Reaction of 2-Acetylthiophene and 2-Acetylfuran with Malononitrile and Aldehydes, and Synthesis and Properties of Phenylene-bis [(thienyl/furyl)nicotinonitrile] Derivatives

Lutz Greiner-Bechert and Hans-Hartwig Otto*

Pharmazeutisches Institut der Universität Freiburg, LS Pharmazeutische Chemie, Hermann-Herder-Str. 9, D-7800 Freiburg i.Br.

Received August 3, 1990

The (E)-1-hetaryl-2-propen-1-ones 3 and 4 are prepared by condensation of 2-acetylthiophenes (1a,1c,1d) or 2-acetylfuran (1b) with aldehydes. The *Michael* adducts 5/6 are obtained from 3/4 by reaction with malononitrile/LDA in THF at -78°C, or in DMSO with NaH at room temp. Reaction of 3/4 with malononitrile and methylate in methanol yielded the substituted nicotinonitriles 7/8. From terephthalaldehyde, the diketones 9 are prepared, which yield with malononitrile the phenylene-bis[(thienyl/furyl)nicotinonitrile] derivatives 10 under similiar conditions. Structural and spectral data are discussed.

1,4-Pentandien-3-one, 32. Mitt.: Zur Reaktion von 2-Acetylthiophen und 2-Acetylfuran mit Malondinitril und Aldehyden, sowie Synthese und Eigenschaften von Phenylen-bis[(thienyl/furyl)nicotinonitril]-Derivaten

Die (E)-1-Hetaryl-2-propen-1-one 3 und 4 werden durch Kondensation der 2-Acetylthiophene 1a,1c,1d oder des 2-Acetylfurans 1b mit Aldehyden erhalten. Durch Michael-Reaktion mit Malondinitril in THF bei -78°C in Gegenwart von LDA oder in DMSO bei Raumtemp, mit NaH werden daraus die Addukte 5/6 dargestellt. Durch analoge Reaktionen in Methanol mit Methylat werden die Nicotinonitril-Derivate 7/8 gewonnen. Aus Terephthalaldehyd werden unter ähnlichen Bedingungen die Diketone 9 synthetisiert, aus denen die Phenylen-bis[(thienyl/furyl)nicotinonitril]-Derivate 10 zugänglich sind. Strukturelle und spektrale Daten werden diskutiert.

2-Acetylated thiophenes and furans 1 are versatile starting materials for many classes of heterocycles²). We are especially interested in the construction of highly substituted pyridines and related heterocycles starting from 1,4-pentadien-3-ones and other substituted α , β -unsaturated ketones by *Michael* and similiar reactions³). Here, we report about the reactions of 1 with aromatic aldehydes 2 and malononitrile.

Referring to a prescription given by Murphy and Wattanasin⁴⁾ 1a was reacted with the aldehydes 2a-i in absol. methanol in the presence of NaOH. The α,β -unsaturated ketones 3a-i (Scheme 1) were obtained in yields between 80 and 90%⁵⁾. 3y was prepared from 1c, and 3z from 1d. By a similiar procedure, from 1b the unsaturated ketones 4a-i were obtained.

According to spectroscopic data, all compounds 3/4 exist in the *E*-configuration. Their IR-spectra show a strong carbonyl absorption around 1640 cm⁻¹, and the C=C absorption appears between 1590 and 1600 cm⁻¹. The out-of-plane vibration bond at 980 cm⁻¹ is a characteristic of *trans* alkenes. Additionally, the coupling constants of the olefinic proton signals in the ¹H-NMR spectra vary between 14 and 18 Hz⁶. 2-Acetylthiophene (1a) prefers the s-trans conformation, 2-acetylfuran (1b) on the other hand, normally exists as an equilibrium of equal amounts of s-cis and s-trans form⁷⁾. α,β -Unsaturated ketones with *E*-configuration usually prefer the s-trans conformation^{8,9}). As the propenones 3 and 4 contain the 1,4-pentadien-3-one system - one double bond of the system is included in the heteroaromatic ring - it might be of interest to know, whether these compounds exist in different conformers as shown in Scheme 2. The system is flexible, and, therefore, an equilibrium of at least four conformations should be possible in solution, and it was of special interest to see if 3 and 4 even prefer one conformation. Perhaps, the i.r. spectra suggest a preferred s-cis conformation as indicated by the ratio $I_{CO}/I_{C=C}$, and by the difference of 50-60 cm⁻¹ between both bands. Using the ASIS effect¹⁰⁾ (deuterochloroform/deuterobenzene), we demonstrated that the s-trans/s-cis conformation A is the preferred one in solution. The differences in the shifts of the β -protons, δ_{C6D6} - δ_{CDC13} , vary between +0.05 and +0.3 ppm¹¹⁾ (Table 1).

Table 1: ASIS effect o	n propenones 3	and 4	(values	ppm)
------------------------	----------------	-------	---------	------

Nr.	ō[β-H (CD	Cla)] δ[β-H(C6D6)]	Difference		
3a	7.90	7.95	0.05		
3d	7.75	8.05	0.30		
4a	7.90	8.00	0.10		
4d	7.90	8.10	0.30		
_					

Table 2: UV spectra* of 7 - 10

	No.	W	avelength	nm	(absorptio	n E)			
	7a	346	(0.583),			264	(0.422),	224	(0.153)
	7Ь	352	(0.610),			272	(0.408),	224	(0.386)
	7c	350	(0.635),			236	(0.269),	224	(0.134)
	7d	350	(0.615),	286	(0.350),	265	(0.338),	224	(0.405)
	7e	380	(0.293),	348	(0.460),	304	(0.391),	224	(0.382)
	7£	358	(0.541).			288	(0.484),	224	(0.387)
	7g	360	(0.550),			294	(0.409),	224	(0.223)
	7h	358	(0.465),	340	(0.468),	304	(0.558),	222	(0.165)
	7y	338	(0.347)			268	(0.553),	221	(0.265)
	7z	344	(0.132).			268	(0.509),	234	(0.204)
	8a	340	(0.470).			256	(0.389).	224	(0.155)
	8Ь	352	(0.437).			262	(0.277).	224	(0.272)
	8c	350	(0.462).			284	(0.271),	224	(0.158)
	8d	352	(0.448)	280	(0, 236).	260	(0.236).	228	(0.264)
	8e	382	(0.273).	3.1.4	(0.443)	294	(0.345).	224	(0.272)
	8f	354	(0.388).			288	(0.312).	224	(0.261)
	8g	358	(0.399)			292	(0.348).	220	(0.209)
	8h	358	(0.353),	325	(0.456),	299	(0.576),	225	(0.266)
	10a	348	(0 799)			276	(0.741)	221	(0.245)
	105	360	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0			270	(0.741),	223	(0.255)
	100	210	(0, 301),			070	(1 007)	200	10.611
	107	240	(0.794),			2/8	(1.08/),	234	(0.394)
<u> </u>	102	345	(0.876),			283	(1.033),	234	10.4207

* All spectra were taken in 2-10⁻⁵ molar solution in dichloromethane

Scheme 1

Scheme 3a

The addition of malononitrile to 3 or 4 in methanol did not result in the formation of the *Michael* adducts 5 or 6. On the other hand, the adducts 5a, 5d, and 6d became available (Scheme 3), when the reactions were done in tetrahydrofuran at -78°C in the presence of LDA or BuLi. Another possibility is given by the reaction in dimethyl sulfoxide with NaH at room temp., which was successfully used for the synthesis of 5b, 6b, and 6e. 6a was prepared in dry ether with cutted sodium at room temp. and the addition of methyl cyanoacetate yielding 5c and 6c was best performed in methanol with sodium. Some compounds 5 and 6 probably exist as mixtures of diastereomers if their structures contain two (vicinal) chiral atoms, but we did not try to separate them.

