FISEVIER

Contents lists available at SciVerse ScienceDirect

Catalysis Communications

journal homepage: www.elsevier.com/locate/catcom

Short Communication

Visible-light-induced photocatalytic hydrogenation of 4-nitroaniline over In₂S₃ photocatalyst in water

Weiming Wu, Rui Lin, Lijuan Shen, Ruowen Liang, Rusheng Yuan, Ling Wu *

State Key Laboratory Breeding Base of Photocatalysis, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002, PR China

ARTICLE INFO

Article history: Received 19 March 2013 Received in revised form 6 May 2013 Accepted 14 May 2013 Available online 26 May 2013

Keywords: Indium sulfide Photocatalysis Visible light Nitro reduction

ABSTRACT

Photocatalytic hydrogenation of 4-nitroaniline over the In_2S_3 photocatalyst was investigated in water under visible light irradiation ($\lambda \ge 420$ nm). After 90 min of visible light irradiation, 100% of 4-nitroaniline could be reduced to p-phenylenediamine over the In_2S_3 photocatalyst in the presence of triethanolamine as a hole scavenger. Moreover, the photoreduction activity of the In_2S_3 photocatalyst could keep at $\sim 100\%$ in the 5th cycle of testing. On the basic of the results of electron spin resonance, photoinduced electrons of the In_2S_3 photocatalyst were identified as the active species for the photocatalytic hydrogenation of 4-nitroaniline.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Hydrogenation of 4-nitroaniline (4-NA) is an important reaction in the field of chemical industry, since the produced p-phenylenediamine (PPD) is a useful component to many industrial chemicals (e.g., rubber antioxidants, textile fibers and thermoplastics) [1–3]. Generally, the hydrogenation of 4-NA is achieved by using noble metals under H₂ atmosphere [3].

Recently, photocatalysis provides a new feasible approach for the hydrogenation of 4-NA via utilizing sunlight in water [4–7]. Imamura et al. have reported that TiO₂ shows catalytic activity for the photocatalytic hydrogenation of 4-NA under UV light irradiation in the presence of hole scavengers under deaerated conditions [4]. SrBi₂Nb₂O₉ has also been found as an efficient UV-light-induced photocatalyst for the photocatalytic hydrogenation of 4-NA [5]. In order to efficiently utilize the sunlight, we have developed PbBi₂Nb₂O₉ and CdS visible-light-induced photocatalysts for the hydrogenation of 4-NA [6,7]. However, it is noted that these catalysts contain toxic metal ions (Pb²⁺ and Cd²⁺), which may limit their industrial applications. Therefore, developing non-toxic and efficient visible-light-induced photocatalysts for the hydrogenation of 4-NA is required.

Indium sulfide (In_2S_3) , which has a band gap of ~ 2.0 eV, is an attractive material as a candidate of non-toxic and efficient visible-light-induced photocatalysts [8–14]. He et al. have found that it shows high catalytic activity for the decoloration of methyl orange under visible light irradiation [8]. Subsequently, some researchers have investigated the effect of the morphology of In_2S_3 on its

photocatalytic activity [9,10]. Moreover, it is reported that $\rm In_2S_3$ can photocatalytic split water to produce $\rm H_2$ in the presence of $\rm SO_3^{2-}$ and $\rm S^{2-}$ as hole scavengers under visible light irradiation, when a noble metal (Pd, Pt, Ru or Au) is used as a co-catalyst or it is combined with other materials to construct the heterojunction photocatalysts (such as $\rm In_2S_3/TiO_2$ and $\rm In_2S_3/ZnIn_2S_4$) [11–13]. Very recently, An et al. have revealed that the photocatalytic activity of the $\rm In_2S_3$ photocatalyst can be enhanced by the modification of graphene [14]. However, as far as we known, the study on the photocatalytic hydrogenation reactions over the $\rm In_2S_3$ photocatalyst has not been reported.

