORGANIC

 ^{(1) (}a) Negishi, E.; Liu, F. In *Metal-catalyzed Cross-coupling Reactions*; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998; Chapter 1.
 (b) Negishi, E. *Handbook of Organopalladium Chemistry for Organic Synthesis*; Wiley-VCH: Weinheim, 2002; Vol. 1. (c) Kar, A.; Argade, N. P. Synthesis 2005, 2995–3022. (d) Krause, N.; Gerold, A. *Angew. Chem., Int. Ed.* 1997, *36*, 186–204.

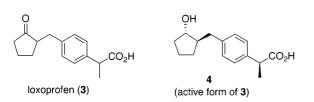
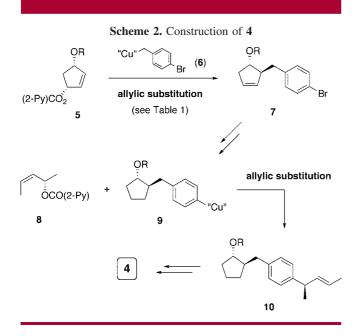
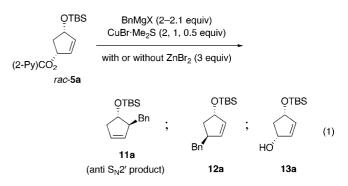

^{(2) (}a) Kiyotsuka, Y.; Acharya, H. P.; Katayama, Y.; Hyodo, T.; Kobayashi, Y. Org. Lett. **2008**, 10, 1719–1722. (b) Kiyotsuka, Y.; Kobayashi, Y. Tetrahedron Lett. **2008**, 49, 7256–7259.

Table 1.	Reaction	of	<i>rac</i> - 5 a	with	BnMgBr
----------	----------	----	-------------------------	------	--------


		υ					
entry	equiv of BnMgX	equiv of CuBr•Me ₂ S	equiv of $ZnBr_2$	temp, °C	time, h	ratio ^a of 11a:12a:13a:rac-5a	combined yield, % ^b
1	BnMgBr,2.0	2.1	0	0 to rt	14	84:0:16:0	nd
2	BnMgBr,2.0	2.1	3.0	0 to rt	14	66:0:20:14	nd
3	BnMgBr,2.1	1.0	0	0	1	90:10:0:0	82
4	BnMgBr,2.1	1.0	3.0^c	0	1	100:0:0:0	81
5	BnMgCl, 2.1	1.0	0	0	1	95:5:0:0	97
6	BnMgCl, 2.1	1.0	3.0	0	1	100:0:0:0	100
7	BnMgBr,2.0	0.5	0	0	1	88:12:0:0	nd
8	BnMgBr,2.0	0.5	3.0	0	1	100:0:0:0	nd


^{*a*} Determined by ¹H NMR spectroscopy. Zero (0) indicates the case that signals were not seen in the expanded ¹H NMR spectra. ^{*b*} nd, not determined. ^{*c*} Complete regioselectivity was also obtained with 1.0 and 2.1 equiv of ZnBr₂, whereas use of 6.3 equiv of ZnBr₂ produced a mixture of **11a** and **13a** in a 84:16 ratio.

of the bromide 7, a precursor of the reagent 9, because the regioselectivity of the previous method to obtain alcohol 7 (R = H) is somewhat low.⁵

Since allylic picolinate **5** and *p*-bromobenzylcopper reagent **6** in the first substitution were new types that had not been studied in our early investigation with the acyclic picolinates and aryl coppers,² we first studied the reaction using a racemic picolinate *rac*-**5a** possessing the TBS group (R = TBS) and three benzylcopper reagents derived from BnMgBr (2.0–2.1 equiv) and varied quantities of CuBrMe₂S (2.0, 1.0, and 0.5 equiv) according to the previous results with ArMgBr/CuBrMe₂S (eq 1).

The reaction was carried out at 0 °C in THF/Et₂O (3-7: 1). When reaction was not completed after 1 h, reaction was continued at higher temperature (rt) for 14 h. Ratios of the anti S_N2' product 11a, regioisomer 12a, alcohol 13a, and/or $(Bn)_2^6$ were determined by ¹H NMR spectroscopy, and yield of product 11a was calculated on the basis of the ¹H NMR ratio of the isolated (and weighted) mixture of 11a, 12a, and/ or (Bn)₂.⁷ As summarized in Table 1, copper reagents derived from BnMgBr (2.0-2.1 equiv) and CuBr•Me₂S (1.0 and 0.5 equiv), respectively, afforded 11a as a major product (entries 3 and 7), whereas a copper reagent derived from BnMgBr/ CuBr•Me₂S in 2.0/2.1 equiv was less reactive at 0 °C and produced alcohol 13a competitively at rt (entry 1). Although the observed regioselectivities of 11a in the former two entries were in good level (88-90%), separation of regioisomer 12a by chromatography was unsuccessful. To improve the selectivity, we postulated an activation of the picolinoxy moiety by ZnX₂, which would be stronger than MgBr₂ generated in situ from the reagents. Indeed, addition of $ZnBr_2$ (3.0 equiv) brought the regioselectivity to a substantially complete level for BnMgBr/CuBr•Me₂S in 2/1

