

Available online at www.sciencedirect.com

Inorganica Chimica Acta

Inorganica Chimica Acta 360 (2007) 3323-3329

www.elsevier.com/locate/ica

Difference in reactivity of triel halides EX₃ towards ferrocene

Stefan Scholz, Matthias Scheibitz, Frauke Schödel, Michael Bolte, Matthias Wagner, Hans-Wolfram Lerner *

Institut für Anorganische Chemie, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, D-60438 Frankfurt, Germany

Received 31 January 2007; received in revised form 28 March 2007; accepted 31 March 2007 Available online 11 April 2007

Abstract

A facile route to the Fe^{2+} -arene complex $[(C_6H_6)FeCp][AlBr_4]$ is the reaction of ferrocene with AlBr₃ in benzene. The structure of the Fe^{2+} -arene complex $[(C_6H_6)FeCp][AlBr_4] \cdot C_6H_6$ was found to be isomorphous with those of $[FeCp_2][ECl_4] \cdot C_6H_6$ (E = Al, Ga). The crystal structures of the $[FeCp_2][AlCl_4] \cdot C_6H_6$ (E = Al, Ga) presented here show structural features which are different from those of solvent-free ferrocenium salts $[FeCp_2][ECl_4] (E = Al, Ga, Fe)$. However, the cell parameters of solvent-free ferrocenium tetrafluoroborate $[FeCp_2][BF_4]$ are also quite different from those of solvent-free $[FeCp_2][ECl_4] (E = Al, Ga, Fe)$. In contrast to the eclipsed conformation in solvent-free $[FeCp_2][ECl_4] (E = Al, Ga, Fe)$ the cyclopentadiene rings in $[FeCp_2][BF_4]$ and $[FeCp_2][ECl_4] \cdot C_6H_6$ (E = Al, Ga) are in a staggered conformation.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Ferrocene; Triel halides; Ferrocenium; Isomorphism

1. Introduction

A number of studies have shown that an electrophilic substitution of ferrocene takes place in the presence of BX_3 (X = Cl, Br) [1–3]. The mono and diborylated ferrocene (1 and 2), therefore, are accessible in high yield by treatment of ferrocene with 1 and 2 equiv. of BBr₃, respectively [2]. On the other hand, borylation with an excess of BBr₃ results in the formation of tetraborylated ferrocene 3 [3]. However, our efforts to synthesize the related ferrocene derivatives with GaCl₂ substituents on the Cp ring failed [4]. When an equimolar mixture of ferrocene and GaCl₃ is treated with benzene, blue green crystals of [FeCp₂][GaCl₄] and red platelets of the multidecker sandwich complex 4 were obtained, as depicted in Scheme 1 [4]. This leads to the conclusion that a redox reaction, by which ferrocene is oxidized to ferrocenium cation and Ga(III) is reduced to Ga(I), takes place.

Up to now, only ferrocenium salts with bulky counterions such as $AlCl_4^-$, $GaCl_4^-$, $FeCl_4^-$, $FeBr_4^-$, PF_6^- , $SbCl_4^-$, SbF_6^- , had been characterized by X-ray crystallography [4–10]. The cyclopentadiene rings in those ferrocenium compounds have various conformations (staggered, gauche or eclipsed) which usually change with temperature. The structures of ferrocenium salts normally exhibit a staggered conformation at high and an eclipsed conformation of the cyclopentadiene rings at low temperature (e.g. $[FeCp_2][FeCl_4]$) [5,11]. In contrast to that, $[FeCp_2][PF_6]$ reveals a phase change from a staggered disordered to an eclipsed conformation of the cyclopentadiene rings at high temperature [9]. It is interesting to note that the structure of solvent-free ferrocenium salts $[FeCp_2][ECl_4]$ (E = Al, Ga, Fe) is isomorphous.