When the propenones 3 were refluxed in an appropriate alcohol with malononitrile and catalytic amounts of sodium (method a) we did not find either mono addition products of type 5 or 6, or double addition products as known from reactions between dibenzalacetone or related systems with malononitrile. Instead, we obtained the highly substituted pyridines 7a-h and 7x-z, and from 4 we found the pyridines 8a-h on the same route.

The pyridines 7 and 8 also were obtained by treatment of the parent 5 or 6 with sodium alcoholate at room temp. (method b). Finally, a third route (method c) starts with 2-acetylthiophene (1) or -furan (1b), from which the pyridines 7a, 7d, and 8b are formed by reaction with arylidenemalononitriles. In all ways, the yields of 7 or 8 vary between 20 and 50%, in no case we were successful in increasing the yield to more than 50%.

The results encourage us to propose the following way of formation (Scheme 4), although we were not able to isolate intermediates - except 5 and 6 - as we did in former experiments¹²⁾. In all cases 5 or 6 are the first products formed either by *Michael* reaction between 3/4 and malononitrile or between 1 and arylidenemalononitrile. Enolisation of the carbonyl group

in 5/6, attack of the hydroxyl group to one cyano group, and tautomerisation results in the formation of the 4*H*-pyrans (P). These are transformed by a *Dimroth* rearrangement¹³ to 1,4-dihydropyridines (D), which may either be oxidized or transformed by disproportionation with aromatisation into the pyridines 7 and 8. Refering to the yields lower than 50%, we believe in the disproportionation mechanism, although we could not detect any tetrahydropyridine derivatives.

From terephthalaldehyde (Scheme 5), we synthesized the diketones 9a-d. Their reaction with malononitrile in methanol and sodium methylate yielded the corresponding phenylene-bis-[(thienyl/furyl)nicotinonitrile] derivatives 10a-d.

Structures of all compounds are established by elementary analysis, I.R.and ¹H-NMR-spectra. The ¹H-NMR spectra of 7 and 8 are not very characteristic. They contain a separated signal of the methoxy group around 4 ppm, a bulck of aromatic proton signals between 7 and 8 ppm, and in the furan serie the characteristic signal of the proton at C-4 at about 6.5 ppm. The ¹³C-NMR-spectra of 7d and 8d clearly support the structure.

7 and 8 are examples of *meta*-connected ring assemblies from 3 different building blocks. Their UV-spectra (Table 2) show 3 maxima, one around 350 nm, one between 260 and 300 nm, and a third one about 224 nm. The dimethylamino substituted 7e/8e have one more maximum at 380 nm, the dimethoxy compounds 7d/8d one more at 286/280 nm, and the styryl substituted compounds 7h/8h show additional maxima at 340/325 nm. 1,3-Diphenylbenzene shows maxima at ca. 400 and 250 nm depending on the solvent¹⁴⁾. In accordance with other phenylene derivatives¹⁴⁾, the u.v.-spectra of the heterocyclic pentaarylenes 10 do not show any significant bathochromic shift when compared to the spectra of the triarylenic compounds 7 or 8. Probably, this is caused by the *meta*-substitution interrupting the conjugation of the system.

Financial support provided by the "Fond der Chemischen Industrie", Franfkurt a. Main, is greatly appreciated. We thank *Farbwerke Hoechst AG*, Frankfurt a. Main, for a generous grant of chemicals, and we thank stud, pharm. *Verena Siefke* for engaged cooperation.

Experimental Part

M.p. (uncorrected): Linström apparatus.- IR (KBr, cm⁻¹): Perkin-Elmer IR 1310, Beckman IR 4240.- ¹H-NMR: Varian T 60, Bruker WP 80, or Bruker WP 250; δ (ppm), $\delta_{TMS} = 0.00$; temp. 37°C; δ values if not otherwise noted from 80 MHz spectra, solvent CDCl₃.- ¹³C-NMR: Bruker WH 90 (22.63 MHz); δ (ppm), $\delta_{TMS} = 0.00$, solvent CDCl₃.- MS: Finnigan GC MS 4000.- Elementary analyses: Pharmazeutisches Institut or Chemisches Laboratorium der Universität Freiburg.- Solvents were dried according to lit. procedures.- Abbreviations: THF = tetrahydrofuran; DMSO = dimethyl

$8g \quad X = 0 \quad Q = S$

0

7g

Scheme 3c

sulfoxide; BuLi = n-butyl lithium, 15% in hexane; LDA = lithium diisopropylamide, freshly prepared by mixing equimolar amounts of BuLi and diisopropylamine; MDN = malononitrile.

2-Acetylthiophene (1a), Janssen Nr. 10.272.87 2-Acetylfuran (1b), Janssen Nr. 10.255.70 2-Acetyl-3-bromothiophene (1c)¹⁵⁾

100 g (0.75 mol) of AlCl₃ are given to 400 ml of dichloromethane, the mixture is cooled to 0°C, and 51 ml (713 mmol) of acetyl chloride are added. 70 ml (712 mmol) of 3-bromothiophene are added dropwise, the temp. may not exceed 20°C. After stirring for 3 h, the mixture is hydrolized with 400 ml cold dil. HCl, the aqueous layer is separated and twice extracted with 50 ml of dichloromethane. The dichloromethane layers are washed three times with 300 ml water, once with 300 ml 2% NaOH, once more with water, dried with K₂CO₃, and concentrated *in vacuo*. The residue is distilled, yield 135 g (88%), light green liquid, b.p. 104°C/4 Torr.- IR (film): 1650 (CO).- ¹H-NMR: $\delta = 2.55$ (s, 3H, CH₃), 7.20 (d, J = 6 Hz, 1H), 7.55 (d, J = 6 Hz, 1H).- ¹³C-NMR: $\delta = 28.82$ (CH₃), 114.12 (C-3), 132.35 and 133.40 (C-4, C-5), 138.39 (C-2), 189.10 (CO).- C₆H₅BrOS (205.1) Calcd. C 35.1 H 2.46 Br 39.0 S 15.6 Found C 35.0 H 2.40 Br, 38.8 S 15.5.

2-Acetyl-3-chlorothiophene (1d)¹⁶⁾

From 51 ml (713 mmol) of acetyl chloride and 66 ml (712 mmol) of 3-chlorothiophene as described for 1c, yield 103 g (90%), yellow orange liquid, b.p. 95°C/2 Torr.- IR (film): 1660 (CO).- ¹H-NMR: δ = 2.65 (s, 3H, CH₃), 7.05 (d, J = 5 Hz, 1H), 7.55 (d, J = 5 Hz, 1H).- C₆H₅ClOS (160.6).

Preparation of unsaturated ketones 3 und 4, General procedure

10 mmol of 2-acetylthiophene or -furan and the equimolar amount of the appropriate aldehyde are stirred in 20 ml methanol until the solids are dissolved, some pellets of solid NaOH, or 5 ml of a 20% NaOH are added, and the mixture is stirred for 10-120 min. The precipitate is collected and recrystallized.

3-Phenyl-1-(2-thienyl)-2-propen-1-one (3a)^{5e)}

Yield 80%, colorless crystals, m.p. 83°C (methanol).

