Tetrahedron 65 (2009) 8139-8142

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Scope of AuCl₃ in the activation of per-O-acetylglycals

Rengarajan Balamurugan*, Srinivasa Rao Koppolu

School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500046, India

ARTICLE INFO

Article history: Received 31 March 2009 Received in revised form 25 July 2009 Accepted 29 July 2009 Available online 6 August 2009

ABSTRACT

Gold(III)chloride in catalytic amounts activates 3,4,6-tri-O-acetyl-D-glucal, 3,4,6-tri-O-acetyl-D-galactal, and 3,4-di-O-acetyl-L-rhamnal efficiently. The activated species can be employed in the Ferrier reaction with different nucleophiles at ambient conditions. Attempts have been made to make β -anomer of the Ferrier product from anomeric-O-propargylated Ferrier product.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

There has been substantial interest in the use of gold compounds for several organic transformations in recent years.¹ Gold catalysts have been used mostly in the activation of π -bond of alkynes, allenes, and alkenes. The activated species has been utilized in hydrofunctionalization using carbon and hetero nucleophiles or cycloisomerization reactions. Activation and reaction of C-H bonds by gold catalysts has also gained significant interest.² In carbohydrate chemistry, AuCl₃ was utilized by Hotha et al. in the glycosylation reactions using propargyloxy group as the leaving group.³ Anomeric-O-propargylated glycosyl donors and 3-O-propargylated glucals have been employed in these reactions to get, respectively, glycosides and 2,3-unsaturated glycosides. 2,3-Unsaturated glycosides are useful intermediates in carbohydrate chemistry to synthesize compounds with wide range of biological activities.⁴ In view of this, several catalysts have been found to effect the Ferrier reaction.⁵ Most of the catalysts are either Lewis acids⁶ or oxidants.⁷ All these reactions result in the formation of α -anomers as the major product.

Making β -anomer of 2,3-unsaturated sugar poses a challenging task due to anomeric effect. To make the β -anomer, only one method is known so far that employs Pd(OAc)₂ and bulky phosphine ligands.⁸ In this regard we wished to utilize the oxophilicity and alkynophilicity of AuCl₃ to explore its possible application in making the β -anomer of 2,3-unsaturated glycosides. Further we believed that the bigger size of gold will influence the selectivity. Incidentally the glycosylation reaction of glycals using catalytic AuCl₃ has not been attempted with easily accessible per-O-acetyl-glycoside from 3,4,6-tri-O-acetyl-D-glycals using AuCl₃. Further, utilizing the activation of propargyl group by AuCl₃, we believed that a nucleophile could displace in an S_N2 fashion to form the β -anomer. We disclose the results of our attempts in this lines.

2. Results and discussion

In order to make a complete study we studied the AuCl₃-catalyzed Ferrier reactions on 3,4,6-tri-O-acetyl-D-glucal first. It underwent smooth Ferrier reaction (Scheme 1). The results are presented in Table 1. The reactions occurred at room temperature even with lesser amounts of the catalyst (0.5-2 mol % of AuCl₃). Reaction carried out at 0 °C also showed almost same selectivity, however, took more time for completion. Interestingly no reaction was observed when Ph₃PAuCl was used. The highlight of the AuCl₃-catalyzed Ferrier reaction is that a variety of nucleophiles such as O-, S-, and C-nucleophiles could be employed. Reaction of 3,4,6-tri-O-acetyl-D-glucal with primary, secondary, allylic, benzylic, and propargylic alcohols gave excellent yields. Reaction involving phenol was not effective as it gave a mixture of products. Reactions with 3,4,6-tri-O-acetyl-D-glucal needed only less amount of the catalyst (0.5 mol%) except the reactions involving propargyl alcohol, 3-butyn-2-ol, and monosaccharide nucleophiles where 2 mol % of the catalyst was needed. In the case of propargyl alcohol and 3-butyn-2-ol nucleophiles the catalyst might coordinate to the triple bond making itself less available for the activation of glycal. In all the cases α -anomer predominated over the β -anomer. The α -selectivity was moderate to good. This may be attributed to the bigger size of gold that blocks the α -face. The α/β ratio was based on the integration of the C-1 hydrogen of α and β -anomers in the ¹H NMR spectra, which appear at distinct positions.^{6,7} Thiol nucleophiles, which generally interact with gold also worked well. Allyltrimethylsilane and ethyl acetoacetate resulted in C-glycosylation. Although the yields were good, the α-selectivity was slightly less comparatively. We then examined the AuCl₃-catalyzed