Herein, the photocatalytic hydrogenation of 4-NA over the In_2S_3 photocatalyst was investigated in detail under visible light irradiation ($\lambda \geq 420$ nm) upon purging with N_2 , including the effects of the addition of hole scavengers and the stability of the catalyst. Moreover, on the basic of the results of electron spin resonance, a mechanism for the photocatalytic hydrogenation of 4-NA over the In_2S_3 photocatalyst was proposed. Our results might allow us to provide an instructive guidance for developing non-toxic and efficient visible-light-induced photocatalysts to the photocatalytic hydrogenation of 4-NA.

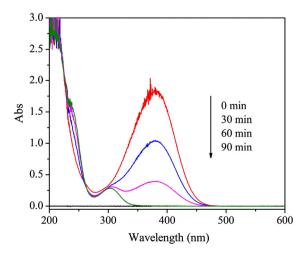
2. Experimental section

2.1. Photocatalytic hydrogenation of 4-NA

For the photocatalytic hydrogenation of 4-NA, an ozone-free 300 W Xe lamp (PLS-SXE300C, Perfectlight Co., Beijing, intensity: 0.96 W/cm² at $\lambda=420$ nm) with a cutoff filter of 420 nm and an infrared filter was used as the light source ($\lambda \geq 420$ nm). Prior to

^{*} Corresponding author. Tel.: +86 591 83779362; fax: +86 591 83779105. E-mail address: wuling@fzu.edu.cn (L. Wu).

the catalytic test, 80~mg of In_2S_3 powders (99.98%, Alfa Aesar Co.) was suspended in 80~mL of 4-NA (98%, Alfa Aesar Co.) aqueous solution (20~mg/L) in a reactor (100~mL). After adding 50~uL of triethanolamine (TEOA, A.R., Sinopharm Chemical Reagent Co.), the suspension was stirred in the dark for 30~min to ensure eliminate oxygen in the system by purging with nitrogen (>99.95%). As the reaction proceeded, 4~mL of the suspension was taken at a certain interval and was filtrated. The change of the 4-NA concentration during the reaction was analyzed by measuring the absorbance at 380~mm with a Cary 50~UV-vis spectrophotometer (Varian Co.). The whole photocatalytic process was carried out under $N_2~bubbling$ with a flow rate of 60~mL/min.


2.2. Characterization

Experimental details for the electron spin resonance (ESR), X-Ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometry (ICP-AES) and GC-MS analysis were described in detail in Supplementary data.

3. Results and discussion

3.1. Photocatalytic hydrogenation of 4-NA

Fig. 1 shows UV-vis spectral changes of the 4-NA aqueous solution over the In₂S₃ photocatalyst as a function of irradiation time in the presence of TEOA under visible light irradiation ($\lambda \ge 420$ nm). A decrease in the absorption of 4-NA at 380 nm along with simultaneous appearance of two peaks at 238 and 305 nm has been observed in this work. The peaks observed at 238 and 305 nm can attribute to the characteristic peaks of PPD. After 90 min of visible light irradiation, 100% of 4-NA can be converted to PPD over the In₂S₃ photocatalyst. GC-MS analysis results (see Fig. S1 and S2) indicate that 4-NA is completely reduced to PPD and no other products is detected in the present system. Furthermore, the control experiment (4-NA and TEOA without the In₂S₃ photocatalyst) exhibits negligible photocatalytic hydrogenation of 4-NA (see Fig. S3), indicating the photolysis of 4-NA can be ignored under visible light irradiation in the presence of TEOA. These results reveal that the In₂S₃ photocatalyst shows the catalytic activity for the photocatalytic hydrogenation of 4-NA under visible light irradiation in the presence of TEOA as the hole scavenger upon purging with N₂.

Fig. 1. UV-vis spectral changes of the 4-NA aqueous solution over the ln_2S_3 photocatalyst as a function of irradiation time in the presence of TEOA under visible light irradiation ($\lambda \ge 420$ nm).

