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A tandem asymmetric Michael-addition/cyclization of cyclic 1,3-

dicarbonyl compounds to β,γ-unsaturated α-ketoesters catalyzed

by chiral phosphoric acid is presented. This protocol provides a

facile approach for the construction of enantioenriched 9-alkyl

tetrahydroxanthenones, an ubiquitous framework found in a

number of natural products and pharmaceutical molecules, in high

yields with good to high enantioselectivities.

The xanthene is an important skeleton since it is present in
numerous natural products and pharmaceutical molecules
(e.g. callistrilone A, myrtucomvalone E and rhodomyrtone,
Fig. 1a), which exhibit various biological activities, e.g., anti-
oxidant, analgesic, antibacterial, anti-inflammatory, anticancer
and antiviral properties.1,2 In this regard, 9-substituted tetrahy-
droxanthenone derivatives have been evaluated as an orally
active neuropeptide Y5 receptor antagonist.3 Moreover, tetrahy-
droxanthenones also showed unique physical properties,
which have been widely utilized as fluorescent materials or
dyes.4 Therefore, a great of efforts have been devoted to the
construction of such scaffold.5–7 However, the asymmetric syn-
thetic protocols are scarcely documented.6,7 In this context, Xu
described an enantioselective cascade Oxa-Michael/Michael
reaction of 2-hydroxynitrostyrenes with enones catalyzed by
prolinol thioether enabled the asymmetric synthesis of 9-alkyl
hexahydroxanthenone.6 Enders exploited a thiourea catalyst
for the asymmetric synthesis of 9-nitromethyl tetrahydrox-
anthenone 3 in good to excellent enantioselectivities from 2-
(nitrovinyl)phenol 1 and 1,3-dicarbonyl compounds 2
(Fig. 1b).7a Rueping and Schneinder respectively reported the

tandem nucleophilic addition/cyclization of ortho-quinone
methide (o-QM), in situ generated from diaryl methanol 4, with
cyclohexan-1,3-dione 2a promoted by chiral phosphoric acid
(CPA) to deliver chiral 9-aryl tetrahydroxanthenone 5 in good
to excellent enantioselectivities (Fig. 1c).7b,c Subsequently, CPA
catalyzed nucleophilic addition/cyclization of enamine to
in situ generated o-QM or p-QM to build up enantioenriched
9-substituted tetrahydroxanthenone were also reported.
However, this strategy could only enable the construction of
enantioenriched 9-aryl or alkynyl tetrahydroxanthenone and
the asymmetric synthesis of 9-alkyl tetrahydroxanthenone cata-
lyzed by CPA remains elusive.

Fig. 1 Representative tetrahydroxanthenone natural products and
chiral phosphoric catalyzed synthesis of enantioenriched
tetrahydroxanthenone.
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Undoubtedly, Michael addition of nucleophiles to electron-
deficient alkenes is one of the most efficient strategies for the
C–C bond formation. Particularly, asymmetric Michael
additions of 1,3-dicarbonyl compounds to enones have been
extensively employed for the construction of the core skeletons
of natural products and biologically active molecules.8,9 On the
other hand, cascade reactions have provided competent tools
for quick increasing molecular complexity from simple start-
ing materials.10 In this regard, enantioselective domino reac-
tions have emerged for the asymmetric construction of ring
framework via different type of domino reactions initiated
with Michael addition, e.g. Michael-aldol,11 Michael–
Michael,12 Michael–Darzens,13 Michael–Knoevenagel,14

Michael-alkylation,15 Michael-lactamization16 and Michael-
acetalization17 cascade reactions.

Since the seminal reports of Akiyama and Terada in 2004,18

chiral phosphoric acids catalyzed reactions have witnessed
enormous advances. This could be ascribed to finely tunable
chiral pocket and its bifunctional catalytic activity. To date,
over 100 asymmetric reactions, such as Michael addition,
cycloaddition, Friedel–Crafts, C–H insertion, dearomatization,
Fischer indolization and desymmetrization are realized by
employing CPAs as promoter.19 In line with our interests in
the synthesis of polycyclic heterocycles,20 herein we would like
to report a R-TRIP catalyzed tandem Michael addition/cycliza-
tion reaction of (E)-2-hydroxyphenyl-2-oxobut-3-enoates with
cyclo-1,3-diones to give enantioenriched 9-alkyl tetrahydrox-
anthenones via tandem Michael addition/cyclization process
(Fig. 1d).