$$\begin{array}{c} X \\ ACO \\ OAc \\ 1 - 3 \end{array} + Nu \quad \begin{array}{c} AuCl_3 (0.5 - 2 \text{ mol}\%) \\ CH_2Cl_2, \text{ RT} \\ AcO \\ 1 - 4 \end{array} + \begin{array}{c} X \\ AcO \\$$

Scheme 1. AuCl₃-catalyzed Ferrier reaction.

^{*} Corresponding author. Tel./fax: +91 40 2313 4817. E-mail address: rbsc@uohyd.ernet.in (R. Balamurugan).

^{0040-4020/\$ –} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2009.07.087

Ferrier reaction using monosaccharide nucleophiles. We prepared methyl 2,3,4-tri-O-benzyl glucopyranoside⁹ and methyl 2,3,6-tri-O-benzyl glucopyranoside¹⁰ using literature protocols and employed them in Ferrier reactions. These substrates needed 2 mol% of the catalyst. While the reaction involving methyl 2,3,4-tri-O-benzyl glucopyranoside gave good yield, the selectivity was only 4.2:1. Whereas excellent α -selectivity was observed with methyl 2,3,6-tri-O-benzyl glucopyranoside. This observation is in line with the data reported previously with other Lewis acids.

Table 1

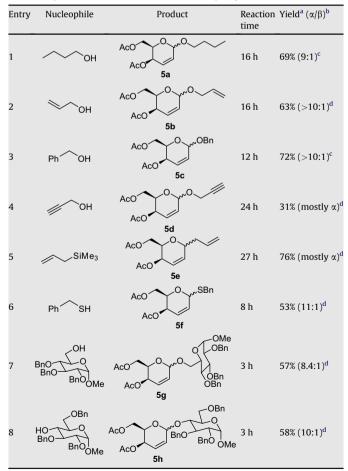
AuCl₃-catalyzed Ferrier reaction on 3,4,6-tri-O-acetyl-D-glucal 1

Entry	Nucleophile	Product	Reaction time	Yield ^a $(\alpha/\beta)^{b}$
1	он		3.5 h	98% (8:1) ^c
2	Нон		16 h	98% (4:1) ^c
3	он		9 h	97% (6.3:1) ^c
4	РhへOH	Aco ^v OBn Aco ^v 4d	15 min	98% (3.4:1) ^c
5	ОН	Aco	6.5 h	85% (6.5:1) ^d
6	ОН	Aco o mo	5 h	72% (6:1) ^d
7	Ph ^{SH}	Aco [°] , SBn Aco [°] 4g	18 h	82% (3:1) ^c
8	PhSH	Aco ^v SPh Aco ^v 4h	1 h	97% (4:1) ^c
9	SiMe ₃	AcO ^{VI} AcO ^{VI} 4i	9 h	81% (2.6:1) ^c
10	0 0 OEt	AcO ^{CO} ₂ Et AcO ^{CO} ₄ AcO ^V	15 min	80% (4.4:1) ^c
11	Bno DH Bno Bno OMe	Aco Aco Aco 4k	5 h	74% (4.2:1) ^d
12	HO BnO BnO BnO OMe	AcO AcO 4I	3 h	54% (mostly α) ^d

^a Isolated yields.

^b Ratio was based on the integration of the corresponding anomeric protons in the ¹H NMR spectrum.

^c Catalyst (0.5 mol %) was used.


^d Catalyst (2 mol %) was used.

Gold catalysts are efficient for the cycloisomerization reactions of enynes.^{1g} The Ferrier product of propargyl alcohol and 3,4,6-tri-*O*-acetyl-D-glucal is an enyne system. In this regard we expected the corresponding cycloisomerization product, a fused bicyclic system. However, we got the Ferrier product only and did not observe any cycloisomerization of the Ferrier product. Our attempt to cycloisomerize the above Ferrier product using $Ph_3PAuCl/AgSbF_6$ gave a mixture of products.

