Structure-Activity Relationships Associated with

3,4,5-Triphenyl-1H-pyrazole-1-nonanoic Acid, a Nonprostanoid Prostacyclin Mimetic

Nicholas A. Meanwell,* Michael J. Rosenfeld, J. J. Kim Wright, Catherine L. Brassard, John O. Buchanan, Marianne E. Federici, J. Stuart Fleming, and Steven M. Seiler

The Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, Connecticut 06492. Received July 23, 1991

Abstract

A series of phenylated pyrazoloalkanoic acid derivatives were synthesized and evaluated as inhibitors of ADP-induced human platelet aggregation. $3,4,5$-Triphenyl-1 H-pyrazole-1-nonanoic acid (8 d), with an IC_{50} of $0.4 \mu \mathrm{M}$, was the most potent inhibitor identified in this study. Biochemical studies determined that 8d increased intraplatelet cAMP accumulation and stimulated platelet membrane-bound adenylate cyclase in a concentration-dependent fashion. Displacement of $\left.{ }^{3} \mathrm{H}\right]$ iloprost by $8 \mathbf{d}$ from platelet membranes indicated that the platelet prostacyclin $\left(\mathrm{PGI}_{2}\right)$ receptor is the locus of biological action. Structure-activity studies demonstrated that the minimum structural requirements for binding to the platelet PGI_{2} receptor and inhibition of ADP-induced platelet aggregation within this series are a vicinally diphenylated pyrazole substituted with an ω-alkanoic acid side chain eight or nine atoms long. Potency depended upon both side-chain length and its topological relationship with the two phenyl rings.

Blood platelet activation has been implicated in a number of pathophysiological conditions including tumor cell metastasis, asthma, migraine, atherosclerosis, and, most prominently, thrombosis. ${ }^{1}$ While venous thrombosis is associated with the activation of both platelets and the coagulation cascade, arterial thrombi are composed almost entirely of platelet aggregates. ${ }^{2}$ Recent clinical studies with inhibitors of blood platelet aggregation have demonstrated a reduction in the incidence of occlusive vascular events in both healthy individuals ${ }^{3}$ and those at risk. ${ }^{4-6}$ Aspirin, dipyridamole, and ticlopidine have been used to establish a clinical role for platelet aggregation inhibitors but none of these agents satisfies the criteria demanded of the ideal antiplatelet drug. ${ }^{7,8}$

Platelet activation involves adhesion, shape change, aggregation, and the release of the contents of intracellular storage granules, which occurs in response to a variety of different agonists. ${ }^{9}$ Combinations of stimulating agents, acting synergistically, are likely to be responsible for occlusive vascular events in vivo, but this may depend upon the underlying pathological condition. Elevation of intraplatelet cAMP concentration is associated with inhib-

[^0]ition of activation in response to most stimuli ${ }^{10}$ and this may be accomplished either by inhibition of cAMP phosphodiesterase ${ }^{11}$ or stimulation of adenylate cyclase. ${ }^{12}$ Prostacyclin (PGI_{2}) (1) was identified in 1976^{13-15} as the most powerful endogenous stimulator of blood platelet adenylate cyclase; it binds to and activates receptors that also recognize PGE_{1} but are distinct from those that bind PGD_{2} or adenosine. ${ }^{12}$ Although PGI_{2} is available to the clinician, ${ }^{16}$ its utility is limited, in part, by inherent chemical instability. This is due to the incompatibility of a strained enol ether moiety and pendant carboxylic acid, which is capable of intramolecularly catalyzing hydrolytic decomposition. ${ }^{17}$ Attempts to develop analogues of PGI_{2} as potential therapeutic agents focused initially upon modifying or stabilizing the labile enol ether functionality while subsequent studies were directed toward identifying
(10) Mills, D. C. B.; Smith, J. B. The Influence on Platelet Aggregation of Drugs That Affect the Accumulation of Adenosine $3^{\prime}, 5^{\prime}$-Cyclic Monophosphate in Platelets. Biochem. J. 1971, 121, 185-196.
(11) (a) Meanwell, N. A.; Seiler, S. M. Inhibitors of Platelet cAMP Phosphodiesterase. Drugs Future 1990, 15, 369-390. (b) Meanwell, N. A.; Seiler, S. M. Platelet Activation and Drugg That Modify Platelet Function. Drugs and the Delivery of Oxygen to Tissues; Fleming, J. S., Ed.; CRC Press Inc.: Boca Raton, 1989; Chapter 5, pp 135-213.
(12) Jaschonek, K.; Muller, C. P. Platelet and Vessel Associated Prostacyclin and Thromboxane A $_{2}$ /Prostaglandin Endoperoxide Receptors. Eur. J. Clin. Invest. 1988, 18, 1-8.
(13) Moncada, S.; Gryglewski, R.; Bunting, S.; Vane, J. R. An Enzyme Isolated from Arteries Transforms Prostaglandin Endoperoxides to an Unstable Substance that Inhibits Platelet Aggregation. Nature 1976, 263, 663-665.
(14) Gryglewski, R. J.; Bunting, S.; Moncada, S.; Flower, R. J.; Vane, J. R. Arterial Walls Are Protected Against Deposition of Platelet Thrombi by a Substance (Prostaglandin X) Which They Make From Prostaglandin Endoperoxides. Prostaglandins 1976, 12, 685-713.
(15) Johnson, R. A.; Morton, D. R.; Kinner, J. H.; Gorman, R. R.; McGuire, J. C.; Sun, F. F.; Whittaker, N.; Bunting, S.; Salmon, J.; Moncada, S.; Vane, J. R. The Chemical Structure of Prostaglandin X (Prostacyclin). Prostaglandins 1976, 12, 915-928.
(16) The freeze-dried sodium salt of PGI_{2}, epoprostenol, is available as Cyclo-Prostin (Upjohn) or Flolan (Wellcome).
(17) (a) Chiang, Y.; Cho, M. J.; Euser, B. A.; Kresge, A. J. Prostacyclin: Evidence That Intramolecular General Acid Catalysis by Its Carbozyl Acid Group Is Responsible for the Extra Hydrolytic Lability. J. Am. Chem. Soc. 1986, 108, 4192-4196. (b) Bergman, N.-A.; Jansson, M.; Chiang, Y.; Kresge, A. J. Kinetic Evidence for Intramolecular General Acid Catalysis in the Hydrolysis of a Prostacyclin Model. J. Org. Chem. 1988, 53, 2544-2547.

1, PROSTACYCLIN

3. CICAPROST

2, ILOPROST

4, BERAPROST

5. OCtimibate
agents with improved oral bioavailability and pharmacokinetic properties. ${ }^{11 b, 18}$ Iloprost (2), ${ }^{19}$ cicaprost (3), ${ }^{20}$ and beraprost (4) ${ }^{21}$ are representatives of this structural class that have advanced into clinical trials. All of these compounds are patterned after the natural substance and retain the functionality and architectural complexity of PGI_{2}. We^{22} and others ${ }^{23}$ have recently demonstrated that the
(18) Nickolson, R. C.; Town, M. H.; Vorbruggen, H. ProstacyclinAnalogs. Med. Res. Rev. 1985, 5, 1-53.
(19) (a) Schillinger, E.; Vorbruggen, H. Ciloprost. Drugs Future 1981, 6, 676-677. (b) Schillinger, E.; Krais, T.; Lehmann, M.; Stock, G. Iloprost. New Cardiovascular Drugs; Scriabine, A., Ed.; Raven Press: New York, 1986; pp 209-231.
(20) (a) Skuballa, W.; Schillinger, E.; Sturzebecher, C.-St.; Vorbruggen, H. Synthesis of a New Chemically and Metabolically Stable Prostacyclin Analogue with High and Long-Lasting Oral Activity. J. Med. Chem. 1986, 29, 313-315. (b) Sturzebecher, S.; Haberey, M.; Muller, B.; Schillinger, E.; Schroder, G.; Skuballa, W.; Stock, G.; Vorbruggen, H.; Witt, W. Pharmacological Profile of a Novel Carbacyclin Derivative With High Metabolic Stability and Oral Activity in the Rat. Prostaglandins 1986, 31, 95-109.
(21) (a) Ohno, K.; Nagase, H.; Matsumoto, K.; Nishigama, H.; Nishio, S. Stereoselective Synthesis of 5,6,7-Trinor-4,8-inter-m-phenylene-PGI ${ }_{2}$ Derivatives and Their Inhibitory Activities to Human Platelet Aggregation. Adv. Prostaglandins Thromboxane Leukotriene Res. 1985, 15, 279-281. (b) TRK 100. Drugs Future 1986, 11, 956-958.
(22) Seiler, S. M.; Brassard, C. L.; Arnold, A. J.; Meanwell, N. A.; Fleming, J. S.; Keely, S. L., Jr. Octimibate Inhibition of Platelet Aggregation: Stimulation of Adenylate Cyclase Through Prostacyclin Receptor Activation. J. Pharm. Exp. Ther. 1990, 255, 1021-1026.
(23) Merritt, J. E.; Hallam, T. J.; Brown, A. M.; Boyfield, I.; Cooper, D. G.; Hickey, D. M. B.; Jaxa-Chamiec, A. A.; Kaumann, A. J.; Keen, M.; Kelly, E.; Kozlowski, U.; Lynham, J. A.; Moores, K. E.; Murray, K. J.; MacDermot, J.; Rink, T. J. Octimibate, a Potent Non-Prostanoid Inhibitor of Platelet Aggregation Acts Via the Prostacyclin Receptor. Br. J. Pharmacol. 1991, 102, 251-259.

