Regioselective synthesis of substituted piperidine-2,4-diones and their derivatives via Dieckmann cyclisations

Charles M. Marson*, Kin Cheung Yau
Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ, UK

A R T I C L E I N F O

Article history:

Received 21 May 2015
Received in revised form 9 June 2015
Accepted 12 June 2015
Available online xxx

Keywords:

Dieckmann cyclisation
Piperidine-2,4-diones
Regioselective synthesis
Enantioselective synthesis

Abstract

A flexible route to piperidine-2,4-diones variously substituted at the 6-, 5,6- and 2,6-positions, both with and without 1 -substitution, is described; no N-protective group is required. A related regioselective Dieckmann cyclisation is also described that uses Davies' α-methylbenzylamine auxiliary and affords 6substituted piperidine-2,4-diones enantioselectively.

© 2015 Published by Elsevier Ltd.

1. Introduction

The piperidine ring, a privileged scaffold in pharmaceutically active compounds, ${ }^{1}$ is exemplified in the numerous piperidine alkaloids. ${ }^{2,3}$ Oxygenated forms of the piperidine ring such as substituted piperidin-2-ones are also present in a number of alkaloids ${ }^{3}$ and in other biologically active derivatives, ${ }^{4}$ and can confer advantages of increased stability and crystallinity compared with piperidine analogues. Diversely substituted piperidines and oxygenated piperidines find much use in drug development, but their synthesis is still challenging; ${ }^{5}$ general, scalable methods are in demand. Many oxopiperidines including piperidine-2,4-diones possess biological and pharmaceutical relevance (Fig. 1), ${ }^{6,7}$ some being key intermediates in the synthesis of kinase inhibitors ${ }^{6 f}$ and modulators of glutamate receptors ${ }^{6 g}$ but routes to 6 -substituted piperidine-2,4-diones are limited. ${ }^{8}$ Enantiocontrolled strategies to substituted piperidines present a further challenge, although the work of Comins ${ }^{9}$ and Davis ${ }^{10}$ has addressed some of the limitations in the range or location of substituents. Enantioselective syntheses of 1 -unsubstituted piperidine-2,4-diones include rearrangements of substituted 1,3-oxazinan-2-ones, ${ }^{8}$ and cyclisations of N-sulfinyl δ-amino- β-keto esters, ${ }^{10} \delta$-aryl- δ-amino- β-keto esters ${ }^{6 \mathrm{~d}}$ and N-Boc-β-amino acids. ${ }^{11}$ Herein, we describe the synthesis of variously substituted piperidine-2,4-diones prepared via a regioselective Dieckmann cyclisation, some being obtained enantioselectively.

[^0]
2. Results and discussion

It was desired to investigate the scope of Dieckmann cyclisations for the synthesis of piperidine-2,4-diones in regard to substituent location, and in particular to achieve a succinct protocol for the preparation of N -unsubstituted piperidine-2,4-diones, since few such Dieckmann cyclisations have been described, and a cyclisation in THF that afforded 3-methoxycarbonyl-6-(2-phenethyl)piperi-dine-2,4-dione in 15% yield. ${ }^{12}$ The proposed route (Scheme 1) began with β-keto esters $\mathbf{1}$, which in the cases of $\mathbf{1 b}$ and 1c were prepared by Weiler alkylation ${ }^{13}$ of the dianion of methyl acetoacetate (1a), prepared in THF using NaH (1.1 equiv) and butyllithium (1.1 equiv), and reacted with methyl iodide or ethyl bromide, respectively (Scheme 2). Subsequent alkylation at the β-position was also possible, ester 1b being converted into 1d. Reaction of β-keto esters 1 with ammonium acetate in the presence of acetic acid afforded the vinylogous carbamates 2 , which were reduced with sodium triacetoxyborohydride prepared in situ ${ }^{14}$ to give the corresponding β-amino esters 3. The latter were coupled with monomethyl malonate using EDC in the presence of HOBt to give the amidodiesters 4. Those underwent Dieckmann cyclisation upon treatment with sodium methoxide in methanol to give the keto esters 5 , which were hydrolysed (NaOMe in methanol) and decarboxylated using sodium methoxide in wet acetonitrile ${ }^{6 \mathrm{~b}}$ in a onepot process to give the corresponding piperidine-2,4-diones 6.

For the 2,3-disubstitued β-amino esters 3, a Blaise reaction ${ }^{15}$ (Scheme 3) with in situ reduction was investigated, and afforded 6e; however, the poor yield suggested that the reductive amination of β-keto esters 1, as in Scheme 1, would in general be preferable.

Adalinine ${ }^{3 b}$

Subunit of kirromycin antibiotics ${ }^{7 a}$

Anti-hypoglycaemic agent ${ }^{6 \mathrm{c}}$

Aminoglutethimide, aromatase inhibitor ${ }^{7 b}$

$\alpha_{1 d}$ Adrenergic receptor antagonists ${ }^{7 c}$

Fig. 1. Representative oxopiperidine derivatives with biological or pharmaceutical activity.