We then examined the AuCl₃-catalyzed Ferrier reaction on 3.4.6-tri-O-acetyl-p-galactal 2. The reactions were sluggish compared to that of 3.4.6-tri-O-acetyl-p-glucal when 0.5 mol% of the catalyst was used. This observation is not surprising as 3,4,6-tri-Oacetyl-D-galactal **2** is generally less reactive than 3,4,6-tri-O-acetylp-glucal. However, the reaction profile improved when 2 mol % of AuCl₃ was used (Table 2). The difference in reactivity of 3,4,6-tri-Oacetyl-D-glucal and 3,4,6-tri-O-acetyl-D-galactal toward AuCl3catalyzed Ferrier reaction was further confirmed by doing the following control experiment. Equimolar guantities of 3,4,6-tri-Oacetyl-D-glucal and 3,4,6-tri-O-acetyl-D-galactal were treated with *n*-butanol in dry CH₂Cl₂ containing 1 mol % of AuCl₃ for 3 h. Analyzing the ¹H NMR spectra of the product mixture revealed that the corresponding Ferrier products of glucal and galactal derivatives were in the ratio of 3:2, respectively. Different nucleophiles (O-, S-, and C-nucleophiles) were employed in the reactions. The yields were comparatively lower than the reactions involving 3,4,6-tri-Oacetyl-p-glucal and the reactions took more time for completion. However monosaccharide nucleophiles reacted faster. Like in the Ferrier reaction with 3,4,6-tri-O-acetyl-D-glucal, propargyl alcohol

Table 2

```
AuCl<sub>3</sub>-catalyzed Ferrier reaction on 3,4,6-tri-O-acetyl-D-galactal 2
```


^a Isolated yields.

^b Ratio was based on the integration of the corresponding anomeric protons in the ¹H NMR spectrum.

^c Catalyst (1 mol %) was used.

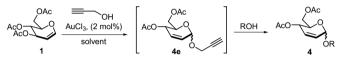
d Catalyst (2 mol %) was used.

reacted slowly with 3,4,6-tri-O-acetyl-D-galactal even in the presence of 2 mol % of AuCl₃ resulting in low yield. The same argument that was put earlier i.e., possible coordination of AuCl₃ to alkynic bond is valid here as well for the poor outcome of the reaction. The α -selectivity was in general excellent. In couple of cases α -glycosylated products were obtained exclusively.

Ferrier reactions on 3,4-di-O-acetyl-L-rhamnal were also studied with representative nucleophiles. The reactions proceeded smoothly and the yields were good to excellent. The results are presented in Table 3. The α -selectivity is preferred here as well.

Table 3

AuCl₃-catalyzed Ferrier reaction on 3,4-di-O-acetyl-L-rhamnal **3**


Entry	Nucleophile	Product	Reaction time	Yield ^a $(\alpha/\beta)^{b,c}$
1	ОН	Ac0 6a	45 min	86% (5:1)
2	Ph ^{OH}	AcO 6b	45 min	67% (5.5:1)
3	ОН	4c0 6c	45 min	92% (5.7:1)
4	SiMe ₃	Aco 6d	1.5 h	62% (>15:1)
5	Ph ^{SH}	AcO 6e	3 h	95% (7:1)

^a Isolated yields.

^b Ratio was based on the integration of the corresponding anomeric protons in the ¹H NMR spectrum.

^c Catalyst (1 mol %) was used.