3-(4-Chlorophenyl-1-(2-thienyl)-2-propen-1-one(3b)^{5a)}

Yield 85%, colorless crystals, m.p. 133°C (methanol).

Scheme 5

- 3-(4-Methoxyphenyl)-1-(2-thienyl)-2-propen-1-one(3c)^{5h)} Yield 83%, light yellow crystals, m.p. 85°C (methanol).
- 3-(3,4-Dimethoxyphenyl)-1-(2-thienyl)-2-propen-1-one(3d)^{5b)} Yield 80%, yellow crystals, m.p. 90°C (methanol), lit. 106°C.

10

- 3-(4-Dimethylaminophenyl)-1-(2-thienyl)-2-propen-1-one(3e)^{5a)} Yield 65%, red crystals, m.p. 114°C (methanol).
- 3-(4-Nitrophenyl-1-(2-thienyl)-2-propen-1-one(3f)^{5b)} Yield 86%, colorless crystals, m.p. 203°C (methanol), lit, 220°C.

- 1 3-Bis(2-thienyl)-2-propen-1-one(3g)5c) Yield 70%, yellow crystals, m.p. 95°C (methanol).
- 5-Phenyl-1-(2-thienyl)-2,4-pentadien-1-one(3h)^{5b)} Yield 70%, yellow crystals, m.p. 94°C (methanol), lit. 100°C.

3-(2-Bromphenyl)-1-(2-thienyl)-2-propen-1-one(3i)

From 1.25 g (10 mmol) of 2-acetylthiophene and 1.85 g (10 mmol) of 2-bromobenzaldehyde, 2.4 g (82%), oily liquid.- IR (film): 1650 (C=O); 1595 (arom.); 970 (trans C=C); 750 (1,2-disubst. arom.).- ¹H-NMR (60 MHz): $\delta = 6.95 - 8.35$ (m, 9H).- C₁₃H₉BrOS (293.2).

1,4-Pentandien-3-ones

1-[2-(3-Bromothienyl)]-3-(4-chlorophenyl)-2-propen-1-one(3y)

From 2.05 g (10 mmol) of 2-acetyl-3-bromothiophene (1c) and 1.41 g 4-chlorobenzaldehyde, 2.7 g (82%), colorless crystals, m.p. 97°C (methanol).- IR: 1640 (C=O); 1585 (arom.); 980 (*trans* C=C); 820 (1,4-disubst. arom.).- ¹H-NMR (60 MHz): δ = 7.25-8.00 (m, 8H, arom. H).- C₁₃H₈BrClOS (327.6) Calcd. C 47.7 H 2.46 Br 24.4 Cl 10.8 S 9.8 Found C 47.9 H 2.56 Br 24.7 Cl 10.9 S 9.9.

3-(4-Chlorophenyl)-1-[2-(3-chlorothienyl)]-2-propen-1-one(3z)

From 1.61 g (10 mmol) of 2-acetyl-3-chlorothiophene (1d) and 1.41 g 4-chlorobenzaldehyde, 2.4 g (85%), light yellow crystals, m.p. 131°C (methanol).- IR: 1635 (C=O); 1580 (arom.); 985 (*trans* C=C); 820 (1,4-di-subst. arom.).- ¹H-NMR (60 MHz): δ = 6.95-7.80 (m, 8H, arom. H).-C₁₃H₈Cl₂OS (283.2) Calcd. C 55.1 H 2.85 Cl 25.0 S 11.3 Found C 55.0 H 2.94 Cl 25.0 S 11.5.

1-(2-Furyl)-3-phenyl-2-propen-1-one(4a)^{5f)}

Yield 88%, colorless crystals, m.p. 89°C (methanol).

3-(4-Chlorophenyl)-1-(2-furyl)-2-propen-1-one(4b)^{5h)}

Yield 73%, colorless crystals, m.p. 127°C (methanol).

1-(2-Furyl)-3-(4-methoxyphenyl)-2-propen-1-one(4c)⁵ⁱ⁾

Yield 63%, light yellow crystals, m.p. 80°C (methanol).

3-(3,4-Dimethoxyphenyl)-1-(2-furyl)-2-propen-1-one(4d)⁵ⁱ⁾

Yield 60%, yellow crystals, m.p. 100°C (methanol).- IR: 1645 (C=O); 1590 (arom.); 1260; 1040 (ar-O-C); 970 (*trans* C=C); 810 (1,3,4-trisubst. arom.).- ¹H-NMR (60 MHz): δ = 4.00 (s, 6H, OCH₃), 6.70 (m, 1H, furyl H-4), 6.90-8.15 (m, 7H, arom. H).

3-(4-Dimethylaminophenyl)-1-(2-furyl)-2-propen-1-one(4e)^{5h)}

Yield 55%, red crystals, m.p. 79°C (methanol), lit. 94°C.

1-(2-Furyl)-3-(4-nitrophenyl)-2-propen-1-one(4f)^{5k)}

Yield 85%, light yellow crystals, m.p. 218°C (methanol).- IR: 1650 (C=O); 1610 (arom.); 1360; 1055 (NO₂); 975 (*trans* C=C); 770 (1,4-di-subst. arom.).

1-(2-Furyl)-3-(2-thienyl)-2-propen-1-one(4g)5e)

Yield 76%, yellow crystals, m.p. 62°C (methanol), lit. 81°C (petroleum ether/benzene).

1-(2-Furyl)-5-phenyl-2,4-pentadien-1-one(4h)^{5b)}

Yield 49%, yellow crystals, m.p. 99°C (ethanol).- IR: 1640 (C=O); 1580 (arom.); 1005 (*trans* C=C); 760 (arom.).- ¹H-NMR (60 MHz): δ = 6.55 (m, 1H, furyl H-4), 6.80-7.90 (m, 11H, arom. H).

3-(2-Bromophenyl)-1-(2-furyl)-2-propen-1-one(4i)

From 1.10 g (10 mmol) of 1b and 1.85 g (10 mmol) of 2-bromobenzaldehyde, yield 2.3 g (88%), light oily liquid.- IR (film): 1650 (C=O); 1600 (arom.); 965 (*trans* C=C); 735 (1,2-disubst. arom.).- ¹H-NMR (60 MHz): δ = 6.70 (m, 1H, furyl, H-4), 7.25-8.60 (m, 8H, arom. H).- C₁₃H₉BrO₂ (277.3).

2-Cyano-5-oxo-3-phenyl-5-(2-thienyl)valeronitrile(5a)¹⁷⁾

2.5 g of 2-acetylthiophene are added to a stirred solution of 2.20 g (20 mmol) of diisopropylamine and 13.8 ml of n-BuLi at -78°C under N_2 in dry

THF, and after 10 min, a solution of 3.0 g 2-cyano-3-phenylacrylonitrile in THF is added dropwise. After 30 min, the mixture is extracted with a weakly acidic solution of NaCl, three times washed with cold water, and the org. layer is dried (MgSO₄). The solvent is evaporated *in vacuo*, and a dichloromethane/CCl₄ mixture is added to the remaining residue, where-upon the product crystalizes; yield 2.35 g (42%), colorless crystals, m.p. 122°C, lit. 144°C.- IR: 2260, 2220 (CN); 1660 (C=O); 775, 725 (phenyl).-¹H-NMR: δ = 3.55 (d, J = 6 Hz, 2H, CH₂), 3.85 (m, 1H, H-3), 4.55 (d, J = 5 Hz, 1H, H-2), 7.05-7.80 (m, 8H, arom. H).- C₁₆H₁₂N₂OS (280.4) Calcd. C 68.5 H 4.32 N 10.0 S 11.4 Found C 68.4 H 4.34 N 9.9 S 11.5.