Scheme I

Scheme II

triphenylated imidazole derivative octimibate (5) inhibits platelet function by binding to the platelet PGI_{2} receptor and stimulating adenylate cyclase. We were intrigued by this observation since octimibate is significantly less complex and structurally quite distinct from PGI_{2} and its close analogues and presents an unusual template from which it may be possible to design potent, orally-effective PGI_{2} mimetics. As part of an effort to elucidate the structural elements of octimibate that are responsible for platelet inhibitory activity, we synthesized and evaluated a series of phenylated pyrazoloalkanoic acid derivatives. We report herein the results of this investigation which identifies the minimal structural features essential for effective PGI_{2} mimicry.

Chemistry

Exposure of 3,4,5-triphenyl-, ${ }^{24}$ 3,5-diphenyl-4-(phenyl-methyl)-, ${ }^{27} 3,5$-diphenyl-4-ethyl-, ${ }^{27} 3,5$-diphenyl-, ${ }^{28}$ and
(24) Kirmse, W.; Horner, L. Reactions of phenylacetylene with azido and diazo compounds. Justus Liebigs Ann. Chem. 1958, 614, 1-3. Dissolution of diphenyldiazomethane ${ }^{25}$ in phenylacetylene as described produced the cycloadduct $3,3,5$-tri-phenyl-3H-pyrazole [${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.53(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 106.17$ (C-3), 137.38 (C-4), 154.37 (C-5)] and not 3,4,5-triphenyl-1 H -pyrazole [${ }^{13} \mathrm{C}$ NMR $\delta 116.37$ (C-4), 133.85 ($\mathrm{C}-3, \mathrm{C}-5$)] as reported. The former underwent thermal rearrangement ${ }^{26}$ to the latter upon heating as a solution in DMF on a steam bath for $30-40 \mathrm{~min}$. From a practical perspective, a mixture of $3,3,5$-triphenyl-3 H -pyrazole, a slight excess of NaH , and DMF was heated on a steam bath to provide a solution of the sodium salt of $3,4,5$-triphenyl-1 H-pyrazole.
(25) (a) Smith, L. I.; Howard, K. L. Diphenyldiazomethane. Organic Syntheses; 1955; Collect. Vol. 3, pp 351-352. (b) Miller, J. B. Preparation of Crystalline Diphenyldiazomethane. J. Org. Chem. 1959, 24, 560-561.
(26) Sammes, M. P.; Katritzky, A. R. The $3 H$-Pyrazoles. Adv. Heterocycl. Chem. 1983, 34, 1-52.
(27) 3,5-Diphenyl-4-phenylmethyl-1 H -pyrazole (mp 179-181 ${ }^{\circ} \mathrm{C}$) and 3,5 -diphenyl-4-ethyl-1 H -pyrazole (mp $164-166{ }^{\circ} \mathrm{C}$) were synthesized from dibenzoylmethane by alkylation with benzyl bromide and ethyl iodide, respectively, using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{CH}_{3} \mathrm{CN}$ at reflux followed by exposure of the crude material to an excess of hydrazine in EtOH. Purification was effected by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes.

Scheme III

4-phenyl-1 H -pyrazole ${ }^{29}$ to sodium hydride in DMF produced the corresponding sodium salts, which were alkylated with the ester of an ω-haloalkanoic acid ${ }^{30}$ to provide esters 7a-j (Scheme I). Saponification afforded the target carboxylic acids $8 \mathbf{a}-\mathbf{j}$. Alkylation of diphenylpyrazole 9^{33} provided mixtures of isomeric pyrazoles 10 and 11, which were separated by flash column chromatography (Scheme II). The more mobile esters constituted the major reaction product and were identified as the 3,4-diphenyl-substituted isomers 10 after examination of NMR spectral data. In CDCl_{3}, the pyrazole ring proton of the major products 10 is shifted upfield and the NCH_{2} protons appear downfield relative to the corresponding protons of the minor products 11. ${ }^{35,36}$ Confirmation was obtained by measuring long
(28) Knorr, L.; Duden, P. On the isomerism of phenyl pyrazoles and pyrazoles derived from benzoylacetoacetates and benzal acetoacetates. Chem. Ber. 1893, 26, 111-122.
(29) Bailey, D. M.; Kumar, V. 3,4, or 5-Aryl-1H-pyrazole-1-alkanamides as Antiarrythmic Agents, Compositions and Use. U.S. Patent, 4,888,352, Dec. 19, 1989.
(30) Methyl 9-bromononanoate ${ }^{31}$ was prepared from azelaic acid monomethyl ester by selective reduction using $\mathrm{BH}_{3} \cdot \mathrm{THF}$ or $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$ complex in THF^{32} and bromination of the alcohol using CBr_{4} and $\mathrm{Ph}_{3} \mathrm{P}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
(31) Barley, G. C.; Jones, Sir E. R. H.; Thaller, V.; Vere Hodge, R. A. Natural Acetylenes. Part XXXIX. Synthesis of Methyl [$\left.1,9-{ }^{14} \mathrm{C}\right]-,\left[9-{ }^{14} \mathrm{C}\right]-$, and $\left[10-{ }^{3} \mathrm{H}\right]$-Crepenynate, Methyl $\left[9-{ }^{14} \mathrm{C}\right]$ and $\left[10-{ }^{3} \mathrm{H}\right]$-Linoleate, and Methyl [$\left.9-{ }^{-14} \mathrm{C}\right]$ - and $\left[10-{ }^{3} \mathrm{H}\right]$-Oleate. J. Chem. Soc. Perkin Trans. 1 1973, 151-154.
(32) Kann, N.; Rein, T.; Akermark, B.; Helquist, P. New Functionalized Horner-Wadsworth-Emmons Reagents: Useful Building Blocks in the Synthesis Of Polyunsaturated Aldehydes. A Short Synthesis of (\pm)-(E, E)-Coriolic Acid. J. Org. Chem. 1990, 55, 5312-5323.
(33) Wisclicenus, W.; Ruthing, A. On the desmotropy of formyldesoxybenzoins. Justus Liebigs Ann. Chem. 1911, 379, 229-261. An improved procedure for the preparation of diphenylpyrazole 9 was developed that entailed stirring deoxybenzoin with a 50% excess of dimethylformamide dimethyl acetal at $110^{\circ} \mathrm{C}$ for $30 \mathrm{~min}^{34}$ and subsequent exposure of the enaminone to a 2 -fold excess of hydrazine at room temperature. Pyrazole 9 was isolated in 90% overall yield after diluting with water and filtering.
(34) Arnold, Z.; Kornilov, M. Reactivity of 1,1-Dialkoxytrimethylamines. Collect. Czech Chem. Commun. 1964, 29, 645-651.
(35) Elguero, J.; Jacquier, R. Studies of Azoles VII. Attribution of NMR Signals in N-substituted pyrazoles. J. Chem. Phys. 1966, 63, 1242-1246.

range ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ coupling constants in the fully-coupled ${ }^{13} \mathrm{C}$ NMR spectrum of 10 c and 11 c . The proton-bearing pyrazole ring carbon of 10 c resonates as a doublet of triplets at $\delta 128.97$ with coupling constants of $183.99,3.11$, and 2.28 Hz . This signal collapsed to a doublet, $J=184 \mathrm{~Hz}$ upon irradiation of the NCH_{2} protons at $\delta 4.14$. In contrast, the corresponding ring carbon atom of 11c appears as a doublet at $\delta 137.53, J=188.92 \mathrm{~Hz}$. Alkaline hydrolysis of 10 and 11 provided acids 12 and 13 , respectively.
The introduction of heteroatoms β to the carboxylic acid moiety of 8 was accomplished as depicted in Scheme III and began with reduction of ester 7a, using LiAlH_{4} in $\mathrm{Et}_{2} \mathrm{O}$, to provide alcohol 14. Alkylation of 14 with tert-butyl bromoacetate under phase-transfer catalysis ${ }^{20 a}$ furnished ester 15 , which was converted to acid 16 upon dissolution in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$. Bromination of 14 and treatment of the resultant bromide with methyl mercaptoacetate and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{CH}_{3} \mathrm{CN}$ at reflux afforded ester 17, which was hydrolyzed to acid 18a. Oxidation of 17 to the corresponding sulfoxide and sulfone was accomplished using Oxone, the former produced selectively at $-10^{\circ} \mathrm{C}$ with limited reagent and brief exposure. ${ }^{37}$ Alkaline hydrolysis gave acids 18b and 18 c .
Amides 19a and 19b were obtained from acid 8d by sequential treatment with $(\mathrm{COCl})_{2}$ and either $\mathrm{NH}_{4} \mathrm{OH}$ or $\mathrm{CH}_{3} \mathrm{NH}_{2}$, respectively, and sulfonamide 19c was prepared from 8d using a published procedure ${ }^{38}$ (Scheme IV). Tetrazole 22 was synthesized from bromide 20 as depicted in Scheme V and proceeded through the intermediacy of nitrile 21. Admixture of 21 and tri- n-butyltin azide at 140

[^1]

Figure 1. Effects of BMY 42239 (8d) on platelet cAMP levels (0) and cAMP-dependent protein kinase activity ratio (0). Human platelets were isolated by differential centrifugation and treated with the indicated concentrations of 8d for 10 min prior to removing aliquots for cAMP determination and assay of the cAMP-dependent protein kinase ratio. The cAMP levels were determined by RIA using a commercially-available kit, and the cAMP kinase ratio was used as an indication of the activation of the cAMP-dependent protein kinase in the cell. ${ }^{56}$ Both the cAMP and the protein kinase ratio determinations were obtained from the same drug-treated samples. The cAMP determinations are the average of duplicate determinations and the cAMP-dependent protein kinase measurements represent the average of triplicate determinations of a single representative experiment.
${ }^{\circ} \mathrm{C}$ followed by treatment with potassium fluoride ${ }^{39}$ furnished the crystalline tetrazole 22 in 73% overall yield.