Hotha et al. have recently reported the glycosylation at the anomeric position using AuCl3-catalyzed anomeric activation of propargyl glycosides.^{3a} They had observed β -selectivity in majority of the cases studied. In this regard we considered the AuCl₃catalyzed glycosylation of propargylated Ferrier product 4e, which in turn could be obtained in the same pot by the Ferrier reaction on **1**. $S_N 2$ reaction on the major α -isomer of **4e** with nucleophiles would, in principle, give the β -isomer of **4** (Scheme 2). We treated 3,4,6-tri-O-acetyl-p-glucal with propargyl alcohol in the presence of 2 mol % of AuCl₃ in different solvents. The results are presented in Table 4. Except in DMF the reaction occurred in other solvents such as CH₂Cl₂, CH₃CN, dioxane, and THF. The α/β ratio of **4e** formed in these reactions is in the range of 6:1. To the same reaction mixture *n*-BuOH was added and the reaction was continued. In dichloromethane no glycosylation was noticed even after 27 h of reflux. However, the reaction occurred in CH₃CN under reflux to give Ferrier product **4a**. The α/β ratio was found to be reduced to 5:1 (entry 2, Table 4), which was 8:1 in the direct Ferrier reaction (entry 1, Table 1). Although the change in selectivity is marginal it encouraged us to attempt the reactions using AgSbF₆ and AgOTf as additives, which will generate more cationic Au species to activate the triple bond better. The reaction proceeded at room temperature, but the formation of β -isomer was not improved. Similar results were observed when benzyl alcohol was used as nucleophile (entries 10 and 11). From these results it is clear that there is no sign of S_N2 attack. Further it indicates that the activation of the propargyloxy group by AuCl₃ generates the oxocarbenium ion. The anomeric effect of the ring oxygen and the conformation of the ring favors the α -attack. Also the results reveal that the participation of acetonitrile to favor the β -attack by coordinating to the oxocarbenium ion is also negligible. This is in line with the results of already reported Ferrier reactions catalyzed by Lewis acids in acetonitrile solvent.⁶ Hence we wished to reduce the participation of ring oxygen to anomeric effect. Since lithium is oxophilic we conducted the reaction by adding 2 equiv of LiClO₄ with respect to the amount of 3,4,6-tri-O-acetyl-D-glucal. However, it did not help in this way and α/β ratio of 6.2:1 was observed (entry 8). This may be due to the presence of many oxygen sites in the substrate for lithium ion coordination. It has to be mentioned that some amount (<20%) of propargylated Ferrier product **4e** was isolated from all the reactions except the reactions involving co-catalysts AgOTf/AgSbF₆.

Scheme 2. AuCl₃-catalyzed one-pot propargylation and subsequent glycosylation.

 Table 4

 Results of AuCl₃-catalyzed one-pot propargylation and subsequent glycosylation

Entry	ROH	Solvent and condition	4	Yield ^a (%)	$\alpha{:}\beta^{b}$
1	n-BuOH	CH ₂ Cl ₂ /reflux, 27 h	4e	80	6.4:1
2	n-BuOH	CH₃CN/reflux, 24 h	4a	50	5:1
3	n-BuOH	CH ₃ CN/rt, 22 h ^c	4a	68	7.6:1
4	n-BuOH	CH₃CN/rt, 22 h ^d	4a	66	7.4:1
5	n-BuOH	Dioxane/rt, 27 h	4a	61	5.5:1
6	n-BuOH	THF/rt, 21 h	4a	53	7:1
7	_	DMF/rt, 24 h	_	NR	—
8	n-BuOH	CH ₃ CN/rt, 24 h ^e	4a	41	6.2:1
9	_	CH ₃ CN/rt, 24 h ^{c,f}	—	NR	—
10	BnOH	CH₃CN/rt, 25 h ^c	4d	64	3.1:1
11	BnOH	CH ₃ CN/rt, 28 h ^d	4d	73	3.1:1

^a Isolated yields.

^b Ratio was based on the integration of the corresponding anomeric protons in the ¹H NMR spectrum.

^c AgSbF₆ (6 mol %) was used in addition.

^d AgOTf (6 mol %) was used in addition.

^e LiClO₄ (2 equiv) was used in addition.

^f PPh₃ (20 mol %) was used in addition.

We then thought of sterically blocking the α -face of the goldcoordinated oxocarbenium species by coordinating gold with bulky ligands such as PPh₃. This strategy had been applied in the preparation of β -Ferrier product using palladium catalyst.⁸ However, even the Ferrier reaction on 3,4,6-tri-O-acetyl-p-glucal was not noticed (entry 9). With glycosyl acceptors methyl 2,3,4-tri-Obenzyl glucopyranoside and methyl 2,3,6-tri-O-benzyl glucopyranoside, however, the transglycosylation reaction with 3,4,6-tri-Oacetyl-p-glucal did not occur. The transglycosylation reaction with 3,4,6-tri-O-acetyl-p-galactal was not attempted as the Ferrier reaction with propargyl alcohol itself resulted in poor yield (entry 4, Table 2).