2-Cyano-5-oxo-3,5-bis(2-thienyl)valeronitrile(5b)

0.25 g (11 mmol) of NaH are added to 0.7 g (11 mmol) of MDN in 10 ml DMSO at room temp. with stirring; when the formation of H₂ is finished, 2.2 g of 3g dissolved in a few ml of DMSO are added dropwise. Stirring is continued for 2 h, the mixture is carefully neutralized with dil. HCl, extracted with chloroform, washed with water, and dried with Na₂SO₄. The solvent is evaporated *i. vac.*, a few ml of a chloroform/CCl₄ mixture (1:1) is added, and after 24 h at -10°C, the crystals are separated; yield 1.5 g (56%), colorless crystals, m.p. 111°C.- IR: 2250 (CN); 1660 (C=O).- ¹H-NMR: δ = 3.60 (d, J = 6 Hz, 2H, CH₂), 4.25 (m, 1H, H-3), 4.65 (d, J = 5 Hz, 1H, H-2), 6.95-7.80 (m, 6H, arom. H).- C₁₄H₁₀N₂OS₂ (286.4) Calcd. C 58.7 H 3.52 N 9.8 S 22.4 Found C 58.9 H 3.37 N 9.7 S 22.5.

Methyl 2-cyano-5-oxo-3-phenyl-5-(2-thienyl)valerianoate (5c)

From 1.0 g (11 mmol) of methyl cyanoacetate, 0.25 g of sodium in 10 ml methanol, and 2.14 g (10 mmol) of **3a** at room temp.; yield 0.85 g (32%), colorless crystals, m.p. 104°C (methanol).- IR: 2240 (CN); 1735 (COOCH₃); 1655 (C=O); 740; 700 (phenyl).- ¹H-NMR: δ = 3.45 (d, J = 6 Hz, 2H, H-4), 3.60 (s, 3H, OCH₃), 4.05 (m, 1H, H-3), 4.30 (d, J = 5 Hz, 1H, H-2), 7.05-7.80 (m, 8H, arom. H).- C₁₇H₁₅NO₃S (313.4) Calcd. C 65.2 H 4.82 N 4.5 S 10.2 Found C 65.1 H 4.89 N 4.4 S 10.3.

2-Cyano-3-(3,4-dimethoxyphenyl)-5-oxo-5-(2-thienyl)valeronitrile(5d)

From 2.6 g (20 mmol) of 2-acetylthiophene and 4.3 g of 2-cyano-3-(3,4-dimethoxyphenyl)acrylonitrile with n-BuLi in THF, 30 min -78°C; yield 4.1 g (60%), oily solid.- IR: 2230 (CN); 1625 (C=O); 810 (1,3,4-trisubst. arom.).- ¹H-NMR: δ = 3.3 (m, 3H, H-3, H-4, H-4'), 3.90 (s, 6H, OCH₃), 4.15 (d, J = 5 Hz, 1H, H-2), 6.7-7.8 (m, 6H, arom. H).- C₁₈H₁₆N₂O₃S (340.4).

2-Cyano-5-(2-furyl)-5-oxo-3-phenylvaleronitrile(6a)

To 0.25 g (11 mmol) of sodium in pieces in 50 ml of dry ether 0.66 g (10 mmol) of MDN are added, and the mixture is stirred at room temp. until the sodium is dissolved; than, 2.00 g (10 mmol) of 4a, dissolved in the appropriate amount of ether, are added dropwise. After 8 h the mixture is hydrolyzed with dilut HCl, washed three times with cold water, and the org. layer is dried (CaCl₂). The solvent is removed *i. vac.*, and the oily residue is chromatographed by CC with ether/hexane 3:1; yield 0.85 g (32%), m.p. 110°C (ether/hexane).- IR: 2250 (CN); 1660 (C=O); 1565 (arom.); 780; 720 (phenyl).- ¹H-NMR: δ = 3.50 (d, J = 6 Hz, 2H, CH₂), 3.90 (m, 1H, H-3), 4.55 (d, J = 5 Hz, 1H, H-2), 6.55 (m, 1H, furyl H-4), 7.20-7.65 (m, 7H, arom. H).- C₁₆H₁₂N₂O₂ (264.3) Calcd. C 72.7 H 4.58 N 10.6 Found C 72.6 H 4.78 N 10.4.

2-Cyano-5-(2-furyl)-3-(4-nitrophenyl)-5-oxovaleronitrile(6b)

0.70 g (11 mmol) of MDN, dissolved in 10 ml DMSO, 0.40 g of NaH, and 2.40 g (10 mmol) of 4f are stirred at room temp. for 10 min; yield 2.8 g (90%), colorless crystals, m.p. 117° C (chloroform/CCl₄ 3:1).- IR: 2250; 2220 (CN); 1660 (C=O); 1600 (arom.); 1340; 1030 (NO₂); 850 (1.4-disubst. arom.).- ¹H-NMR: δ = 3.65 (d, J = 7 Hz, 2H, CH₂), 4.20 (m, 1H, H-3), 4.75 (d, J = 5 Hz, 1H, H-2), 6.65 (m, 1H, furyl H-4), 7.30-8.50 (m, 6H, arom. H).- C₁₆H₁₁N₃O₄ (309.3) Calcd. C 62.1 H 3.59 N 13.6 Found C 62.3 H 3.64 N 13.5.

Methyl 3-(4-chlorophenyl)-2-cyano-5-(2-furyl)-5-oxovalerianoate (6c)

From 1.0 g (11 mmol) of methyl cyanoacetate, 0.12 g of sodium in methanol, and 2.33 g (10 mmol) of 4b, 1 h reflux; yield 1.25 g (38%), colorless crystals, m.p. 81°C (ethanol).- IR: 2250 (CN); 1740 (COOCH₃); 1670 (C=O); 1565 (arom.); 830 (1,4-disubst. arom.).- ¹H-NMR: δ = 3.40 (d, J = 6 Hz, 2H, CH₂), 3.60 (s, 3H, OCH₃), 3.95 (m, 1H, H-3), 4.25 (d, J = 5 Hz, 1H, H-2), 6.50 (m, 1H, furyl H-4), 7.15-7.60 (m, 7H, arom. H).-C₁₇H₁₄CINO₄ (331.8) Calcd. C 61.5 H 4.25 Cl 10.7 N 4.2 Found C 61.6 H 4.34 Cl 10.8 N 4.1.

3-(4-Chlorophenyl)-2-cyano-5-(2-furyl)-5-oxovaleronitrile(6d)

From 1.20 g (10 mmol) of 1b and 1.50 g (10 mmol) of 3-(4-chlorophenyl)-2-cyanoacrylonitrile in THF with LDA at -78°C under N₂; yield 2.6 g (83%), red-brown oily liquid.- IR (film): 3110 (CH); 2200 (CN); 1630 (C=O); 800 (1,4-disubst. arom.).- ¹H-NMR (60 MHz): δ = 3.30 (dd, J = 6 and 16 Hz, 2H, CH₂), 3.85 (m, 1H, H-3), 4.55 (d, J = 5 Hz, 1H, H-2), 6.45 (m, 1H, furyl H-4), 6.8-7.8 (m, 6H, arom. H).- C₁₆H₁₁ClN₂OS (315.8).