The compounds prepared as part of this study are listed in Table I along with relevant physicochemical data.

Results and Discussion

The target compounds were evaluated as inhibitors of ADP-induced aggregation of human platelets in plateletrich plasma (PRP) using the previously described experimental protocol ${ }^{22}$ and the results are presented in Table I. In this assay, PGI_{2}, iloprost, and octimibate (5) exhibit IC_{50} 's of $8 \mathrm{nM}, 2 \mathrm{nM}$, and $1.02 \mu \mathrm{M}$, respectively. $3,4,5-$ Triphenyl-1 H-pyrazole-1-nonanoic acid (8d), BMY 42239, inhibits ADP-induced platelet aggregation with an IC_{50} of $0.4 \mu \mathrm{M}$ and is 2 -fold more effective than octimibate (5). When collagen was employed as the stimulus, 8d prevented platelet aggregation with an IC_{50} of $0.15 \mu \mathrm{M}$ compared to an IC_{50} of $1.40 \mu \mathrm{M}$ for octimibate under the same conditions. ${ }^{22}$ The biochemical properties of pyrazole $\mathbf{8 b}$ were investigated in some detail in order to establish the mode of action for this series of platelet aggregation inhibitors. Exposure of human platelets to 8d resulted in a concen-tration-dependent increase in intracellular cAMP levels and activation of the cAMP-dependent protein kinase (Figure 1). Pyrazole 8d is a weak inhibitor of a crude human platelet cAMP phosphodiesterase preparation with an $\mathrm{IC}_{50}=10 \mu \mathrm{M},{ }^{40}$ which is significantly higher than the concentrations necessary to inhibit platelet aggregation and increase cAMP levels. As shown in Figure 2, 8d stimulates adenylate cyclase in platelet membranes in a dose-dependent fashion. Maximal stimulation occurs between 0.1 and $1 \mu \mathrm{M}$ and is $70-75 \%$ of the maximum effect observed for PGE_{1}. PGE_{1} activates platelet adenylate cyclase by binding to the PGI_{2} receptor and stimulates the enzyme to levels similar to that maximally attained by iloprost. ${ }^{40}$ Compared to $\mathrm{PGE}_{1}, 8 \mathrm{~d}$ is therefore a partial agonist as a stimulant of platelet adenylate cyclase, a property shared

[^2]

Figure 2. Stimulation of human platelet adenylate cyclase activity by $8 \mathrm{~d}(\bigcirc)$ and $\mathrm{PGE}_{1}(0)$. Adenylate cyclase activity, determined in the presence of $10 \mu \mathrm{M} \mathrm{GTP}$ and the indicated concentrations of 8 d or PGE_{1}, was performed as previously described. ${ }^{22}$ Each point represents the mean \pm standard deviation of triplicate determinations within a representative experiment.

Figure 3. Effects of $8 \mathrm{~d}(\odot)$ and cold iloprost (O) on $\left[{ }^{3} \mathrm{H}\right]$ iloprost binding to isolated platelet membranes. Binding studies were performed using $5 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$ iloprost at $0-4{ }^{\circ} \mathrm{C}$, as described previously. ${ }^{22}$ Each point represents the average of duplicate determinations within a representative experiment.
with octimibate. ${ }^{22,23}$ Radioligand binding studies were used to determine the site of action of 8 d on the platelet membrane. Pyrazole 8d displaces $\left[{ }^{3} \mathrm{H}\right.$]iloprost from platelet membranes in a concentration-dependent manner as depicted in Figure 3. The IC_{50} for displacement of $\left[{ }^{3} \mathrm{H}\right]$ iloprost by 8 d is 160 nM , which compares with IC_{50} 's of 29 nM for unlabeled iloprost and 500 nM for octimibate under similar conditions. ${ }^{22}$ Pyrazole 8d displaced [$\left.{ }^{3} \mathrm{H}\right]$ PGE_{1} from human platelet membranes but did not significantly alter $\left[{ }^{3} \mathrm{H}\right] \mathrm{PGD}{ }_{2}$ binding at $1 \mu \mathrm{M}$ (supplemental material). However, 8d exhibited weak affinity for the platelet thromboxane (TXA_{2}) receptor and reduced $\left[{ }^{3} \mathrm{H}\right]$ SQ 29548^{41} binding to platelet membranes by 50% at a concentration of $8 \mu \mathrm{M} .{ }^{40}$
Concentrations of 8 d above $1 \mu \mathrm{M}$ are associated with reduced stimulation of adenylate cyclase compared to the maximal effect, a phenomenon also observed with octimibate and for which we do not have a satisfactory explanation. This may be a nonspecific effect resulting from membrane disruption at these high concentrations as a consequence of the detergentlike nature of 8d. Alternatively, 8 d may bind to and activate a prostanoid receptor linked through G_{i} to platelet adenylate cyclase as has been postulated for PGI_{2} itself. ${ }^{42}$
Although 8d exhibits high affinity for the platelet PGI_{2} receptor and is an effective stimulant of adenylate cyclase,

[^3]Table I

${ }^{a}$ Elemental analyses for C, H, and N were within $\pm 0.4 \%$ of the theoretical values.
being only $5-10$-fold less potent than iloprost, it is approximately 200 -fold weaker than iloprost as an inhibitor of ADP-induced platelet aggregation in PRP. This finding is most likely a consequence of $\mathbf{8 d}$ binding to the plasma proteins present in the latter assay but not the former two, which would reduce the effective concentration of the free drug in solution. This phenomenon was observed with octimibate, which is a markedly more potent inhibitor of induced platelet aggregation in washed platelets compared to PRP, ${ }^{23}$ and a similar effect has been reported for a renin inhibitor. ${ }^{43}$

Pyrazole 8d inhibits ADP-induced aggregation of rabbit and rat platelets less effectively than human platelets with IC_{50} 's of 5.5 and $0.8 \mu \mathrm{M}$, respectively, a pattern of species dependence similar to that documented for octimibate. ${ }^{22,23}$ Nevertheless, pyrazole 8d demonstrated significant antithrombotic activity in a rabbit model of thrombosis following oral administration. In this model, where platel-et-dependent thrombus formation is induced in the mi-

[^4]crocirculation of the ear of a conscious rabbit using a laser, ${ }^{44} 8 \mathrm{~d}$ reduced thrombus formation by $55 \% 2 \mathrm{~h}$ following a dose of $10 \mathrm{mg} / \mathrm{kg}$ po. In contrast, octimibate, at a dose of $30 \mathrm{mg} / \mathrm{kg}$ po, provided only 39% protection in this model while PGI_{2} was not effective orally but inhibited thrombosis as long as an iv infusion of $0.1 \mu \mathrm{~g} / \mathrm{kg}$ per min was maintained. 40
The structure-activity studies associated with 8d presented in Table I demonstrate that the nonanoic acid side chain is the optimal length, since homologation in either direction results in a 10 -fold reduction in potency. Abbreviation of the chain length by two carbon atoms (8b) results in a further decrease in activity and hexanoate 8a is devoid of significant platelet inhibitory effect. Both 3,5 -diphenyl-1 H -pyrazole-1-nonanoic acid ($8 \mathbf{g}$) and 4-phenyl- $1 H$-pyrazole-1-nonanoic acid ($8 \mathbf{j}$) are inactive as platelet aggregation inhibitors, and neither compound binds appreciably to the PGI_{2} receptor, indicating that they do not function as antagonists. Substitution of the

[^5]4-phenyl ring of 8 d by a benzyl (8 h) or ethyl (8i) group also gave inactive compounds, demonstrating a specific requirement for a phenyl ring at this position.