The purpose of this paper is to investigate the reactivity of ferrocene towards $AlBr_3$ and to give more information about the structures of ferrocenium salts of the type [Fe-Cp₂][EX₄]. We herein report the solvent-free structure of [FeCp₂][BF₄]. In the presence of benzene, cocrystals of benzene and the ferrocenium complexes [FeCp₂][ECl₄] (E = Al, Ga) have been isolated. The structure of

^{*} Corresponding author. Tel.: +49 69 79829152; fax: +49 69 79829260. *E-mail address:* lerner@chemie.uni-frankfurt.de (H.-W. Lerner).

 $[(C_6H_6)FeCp][AlBr_4] \cdot C_6H_6$ was found to be isomorphous with those of benzene solvated $[FeCp_2][ECl_4]$ (E = Al, Ga).

2. Experimental

2.1. General considerations

All experiments were carried out under dry argon or nitrogen using standard Schlenk techniques. Benzene and tetrahydrofuran were distilled from sodium/benzophenone. CH₂Cl₂ was dried over molecular sieves and stored under dry nitrogen.

2.2. Synthesis of ferrocenium tetrafluoroborate [FeCp₂][BF₄]

Ferrocene (1.8 mmol, 0.35 g) was dissolved in 10 ml of tetrahydrofuran and a solution of $AgBF_4$ (1.6 mmol, 0.32 g) in 10 ml tetrahydrofuran was added at -78 °C. The formation of a silver mirror was observed immediately. After filtration the solvent was evaporated *in vacuo*. Then the residue was extracted in 7 ml CH₂Cl₂. X-ray suitable single crystals of ferrocenium tetrafluoroborate were obtained from this solution at ambient temperature (0.40 g, 87%).

2.3. Synthesis of ferrocenium tetrachloroaluminate [FeCp₂][AlCl₄]

A solution of Cl_2 (2.0 mmol) in CH_2Cl_2 (10 ml) was added dropwise under stirring to a slurry of ferrocene (1.8 mmol, 0.34 g) and AlCl₃ (1.7 mmol, 0.23 g) in CH_2Cl_2 (10 ml). After stirring for 8 h, the precipitate was removed by filtration and the solvent was evaporated *in vacuo*. Then the residue was extracted in 10 ml of benzene. Xray suitable single crystals of ferrocenium tetrachloroalumniate were obtained from this solution at ambient temperature (0.61 g, 82%).

2.4. Synthesis of ferrocenium tetrachlorogallate [FeCp₂][GaCl₄]

Ferrocene (1.8 mmol, 0.34 g) was dissolved in 10 ml of benzene and a solution of GaCl₃ (2.5 mmol, 0.45 g) was added dropwise at ambient temperature. The solution became cloudy immediately. After 12 h at ambient temperature, X-ray suitable single crystals of $[FeCp_2]$ [Ga-Cl₄] \cdot C₆H₆ were obtained (0.76 g, 88%).

2.5. Synthesis of $[(C_6H_6)FeCp][AlBr_4] \cdot C_6H_6$

A mixture of ferrocene (0.5 mmol, 0.09 g) and AlBr₃ (1.0 mmol, 0.26 g) in 5 ml of benzene was heated in a sealed tube for 2 h of 120 °C. After cooling to ambient temperature, crystals of $[(C_6H_6)FeCp][AlBr_4] \cdot C_6H_6$ were obtained (0.22 g, 70%). In the NMR spectra of the reaction solution signals of Cp-containing substances such as, among others,

Scheme 1. Reacitivity of BBr3 and GaCl3 towards ferrocene.

AlCp₃, cyclopentadiene and cyclopentadiene dimer were detected.

Dibromoborylferrocene (0.3 mmol, 0.11 g) was dissolved in 0.8 ml of benzene and AlBr₃ (0.03 mmol, 0.08 g) was added at ambient temperature. After 12 h at ambient temperature, X-ray suitable single crystals of $[(C_6H_6)Fe-$ Cp][AlBr₄] · C₆H₆ were obtained from the reaction solution. $[(C_6H_6)FeCp]$ [AlBr₄]: ¹H NMR (CD₂Cl₂): δ 5.39 (s, Cp) 7.41 (s, C₆H₆).