2-Cyano-5-(2-furyl)-5-oxo-3-(2-thienyl)valeronitrile(6e)

From 0.70 g (11 mmol) of MDN and 2.04 g (10 mmol) of 4g in DMSO with NaH; yield 1.9 g (70%), dark reddish liquid.- IR (film): 2250; 2205 (CN); 1670 (C=O).- ¹H-NMR (60 MHz): δ = 3.55 (m, 2H, CH₂), 4.30 (m, 1H, H-3), 4.70 (d, J = 5 Hz, 1H, H-2), 6.55 (m, 1H, furyl H-4), 6.80-7.95 (m, 5H, arom. H).- C₁₄H₁₁N₂O₂S (270.4).

3-(2-Bromophenyl)-2-cyano-5-(2-furyl)-5-oxovaleronitrile(6f)

From 0.70 g (11 mmol) of MDN and 2.77 g (10 mmol) of 4i in 20 ml of methanol with 5 ml of 20% NaOH at room temp., 15 min; yield 1.90 g (55%), colorless crystals, m.p. 120°C (ethanol).- IR: 2260 (CN); 1660 (C=O); 1570 (arom.); 770 (1,2-disubst. arom.),- ¹H-NMR: δ = 3.55 (m, 2H, CH₂), 4.60 (m, 2H, H-2, H-3), 6.70 (m, 1H, furyl H-4), 7.25-7.95 (m, 6H, arom. H),- ¹³C-NMR: δ = 27.50 (C-2), 39.18 (C-3), 39.57 (C-4), 111.36 and 112.93 (CN), 118.32 (furyl C-5), 125.03 (furyl C-4), 125.02 (phen. C-2), 128.11, 128.51, 130.51, 134.00 and 135.56 (phen. C), 147.30 (furyl C-5), 152.00 (furyl C-2), 184.80 (C=O).- C₁₆H₁₁BrN₂O₂ (343.2) Calcd. C 56.0 H 3.23 Br 23.3 N 8.2 Found C 56.1 H 3.26 Br 23.2 N 8.3.

Nicotinonitriles 7 and 8, General Procedures

a. 0.25 g (11 mmol) of sodium are dissolved in the appropriate alcohol (20 ml), and 0.7 g (11 mmol) of MDN are added. A solution of the α , β -unsaturated ketone (10 mmol) in alcohol is added, and the mixture is stirred (if noted with refluxing) until a precipitate is formed. After cooling to room temp., the precipitate is separated, and washed with cold alcohol.

b. 0.25 g (11 mmol) of sodium are dissolved in the appropriate alcohol (20 mmol); the solution is given to a stirred solution of 10 mmol 2-aryl-1cyano-4-heteroaryl-4-oxovaleronitrile (5/6) in the same alcohol, and stirred at room temp. Work-up, as described for method **a**.

c. 0.25 g (11 mmol) of sodium are dissolved in the appropriate alcohol (20 ml), and 10 mmol of 1 are added. The mixture is stirred for 15 min., and than given to a stirred solution of the arylidenemalononitrile (10 mmol) in alcohol. Work-up as **a**. If not otherwise noted, method **a** was used.

2-Methoxy-4-phenyl-6-(2-thienyl)nicotinonitrile(7a)

Method a: From 4.28 g (20 mmol) of 3a and 1.30 g (20 mmol) of MDN, 2 h reflux; yield 2.80 g (48%); method b: From 2.8 g (10 mmol) of 5a, 2 h reflux; yield 1.3 g (43%); method c: From 2.5 g (20 mmol) of 1a and 3.1 g (20 mmol) of benzylidenmalononitrile, 2 h reflux; yield 2.6 g (45%); light yellow crystals, m.p. 151°C (methanol).- IR: 2210 (CN); 1580 (arom.); 1240 (ar-O-C); 755; 690 (phenyl).- ¹H-NMR: δ = 4.10 (s, 3H, OCH₃), 7.00-7.75 (m, 9H, arom. H).- C₁₇H₁₂N₂OS (292.4) Calcd. C 69.8 H 4.14 N 9.6 S 11.0 Found C 69.7 H 4.20 N 9.7 S 10.9.

4-(4-Chlorophenyl)-2-methoxy-6-(2-thienyl)nicotinonitrile(7b)

From 4.98 g (20 mmol) of 3b and 1.30 g (20 mmol) of MDN, 30 min reflux; yield 2.80 g (48%), light yellow crystals, m.p. 253°C (methanol).-IR: 2210 (CN); 1580 (arom.); 1240 (ar-O-C); 825 (1,4-disubst. arom.).-C₁₇H₁₁ClN₂OS (326.8) Calcd. C 62.5 H 3.39 Cl 10.9 N 8.6 S 9.8 Found C 62.6 H 3.48 Cl 11.0 N 8.4 S 9.7.

2-Methoxy-4-(4-methoxyphenyl)-6-(2-thienyl)nicotinonitrile(7c)

From 4.82 g (20 mmol) of 3c and 1.30 g (20 mmol) of MDN, 1 h reflux; yield 3.0 g (49%), colorless crystals, m.p. 138°C (methanol).- IR: 2210 (CN); 1580 (arom.); 1250 (ar-O-C); 830 (1,4-disubst. arom.).- ¹H-NMR: δ = 3.75 (s, 3H, phenyl-OCH₃), 4.05 (s. 3H, pyr-OCH₃), 6.90-7.75 (m, 8H, arom. H).- C₁₈H₁₄N₂O₂S (322.4) Calcd. C 67.1 H 4.37 N 8.7 S 10.0 Found C 66.8 H 4.41 N 8.6 S 9.9.

4-(3,4-Dimethoxyphenyl)-2-methoxy-6-(2-thienyl)nicotinonitrile(7d)

Method **a**: From 5.50 g (20 mmol) of 3d and 1.5 g (23 mmol) of MDN, 2 h reflux; yield 3.52 g (50%); *method* b: From 1.7 g (5 mmol) of 5d, 2 h reflux; yield 0.85 g (48%); *method* c: From 2.5 g (20 mmol) of 1a and 3.3 g (20 mmol) of 3,4-dimethoxybenzylidenemalononitrile, 2 h reflux; yield 3.2 g (45%); colorless crystals, m.p. 135°C (glacial acetic acid).- IR: 2200 (CN): 1580 (arom.): 1250 (ar-O-C): 840 (1,3,4-trisubst. arom.).- ¹H-NMR: δ = 3.95 (s, 6H, phen-OCH₃), 4.15 (s, 3H, pyr-OCH₃), 6.90-7.75 (m, 7H, arom. H).- ¹³C-NMR: δ = 54.71 (pyr-OCH₃), 56.13 (phen-OCH₃), 111.62 (phen C-2, C-5, C-6), 115.98 (CN), 121.46 (pyr C-5), 127.03 (thien C-5), 128.51 (thien C-3), 129.88 (thien C-4), 143.46 (pyr C-4), 149.30 and 150.86 (phen C-3, C-4), 153.04 (thien C-2), 156.26 (pyr C-2), 165.22 (pyr C-6).- C₁₉H₁₆N₂O₃S (352.4) Calcd. C 64.7 H 4.58 N 8.0 S 9.1 Found C 64.9 H 4.54 N 7.9 S 9.2.