3.2. Reusability of In₂S₃ photocatalyst

Generally, the stability of a catalyst is a very important factor for its practical applications. As shown in Fig. 2, the photoreduction activity of the $\rm In_2S_3$ photocatalyst does not obviously decrease in the recycling experiments (Experimental details see Supplementary data). Its catalytic activity can keep at ~ 100% in the 5th cycle of testing. XRD patterns (see Fig. 3) indicate that the crystal structure of the $\rm In_2S_3$ photocatalyst is intact after the reaction. The XRD patterns of the catalyst can be well indexed to tetragonal $\rm In_2S_3$ (JCPDS card no. 051-1160). Moreover, the $\rm In^{3+}$ concentration changes in aqueous solution have been measured by ICP-AES. The $\rm In^{3+}$ concentrations before and after the reaction are 0.33 and 0.36 ppm, respectively. The slight change in the $\rm In^{3+}$ concentrations before and after the reaction can be ignored due to the instrumental detection limit (0.04 ppm for the In element). These results confirm that the $\rm In_2S_3$ photocatalyst has high stability for the photocatalytic hydrogenation of 4-NA under visible light irradiation.

3.3. Effect of hole scavengers

As mentioned in our previous work, the addition of a hole scavenger is proved to be an efficient way to enhance the photocatalytic activity of the In_2S_3 photocatalyst for the photocatalytic hydrogenation of 4-NA [5–7]. Therefore, other hole scavengers (CH₃OH, (NH₄)₂C₂O₄, HCO₂NH₄ and Na₂SO₃) have been used to investigated the photocatalytic hydrogenation of 4-NA over the In_2S_3 photocatalyst upon purging with N₂. As shown in Table S1, only ~ 30% of 4-NA is converted to PPD over the In_2S_3 photocatalyst in the presence of CH₃OH, (NH₄)₂C₂O₄, HCO₂NH₄ or Na₂SO₃ as the hole scavenger after 90 min of visible light irradiation. However, the photoreduction activity of the In_2S_3 photocatalyst is dramatically increased when TEOA is used as the hole scavenger. These results reveal that TEOA is a efficient hole scavenger for the photoreduction reactions over the In_2S_3 photocatalyst.

3.4. ESR analysis

5, 5-Dimethyl-1-pyrroline N-oxide (DMPO) spin-trapping ESR technique has been introduced to investigate the photocatalytic hydrogenation of 4-NA over the In_2S_3 photocatalyst. Fig. 4 shows DMPO spin-trapping ESR spectra of the In_2S_3 photocatalyst in dark and under visible light irradiation ($\lambda \geq 420$ nm). Sextet characteristic peaks of the DMPO- \cdot O_2^- adduct are observed in the In_2S_3 photocatalyst methanol suspension under visible light irradiation. This confirms that the In_2S_3 photocatalyst can produce photoinduced electrons under visible light irradiation. It has been reported that the redox potential of the conduction band (CB) of the In_2S_3 photocatalyst

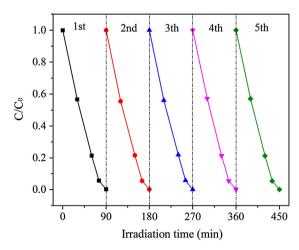


Fig. 2. Reusability of the In_2S_3 photocatalyst for the photocatalytic hydrogenation of 4-NA

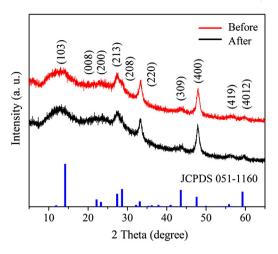


Fig. 3. XRD patterns for the In₂S₃ photocatalyst before and after the catalytic test.

is -0.7 V vs. RHE [15]. Therefore, the photoinduced electrons of the In_2S_3 photocatalyst can take part in the photocatalytic hydrogenation of 4-NA (E (4-NA/PPD) = -0.3 V vs. RHE [16]). It is noted that there are no obvious signals of DMPO- · OH adduct over the In_2S_3 photocatalyst under visible light irradiation. The result indicates that In_2S_3 can't produce · OH radicals due to the low redox potential of the valence band (VB) (E_{VB} (In_2S_3) = 1.3 V [15] and E (·OH/H₂O) = 2.7 V [17] vs. RHE). As a result, CH₃OH, (NH₄)₂C₂O₄, HCO₂NH₄, Na₂SO₃ and TEOA are used as the hole scavengers.