On the outset, the reaction of methyl (E)-4-(2-hydroxyphe-
nyl)-2-oxobut-3-enoate 6a with cyclo-1,3-dione 2a was assessed
to prepare 2,8-dioxabicyclo[3.3.1]nonane 7aa by employing our
previous reaction conditions.20a To our surprise, tetrahydrox-
anthenone 7a instead of 7aa was obtained (Table 1, entry 1). In
a control experiment (Table 1, entry 2), the same result were
obtained without the irradiation of blue LEDS, indicating the
reaction might proceed through a different pathway
(vide infra). We then began to optimize the reaction conditions.
After the evaluation of various reaction mediums, we found
that CCl4 was the optimal solvent for both better yield and
enantioselectivity (Table 1, entry 3). The reaction also pro-
ceeded smoothly in toluene and other halogenated solvents
(e.g. DCE and CHCl3) with slightly decreased enantioselectivi-
ties being observed (Table 1, entries 4 to 6). By contrast, no
product could be obtained both in MeCN and THF and using
hexane also led to inferior isolated yield (Table 1, entries 7 to
9). Subsequently, the reaction was investigated by screening an
array of chiral phosphoric acids in CCl4. Amongst all the used
CPAs, R-TRIP was proved to be the optimal catalyst for this
reaction, affording 7a in 98% yield with 92% ee (Table 1,
entries 10 to 18). In addition, the yield of 7a was decreased
when the concentration of reaction mixture increased (Table 1,
entries 19 and 20).

With the optimal condition in hand (Table 1, entry 2), the
substrate scope was subsequently investigated (Scheme 1).
Firstly, substrates with ethyl and isopropyl groups on the ester

moiety (R2) gave tetrahydroxanthenones 7b and 7c in 91% and
83% ee respectively. Additionally, a variety of substituted
β,γ-unsaturated α-ketoesters were prepared and subjected
enones with electron-withdrawing groups at C-6 on the aro-
matic ring (R1 = 6-Cl, 6-Br) gave the desired products 7d and 7e
in excellent yields and high enantioselectivities (94% ee and
91% ee). However, electron-withdrawing groups at C-5, C-7 and
C-8 on the aromatic ring were unfavorable for this reaction
and noticeable decrease in yields and enantioselectivities were
observed of the corresponding products 7f to 7i. Furthermore,
electron-donating groups such as methoxy and methyl on the
aromatic ring reacted smoothly with cyclo-1,3-dione 2a, and
good results were achieved (7j to 7l, 80–92% ee). In addition,
the scope of cyclo-1,3-dione was also evaluated. Cycloheptane-
1,3-dione gave comparable enantioselectivity (7m, 92% ee),
while 5,5-disubstituted cyclohexane-1,3-dione led to lower
enantioselectities (87% ee for 7n and 74% ee for 7o).
Furthermore, 5-monosubstituted cyclohexane-1,3-dione was
converted to the desired products 7p and 7q in high yields
(95% and 90%) with good enantioselectivities (87% and 89%
ee) and reasonable diastereoselectivities (4 : 1 and 5 : 1 dr).

Table 1 Survey of the reaction conditionsa

Entry Catalyst Solvent Yieldb (%) eec (%)