2-Methoxy-4-[(4-dimethylamino)phenyl]-6-(2-thienyl)nicotinonitrile (7e)

From 2.57 g (10 mmol) of 3e and 0.7 g (11 mmol) of MDN, 2 h reflux; yield 1.51 g (45%), light yellow crystals, m.p. 186°C (methanol).- IR: 2210 (CN); 1580 (arom.); 1240 (ar-O-C); 840 (1,4-disubst. arom.).- ¹H-NMR: δ = 3.05 [s, 6H, N(CH₃)₂], 4.20 (s, 3H, OCH₃), 6.75 (m, 8H, arom. H).-C₁₉H₁₇N₃OS (335.4) Calcd. C 68.0 H 5.11 N 12.5 S 9.6 Found C 68.0 H 5.09 N 12.4 S 9.7.

2-Methoxy-4-(4-nitrophenyl)-6-(2-thienyl)nicotinonitrile(7f)

From 5.20 g (20 mmol) of **3f** and 1.35 g (21 mmol) of MDN, 2 h room temp.; yield 2.6 g (40%), light yellow crystals, m.p. 210°C (methanol).- IR: 2205 (CN); 1595 (arom.); 1540; 1350 (NO₂); 850 (1,4-disubst. arom.).-¹H-NMR: δ = 4.20 (s, 3H, OCH₃), 7.10 (m, 8H, arom. H).- C₁₇H₁₁N₃O₃S (337.4) Calcd. C 60.5 H 3.29 N 12.5 S 9.5 Found C 60.8 H 3.39 N 12.3 S 9.7.

4,6-Bis(2-thienyl)-2-methoxynicotinonitrile(7g)

From 2.20 g (10 mmol) of 3g and 0.7 g (11 mmol) of MDN, 2 h room temp.; yield 1.12 g (37%), colorless crystals, m.p. 105°C (methanol).- IR: 2200 (CN); 1580 (arom.); 1250 (ar-O-C).- ¹H-NMR: δ = 4.05 (s, 3H, OCH₃), 7.00-7.95 (m, 7H, arom. H).- C₁₅H₁₀N₂OS₂ (298.4) Calcd. C 60.4 H 3.38 N 9.4 S 21.5 Found C 60.1 H 3.30 N 9.3 S 21.6.

1,4-Pentandien-3-ones

2-Methoxy-4-styryl-6-(2-thienyl)nicotinonitrile(7h)

From 2.70 g (10 mmol) of **3h** and 0.75 g (11.5 mmol) of MDN, 2 h reflux; the solvent is evaporated i.vac., glacial acetic acid is added to the residue, and after 24 h the crystals are separated, yield 1.05 g (33%), light yellow crystals, m.p. 163°C (glacial acetic acid).- IR: 2210 (CN); 1580 (arom.); 1240 (ar-O-C); 750; 690 (arom.).- ¹H-NMR: δ = 4.20 (s, 3H, OCH₃), 7.10-8.10 (m, 11H, arom. H).- C₁₉H₁₄N₂OS (318.4) Calcd. C 71.7 H 4.43 N 8.8 S 10.1 Found C 71.4 H 4.35 N 9.0 S 10.0.

2-Ethoxy-4-(3,4-dimethoxyphenyl)-6-(2-thienyl)nicotinonitrile(7x)

From 5.40 g (20 mmol) of **3d** and 1.5 g (23 mmol) of MDN; 1 h reflux in ethanol, yield 3.00 g (41%), colorless crystals, m.p. 127°C (ethanol).- IR: 2220 (CN); 1580 (arom.); 1265 (ar-O-C); 840 (1,3,4-trisubst. arom.).- ¹H-NMR: δ = 1.50 (t, J = 7 Hz, 3H, CH₃), 3.95 (s, 6H, OCH₃), 4.60 (q, J = 7 Hz, 2H, CH₂), 6.90-7.75 (m, 7H, arom. H).- C₂₀H₁₈N₂O₃S (366.4) Calcd. C 65.6 H 4.95 N 7.7 S 8.8 Found C 65.6 H 4.95 N 7.7 S 8.7.

6-(3-Bromo-2-thienyl)-4-(4-chlorophenyl)-2-methoxynicotinonitrile(7y)

From 6.56 g (20 mmol) of 3y and 0.70 g (22 mmol) of MDN, 1 h reflux, yield 1.5 g (37%), colorless crystals, m.p. 193°C (methanol).- IR: 2210 (CN); 1580 (arom.); 850 (1.4-disubst. arom.).- ¹H-NMR: δ = 4.15 (s, 3H, OCH₃), 6.75-8.10 (m, 7H, arom. H).- C₁₇H₁₀BrClN₂OS (405.7) Calcd. C 50.3 H 2.48 Br 19.7 Cl 8.7 N 6.9 S 7.9 Found C 50.1 H 2.51 Br 20.0 Cl 8.8 N 6.8 S 7.9.

4-(4-Chlorophenyl)-6-(3-chloro-2-thienyl)-2-methoxynicotinonitrile (7z)

From 5.66 g (20 mmol) of 3z and 1.30 g (22 mmol) of MDN; 1 h room temp., yield 1.70 g (47%), colorless crystals, m.p. 203°C (glacial acetic acid).- IR: 3100; 3005; 2980; 2940; 2860 (CH); 2220 (CN); 1580 (arom.); 850 (1,4-disubst, arom.).- ¹H-NMR: δ = 4.15 (s, 3H, OCH₃), 6.9-8.0 (m, 7H, arom. H).- C₁₇H₁₀Cl₂N₂OS (361.3) Calcd. C 56.5 H 2.79 Cl 19.6 N 7.8 S 8.9 Found C 56.4 H 2.86 Cl 19.8 N 7.7 S 8.8.

6-(2-Furyl)-2-methoxy-4-phenylnicotinonitrile (8a)

Method a: 3.96 g (20 mmol) of 4a and 1.30 g (20 mmol) of MDN, 2 h reflux; yield 1.99 g (36%); method b: From 2.6 g (10 mmol) of 6a, 1 h reflux; yield 1.2 g (42%); light yellow crystals, m.p. 132°C (methanol).-IR: 2210 (CN); 1600 (arom.); 1265 (ar-O-C); 760; 700 (phenyl).- ¹H-NMR: $\delta = 4.20$ (s, 3H, OCH₃), 6.50 (m, 1H, furyl H-4), 7.15-7.75 (m, 8H, arom. H).- C₁₇H₁₂N₂O₂ (276.3) Calcd. C 73.9 H 4.38 N 10.1 Found C 73.8 H 4.43 N 10.2.

4-(4-Chlorophenyl)-6-(2-furyl)-2-methoxynicotinonitrile(8b)

Method a: 4.60 g (20 mmol) of 4b and 1.50 g (23 mmol) of MDN, 2 h room temp.; yield 1.30 g (21%); *method* c: From 1.1 g (10 mmol) of 1b and 1.9 g of 4-chlorobenzylidenemalononitrile, 1 h room temp.; yield 1.5 g (48%); colorless crystals, m.p. 216°C (glacial acetic acid).- IR: 2210 (CN); 1590 (arom.); 1090 (C-O-C); 840 (1,4-disubst. arom.).- ¹H-NMR: $\delta = 4.15$ (s, 3H, OCH₃), 6.55 (m, 1H, furyl H-4), 7.20-7.65 (m, 7H, arom. H).- C₁₇H₁₁ClN₂O₂ (310.7) Calcd. C 65.7 H 3.57 Cl 11.4 N 9.0 Found C 65.4 H 3.63 Cl 11.2 N 9.2.