2.6. Crystal structure determination

Suitable single crystals of $[FeCp_2][BF_4]$, $[FeCp_2]-[ECl_4] \cdot C_6H_6$ (E = Al, Ga) and $[(C_6H_6)FeCp][Al-Br_4] \cdot C_6H_6$ were selected and attached in a perfluoropolye-

Table 1	l
---------	---

Crystal	data and	l structure	refinement fo	or [F	eCp ₂][BI	F ₄],	[FeC _I	₀ ₂][Al0	$[l_4]$	C_6H_6 ,	[FeC	$p_2 [G$	$aCl_4]$	C_6H_6 ,	and [(C_6H_6))FeCp][AlBr ₄	$] \cdot C_6 F$	\mathbf{I}_6
---------	----------	-------------	---------------	-------	-----------------------	-------------------	-------------------	----------------------	---------	------------	------	----------	----------	------------	-------	------------	-------	---------------------	-----------------	----------------

	$[FeCp_2][BF_4]$	$[FeCp_2][AlCl_4] \cdot C_6H_6$	$[FeCp_2][GaCl_4] \cdot C_6H_6$	$[(C_6H_6)FeCp][AlBr_4] \cdot C_6H_6$	
Formula	$C_{10}H_{10}BF_4Fe$	C16H16AlCl4Fe	C16H16Cl4FeGa	C ₁₇ H ₁₇ AlBr ₄ Fe	
$F_{ m w}$	272.84	432.92	475.66	623.78	
Crystal system	orthorhombic	monoclinic	monoclinic	monoclinic	
Space group	Cccm	Cc	Cc	Cc	
Temperature (K)	173(2)	100(2)	173(2)	173(2)	
Radiation (MoKa) (Å)	0.71073	0.71073	0.71073	0.71073	
a (Å)	7.524(2)	11.8318(10)	11.8120(10)	11.9314(8)	
$b(\mathbf{A})$	11.954(4)	15.0759(14)	15.1740(10)	15.7460(10)	
c (Å)	12.346(4)	11.1965(10)	11.2130(10)	11.6751(7)	
α (°)	90	90	90	90	
β(°)	90	106.754(7)	106.293(6)	108.378(5)	
γ (°)	90	90	90	90	
$V(Å^3)$	1110.4(6)	1912.4(3)	1929.1(3)	2081.6(2)	
Z	4	4	4	4	
$D_{\rm calc}$ (Mg/m ⁻³)	1.632	1.504	1.638	1.990	
$\mu (\text{mm}^{-1})$	1.377	1.386	2.695	8.441	
F(000)	548	876	948	1192	
Crystal size (mm)	$0.13 \times 0.12 \times 0.12$	$0.36 \times 0.35 \times 0.28$	$0.38 \times 0.22 \times 0.12$	$0.28 \times 0.28 \times 0.26$	
θ Range for data collection (°)	3.60-27.38	3.60-27.75	2.24-28.84	2.22-28.77	
Index ranges	$-9 \leq h \leq 9$,	$-14 \leq h \leq 15$,	$-15 \leq h \leq 15$,	$-15 \leq h \leq 15$,	
0	$-15 \leq k \leq 15$,	$-19 \leq k \leq 19$,	$-19 \leq k \leq 19$,	$-19 \leq k \leq 20$,	
	$-15 \leq l \leq 15$	$-14 \leq l \leq 14$	$-14 \leq l \leq 13$	$-15 \leq l \leq 15$	
Number of reflections collected	3224	13030	13758	17327	
Number of independent reflections	663	4235	3732	4670	
R _{int}	0.0627	0.0478	0.0389	0.0400	
Completeness to $\theta = 24.76^{\circ}$ (%)	99.1	98.9	89.1	89.9	
Absorption correction	empirical	semi-empirical from	empirical	empirical	
1.	1	equivalents	1	1	
Maximum and minimum transmission	0.8521 and 0.8412	0.6976 and 0.6353	0.7381 and 0.4274	0.2176 and 0.2009	
Refinement method	full-matrix least-squares	full-matrix least-squares	full-matrix least-squares	full-matrix least-squares	
	on F^2	on F^2	on F^2	on F^2	
Data/restraints/parameters	663/0/41	4235/2/200	3732/2/199	4670/24/205	
Goodness-of-fit on F^2	1.027	1.027	1.089	1.042	
$R_1, wR_2 (I > 2\sigma(I))$	0.0518, 0.1283	0.0684, 0.1759	0.0318, 0.0609	0.0444, 0.0823	
R_1 , wR_2 (all data)	0.1034, 0.1533	0.0718, 0.1811	0.0397, 0.0635	0.0669, 0.0909	
Absolute structure parameter		0.70(3)	0.091(12)	0.127(16)	
Largest difference in peak and hole $(e \text{ Å}^{-3})$	0.176 and -0.583	1.587 and -1.308	0.429 and -0.331	0.660 and -0.505	
CCDC	632409	632410	170257	632408	