1d L1 CH2Cl2 58 87
2 L1 CH2Cl2 56 88
3 L1 CCl4 98 92
4 L1 CH2ClCH2Cl 64 90
5 L1 CHCl3 53 85
6 L1 PhCH3 72 86
7 L1 MeCN ND
8 L1 THF ND
9 L1 Hexane 16 86
10 L2 CCl4 40 72
11 L3 CCl4 70 82
12 L4 CCl4 34 11
13 L5 CCl4 32 39
14 L6 CCl4 16 4
15 L7 CCl4 76 48
16 L8 CCl4 48 71
17 L9 CCl4 90 91
18e L10 CCl4 88 88
19 f L1 CCl4 89 90
20 L1 CCl4 84 90

a Reaction conditions: To a mixture of hydroxyl (E)-2-hydroxyphenyl-2-
oxobut-3-enoates 6a (0.1 mmol), 1,3-cyclohexanedione 2a (0.12 mmol)
and catalyst (0.01 mmol) was added solvent (3 mL). The reaction
mixture was stirred at room temperature overnight. b Isolated yields.
cDetermined by chiral HPLC on ChiralPak AD-H column. dUnder the
irradiation of blue LEDs. e 1 mL CCl4 was added. f 0.5 mL CCl4 was
added.
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To demonstrate the synthetic practicality of this protocol
(Scheme 2), the reaction of methyl (E)-4-(2-hydroxyphenyl)-2-
oxobut-3-enoate 6a with cyclo-1,3-dione 2a was carried out on
1 mmol scale, which afforded 7a in 90% yield with 94% ee. A
single crystalline of 7a was fortunately obtained, which
undoubtedly determined the absolute configuration of 7a to
be (R) (Scheme 2).

As our previous work indicated that 2-hydroxychalcone
could be converted to flavylium I under the irradiation of
visible light in the presence of Brønsted acid, which would
engage in nucleophilic addition to afford flavonoids 9 or 7aa
(Scheme 3).20a We spelculated that acid-catalyzed skeleton
rearrangement of flavonoids 9 or 7aa might generate 7a via

ring opening/cyclization process. Therefore, two control reac-
tions were carried out using the standard reaction conditions
except that one was run under the irradiation of blue LEDs
and the other was performed in the dark (Scheme 3). To our
surprise, those two reactions only produced tetrahydroxanthe-
nones 7a in comparable yield and enantioselectivities. On the
other hand, (E)-4-(2-hydroxyphenyl)-2-oxobut-3-enoate 6a was
slowly transferred to hemiketal 8 in quantitative yields under
the irradiation of blue LEDs (eight hours) or in the dark (seven
days). However, when hemiketal 8 was retreated with cyclo-1,3-
dione 2a under the standard reaction conditions, only racemic
hybrid flavonoids 9 was isolated in 50% yield and no 7a or 7aa
was detected even with extension of the reaction time. Based
on these observations, the cycloisomerization/nucleophilic
addition/skeleton rearrangement pathway was thus ruled out.

Based on the mechanistic studies and previous reports on
CPA catalyzed Michael reactions,7b,c,17,19 we proposed a
tandem Michael addition/cyclization pathway for this reaction
(Scheme 4). The phosphoric acid promoted the Michael
addition of cyclohexa-1,3-dione 2a to methyl (E)-4-(2-hydroxy-
phenyl)-2-oxobut-3-enoate 6a via a hydrogen-bond network
exerted by R-TRIP (Scheme 4). Hydrogen bonding between the
keto-moiety of 6a with R-TRIP together with plausible π–π
stacking of the phenol fragment of 6a with the side aromatic
ring of R-TRIP made the Si-face of the enone available for the
incoming nucleophilic attack of cyclohexa-1,3-dione,21 which
produced Michael adduct 10 with R-configuration.
Subsequently, intramolecular cyclization of phenol to the
dione moiety via nucleophilic addition/dehydration gave the
resulting tetrahydroxanthenone 7a.

Scheme 1 Substrate scope.

Scheme 2 1 mmol scale synthesis and X-ray crystallography of 7a.

Scheme 3 The cycloisomerization/nucleophilic addition/skeleton
rearrangement pathway.
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Conclusions

In summary, an asymmetric synthesis of 9-alkyl tetrahydrox-
anthenone scaffold from (E)-2-hydroxyaryl-2-oxobut-3-enoates
via tandem Michael addition/cyclization with cyclo-1,3-diones
catalyzed by R-TRIP was developed. This process provided a
facile entry to a series of 9-alkyl tetrahydroxanthenones in
high yields with good to high enantioselectivities. The appli-
cation of this methodology in the asymmetric synthesis of
natural products is currently pursued in our laboratory and the
results will be reported in due course.
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