6-(2-Furyl)-2-methoxy-4-(4-methoxyphenyl)nicotinonitrile(8c)

From 4.50 g (20 mmol) of 4c and 1.30 g (20 mmol) of MDN, 1 h reflux; yield 2.52 g (50%), colorless crystals, m.p. 162°C (methanol).- IR: 2210 (CN); 1580 (arom.); 1250 (ar-O-C); 830 (1,4-disubst. arom.).- ¹H-NMR: δ = 3.95 (s, 3H, phen-OCH₃), 4.15 (s, 3H, pyr-OCH₃), 6.50 (m, 1H, furyl H-4), 6.90-7.75 (m, 7H, arom. H).- C₁₈H₁₄N₂O₃ (306.3) Calcd. C 70.6 H 4.60 N 9.1 Found C 70.4 H 4.51 N 9.2.

6-(2-Furyl)-4-(3,4-dimethoxyphenyl)-2-methoxynicotinonitrile(8d)

From 3.90 g (15 mmol) of 4d and 1.0 g (15 mmol) of MDN, 1 h reflux; yield 2.52 g (50%), colorless crystals, m.p. 120°C (methanol).- IR: 2220 (CN); 1600 (arom.); 1260 (ar-O-C); 850 (1,3,4-trisubst. arom.).- ¹H-NMR: δ = 3.95 (s, 6H, OCH₃), 4.15 (s, 3H, OCH₃), 6.50 (m, 1H, furyl H-4), 6.90-7.75 (m, 6H, arom. H).- ¹³C-NMR: δ = 54.53 (pyr-OCH₃), 56.04 and 56.19 (phen-OCH₃), 111.19, 111.45, 111.62, 112.06, 112.60 (phen C-2, C-5-, C-6, fur C-3, C-4), 116.06 (pyr C-3), 121.54 (pyr C-5), 128.62 (CN), 144.77 (fur C-5, pyr C-4), 149.22 and 150.78 (phen C-3, C-4), 152.72 (fur C-2), 156.25 (pyr C-2), 165.30 (pyr C-6).- C₁₉H₁₆N₂O₄ (336.3) Calcd. C 67.9 H 4.80 N 8.3 Found C 67.6 H 4.68 N 8.4.

6-(2-Furyl)-4-[4-(Dimethylamino)phenyl]-2-methoxynicotinonitrile (8e)

From 5.10 g (20 mmol) of 4e and 1.35 g (21 mmol) of MDN, 1 h reflux; yield 2.75 g (43%), light yellow crystals, m.p. 178°C (methanol).- IR: 2205 (CN); 1595 (arom.); 1265 (ar-O-C); 815 (1,4-disubst. arom.).- ¹H-NMR: δ = 3.00 (s, 6H, CH₃), 4.10 (s, 3H, OCH₃), 6.50 (m, 1H, furyl H-4), 6.70-7.0 (m, 7H, arom. H).- C₁₉H₁₇N₃O₂ (319.4) Calcd. C 71.5 H 5.37 N 13.2 Found C 71.2 H 5.30 N 13.3.

6-(2-Furyl)-2-methoxy-4-(4-nitrophenyl)nicotinonitrile(81)

From 5.20 g (20 mmol) of 4f and 1.35 g (21 mmol) of MDN, 1 h reflux; yield 2.6 g (40%), light yellow crystals, m.p. 216°C (methanol).- IR: 2205 (CN); 1595 (arom.); 1265 (ar-O-C); 850 (1,4-disubst. arom.).- ¹H-NMR: δ = 4.20 (s, 3H, OCH₃), 6.50 (m, 1H, furyl H-4), 6.75 (m, 7H, arom. H).-C₁₇H₁₁N₃O₄ (321.3) Calcd. C 63.6 H 3.45 N 13.1 Found C 63.3 H 3.49 N 13.0.

6-(2-Furyl)-2-methoxy-4-(2-thienyl)nicotinonitrile(8g)

Method a: From 2.04 g (10 mmol) of 4g and 0.7 g (11 mmol) of MDN, 1 h reflux; yield 1.0 g (37%); *method* b: From 2.70 g (10 mmol) of 6e, yield 1.2 g (42%), colorless crystals, m.p. 127°C (methanol).- IR: 2205 (CN); 1595 (arom.).- ¹H-NMR: $\delta = 4.10$ (s, 3H, OCH₃), 6.50 (m, 1H, furyl H-4), 7.00-7.95 (m, 6H, arom. H).- C₁₅H₁₀N₂O₂S (282.3) Calcd. C 63.8 H 3.57 N 9.9 S 11.4 Found C 63.7 H 3.61 N 10.0 S 11.3.

6-(2-Furyl)-2-methoxy-4-styrylnicotinonitrile(8h)

From 2.55 g (10 mmol) of 4h and 0.75 g (11.5 mmol) of MDN, 2 h reflux; yield 1.05 g (33%), light yellow crystals, m.p. 157°C (methanol).-IR: 2205 (CN); 1585 (arom.); 1260 (ar-O-C); 765; 690 (arom.).- ¹H-NMR: $\delta = 4.05$ (s, 3H, OCH₃), 6.50 (m, 1H, furyl H-4), 7.10-7.70 (m, 10H, arom. H).- C₁₉H₁₄N₂O₂ (302.3) Calcd. C 75.5 H 4.66 N 9.3 Found C 75.2 H 4.60 N 9.4.

3,3'-(1,4-Phenylene)bis[1-(2-thienyl)-2-propen-1-one](9a)^{5f)}

From 2.5 g (20 mmol) of 1a and 1.35 g (10 mmol) of 1.4-benzenedicarbaldehyde; yield 2.3 g (65%), m.p. 223°C (methanol).- IR: 1640 (C=O); 1590 (arom.); 970 (C=C); 820 (1.4-disubst. arom.).- ¹H-NMR: δ = 7.20-8.30 (m, 14H, arom. H).- C₂₀H₁₄O₂S₂ (350.4) Calcd. C 68.5 H 4.03 S 18.3 Found C 68.5 H 4.11 S 18.2.

3,3'-(1,4-Phenylene)bis[1-(2-furyl)-2-propen-1-one](9b)^{5f)}

From 2.2 g (20 mmol) of **1b** and 1.35 g (10 mmol) of 1,4-benzenedicarbaldehyde; yield 1.9 g (60%), colorless crystals, m.p. 229°C (methanol), lit. 229°C.- IR: 1650 (C=O); 1590 (arom.); 1050 (C-O-C); 1005 (*trans* C=C); 820 (1,4-disubst. arom.).- ¹H-NMR (60 MHz): 6.50 (m, 2H, furyl H-4), 6.85-7.65 (m, 12H, arom. H).- $C_{20}H_{14}O_4$ (318.3) Calcd. C 75.5 H 4.43 Found C 75.3 H 4.53.

572

3.3'-(1.4-Phenylene)bis[1-(3-bromo-2-thienyl)-2-propen-1-one](9c)

From 4.1 g (20 mmol) of 1c and 1.35 g (10 mmol) of 1,4-benzenedicarbaldehyde; yield 4.8 g (95%), yellow crystals, m.p. 165°C (methanol).- IR: 1640 (C=O); 1590 (arom.); 975 (*trans* C=C); 815 (1,4-disubst. arom.).-¹H-NMR (60 MHz): δ = 7.30-8.20 (m, 12H, arom. H).- C₂₀H₁₂Br₂O₂S₂ (508.3) Calcd. C 47.3 H 2.38 Br 31.4 S 12.6 Found C 47.2 H 2.40 Br 31.6 S 12.7.