ther oil to a thin glass fiber. Intensity measurement was carried out using a STOE IPDS-II two circle diffractometer. The structures were solved with direct methods [12] and refined with full-matrix least-squares techniques [13]. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed at calculated positions and refined using a riding model. Crystal data, data collection parameters, and refinement statistics for $[FeCp_2][BF_4]$, $[FeCp_2][ECl_4]$ (E = Al, Ga) and $[(C_6H_6)FeCp][AlBr_4] \cdot C_6H_6$ are listed in Table 1.

3. Results and discussion

3.1. Reaction of ferrocene with AlBr₃

To date, several procedures for the preparation of Fe^{2+} -arene cation of type $[(arene)FeCp]^+$ have been

described in the literature [14,15]. The most common methods are the reactions of Al/AlCl₃ mixtures and aromatic compounds with CpFe(CO)Br or ferrocene. Now we have found a facile route to the Fe²⁺-arene complex $[(C_6H_6)FeCp][AlBr_4]$ by the reaction of ferrocene with benzene in the presence of AlBr₃ at 120 °C (Scheme 2). Single crystals of $[(C_6H_6)FeCp][AlBr_4]$, suitable for Xray diffraction, were grown from the reaction solution at ambient temperature. In the NMR spectra of the reaction solution signals of Cp-containing substances such as, among others, AlCp₃, cyclopentadiene and cyclopentadiene dimer were detected. It is interesting to note that treatment of dibromoborylferrocene with AlBr₃ in benzene also leads to the formation of [(C₆H₆)FeCp][AlBr₄] (Scheme 2). Several studies have revealed that Fe^{2+} -arene complexes of the type $[(C_6H_6)FeCp]^+$ are convenient sources for Fe(I) complexes [16].

Scheme 2. Routes to the Fe^{2+} -arene complex [(C₆H₆)FeCp][AlBr₄] by the reaction of ferrocene and dibromoborylferrocene with AlBr₃.

3.2. Syntheses of ferrocenium complexes of type [FeCp₂][BF₄]

Oxidation of ferrocene with silver(I) salts is a common route to ferrocenium cations, and this method was used, as shown in Scheme 3, to prepare [FeCp₂][BF₄]

3.3. X-ray crystallographic structures

The molecular structures of complexes $[FeCp_2][BF_4]$, $[FeCp_2][AlCl_4] \cdot C_6H_6$, $[FeCp_2][GaCl_4] \cdot C_6H_6$, and $[(C_6H_6)FeCp][AlBr_4] \cdot C_6H_6$ are shown in Figs. 1–6.

Fig. 1. ORTEP plot of [FeCp2][BF4] in the solid state. Displacement ellipsoids are drawn at the 50% probability level.

Scheme 3. Syntheses of the ferrocenium complexes $[FeCp_2][BF_4]$ and $[FeCp_2][AlCl_4].$

Fig. 2. Crystal packing diagram for [FeCp2][BF4].