3,4-Diphenyl-1H-pyrazole-1-nonanoic acid (12c) and its 4,5-diphenyl isomer, 13c, inhibit ADP-induced platelet aggregation with similar efficacy but are 10 -fold weaker than 8d, which correlates with reduced affinity for the PGI_{2} receptor. The 3,4-diphenylated pyrazole derivatives 12 display a similar structure-activity profile to the triphenylated series 8 with regard to the effects of variation of side-chain length. However, in the isomeric 4,5-diphenyl pyrazole series 13 , reduction of the side chain length by a single carbon atom provided a compound, 13 b , with enhanced activity compared to 13 c , while further truncation gave a weakly active compound, 13a.

Modifications of the side chain terminus region were explored in an attempt to identify agents that might exhibit increased resistance to β-oxidative degradation in vivo. Introduction of an oxygen atom β to the carboxylate moiety (16) led to only a marginal reduction in potency compared to the prototype 8 d , which parallels structureactivity relationships associated with PGI_{2} agonists of a more classical structure. ${ }^{20}$ A sulfur atom at this site resulted in a 2 -fold diminution in potency (18a), and increasing the oxidation state of the sulfur to that of a sulfoxide (18b) and sulfone (18c) led to further reductions in inhibitory activity relative to 18 a .

An acidic proton at the side-chain terminus appears to be an essential requirement for effective platelet inhibitory activity. Methyl ester 7d is 10 -fold less potent than the corresponding acid 8 d , and the activity observed for 7 d is presumably the result of significant plasma esterase-mediated cleavage to $8 \mathbf{d}$ during the 3 -min incubation period of drug in PRP prior to the addition of the agonist. The inactivity associated with tert-butyl ester 15 , which would be expected to be less readily unmasked to acid 16 , provides support for this contention. The primary amide 19a is almost 100 -fold weaker than 8a while the methylated amide 19 b is inactive. Acylated sulfonamide 19 c is 15 -fold less potent than 8d, demonstrating that this carboxylic acid isostere, which has been previously incorporated into prostanoids with some success, ${ }^{45}$ is moderately effective in these PGI_{2} mimetics. However, the tetrazole moiety does function as an effective carboxylic acid isostere and 22 is less than 3 -fold weaker than $8 d$ as an inhibitor of ADP-induced platelet aggregation.

A pharmacophore for platelet PGI_{2} receptor agonism within this series of pyrazoles can readily be deduced from the data presented in Table I. Two phenyl rings bound to vicinal atoms of the heterocycle appear to be fundamental, and this is optimal when separated from a carboxylic acid moiety, or its surrogate, by a chain of seven or eight atoms in length. The functional equivalence of the pyrazole ring of 8 d with the more basic imidazole ring of octimibate suggests that the role of the heterocycle may be that of a scaffold on which the pharmacophoric elements are arranged. The conformational flexibility inherent in the alkanoic acid side chain of the compounds listed in Table I limits the reliable application of molecular modeling studies that might provide insight into the topographical relationships between the key structural elements. These studies await the identification of more rigid molecules with this kind of biological activity. However, the structure-activity observations do allow some suggestion pertaining to the topological relationships for this
(45) Schaaf, T. K.; Hess, H-J. Synthesis and Biological Activity of Carboxyl-Terminus Modified Prostaglandin Analogues. J. Med. Chem. 1979, 22, 1340-1346.

Figure 4. A topological descriptor of that portion of the PGI_{2} receptor occupied by pyrazole derivatives presented in Table I. The phenyl rings are depicted as coplanar with the heterocyclic ring for purposes of illustration only and are not intended to suggest conformational preferences.
class of prostacyclin mimetic and this is summarized in Figure 4. The three phenyl rings of octimibate (5) and 8d presumably occupy a hydrophobic cavity of the platelet PGI_{2} receptor that can be conveniently divided into three distinct regions, designated A, B, and C . Occupation of sites A and B appears to be crucial for binding to the PGI_{2} receptor and transmission of the signal leading to activation of adenylate cyclase. 3,4-Diphenyl- 1 H -pyrazole-1nonanoic acid (10c) leaves site C unfilled and this presumably accounts for the 10 -fold reduction in potency compared to 8d. The SAR associated with the isomeric acids 11 b and 11c suggests that the carboxylic acid binding site is proximate to the region C , which is occupied by the side chain atoms of 11 b and 11 c when their phenyl rings are accommodated in sites A and B.
EP 035 (23) and EP 157 (24) have been described as PGI_{2} mimetics that differ markedly in structure from the

23, EP 035

24, EP 157
natural prostanoid. ${ }^{46}$ The biochemical profile of 23 and 24 bears a striking resemblance to that described for octimibate ${ }^{22,23}$ and 8d, and some structural homology is also apparent. The benzhydryl oxime moiety of 23 and 24 presents two phenyl rings in a geminally-disposed ar-

[^6]rangement that, from an inspection of molecular models, is structurally analogous to the vicinally-diphenylated heterocycles described above. The bicyclic rings of 23 and 24 presumably provide some degree of stereodefinition and also function as spacers between the benzhydryl and carboxylic acid moieties.

The relationship between that part of the platelet PGI_{2} receptor to which the natural ligand and its structurally similar analogues bind and that described by Figure 4 is not obvious. There appears to be little structural homology between the two classes of compound. Indeed, only the carboxylic acid moiety is a common feature and the extent of overlap of the remainder of the two classes or molecule is a matter of speculation. However, the hydrophobic phenyl rings of $5,8 \mathrm{~d}, 23$, and 24 , may occupy a region of the PGI_{2} receptor filled in part by the ω-side chain of the natural ligand and its close relatives, which has been shown to be tolerant of quite wide structural variation. ${ }^{18}$ Such an alignment would allow the C-14-C15 unsaturation of $1-4$ and the π-systems of $5,8 \mathrm{~d}, 23$, and 24 to overlap.

In addition to pharmacokinetic problems, therapeutic application of PGI_{2} and its mimetics has been limited by the incidence of side effects, most notably hypotension, facial flushing, and nausea. ${ }^{47}$ These problems are presumably the result of activation of PGI_{2} receptors located on tissues other than platelets. Tissue-selective PGI_{2} agonists remain an important target of prostaglandin research, and although there is some suggestion of the existence of receptor subtypes, ${ }^{48}$ this data must be interpreted with caution due to complications arising from variation of response across species. ${ }^{49}$ The species-dependent effects of $5,8 \mathrm{~d}, 23$, and 24 suggest heterogeneity of platelet PGI_{2} receptors, ${ }^{50}$ and the possibility of receptor subtypes within species limits the predictive value of studies of the hypotensive effects of this class of compound in traditional laboratory animals. Nonhuman primates appear to be an acceptable species with which in vitro and in vivo studies may be conducted with some confidence in the predictive value of the likely effect in humans. None of the compounds described in this report has been evaluated in this fashion. However, studies of this nature have been conducted with 5^{51} and $24,{ }^{52}$ and the results suggest that neither is able to effectively differentiate the platelet PGI_{2} receptor from that in vascular tissue.

In summary, we have described the synthesis and SAR associated with a series of architecturally simple and novel
(47) Pickles, H.; O'Grady, J. Side Effects Occurring During Administration of Epoprostenol (Prostacyclin, PGI_{2}) in Man. Br . J. Clin. Pharmacol. 1982, 14, 177-185.
(48) Oliva, D.; Nicosia, S. PGI $_{2}$-Receptors and Molecular Mechanisms in Platelets and Vasculature: State of the Art. Pharmacol. Res. Commun. 1987, 19, 735-765.
(49) Keen, M.; Kelly, E.; MacDermot, J. Prostaglandin Receptors in the Cardiovascular System: Potential Selectivity from $\mathrm{Re}-$ ceptor Subtypes or Modified Responsiveness. Eicosanoids 1989, 2, 193-197.
(50) Alternatively, the observed potency differences could be a consequence of species-dependent variation in receptor densities in conjunction with the partial agonist nature of the ligands. We thank a referee for bringing this to our attention.
(51) Merritt, J. E.; Brown, A. M.; Bund, S.; Cooper, D. G.; Egan, J. W.; Hallam, T. J.; Heagerty, A. M.; Hickey, D. M. B.; Kaumann, A. J.; Keen, M.; Kelly, E.; Kenney, C. A.; Nichols, A. J.; Smith, E. F., III; Swayne, G. T. G.; MacDermot, J.; Rink, T. J. Primate Vascular Responses to Octimibate, a Non-prostanoid Agonist at the Prostacyclin Receptor. Br. J. Pharmacol. 1991, 102, 260-266.
(52) Armstrong, R. A.; Lawrence, R. A.; Jones, R. L.; Wilson, N. H.; Collier, A. Functional and Ligand Binding Studies Suggest Heterogeneity of Platelet Prostacyclin Receptors. Br. J. Pharmacol. 1989, 97, 657-668.
nonprostanoid PGI_{2} mimetics and defined the minimum requirements for expression of biological activity. Although these compounds exhibit reasonable affinity for the platelet PGI_{2} receptor, they are less potent than PGI_{2} and closely related analogues as inhibitors of blood platelet aggregation in PRP. However, the structural simplicity and absence of functionality previously considered essential for effective PGI_{2} mimicry suggest that this class of agonist is worthy of further study in an effort to identify more potent agents with improved oral activity and, possibly, tissue specificity.