In our previous work, the photocatalytic hydrogenation of 4-NA can be achieved by using photocatalysis in the presence of CH₃OH due to the production of methanol radicals (·CH2OH radicals, E $(\cdot CH_2OH/CH_2O) = -0.5 \text{ V vs. RHE})$ [18,19]. However, as mentioned above, photoinduced holes rather than · OH radicals are detected over the In₂S₃ photocatalyst. Therefore, ·CH₂OH radicals can't be produced in the present system (see Fig. 5) [18]. This can explain that the In₂S₃ photocatalyst shows low catalytic activity for the hydrogenation of 4-NA in the presence of CH₃OH. Similar situation has been observed when (NH₄)₂C₂O₄ or HCO₂NH₄ as the hole scavenger, because carbon dioxide radicals ($\cdot CO_2^-$ radicals, $E(\cdot CO_2^-/CO_2) = -1.8 \text{ V}$ vs. RHE [6,7,20]) do not exist in the present system (see Fig. 5). The absence of the \cdot CO₂ radicals can attribute to the low redox potential of the VB for In_2S_3 . Although \cdot SO_3^- radicals can be detected over the In₂S₃ photocatalyst in the presence of Na₂SO₃ (see Fig. 5), these radicals do not participate in the photocatalytic hydrogenation of 4-NA due to the disproportionation or/and dimerization of the \cdot SO₃⁻ radicals [7,21]. As a result, the conversion rate of 4-NA over the In₂S₃

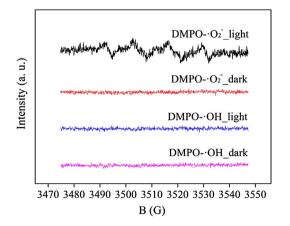
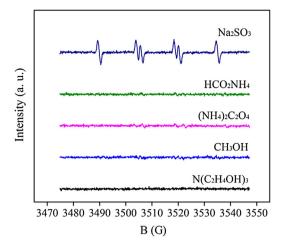



Fig. 4. DMPO spin-trapping ESR spectra of the ln_2S_3 photocatalyst in dark and under visible light irradiation ($\lambda \ge 420$ nm).

Fig. 5. DMPO spin-trapping ESR spectra of the In_2S_3 photocatalyst under visible light irradiation ($\lambda \ge 420$ nm) in the presence of various hole scavengers.

photocatalyst in the presence of Na₂SO₃ is only ~ 30% after 90 min of visible light irradiation.

As shown in Fig. 5, there are no obvious ESR signals of the adducts over the \ln_2S_3 photocatalyst when TEOA is used as the hole scavenger. However, it is reported that the oxidation potential of TEOA is 1.1 V vs. RHE [22]. Different from other hole scavengers (CH₃OH, (NH₄)₂C₂O₄, HCO₂NH₄ and Na₂SO₃), TEOA can be easily oxidized to TEOA⁺ by the photoinduced holes of the \ln_2S_3 photocatalyst (E_{VB} (\ln_2S_3) = 1.3 V vs. RHE [15]). As a result, the photoinduced electrons of the \ln_2S_3 photocatalyst can escape from the pair recombination, and are available to reduce 4-NA to PPD. This can explain that the \ln_2S_3 photocatalyst shows the catalytic activity for the photocatalytic hydrogenation of 4-NA in the presence of TEOA as the hole scavenger. Therefore, the photoinduced electrons of the \ln_2S_3 photocatalyst are the active species responsible for the photocatalytic hydrogenation of 4-NA.

4. Conclusions

The In_2S_3 photocatalyst showed the catalytic activity for the photocatalytic hydrogenation of 4-NA under visible light irradiation $(\lambda \geq 420 \text{ nm})$ in the presence of the hole scavenger (CH₃OH, (NH₄)₂C₂O₄, HCO₂NH₄, Na₂SO₃ or TEOA) upon purging with N₂. As compared to other hole scavengers, TEOA was found as the most effective hole scavenger for the In_2S_3 photocatalyst. 100% of 4-NA could be converted to PPD over the In_2S_3 photocatalyst in the presence of TEOA as the hole scavenger after 90 min of visible light irradiation. The photocatalytic activity of the In_2S_3 photocatalyst could keep at ~ 100% in the 5th cycle of testing. DMPO-spin trapping ESR analysis results revealed that photoinduced electrons were the active species responsible for the photocatalytic hydrogenation of 4-NA over the In_2S_3 photocatalyst.