Fig. 3. ORTEP plot of $[FeCp_2][AlCl_4]$ with one molecule C_6H_6 in the solid state. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 5. ORTEP plot of $[FeCp_2][GaCl_4]$ with one molecule C_6H_6 in the solid state. Displacement ellipsoids are drawn at the 50% probability level.

C14

C15

Fig. 6. Plot of $[(C_6H_6)FeCp][AlBr_4]$ with one molecule C_6H_6 in the solid state. The cyclopentadienyl ligand of $[(C_6H_6)FeCp]$ cation is disordered over two positions.

Fig. 4. Crystal packing diagram for $[FeCp_2][AlCl_4]\cdot C_6H_6.$

We obtained single crystals of $[FeCp_2][BF_4]$, which are free of solvent, from CH_2Cl_2 at ambient temperature. Crystallization from benzene at ambient temperature yields

X-ray quality crystals of $[FeCp_2][GaCl_4] \cdot C_6H_6$ and $[FeCp_2][AlCl_4] \cdot C_6H_6$, respectively. Single crystals of $[(C_6H_6)-FeCp][AlBr_4] \cdot C_6H_6$, suitable for X-ray diffraction, were

also grown from a benzene solution at ambient temperature.

X-ray structure analyses of the solvent-free ferrocenium compounds [FeCp₂][ECl₄] (E = Al, Ga, Fe) reveal that all of them crystallize in orthorhombic space group *Pnma* [4,5]. However, the cell parameters of solvent-free ferrocenium tetrafluoroborate are quite different from those of [FeCp₂][ECl₄] (E = Al, Ga, Fe). The cell dimensions of [FeCp₂][BF₄] are a = 7.524(2) Å, b = 11.954(4) Å, c =

Fig. 7. Cp ligand rotation of $[FeCp_2][BF_4]$ away from the eclipsed conformation.

Fig. 8. Cp ligand rotation of $[FeCp_2]\![AlCl_4]\cdot C_6H_6$ away from the eclipsed conformation.

12.346(4) Å and $\alpha = \beta = \gamma = 90^{\circ}$. The structural parameters of cocrystals of benzene and the ferrocenium complexes [FeCp₂][ECl₄] (E = Al, Ga), which crystallize in the monoclinic space group *Cc*, are similar to those of the cobaltocenium derivative [CoCp₂][GaCl₄] · C₆H₆ [4]. Therefore, these ferrocenium compounds are isomorphous with the cobaltocenium complex [CoCp₂][GaCl₄] · C₆H₆. Surprisingly, the structure of the Fe²⁺-arene complex [(C₆H₆)FeCp][Al-Br₄] · C₆H₆ was found to be isomorphous with those of [Fe-Cp₂][ECl₄] · C₆H₆ (E = Al, Ga) and [CoCp₂][GaCl₄] · C₆H₆ as well. The complex [(C₆H₆)FeCp][AlBr₄] · C₆H₆ reveals a structure in which the cyclopentadienyl ligand of the [(C₆H₆)FeCp] cation is disordered over two positions, which have an occupancy ratio of roughly 1:1.

The ferrocenium salts listed in Table 1 possess quite similar Fe–C bond lengths in the solid (range of 2.064 Å for $[FeCp_2][AlCl_4]$ and 2.095 Å for $[FeCp_2][BF_4]$). The average values for the C–C bonds of Cp rings of these ferrocenium complexes are found to be between 1.385 Å for $[Fe-Cp_2][AlCl_4]$ to 1.417 Å for $[FeCp_2][BF_4]$ and are therefore comparable with those of ferrocene.

The Fe-CG_{Cp} (CG: center of gravity) distances found of the ferrocenium salts [FeCp₂][BF₄] and [FeCp₂]-[ECl₄] · C₆H₆ (E = Al, Ga) range between 1.691 Å {[FeCp₂][GaCl₄]} and 1.711 Å {[FeCp₂][BF₄]}, whereas the structure of [(C₆H₆)FeCp][AlBr₄] features the Fe-CG_{benzene} distance of 1.529 Å and Fe-CG_{Cp} distance of 1.637 Å, respectively. The shorter Fe(II) arene contacts in [(C₆H₆)FeCp][AlBr₄] are the result of stronger π interactions of Fe(II) with arenes than those of Fe(III) in ferrocenium compounds.