Experimental Section

Melting points were recorded on a Thomas-Hoover capillary apparatus and are uncorrected. Proton (${ }^{1} \mathrm{H} N M R$) and carbon ${ }^{13} \mathrm{C}$) nuclear magnetic resonance spectra were recorded on a Bruker AM FT instrument operating at 300 MHz for ${ }^{1} \mathrm{H}$ and 75 MHz for ${ }^{13} \mathrm{C}$. All spectra were recorded using tetramethylsilane as an internal standard, and signal multiplicity is designated according to the following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{bs}=$ broad singlet. Infrared (IR) spectra were obtained using a Perkin-Elmer 1800 FT IR, scanning from 4000 to $400 \mathrm{~cm}^{-1}$ and calibrated to the $1601 \mathrm{~cm}^{-1}$ absorption of a polystyrene film. Mass spectral data were obtained on a Finnigan Model 4500 GC/MS using chemical ionization (isobutane) procedures. Analytical samples were dried in vacuo at $78{ }^{\circ} \mathrm{C}$ or in the presence of $\mathrm{P}_{2} \mathrm{O}_{5}$ at room temperature for at least 12 h . Elemental analyses were provided by Bristol-Myers Squibb's Analytical Chemistry Department or Oneida Research Services (Whitesboro, NY).

Methyl 3,4,5-Triphenyl-1H-pyrazole-1-nonanoate (7d). NaH (588 mg of a 60% dispersion in mineral oil, 13 mmol) was washed twice with hexane and covered with DMF (45 mL). $3,3,5$-Triphenyl-3H-pyrazole ($3.0 \mathrm{~g}, 10 \mathrm{mmol}$) was added and the mixture stirred at $100^{\circ} \mathrm{C}$ under N_{2} for 0.5 h before being cooled to room temperature. Methyl 9-bromononanoate ${ }^{30,31}(2.80 \mathrm{~g}, 11$ mmol) in DMF (2 mL) was added dropwise and the mixture stirred for 2 h before being poured onto $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The extracts were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times$ 100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Chromatography on silica gel using hexane and $\mathrm{Et}_{2} \mathrm{O}$ (2:1) as eluent gave 7 d (4.72 $\mathrm{g}, 100 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.06(8 \mathrm{H}, \mathrm{bs}), 1.41(2 \mathrm{H}, \mathrm{t}, J=$ 7 Hz), $1.68(2 \mathrm{H}, \mathrm{bs}), 2.11\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.47$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), $3.90\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right.$), $6.83-7.32$ (15 $\mathrm{H}, \mathrm{m})$; MS $m / z 467\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3,4,5-Triphenyl-1 H-pyrazole-1-nonanoic Acid (8d). A mixture of $7 \mathrm{~d}(47.23 \mathrm{~g}, 0.1 \mathrm{~mol}), 5 \mathrm{~N} \mathrm{NaOH}$ solution (60.88 mL , $0.3 \mathrm{~mol})$, and $\mathrm{MeOH}(600 \mathrm{~mL})$ was heated at reflux for 0.5 h . The solvent was evaporated, and the residue diluted with $\mathrm{H}_{2} \mathrm{O}$ and 2 N HCl until $\mathrm{pH}=1$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ and diluted with hexane to precipitate $8 \mathrm{~d}(39.03 \mathrm{~g}, 85 \%)$: mp 112-113 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 1715$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 1.13(8 \mathrm{H}, \mathrm{m}), 1.43(2 \mathrm{H}, \mathrm{t}, J=6.5$ $\mathrm{Hz}), 1.71(2 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 2.12\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)$, $3.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{NCH})$), $7.00-7.59(15 \mathrm{H}, \mathrm{m}) ; \mathrm{MS} m / z 453$ (M^{+}). Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Methyl 3,4-Diphenyl-1H-pyrazole-1-nonanoate (10c) and Methyl 4,5-Diphenyl-1H-pyrazole-1-nonanoate (11c). NaH (945 mg of a 60% dispersion, 23 mmol) was washed with hexane ($3 \times$) and covered with DMF (60 mL), and $9(4.00 \mathrm{~g}, 18 \mathrm{mmol})$ was added. After stirring at room temperature for 20 min , methyl 9 -bromononanoate ($5.02 \mathrm{~g}, 20 \mathrm{mmol}$) was added and stirring continued for 2 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$, and the extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ (3×), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was chromatographed on a column of silica using hexane/ $\mathrm{Et}_{2} \mathrm{O}(2: 1)$ as eluent to give $10 \mathrm{c}\left(4.43 \mathrm{~g}, 62 \%\right.$) as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $1.20-1.50(8 \mathrm{H}, \mathrm{m}), 1.63(2 \mathrm{H}, \mathrm{m}), 1.94(2 \mathrm{H}, \mathrm{m}), 2.29(2 \mathrm{H}, \mathrm{t}, J$ $\left.=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.64(3 \mathrm{H}, \mathrm{s}), 4.14\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right)$, 7.20-7.40 ($8 \mathrm{H}, \mathrm{m}$), $7.50-7.60(2 \mathrm{H}, \mathrm{m})$; MS m/z $391\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Further elution gave a mixed fraction ($1.00 \mathrm{~g}, 14 \%$) followed by $11 \mathrm{c}(1.00 \mathrm{~g}, 14 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 1.10-1.35$ (8 $\mathrm{H}, \mathrm{m}), 1.55(2 \mathrm{H}$, quintet, $J=7 \mathrm{~Hz}), 1.74(2 \mathrm{H}$, quintet, $J=7$
$\mathrm{Hz}), 2.25\left(2, \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.63(3 \mathrm{H}, \mathrm{s}), 3.99$ ($2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{NCH}_{2}$) $7.00-7.55(10 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{s}$, pyrazole ring H); MS $m / z 391\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3,4-Diphenyl-1H-pyrazole-1-nonanoic Acid (12c). Hydrolysis of $10 \mathrm{c}(3.00 \mathrm{~g}, 7.7 \mathrm{mmol})$, as described for 8 d , gave 12 c $(2.23 \mathrm{~g}, 77 \%): \mathrm{mp} 83-85^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20-1.50(8 \mathrm{H}$, $\mathrm{m}), 1.61(2 \mathrm{H}$, quintet, $J=7 \mathrm{~Hz}$), $1.92(2 \mathrm{H}$, quintet, $J=7 \mathrm{~Hz})$, $2.31\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 4.15\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right)$, 7.15-7.30 ($8 \mathrm{H}, \mathrm{m}$), 7.40 ($1 \mathrm{H}, \mathrm{s}$, pyrazole ring H), 7.40-7.60 (2 H , m); MS $m / z 377$ (MH^{+}). Anal. ($\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}$) C, H, N.

4,5-Diphenyl-1H-pyrazole-1-nonanoic Acid (13c). Hydrolysis of $11 \mathrm{c}(850 \mathrm{mg}, 2 \mathrm{mmol})$ gave $13 \mathrm{c}(800 \mathrm{mg}, 97 \%)$ as an oil after chromatography on silica using $\mathrm{Et}_{2} \mathrm{O}$ as eluent: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20-1.40(8 \mathrm{H}, \mathrm{m}), 1.59(2 \mathrm{H}$, quintet, $J=7 \mathrm{~Hz}), 1.74$ (2 H , quintet, $J=7 \mathrm{~Hz}$), $2.31\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 4.00$ $\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 7.00-7.60(10 \mathrm{H}, \mathrm{m}), 7.79(1 \mathrm{H}, \mathrm{s}$, pyrazole ring H); MS $m / z 377\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3,4,5-Triphenyl-1H-pyrazole-1-hexanol (14). Ethyl 3,4,5-triphenyl-1 H -pyrazole-1-hexanoate (7 a) $(9.00 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ (50 mL) was added dropwise to a stirred suspension of LiAlH_{4} ($780 \mathrm{mg}, 20 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL}$). After 15 min , water was added dropwise until the salts coagulated. The ethereal layer was decanted, the residue washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times)$, and the organic phase dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent left 14 (8.13 $\mathrm{g}, 100 \%$). An analytical sample recrystallized from $\mathrm{Et}_{2} \mathrm{O} /$ hexane had mp 76-78 ${ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.25(4 \mathrm{H}, \mathrm{m}), 1.46(2 \mathrm{H}$, quintet, $J=6 \mathrm{~Hz}$), $1.60(1 \mathrm{H}, \mathrm{t}, J=5 \mathrm{~Hz}, \mathrm{OH}), 1.85(2 \mathrm{H}, \mathrm{m})$, $3.54\left(2 \mathrm{H}, \mathrm{q}, J=5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.07\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right)$, 7.00-7.50 ($15 \mathrm{H}, \mathrm{m}$); MS m/z 397 (MH^{+}). Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