3. Conclusion

We have described AuCl₃ as an efficient catalyst for the Ferrier reaction of 3,4,6-tri-O-acetyl-D-glucal, 3,4,6-tri-O-acetyl-D-gal-actal, and 3,4-di-O-acetyl-L-rhamnal. The advantage of AuCl₃ has been shown by the versatility of the reaction with a range of nucleophiles. Also we presented our attempts to make β -O-glyco-sides using the activating ability of AuCl₃ toward propargyloxy group.

4. Experimental section

4.1. General remarks

All reagents were obtained commercially and used without further purification unless otherwise mentioned. Dichloromethane was freshly distilled over anhydrous CaH₂. Acetonitrile was distilled over CaH₂ and stored under argon atmosphere. Thin-laver chromatography was performed by using Merck silica gel F-254 coated aluminum plates and the visualization of spots was done using UV illumination and charring the TLC plates sprayed with Seebach solution or 5% H₂SO₄ solution in methanol. Column chromatography was performed over silica gel procured from Merck, using hexanes and ethyl acetate mixture as eluent. Solvents were removed under reduced pressure using rotovap. The ¹H NMR spectra were recorded in a Bruker Avance 400 MHz NMR machine using solutions in CDCl₃ containing TMS as an internal standard. IR spectra were recorded on JASCO FT/IR-5300 spectrometer. Elemental (C, H, N) analysis were done using Thermo Finnigan Flash EA 1112 analyzer. Optical rotations were measured using Rudolph Research Analytical Autopol-IV polarimeter.

4.2. General procedure for the AuCl₃-catalyzed Ferrier reaction

To a solution of 3,4,6-tri-O-acetyl-D-glucal 1/3,4,6-tri-O-acetyl-D-galactal 2/3,4-di-O-acetyl-L-rhamnal 3 (1 equiv) and aglycon (1.2 equiv) in anhydrous CH₂Cl₂ (3 mL/mmol) AuCl₃ (0.5–2 mol%) was added at room temperature. The reaction mixture was stirred at the same temperature. After complete consumption of the starting glycal derivative, solvent was evaporated and the residue was loaded on a silica gel column. The product was purified using EtOAc/hexanes as eluent system.

4.3. General procedure for the AuCl₃-catalyzed one-pot Ferrier and subsequent glycosylation reactions

To a solution of 3,4,6-tri-O-acetyl-D-glucal **1** (1 equiv) and propargyl alcohol (1.2 equiv) in dry solvent (5 mL/mmol) AuCl₃ (2 mol %) was added. The reaction mixture was stirred at room temperature. On complete consumption of **1** to form **4e**, which generally takes around 6 h, aglycon (1.2 equiv) was added. The reaction mixture was stirred under inert atmosphere. After stirring for specified time given in Table 4 it was purified using silica gel column using ethyl acetate and hexane mixture as eluent.

Acknowledgements

The authors thank DST, New Delhi, India for financial support. The authors extend their thanks to the School of Chemistry, University of Hyderabad for providing necessary start-up grants. K.S.R. is grateful to CSIR, India for a fellowship.

Supplementary data

Characterization data and spectra of all the Ferrier products are provided. Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2009.07.087.