3.3'-(1.4-Phenylene)bis[1-(3-chloro-2-thienyl)-2-propen-1-one](9d)

From 3.2 g (20 mmol) of 1d and 1.35 g (10 mmol) of 1,4-benzenedicarbaldehyde; yield 4.0 g (95%), yellow crystals, m.p. 195°C (glacial acetic acid).- IR: 1640 (C=O); 1585 (arom.); 975 (*trans* C=C); 820 (1,4-disubst. arom.).- ¹H-NMR (60 MHz): δ = 7.20-8.15 (m, 12H, arom. H).-C₂₀H₁₂Cl₂O₂S₂ (419.3) Calcd. C 57.3 H 2.89 Cl 16.9 S 15.3 Found C 57.1 H 2.82 Cl 17.0 S 15.2.

4,4'-(1,4-Phenylene)bis[6-(2-thienyl)-2-methoxynicotinonitrile](10a)

From 3.50 g (10 mmol) of 9a and 1.4 g (22 mmol) of MDN, 2 h room temp.; yield 2.0 g (40%), colorless crystals, m.p. 240°C dec.- IR: 2210 (CN); 1580 (arom.); 1240 (ar-O-C); 830 (1,4-disubst. arom. H).- ¹H-NMR: $\delta = 4.10$ (s, 3H, OCH₃), 4.20 (s, 3H, OCH₃), 6.8-7.8 (m, 12H, arom.).- C₂₈H₁₈N₄O₂S₂ (506.6) Calcd. C 66.4 H 3.58 N 11.1 S 12.7 Found C 66.2 H 3.69 N 11.0 S 12.5.

4.4'-(1,4-Phenylene)bis[6-(2-furyl)-2-methoxynicotinonitrile](10b)

From 3.18 g (10 mmol) of 9b and 1.4 g (22 mmol) of MDN, 2 h room temp.; yield 2.4 g (47%), yellow crystals, m.p. 300°C dec. (glacial acetic acid).- IR: 2210 (CN); 1595 (arom.); 830 (1,4-disubst. arom.).- $C_{28}H_{18}N_4O_4$ (474.5) Calcd. C 70.9 H 3.82 N 11.8 Found C 70.8 H 3.92 N 12.0.

4.4' -(1.4-Phenylene)bis[6-(3-bromo-2-thienyl)-2-methoxynicotinonitrile] (10c)

From 5.08 g (10 mmol) of 9c and 1.4 g (22 mmol) of MDN, 2 h room temp.; yield 2.5 g (38%), light brown crystals, m.p. 192°C dec. (methanol).- IR: 2210 (CN); 1585 (arom.); 1210 (ar-O-C); 835 (1,4-disubst. arom.).- $C_{28}H_{16}Br_2N_4O_2S_2$ (664.4) Calcd. C 50.6 H 2.43 Br 24.1 N 8.4 S 9.7 Found C 50.7 H 2.59 Br 24.3 N 8.3 S 9.5.

4.4' -(1.4-Phenylene)bis[6-(3-chloro-2-thienyl)-2-methoxynicotinonitrile] (10d)

From 4.20 g (10 mmol) of 9d and 1.4 g (22 mol) of MDN, 2 h room temp.; yield 2.6 g (45%), light yellow crystals, m.p. 275°C dec. (metha-

nol).- IR: 2220 (CN); 1580 (arom.); 1210 (ar-O-C); 830 (1.4-disubst. arom.).- $C_{28}H_{16}Cl_2N_4O_2S_2$ (575.5) Calcd. C 58.4 H 2.80 Cl 12.3 N 9.7 S 11.1 Found C 58.3 H 2.95 Cl 12.4 N 9.6 S 11.0.

References

- Part XXXI: F. Richter and H.-H. Otto, Liebigs Ann. Chem. 1990, 7.
- 2 S. Rajappa in: Comprehensive Heterocyclic Chemistry, Vol. 4, p. 741f., ed. A.R. Katritzky and C.W. Rees, Pergamon Press, Oxford, New York, Toronto 1984. N. Sato and N. Saito, J. Heterocycl. Chem. 25, 1737 (1988).
- 3 H.-H. Otto and H. Schmelz, Arch. Pharm. (Weinheim) 315, 526 (1982).
- 4 S. Wattanasin and W.S. Murphy, Synthesis 1980, 647.
- a S.V. Tsukerman, V.M. Nikitchenko, B.I. Ostrovskaya, and V.F. Lavrushin, Ukr. Khim. Zh. 32, 1194 (1966); C.A. 66, 55302t (1967).
 b N.P. Buu Hoi, N. Dat Xuong, and M. Sy, Bull. Soc. Chim. Fr. 1956,
 - 1646.
 - c R.E. Miller and F.F. Nord, J. Org. Chem. 16, 1720 (1951).
 - d W. Neugebauer, M. Tomanek, and T. Scherer (Kalle & Co. AG). (1953) Ger. 893.142, oct. 12, 1953; C.A. 52, 11637h (1953).
 - e C. Weygand and F. Strobelt, Ber. Disch. Chem. Ges. 68, 1839 (1935).
 - f Z.S. Ariyan and B. Mooney, J. Chem. Soc. 1962, 1519.
 - g G.A. Hanson, Bull. Soc. Chim. Belges 67, 91 (1958); C.A. 52, 20111d (1958).
 - h G.A. Hanson, Bull. Soc. Chim. Belges 67, 712 (1958); C.A. 53, 17995c (1959).

I G.G. Belous, V.F. Lavrushin, and V.D. Bezuglyi, Zh. Obshch. Khim. 37, 2169 (1967); C.A. 68, 113931b (1968).

k A. Aleksandrova, N.A. Dorofeeva, A.V. Chenova, and V.K. Khairullin, J. O. C. USSR 14, 1830 (1978); C.A. 89, 215296 (1978).

- 6 H. Friebolin, NMR-Spektroskopie, p. 52, Verlag Chemie, Weinheim 1974.
- 7 S. Caccamese, G. Montaudo, and A. Recca, Tetrahedron 30, 4129 (1974).
- C.J. Timmons, J. Chem. Soc., Chem. Commun. 1965, 576.
- 9 F.I. Savin, S.A. Flegontov, and Y.P. Kitaev, Khim. Geterotsikl. Soedin. 10, 1331 (1972); C.A. 78, 57625x (1973).
- 10 see Lit. 4) and 1)
- 11 W.F. Winecoff and D.W. Boykin Jr., J. Org. Chem. 37, 674 (1972).
- 12 H.-H. Otto, Arch. Pharm. (Weinheim) 307, 367, 422 (1974).
- 13 H. Krauch and W. Kunz, Reaktionen der Organischen Chemie, 5. Aufl. p. 489, Hüthig Heidelberg 1976.
- 14 M. Pestemer, and D. Brück, in Houben-Weyl, Methoden der Organischen Chemie, Vol. III/2, p. 655f., Thieme Verlag, Stuttgart 1955.
- 15 W. Steinkopf, H. Jacob, and H. Penz, Liebigs Ann. Chem. 512, 160 (1934).
- 16 E. Pfrofft and G. Solf, J. Prakt. Chem. 24, 64 (1964).
- 17 Y.A. Sharanin, V.K. Promonenkov, and A.M. Shestopalov, Zh. Org. Khim. 18, 630 (1982); C.A. 97, 23592 (1982). [Ph838]