1,1-Dimethylethyl [[6-(3,4,5-Triphenyl-1H-pyrazol-1-yl)hexyl]oxy]acetate (15). A mixture of 14 ($5.00 \mathrm{~g}, 12 \mathrm{mmol}$), tert-butyl bromoacetate ($4.92 \mathrm{~g}, 4.10 \mathrm{~mL}, 25 \mathrm{mmol}), n \mathrm{Bu}_{4} \mathrm{NHSO}_{4}$ (0.4 g), 50% aqueous NaOH solution (80 mL), and toluene (80 mL) was stirred vigorously at room temperature. After 18 h , the organic phase was separated, the aqueous layer was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Chromatography on silica (hexane/ $\mathrm{Et}_{2} \mathrm{O} 2: 1$) afforded $15(5.84 \mathrm{~g}, 95 \%)$ that slowly crystallized to a white solid: $\mathrm{mp} 69-72{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.24(4 \mathrm{H}, \mathrm{m}), 1.46(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.53(2 \mathrm{H}, \mathrm{m}), 1.88(2 \mathrm{H}, \mathrm{m}), 3.44(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 3.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CO}_{2}-t \mathrm{Bu}\right), 4.07\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right)$, $6.90-7.50(15 \mathrm{H}, \mathrm{m})$; MS $m / z 511\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
[[6-(3,4,5-Triphenyl-1 \boldsymbol{H}-pyrazol-1-yl)hexyl]oxy]acetic Acid (16). A solution of $15(4.30 \mathrm{~g}, 8 \mathrm{mmol})$ in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(25 \mathrm{~mL})$ was stirred at room temperature for 40 min before being concentrated. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and diluted with hexane to furnish 16 ($3.20 \mathrm{~g}, 83 \%$): mp 92-94 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.12$ $(4 \mathrm{H}, \mathrm{m}), 1.55(2 \mathrm{H}$, quintet, $J=7 \mathrm{~Hz}), 1.83(2 \mathrm{H}$, quintet, $J=$ 7 Hz), $3.47\left(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.04\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{H}\right)$, $4.10\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 6.95-7.55(15 \mathrm{H}, \mathrm{m}), 8.93(1 \mathrm{H}, \mathrm{bs}$, $\mathrm{CO}_{2} \mathrm{H}$); MS $m / z 455\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Methyl [[6-(3,4,5-Triphenyl-1H-pyrazol-1-yl)hexyl]thio]acetate (17). $\mathrm{Br}_{2}(3.44 \mathrm{~g}, 21 \mathrm{mmol})$ was added dropwise to a stirred solution of $\mathrm{Ph}_{3} \mathrm{P}(5.65 \mathrm{~g}, 21 \mathrm{mmol})$ in dry DMF. After $0.5 \mathrm{~h}, 14(7.11 \mathrm{~g}, 18 \mathrm{mmol})$ in dry DMF (45 mL) was added in one portion and the mixture stirred at room temperature for 20 min . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times)$ and brine ($2 \times$), dried over MgSO_{4}, and concentrated. Chromatography of the residue on a column of silica gel using hexane/EtOAc (9:1) as eluent gave 1-(6-bromohexyl)-3,4,5-tri-phenyl-1 H-pyrazole ($6.98 \mathrm{~g}, 84 \%$): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.16$ - 1.45 ($4 \mathrm{H}, \mathrm{m}$), $1.70-1.95(4 \mathrm{H}, \mathrm{m}), 3.32\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 4.06$ ($2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{NCH} 2$), $6.95-7.55(15 \mathrm{H}, \mathrm{m})$) MS $m / z 459,461$ $\left(\mathrm{MH}^{+}\right)$. A mixture of the bromide ($6.53 \mathrm{~g}, 14 \mathrm{mmol}$), methyl mercaptoacetate ($1.66 \mathrm{~g}, 15 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.26 \mathrm{~g}, 16.5 \mathrm{mmol})$, KI (catalyst quantity), and $\mathrm{CH}_{3} \mathrm{CN}(150 \mathrm{~mL}$) was heated at reflux for 4 h . The mixture was filtered and concentrated, and the residue chromatographed on silica gel (hexane/EtOAc 4:1 as eluent) to give $17(6.47 \mathrm{~g}, 91 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.28$ $(4 \mathrm{H}, \mathrm{m})$, $1.53(2 \mathrm{H}$, quintet, $J=7.5 \mathrm{~Hz}), 1.84(2 \mathrm{H}$, quintet, J $=7.5 \mathrm{~Hz}), 2.55\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~S}\right), 3.17(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SCH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.06(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, NCH_{2}), $7.00-7.50(15 \mathrm{H}, \mathrm{m}) ; \mathrm{MS} m / z 485\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{30^{-}}\right.$ $\mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$) C, H, N.
[[6-(3,4,5-Triphenyl-1 \boldsymbol{H}-pyrazol-1-yl)hexyl]thio]acetic Acid (18a). A mixture of 17 ($1.01 \mathrm{~g}, 2 \mathrm{mmol}$), 3 N NaOH (2.1 $\mathrm{mL}, 6 \mathrm{mmol}$), and $\mathrm{MeOH}(125 \mathrm{~mL})$ was heated at reflux for 20 min . The solvent was removed, and the residue diluted with 1 N HCl solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to leave $18 \mathrm{a}(0.94 \mathrm{~g}, 96 \%)$: mp 92-97 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20-1.50(4 \mathrm{H}, \mathrm{m}), 1.59(2 \mathrm{H}$, quintet, $J=7 \mathrm{~Hz}), 1.83(2 \mathrm{H}$, quintet, $J=7 \mathrm{~Hz}), 2.61(2 \mathrm{H}, \mathrm{t}$, $\left.J=7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~S}\right), 3.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 4.10(2 \mathrm{H}, \mathrm{t}, J=7.5$ $\left.\mathrm{Hz}, \mathrm{NCH}_{2}\right), 6.95-7.50(15 \mathrm{H}, \mathrm{m}), 9.72\left(1 \mathrm{H}, \mathrm{bs}, \mathrm{CO}_{2} \mathrm{H}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ $471\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
[6 -($3,4,5$-Triphenyl-1 \boldsymbol{H}-pyrazol-1-yl)hexyl]sulfinyl]acetic Acid (18 b). Oxone ($3.30 \mathrm{~g}, 5 \mathrm{mmol}$) was added in one portion to a stirred mixture of $17(2.08 \mathrm{~g}, 4.3 \mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ maintained at $-10^{\circ} \mathrm{C}$. After 45 min , the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. Chromatography of the residue on silica (EtOAc/hexane 7:3 as eluent) gave the sulfoxide ester ($1.84 \mathrm{~g}, 85 \%$), mp $70.5-71.5{ }^{\circ} \mathrm{C}$ [Anal. ($\mathrm{C}_{30} \mathrm{H}_{32}-$ $\left.\mathrm{N}_{2} \mathrm{O}_{3} \mathrm{~S} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$, of which $1.06 \mathrm{~g}(2.1 \mathrm{mmol})$ was heated at reflux with 3 N NaOH ($2.1 \mathrm{~mL}, 6.3 \mathrm{mmol}$) and $\mathrm{MeOH}(50 \mathrm{~mL})$ for 10 min . The mixture was concentrated, made $\mathrm{pH}=1$ with 1 N HCl , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 18 b ($0.98 \mathrm{~g}, 95 \%$) as a white foam: $\mathrm{mp} 132.5-134.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.25-1.40$ $(4 \mathrm{H}, \mathrm{m}), 1.65-1.85(4 \mathrm{H}, \mathrm{m}), 2.75-2.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~S}(\mathrm{O})\right), 3.68$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 4.10\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 6.75-7.50$ $(15 \mathrm{H}, \mathrm{m}), 9.82\left(1 \mathrm{H}, \mathrm{bs}, \mathrm{CO}_{2} \mathrm{H}\right) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 443\left(\mathrm{MH}^{+}-\mathrm{CO}_{2} \mathrm{H}\right)$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} \cdot 0.1 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
[$\left[6\right.$-($3,4,5$-Triphenyl-1 ${ }^{2}$-pyrazol-1-yl)hexyl]sulfonyl]acetic Acid (18 c). Oxone ($3.80 \mathrm{~g}, 6 \mathrm{mmol}$) suspended in water (20 mL) was added slowly to a solution of $17(1.00 \mathrm{~g}, 2 \mathrm{mmol})$ in MeOH (20 mL) maintained at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 5.5 h before being diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated and the residue chromatographed on silica gel (hexane) $\mathrm{CH}_{2} \mathrm{Cl}_{2} 25: 1$ as eluent) to give the sulfonyl ester (1.17 $\mathrm{g}, 91 \%$) $\mathrm{mp} 92.5-94.5^{\circ} \mathrm{C}$ [Anal. ($\left.\left.\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}\right]$, of which $0.94 \mathrm{~g}(2 \mathrm{mmol})$ was heated at reflux with $3 \mathrm{~N} \mathrm{NaOH}(2.43 \mathrm{~mL}$, 7 mmol) and $\mathrm{MeOH}(100 \mathrm{~mL})$ for 20 min . The solvent was removed, and the residue diluted with 1 N HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a foam. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane furnished $18 \mathrm{c}(0.80 \mathrm{~g}, 88 \%): \operatorname{mp} 153.5-155^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.20-1.40(4 \mathrm{H}, \mathrm{m}), 1.65-1.85(4 \mathrm{H}, \mathrm{m}), 3.14(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{SO}_{2}\right), 3.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 4.02\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{NCH}_{2}\right)$, 6.90-7.40 ($15 \mathrm{H}, \mathrm{m}$); MS m/z $459\left(\mathrm{MH}^{+}\right)$. Anal. ($\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
3,4,5-Triphenyl-1H-pyrazole-1-nonanamide (19a). Oxalyl chloride ($0.42 \mathrm{~g}, 0.29 \mathrm{~mL}, 3.3 \mathrm{mmol}$) was added dropwise to a solution of 8 d and a catalytic amount of DMF in dry THF (15 mL) maintained at $0^{\circ} \mathrm{C}$ under N_{2}. After 30 min , the mixture was warmed to room temperature, stirred 30 min , and concentrated to leave a yellow solid which was dissolved in dry THF. Concentrated $\mathrm{NH}_{4} \mathrm{OH}$ solution (specific gravity $=0.90,2 \mathrm{~mL}$) was added and the mixture stirred for 20 min before being poured onto $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The residual solid was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to give $19 \mathrm{a}(0.80 \mathrm{~g}, 80 \%)$: mp $104-107{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.00-1.20(8 \mathrm{H}, \mathrm{bs}), 1.57(2 \mathrm{H}$, quintet, $J=7 \mathrm{~Hz}), 1.83(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 2.15(2 \mathrm{H}, \mathrm{t}, J=7$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CONH}_{2}\right), 4.05\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 5.52-5.72(2 \mathrm{H}$, bs, NH_{2}) $6.90-7.70(15 \mathrm{H}, \mathrm{m})$; MS $m / z 452\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
\boldsymbol{N}-(Methylsulfonyl)-3,4,5-triphenyl-1 \boldsymbol{H}-pyrazole-1-nonanamide (19c). A mixture of $1,1^{\prime}$-carbonyldiimidazole ($0.39 \mathrm{~g}, 2.4$ $\mathrm{mmol})$ and $8 \mathrm{~d}(1.0 \mathrm{~g}, 2.2 \mathrm{mmol})$ in dry THF (10 mL) was stirred at room temperature under N_{2} for 0.5 h and at reflux for 0.5 h . After cooling, methanesulfonamide ($0.21 \mathrm{~g}, 2.2 \mathrm{mmol}$) was added followed, after 10 min by DBU ($0.336 \mathrm{~g}, 0.34 \mathrm{~mL}, 2.2 \mathrm{mmol})$. The mixture was stirred for 16 h , poured onto 2 N HCl solution, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The residue was chromatographed on silica gel ($\mathrm{Et}_{2} \mathrm{O} /$ hexane $4: 1$ as eluent) to give $19 \mathrm{c}(1.00 \mathrm{~g}, 80 \%$): mp $88-90{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.22(8 \mathrm{H}, \mathrm{m}), 1.54(2 \mathrm{H}$, quintet, $J=7 \mathrm{~Hz}), 1.84(2 \mathrm{H}$, quintet, $J=7 \mathrm{~Hz}), 2.18(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 3.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 4.08\left(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{NCH}_{2}\right)$, $6.90-7.60(15 \mathrm{H}, \mathrm{m}), 9.64\left(1 \mathrm{H}\right.$, bs, $\left.\mathrm{NHSO}_{2}\right) ; \mathrm{MS} \mathrm{m} / z 530\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3,4,5-Triphenyl-1H-pyrazole-1-nonanenitrile (21). A mixture of $20(2.70 \mathrm{~g}, 5.5 \mathrm{mmol}), \mathrm{KCN}(0.40 \mathrm{~g}, 6.1 \mathrm{mmol})$, and