Acknowledgments

This work was supported by National Natural Science Foundation of China (21177024 and 21273036), and Natural Science Foundation of Fujian Province, China (2011 J01041), and 973 Program (2011CB612314).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.catcom.2013.05.016.

References

- [1] T. Clausen, A. Schwan-Jonczyk, G. Lang, W. Schuh, K.D. Liebscher, C. Springob, M. Franzke, W. Balzer, S. Imhoff, G. Maresch, R. Bimczok, Hair Preparations, John Wiley & Sons. Inc., New York, 2006.
- [2] H. Engels, H. Weidenhaupt, M. Pieroth, W. Hofmann, K. Menting, T. Mergenhagen, R. Schmoll, S. Uhrlandt, Rubber, 4. Chemicals and Additives, John Wiley & Sons, Inc., New York, 2004.
 [3] R.A. Smiley, Phenylene and Toluenediamines, John Wiley & Sons, Inc., New York,
- 2000
- [4] K. Imamura, S. Iwasaki, T. Maeda, K. Hashimoto, B. Ohtanib, H. Kominami, Physical Chemistry Chemical Physics 13 (2011) 5114-5119.
- [5] W. Wu, S. Liang, Y. Chen, L. Shen, H. Zheng, L. Wu, Catalysis Communications 17 (2012) 39-42.
- [6] W. Wu, G. Liu, S. Liang, Y. Chen, L. Shen, H. Zheng, R. Yuan, Y. Hou, L. Wu, Journal of Catalysis 290 (2012) 13-17.
- [7] W. Wu, G. Liu, Q. Xie, S. Liang, H. Zheng, R. Yuan, W. Su, L. Wu, Green Chemistry 14 (2012) 1705–1709.
- [8] Y. He, D. Li, G. Xiao, W. Chen, Y. Chen, M. Sun, H. Huang, X. Fu, Journal of Physical Chemistry C 113 (2009) 5254–5262.
- S. Rengaraj, S. Venkataraj, C. Tai, Y. Kim, E. Repo, M. Sillanpää, Langmuir 27 (2011) 5534-5541.

- [10] S. Cingarapu, M.A. Ikenberry, D.B. Hamal, C.M. Sorensen, K. Hohn, K.J. Klabunde, Langmuir 28 (2012) 3569-3575.
- [11] X. Fu, X. Wang, Z. Chen, Z. Zhang, Z. Li, D.Y.C. Leung, L. Wu, X. Fu, Applied Catalysis B: Environmental 95 (2010) 393-399.
- [12] B. Chai, T. Peng, P. Zeng, J. Mao, Journal of Materials Chemistry 21 (2011) 14587-14593.
- [13] Z. Mei, S. Ouyang, D. Tang, T. Kako, D. Golberg, J. Ye, Dalton Transactions 42 (2013) 2687–2690.
- [14] X. An, J.C. Yu, F. Wang, C. Li, Y. Li, Applied Catalysis B: Environmental 129 (2013) 80-88
- [15] Y. Xu, M.A.A. Schoonen, American Mineralogist 85 (2000) 543-556.
- [16] A.A. Jbarah, R. Holze, Journal of Solid State Electrochemistry 10 (2006) 360–372.
- [17] A. Fujishima, X. Zhang, D.A. Tryk, Surface Science Reports 63 (2008) 515–582.
- [18] W. Wu, L. Wen, L. Shen, R. Liang, R. Yuan, L. Wu, Applied Catalysis B: Environmental 130–131 (2013) 163–167.
- [19] V.N.H. Nguyen, R. Amal, D. Beydoun, Chemical Engineering Science 58 (2003) 4429-4439
- [20] D.M. Stanbury, Advances in Inorganic Chemistry 33 (1989) 69–138.
- [21] K. Ranguelova, R.P. Mason, Free Radical Biology and Medicine 47 (2009) 128–134.
- [22] H. Dürr, S. Bossmann, Accounts of Chemical Research 34 (2001) 905–917.