References and notes

- (a) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351; (b) Shen, H. C. Tetrahedron 2008, 64, 3885; (c) Muzart, J. Tetrahedron 2008, 64, 5815; (d) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180; (e) Arcadi, A. Chem. Rev. 2008, 108, 3266; (f) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239; (g) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326; (h) Marion, N.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2750; (i) Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45, 200; (j) Hoffmann-Röder, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387.
- 2. Skouta, R.; Li, C.-J. Tetrahedron 2008, 64, 4917.
- (a) Hotha, S.; Kashyap, S. J. Am. Chem. Soc. 2006, 128, 9620; (b) Kashyap, S.; Hotha, S. Tetrahedron Lett. 2006, 47, 2021; (c) Kashyap, S.; Vidadala, S. R.; Hotha, S. Tetrahedron Lett. 2007, 48, 8960; (d) Sureshkumar, G.; Hotha, S. Tetrahedron Lett. 2007, 48, 6564.
- (a) Chambers, D. J.; Evans, G. R.; Fairbanks, A. J. *Tetrahedron: Asymmetry* 2005, 16, 45; (b) Srivastava, R. M.; Oleveira, F. J. S.; Silva, L. P.; Filho, J. R. F.; Oliveira, S. P.; Lima, V. L. M. *Carbohydr. Res.* 2001, 332, 335; (c) Schmidt, R. R.; Angerbauer, R. *Angew. Chem., Int. Ed. Engl.* 1977, 16, 783; (d) Borachero-Moya, P.; Cabrera-Escribano, F.; Gómez-Guillén, M.; Peredes-León, M. R. *Carbohydr. Res.* 1998, 308, 181; (e) Schmidt, R. R.; Angerbauer, R. *Carbohydr. Res.* 1979, 72, 272; (f) Danishefsky, S. J.; Bilodeau, M. T. *Angew. Chem., Int. Ed.* 1996, 35, 1380.
- (a) Ferrier, R. J.; Zubkov, O. A. Org. React. 2003, 62, 569; (b) Ferrier, R. J. Top. Curr. Chem. 2001, 215, 153; (c) Ferrier, R. J.; Prasad, N. J. Chem. Soc. 1969, 570.
- (a) Zhang, G.; Liu, Q.; Shi, L.; Wang, J. Tetrahedron 2008, 64, 339; (b) Zhang, G.; Liu, Q. Synth. Commun. 2007, 37, 3485; (c) Babu, B. S.; Balasubramanian, K. K. Tetrahedron Lett. 2000, 41, 1271; (d) Takhi, M.; Abdel-Rahman; Adel, A. K. Schmidt, R. R. Tetrahedron Lett. 2001, 42, 4053; (e) Agarwal, A.; Rani, S.; Vankar, Y. D. J. Org. Chem. 2004, 69, 6137; (f) Bhate, P.; Horton, D.; Priebe, W. Carbohydr. Res. 1985, 144, 331; (g) Yadav, J. S.; Reddy, B. V. S.; Reddy, J. S. S. J. Chem. Soc., Perkin Trans. 1 2002, 2390; (h) Babu, B. S.; Balasubramanian, K. K. Synth. Commun. 1998, 29, 4299; (i) Masson, C.; Soto, J.; Bessodes, M. Synlett 2000, 1281; (j) Swami, N. R.; Venkateswarlu, Y. Synthesis 2002, 598; (k) Yadav, J. S.; Reddy, B. V. S.; Murthy, C. V. S. R.; Kumar, G. M. Synlett 2000, 1450; (l) Shanmugasundaram, B.; Bose, A. K.; Balasubramanian, K. K. Tetrahedron Lett. 2002, 43, 6795; (m) Bettadaiah, B. K.; Srinivas, P. Tetrahedron Lett. 2003, 44, 7257; (n) Smitha, G.; Reddy, C. S. Synthesis 2004, 834.
- (a) López, J. C.; Fraser-Reid, B. J. Chem. Soc., Chem. Commun. 1992, 94; (b) Toshima, K.; Ishizuka, T.; Matsuo, G.; Nakata, M.; Kinoshita, M. J. Chem. Soc., Chem. Commun. 1993, 704; (c) Fraser-Reid, B.; Madsen, R. J. Org. Chem. 1995, 60, 772; (d) Koreeda, M.; Houston, T. A.; Shull, B. K.; Klemke, E.; Tuinman, R. J. Synlett 1995, 90; (e) Yadav, J. S.; Reddy, B. V. S.; Pandey, S. K. New J. Chem. 2001, 25, 538.
- 8. Kim, H.; Men, H.; Lee, C. J. Am. Chem. Soc. 2004, 126, 1336.
- 9. Bhattacharjee, S. S.; Gorin, P. A. J. Can. J. Chem. 1969, 47, 1195.
- 10. DeNinno, M. P.; Etienne, J. B.; Duplantier, K. C. Tetrahedron Lett. 1995, 36, 669.