DMF (30 mL) was stirred at $70^{\circ} \mathrm{C}$ under N_{2} for 58 h before being diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to leave an oil. Chromatography on silica gel (EtOAc/hexane/ $\mathrm{Et}_{5} \mathrm{~N}$ 20:79:1 as eluent) gave $21(1.27 \mathrm{~g}, 52 \%)$: mp $79.5-80.5\left(\mathrm{CH}_{2} \mathrm{Cl} /\right.$ hexane $)$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.24(8 \mathrm{H}, \mathrm{bs}), 1.60(2 \mathrm{H}$, quintet, $J=7 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CN}$), $4.07\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 6.95-7.60(15 \mathrm{H}, \mathrm{m}) ; \mathrm{MS}$ $m / z 434\left(\mathrm{MH}^{+}\right)$. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{3} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5-[8-(3,4,5-Triphenyl-1 \boldsymbol{H}-pyrazol-1-yl)octyl]-2H-tetrazole (22). A mixture of $21(1.25 \mathrm{~g}, 2.9 \mathrm{mmol})$ and $(n \mathrm{Bu})_{3} \mathrm{SnN}_{3}$ (1.15 $\mathrm{g}, 3.5 \mathrm{mmol}$) was stirred at $140^{\circ} \mathrm{C}$ under N_{2}. After 2.5 h , the mixture was cooled, diluted with EtOAc, and washed with 0.5 N $\mathrm{HCl}(3 \times)$ and NaCl solutions. The solvent was evaporated, the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and a concentrated aqueous solution of KF added. The mixture was stirred for 24 h and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the residue recrystallized from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2:1) to give 22 ($1.00 \mathrm{~g}, 73 \%$): mp $158-160^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.14(8 \mathrm{H}, \mathrm{m}), 1.60(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 1.79(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz})$, $2.74\left(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-tetrazole), $4.10(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}$, NCH_{2}), 6.90-7.50 ($15 \mathrm{H}, \mathrm{m}$); MS $m / z 477$ (MH^{+}). Anal. ($\mathrm{C}_{30^{-}}$ $\mathrm{H}_{32} \mathrm{~N}_{6}$) C, H, N.

Blood Platelet Aggregometry. Platelet-rich plasma was prepared from human blood drawn into syringes containing $1 / 10$ volume of 3.8% sodium citrate. The blood was then subjected to centrifugation for 10 min at 140 g and the platelet-rich plasma decanted. The test compound was dissolved in DMSO ($5 \mu \mathrm{~L}$) and added to PRP (0.9 mL) 3 min prior to the addition of ADP (5.86 $\mu \mathrm{M})$. The aggregometer method of Born, ${ }^{53}$ as modified by Mustard et al., ${ }^{54}$ was employed to measure platelet aggregation. Vehicle control trials were performed and compared with the extent of aggregation induced in PRP containing various concentrations of the test compounds. Dose-response curves were thus obtained and IC_{50} values determined. The data presented in Table I are the results of single determinations or the average of duplicates. Rabbit and rat PRP were prepared in a similar
(53) Born, G. V. R. Quantitative Investigations into the Aggregation of Blood Platelets. J. Physiol. 1962, 162, 67-68.
(54) Mustard, J. F.; Hegardt, B.; Rowsell, H. C.; MacMillan, R. L. Effect of Adenosine Nucleotides on Platelet Aggregation and Clotting Time. J. Lab. Clin. Med. 1964, 64, 548-559.
(55) Buchanan, J. O.; Fleming, J. S.; Cornish, B. T.; Baryla, U. M.; Gillespie, E.; Stanton, H. C.; Seiler, S. M.; Keely, S. L. Pharmacology of a Potent, New Antithrombotic Agent, 1,3-Di-hydro-7,8-dimethyl- 2 H -imidazo[4,5-b]quinolin-2-one (BMY 20844). Thromb. Res. 1989, 56, 333-346.
(56) Seiler, S. M.; Arnold, A. J.; Grove, R. I.; Fifer, C. A.; Keely, S. L., Jr.; Stanton, H. C. Effects of Anagrelide on Platelet cAMP Levels, cAMP-Dependent Protein Kinase and Thrombin-Induced Ca^{2+} fluxes. J. Pharmacol. Exp. Ther. 1987, 243, 767-774.
fashion, ${ }^{55}$ and ADP in a final concentration of $29.3 \mu \mathrm{M}$ was employed as the agonist.

Laser-Induced Thrombosis in Rabbits. This model, which has been described in detail ${ }^{44,55}$ uses a ruby-laser flash to induce a small thrombus in the microcirculation of the ear of an English lop-ear rabbit. The mean thrombus area ($\mu \mathrm{M}^{2}$) obtained for 10 trials in each rabbit served as a control value. The test compound was administered orally as a suspension in water and Tween 20, and the experiment repeated 2 h later. Drug efficacy was determined from a comparison of pre- and postdose mean thrombus areas. The results presented are an average of experiments conducted in five rabbits. BMY 42239 (8d) provided $55 \pm 3 \%$ inhibition at a dose of $10 \mathrm{mg} / \mathrm{kg}$ po and octimibate (5) provided $39 \pm 3 \%$ inhibition at a dose of $30 \mathrm{mg} / \mathrm{kg}$ po.
Radioligand Binding Studies. Radioligand binding assays were performed in $200-\mu \mathrm{L}$ volumes containing $200 \mu \mathrm{~g}$ of platelet plasma membranes. The isolated membranes were added to a buffer composed of $10 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ EGTA, and 50 mM Tris/ $\mathrm{HCl}\left(\mathrm{pH} 7.4\right.$) with either $5 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$ iloprost or $5 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]-$ PGD 2 . The membranes were incubated at $0-4{ }^{\circ} \mathrm{C}$ for $90-120 \mathrm{~min}$. After incubation, 5 mL of ice-cold 50 mM Tris $/ \mathrm{HCl}(\mathrm{pH} 7.4)$ was added, the tubes were vortexed, and the samples were rapidly filtered through presoaked Whatman GF/C filters. The filters were then washed four times with 5 mL of ice-cold 50 mM Tris/ $\mathrm{HCl}(\mathrm{pH} 7.4$), blotted dry on absorbent paper, and counted in a scintillation counter. The specific binding was greater than 90% for $\left[{ }^{3} \mathrm{H}\right]$ iloprost and 60% for $\left[{ }^{3} \mathrm{H}\right] \mathrm{PGD}_{2}$ as determined using excess ($10 \mu \mathrm{M}$ iloprost and $100 \mu \mathrm{M} \mathrm{PGD} 2$) cold ligand.