⁽³⁾ Naruto, S.; Terada, A. *Chem. Pharm. Bull.* 1983, *31*, 4286–4294.
(4) Preparation by separation of the stereoisomers: (a) Naruto, S.; Terada,

A. Chem. Pharm. Bull. **1983**, *31*, 4319–4323. (b) Mandai, T.; Yamakawa, T. Synlett **2000**, 862–864.

⁽⁵⁾ Ito, M.; Matsuumi, M.; Murugeshi, M. G.; Kobayashi, Y. J. Org. Chem. 2001, 66, 5881–5889.

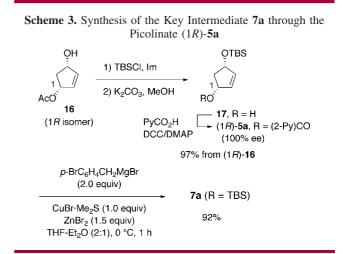
⁽⁶⁾ Probably produced by the Wurtz-type coupling during the Griganrd preparation from BnBr and Mg and/or by oxidative coupling of the remaining reagent during the workup.

⁽⁷⁾ The trans stereochemistry of the products **11a** and **12a** was determined by correlation to the corresponding alcohols, which were synthesized by the previous CuCN-catalyzed substitution of the monoacetate of 4-cyclopenten-1,3-diol with $BnMgBr.^{5}$

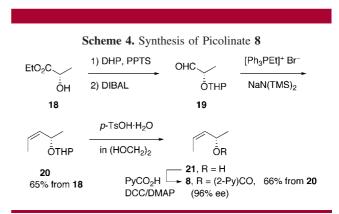
and 2/0.5 equiv (entries 4 and 8), though that in 2/2 equiv was not improved (entry 2). Among other molar ratios of $ZnBr_2$ examined, 1 and 2 equiv were similarly effective (cf., footnote c of Table 1).⁸

A copper reagent derived from BnMgCl (2.1 equiv) and CuBrMe₂S (1.0 equiv) in the presence of ZnBr₂ (3.0 equiv) afforded **11a** as well (entry 6; see entry 5 for the result obtained in the absence of ZnBr₂). These results with BnMgCl are informative in a case where benzylic magnesium bromides are hardly accessible from ArCH₂Br and Mg due to the rapid homocoupling reaction. In addition, ZnCl₂ in place of ZnBr₂ retarded the reaction with the copper reagents derived from BnMgCl/CuBrMe₂S in 2.1/1.0 and 2.0/0.5 equiv at 0 °C, and further reaction at rt produced a mixture of **11a** and **13a**, though complete regioselectivity was observed (data not shown).

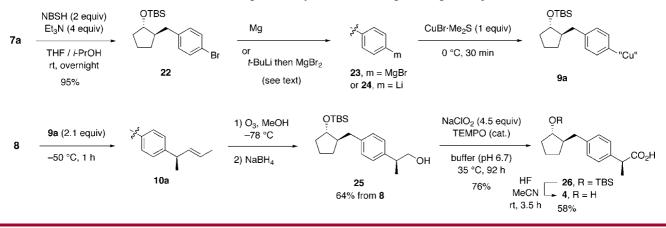
Next, the reaction conditions of entry 4 of Table 1 were applied to substrates rac-5b-f, which possess protective groups other than the TBS group (Table 2). In all cases ZnBr₂ assisted exclusive production of the anti S_N2' products **11b**-**f**. Interestingly, the native selectivity obtained without ZnBr₂ (ratios in parentheses) was dependent on the protective group: low selectivity with the electron-donating groups (TBDPS and Bn in entries 1 and 2) as in the case of the TBS group and high selectivity with the electron-withdrawing group (Ac and Piv in entries 4 and 5). In addition, entries 4 and 5 show a chemoselectivity indicating the picolinoxy group is the better leaving group compared to the AcO and PivO groups (see ref 8).