In contrast to the Cp rings of solvent-free $[FeCp_2][ECl_4]$ (E = Al, Ga, Fe) the Cp ligands of $[FeCp_2][BF_4]$, $[Fe-Cp_2][ECl_4] \cdot C_6H_6$, (E = Al, Ga) and $[CoCp_2][GaCl_4] \cdot C_6H_6$ are rotated away from the eclipsed conformation, as shown in Figs. 7–9.

4. Supplementary material

CCDC 632409, 632410, 170257 and 632408 contain the supplementary crystallographic data for {[FeCp₂][BF₄]},

Fig. 9. Cp ligand rotation of [FeCp₂][GaCl₄] · C₆H₆ away from the eclipsed conformation.

 $\{ [FeCp_2] [AlCl_4] \cdot C_6H_6 \}, \quad \{ [FeCp_2] [GaCl_4] \cdot C_6H_6 \} \text{ and } \\ \{ [(C_6H_6)FeCp] [AlBr_4] \cdot C_6H_6 \}. \text{ The data can be obtained } \\ \text{free of charge via http://www.ccdc.cam.ac.uk/conts/ retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; \\ \text{fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam. ac.uk. }$

Acknowledgements

We are grateful to the University of Frankfurt for financial funding. M.W. is grateful to the "Deutsche Forschungsgemeinschaft" (DFG) for financial support.

References

- [1] T. Renk, W. Ruf, W. Siebert, J. Organomet. Chem. 120 (1976) 1.
- [2] M. Scheibitz, M. Bolte, J.W. Bats, H.-W. Lerner, I. Nowik, R.H. Herber, A. Krapp, M. Lein, M.C. Holthausen, M. Wagner, Chem. Eur. J. (2005) 584.

- [3] A. Appel, F. Jäkle, T. Priermeier, R. Schmid, M. Wagner, Organometallics 15 (1996) 1188.
- [4] S. Scholz, J.C. Green, H.-W. Lerner, M. Bolte, M. Wagner, Chem. Commun. (2002) 36.
- [5] F.A. Cotton, L.M. Daniels, I. Pascual, Acta Cryst. C54 (1998) 1575.
- [6] P.J.M. Evans, B.W. Fitzsimmons, W.G. Marshall, A.J. Golder, L.F. Larkworthy, G.W. Smith, D.C. Povey, Dalton Trans. (1992) 1065.
- [7] B.M. Yamin, H.-K. Fun, K. Sivakumar, B.-C. Yip, O.B. Shawkataly, Acta Cryst. C52 (1996) 600.
- [8] R. Martinez, A. Tiripicchio, Acta Cryst. C46 (1990) 202.
- [9] R.J. Webb, M.D. Lowery, Y. Shiomi, M. Sorai, R.J. Wittebort, D.N. Hendrickson, Inorg. Chem. 31 (1992) 5211.
- [10] D.N. Hendrickson, A.L. Rheingold, M.B. Allen, CCDC Private Communication, 1996.
- [11] E.F. Paulus, L. Schäfer, J. Organomet. Chem. 144 (1978) 205.
- [12] G.M. Sheldrick, Acta Crystallogr. A 46 (1990) 467.
- [13] G.M. Sheldrick, SHELXL-97, A Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 2000.
- [14] I.U. Khand, P.L. Pauson, W.E. Watts, J. Chem. Soc. C (1968) 2257.
- [15] L.H. Green, L. Pratt, G. Wilkinson, J. Chem. Soc. (1960) 989.
- [16] J.-R. Hamon, D. Astruc, P. Michaud, J. Am. Chem. Soc. 103(1981)758.