Acknowledgment. We thank Dr. Kim Colson for performing NMR experiments and Anna Bosza for help in preparing the manuscript.

Registry No. 7a, 134701-57-8; 7d, 134701-69-2; 8a, 134701-92-1; 8b, 137743-29-4; 8c, 134701-61-4; 8d, 134701-70-5; 8e, 134701-90-9; 8f, 134701-68-1; 8g, 137743-30-7; 8h, 137743-31-8; 8i, 137743-32-9; 8j, 137743-33-0; 9, 24567-08-6; 10c, 134701-71-6; 11c, 134701-72-7; 12a, 137743-34-1; 12b, 134701-95-4; 12c, 134701-73-8; 12d, 137743-35-2; 13a, 137743-36-3; 13b, 134701-96-5; 13c, 134701-74-9; 13d, 137743-37-4; 14, 134701-98-7; 15, 134701-58-9; 16, 134701-59-0; 17, 134701-75-0; 18a, 134701-76-1; 18b, 134701-80-7; 18c, 134701-78-3; 19a, 134702-05-9; 19b, 137743-38-5; 19c, 134702-06-0; 20, 137743-39-6; 21, 134702-03-7; 22, 134702-04-8; 3,3,5-tri-phenyl-3H-pyrazole methyl 9-bromononanoate, 67878-15-3; tert-butyl bromoacetate, 5292-43-3.

Supplementary Material Available: A graph of the effect of 8 d , SQ 27986, and unlabeled PGD_{2} on $\left[{ }^{3} \mathrm{H}\right] \mathrm{PGD}_{2}$ binding to isolated platelet membranes (1 page). Ordering information is given on any current masthead page.

Synthesis and Biologic Activity of $\mathbf{2}^{\prime}$-Fluoro-2-halo Derivatives of 9- β-D-Arabinofuranosyladenine ${ }^{1}$

John A. Montgomery,* Anita T. Shortnacy-Fowler, Sarah D. Clayton, James M. Riordan, and John A. Secrist III*

Southern Research Institute, Organic Chemistry Research, 2000 Ninth Avenue South, P.O. Box 55305, Birmingham, Alabama 35255-5305. Received June 17, 1991

The synthesis of 2 -halo-9-(2-deoxy-2-fluoro- β-D-arabinofuranosyl)adenines (4b and 4d) by coupling the 2,6 -dihalopurine with 3-acetyl-5-benzoyl-2-deoxy-2-fluoro-D-arabinofuranosyl bromide (2) followed by replacement of the 6-halogen with concomitant removal of the acyl blocking groups is described. 2-Fluoroadenine derivative 4 g had to be prepared by the diazotization-fluorination of 2 -aminoadenine nucleoside 4 e . All three nucleosides provided good increases in life span of mice inoculated with P388 leukemia. The best results were obtained when the compounds were administered $\mathrm{q} 3 \mathrm{~h} \times 8$ on days 1,5 , and 9 after implantation of the leukemia cells. The $2^{\prime}, 3^{\prime}$-dideoxynucleoside 5 b , prepared by deacetylation of 4 f and deoxygenation of the resultant 4 h followed by removal of the benzoyl group of 5a, was slightly active against HIV in cell culture.

Fludarabine phosphate (9- β-D-arabinofuranosyl-2fluoroadenine 5^{\prime} - O-phosphate, F -ara-AMP, 1) has shown
activity in a number of human cancers in Phase I and II clinical trials. ${ }^{3}$ It has group C status at the present time

[^0]: (1) Fuster, V.; Badimon, L.; Adams, P. C.; Turitto, V.; Cheseboro J. Drugs Interfering with Platelet Functions; Mechanisms and Clinical Relevance. Thrombosis and Haemostasis; Verstraete, M., Vermylen, J., Lijnen, H. R., Arnout, J., Eds.; International Society on Thrombosis and Haemostasis and Leuven University Press: Leuven, 1987; pp 349-418.
 (2) Harker, L. A.; Slichter, S. J. Platelet and Fibrinogen Consumption in Man. New Engl. J. Med. 1972, 287, 999-1005.
 (3) Steering Committee of the Physicians' Health Study Research Group. Final Report on the Aspirin Component of the Ongoing Physicians' Health Study. New Engl. J. Med. 1989, 321, 129-135.
 (4) Stein, B.; Fuster, V.; Israel, D. H.; Cohen, M.; Badimon, L.; Badimon, J. J.; Cheseboro, J. H. Platelet Inhibitor Agents in Cardiovascular Disease: An Update. J. Am. Coll. Cardiol. 1989, 14, 813-836.
 (5) Antiplatelet Trialists' Collaboration. Secondary Prevention of Vascular Disease by Prolonged Antiplatelet Treatment. Br. Med. J. 1988, 296, 320-331
 (6) Gallus, A. S. The Use of Antithrombotic Drugs in Artery Disease. Clin. Haematol. 1986, 15, 509-559.
 (7) Harker, L. A. Antiplatelet Drugs in the Management of Patients with Thrombotic Disorders. Semin. Thromb. Hemos tasis 1986, 12, 134-155
 (8) Harker, L. A.; Fuster, V. Pharmacology of Platelet Inhibitors. J. Am. Coll. Cardiol. 1986, 8, 21B-32B
 (9) Seiss, W. Molecular Mechanisms of Platelet Activation. Physiol. Rev. 1989, 69, 58-178.

[^1]: (36) Bailey, D. M.; Hansen, P. E.; Hlavac, A. G.; Baizman, E. R.; Pearl, J.; DeFelice, A. F.; Feigenson, M. E. 3,4-Diphenyl-1H-pyrazole-1-propanamine Antidepressants. J. Med. Chem. 1985, 28, 256-260.
 (37) Trost, B. M.; Curran, D. P. Chemoselective Oxidation of Sulfides to Sulfones with Potassium Hydrogen Persulfate. Tetrahedron Lett. 1981, 22, 1287-1290.
 (38) Drummond, J. T.; Johnson, G. Convenient Procedure for the Preparation of Alkyl and Aryl Substituted N-(Aminoalkylacyl)sulfonamides. Tetrahedron Lett. 1988, 1653-1656.

[^2]: (39) Kraus, J. L. Strategies to Synthesize a New Glyphosate Tetrazole Analogue. Synth. Commun. 1986, 16, 827-832.
 (40) Fleming, J. S.; Buchanan, J. O.; Seiler, S. M.; Brassard, C. L. Unpublished data.

[^3]: (41) Hedberg, A.; Hall, S. E.; Ogletree, M. L.; Harris, D. N.; Liu, E. C.-K. Characterization of $\left[5,6{ }^{3} \mathrm{H}\right]$ SQ 29,548 as a High Affinity Radioligand, Binding to Thromboxane A_{2} /Prostaglandin H_{2} Receptors in Human Platelets. J. Pharm. Exp. Ther. 1988, 245, 786-792.
 (42) Ashby, B. Prostaglandin Regulation of Cyclic AMP Metabolism in Human Platelets. Platelets 1990, 1, 11-20.

[^4]: (43) Evans, B. E.; Kittle, K. E.; Bock, M. G.; Bennett, C. D.; DiPardo, R. M.; Boger, J.; Poe, M.; Ulm, E. H.; LaMont, B. I.; Blaine, E. H.; Fanelli, G. M.; Stabilito, I. I.; Veber, D. F. A Uniquely Potent Renin Inhibitor and Its Unanticipated Plasma Binding Component. J. Med. Chem. 1985, 28, 1755-1756.

[^5]: (44) Fleming, J. S.; Buchanan, J. O.; King, S. P.; Cornish, B. T.; Bierwagen, M. E. Use of the Biolaser in the Evaluation of Antithrombotic Agents. Platelets and Thrombosis; Scriabine, A., Sherry, S., Eds.; Baltimore Univ. Park Press: Baltimore, 1974; pp 247-262.

[^6]: (46) Armstrong, R. A.; Jones, R. L.; MacDermot, J.; Wilson, N. H. Prostaglandin Endoperoxide Analogues Which Are Both Thromboxane Receptor Antagonists and Prostacyclin Mimetics. Br. J. Pharmacol. 1986, 87, 543-551.