Table 2. Effect of Substituent on the Regioselectivity^a

(2-Py)(<u> </u>	BnMgBr CuBr∙Me ₂ S ZnBr ₂ (a	$\begin{array}{c} OR^{1} \\ \hline \\ I1b-f \\ anti S_{N}2' \text{ product} \end{array};$	OR ¹ J Bn 12b-f
entry	substrate	\mathbb{R}^1	ratio ^{b,c,d} of 11:12	combined yield, % ^e
	F1 .	MDDD0	00.1	
1	<i>rac</i> - 5b	TBDPS	99:1	nd
0	F .	D	(60:40)	nd
2	<i>rac</i> - 5c	Bn	99:1	nd
0	- 1	DMD	(66:34)	nd
3	<i>rac</i> - 5d	PMB	100:0	95
			(95:5)	83
4	rac-5 e	Ac	100:0	82
			(99:1)	76
5	rac-5f	Piv	100:0	90
			(100:0)	82


^{*a*} Reactions with BnMgBr (2.1 equiv) and CuBrMe₂S (1.0 equiv) were carried out in the presence of ZnBr₂ (3.1 equiv) in THF/Et₂O (3–7:1) at 0 °C for 1 h. ^{*b*} Determined by ¹H NMR spectroscopy. Zero (0) indicates the case that signals for **12** were not seen in the expanded ¹H NMR spectra. ^{*c*} The corresponding alcohol and the starting compound were not obtained. ^{*d*} The ratios obtained without ZnBr₂ are shown in parentheses. ^{*e*} nd, not determined.

With the above results in mind, we chose (R)-5a (R = TBS) as a substrate in the first allylic substitution with


p-BrC₆H₄CH₂MgBr/CuBr·Me₂S. The substrate (~100% ee by chiral HPLC) was synthesized by a method delineated in Scheme 3 starting with (1*R*)-monoacetate **16**, obtained by lipase-catalyzed hydrolysis of the corresponding diacetate followed by recrystallization.⁹ Allylic substitution of (1*R*)-**5a** with the copper reagent derived from *p*-BrC₆H₄CH₂MgBr (2.0 equiv) and CuBr·Me₂S (1.0 equiv) proceeded smoothly under the above conditions (0 °C, 1 h) to afford **7a** (R = TBS) regioselectively, which was isolated as a mixture with (*p*-XC₆H₄CH₂)₂ (X = Br and H). The mixture was treated with Bu₄NF, and the alcohol separated by chromatography was resilylated to **7a** for the further reaction (92% from (1*R*)-**5a**).

Allylic picolinate **8**, another key substrate, was prepared by a method shown in Scheme 4. Wittig reaction of aldehyde **19**, obtained from lactate **18** (natural form) in two steps, with an ylide derived from $[Ph_3PEt]^+Br^-$ and NaN(TMS)₂ afforded cis olefin **20** exclusively in 65% overall yield. Removal of the THP group in MeOH was successful. Unfortunately, removal of MeOH co-extracted with volatile **21** by evaporation resulted in substantial loss of **21**. To avoid the loss ethylene glycol was used as a solvent. The alcohol **21** extracted was free of the glycol for the next esterification with 2-PyCO₂H to afford picolinate **8** (96% ee (by chiral HPLC)) in 66% yield from **20**.

Scheme 5. Latter Stage of the Synthesis Furnishing the Target Compound 4

The cyclopentene part of **7a** was reduced with NBSH¹⁰ to afford **22** in good yield (Scheme 5). Unfortunately, attempted preparation of the Grignard reagent **23** several times afforded varying concentrations of **23**. Alternatively, **22** was lithiataed with *t*-BuLi, and the resulting lithium anion **24** was converted to the copper reagent by transmetalation with MgBr₂ and then with CuBr•Me₂S. The reagent thus prepared was subjected to reaction with picolinate **8** to produce **10a**, which underwent ozonolysis to afford, after in situ reduction, alcohol **25** in 64% yield from **8**. Oxidation of alcohol **25** to acid **26** was carried out successfully by using NaClO₂/TEMPO (cat.).^{11,12} Finally, removal of the TBS group furnished **4** in 58% yield: $[\alpha]^{33}_{D}$ +77 (*c* 0.94, EtOH); cf. lit.^{4b} $[\alpha]^{20}_{D}$ +72 (*c* 0.15, EtOH).

(8) No substitution took place with the acetate corresponding to the picolinate *rac*-5a under the conditions of entry 4.
(9) Sugai, T.; Mori, K. *Synthesis* 1988, 19–22.

(10) Myers, A. G.; Zheng, B.; Movassaghi, M. J. Org. Chem. 1997, 62, 7507.

In summary, substitution of the cyclopentenyl picolinates and benzylic reagents was studied to find the substantial role of $ZnBr_2$ for the anti S_N2' preference, and the finding was applied to stereoselective synthesis of the active form of loxoprofen.

Acknowledgment. This work was supported by a Grantin-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan.

Supporting Information Available: Experimental procedures and spectral data of compounds described herein. This material is available free of charge via the Internet at http://pubs.acs.org.

OL802949C

⁽¹¹⁾ Xie, J.-H.; Zhou, Z.-T.; Kong, W.-L.; Zhou, Q.-L. J. Am. Chem. Soc. 2007, 129, 1868–1869.

⁽¹²⁾ Jones reagent and NaIO₄ catalyzed by RuCl₃ afforded a mixture of acid 26 and the corresponding acetophenone as a byproduct.