Scheme 1. Synthesis of substituted piperidine-2,4-diones and derivatives via Dieckmann cyclisations. Reagents and conditions: (a) $\mathrm{NH}_{4} \mathrm{OAc}, \mathrm{AcOH}, \mathrm{PhH}, \mathrm{reflux}, 18-72 \mathrm{~h}$; (b) NaBH_{4} (2.5 equiv) AcOH, $20^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (c) monomethyl malonate, $\mathrm{EDC}(1 \text { equiv), } \mathrm{HOBt} \text { (} 1.5 \text { equiv), (} i-\mathrm{Pr})_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (d) NaOMe (2 equiv), MeOH, reflux, 1 h ; (e) $\mathrm{MeCN}, 1 \% \mathrm{H}_{2} \mathrm{O}$, reflux, 1 h .

Scheme 2. Synthesis of β-keto esters via Weiler dialkylation. Reagents and conditions: (a) NaH (1.1 equiv), BuLi (1.1 equiv), THF, MeI or EtBr (1.1 equiv) EtOH, $20^{\circ} \mathrm{C}, 3 \mathrm{~h}, 97 \%$ (1b), 85%, (1c); (b) MeI (1.0 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5 equiv), $\mathrm{Me}_{2} \mathrm{CO}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 88 \%$ (1d).

Scheme 3. Synthesis of 2,3-disubstituted piperidine-2,4-diones. Reagents and conditions: (a) Zn (4 equiv), $\mathrm{TMSCl}\left(12\right.$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{THF}$, reflux, 2 h then NaBH_{4} (0.55 mol equiv) EtOH, $20^{\circ} \mathrm{C}, 3 \mathrm{~h}, 15 \%$; (b) monomethyl malonate, EDC (1.0 equiv), HOBt (1.5 equiv), ($i-\mathrm{Pr})_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 2 \mathrm{~h}, 67 \%$; (c) NaOMe (1.3 equiv), MeOH, reflux, 1 h , then MeCN, $1 \% \mathrm{H}_{2} \mathrm{O}$, reflux, $1 \mathrm{~h}, 56 \%$.

These results show that a variety of 6-monosubstituted piperi-dine-2,4-diones can be prepared by the protocol of Scheme 1, and that in all of the examples studied cyclisation proceeded satisfactorily and usually in good yields. 5,6-Disubstituted piperidine-2,4diones can also be prepared, although not with high diastereoselectivity in the examples studied herein. Alkylation of $\mathbf{6 f}$ with Mel (3 equiv) in acetone at $50{ }^{\circ} \mathrm{C}$ in the presence of potassium carbonate afforded the 3,3,6-trisubstituted piperidine-2,4-dione $\mathbf{6 h}$ (65\%); no monomethyl product could be isolated, even when 1 equiv of MeI was used. Accordingly, monomethylation of ester $\mathbf{5 f}$ was attempted using the conditions above, but no $\mathbf{6 i}$ was observed; however, using Page's procedure ${ }^{16}$ alkylation with Mel (2 equiv) in

THF at $20^{\circ} \mathrm{C}$ was achieved, affording $\mathbf{6 i}$ in 64% yield. Attempts to remove the methoxycarbonyl group from $\mathbf{6 i}$, including sodium chloride in DMSO, ${ }^{17}$ Lil in pyridine, wet acetonitrile, or hydrochloric $\operatorname{acid}(1.3 \mathrm{M})$, all at reflux, were not successful.

The scope of the 2-substituent appears to include 3-pyridyl, since the formation of $\mathbf{6 g}$ (Scheme 4) was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy, but the aqueous solubility of this piperidine-2,4dione precluded isolation under the standard procedures attempted.

Scheme 4. Attempted cyclisation of diester 4g. Reagents and conditions: (a) $\mathrm{ClOCCH}_{2} \mathrm{CO}_{2} \mathrm{Me}$ (1.5 equiv), $(i-\mathrm{Pr})_{2} \mathrm{NEt}\left(4\right.$ equiv), $0^{\circ} \mathrm{C}$, then $20^{\circ} \mathrm{C}, 1 \mathrm{~h}, 99 \%$; (b) NaOMe (1.3 equiv), MeOH , reflux, 1 h , then $\mathrm{MeCN}, 1 \% \mathrm{H}_{2} \mathrm{O}$, reflux, 1 h .

The present study has established a greater scope of Dieckmann cyclisations that afford substituted piperidine-2,4-diones (Fig. 2), notably N-unsubstituted compounds; the use of dimethyl ester precursors, cyclised in methanol (in the presence of sodium methoxide), followed by decarbomethoxylation in aqueous acetonitrile appears to be an improved procedure for obtaining such Dieckmann products; for example, using those procedures, cyclisation and decarbomethoxylation afforded 6-phenylpiperidine-2,4-dione ($\mathbf{6 f}$) in 66% yield, compared with 32% using previous conditions. ${ }^{6 \mathrm{~b}}$ Convenient features of this synthetic approach include the ready preparation of a wide variety of β-amino esters from the corresponding β-keto esters, and the avoidance of N protection followed by N-deprotection; the substituted piperidine-2,4-diones are obtained directly as N-unsubstituted compounds, as

6a

6 c

6d

$6 e$

6h

Fig. 2. Synthesis of substituted piperidine-2,4-diones and derivatives via Dieckmann cyclisations.
are all intermediates. The route is compatible with one or more substituents at the $3-$, 5 - and 6 -positions.

An enantioselective route to substituted piperidine-2,4-diones based on the regioselective Dieckmann cyclisation was then investigated (Scheme 5). The enantiomerically pure β-keto esters $\mathbf{8}$ were prepared by metalation of 7 and reaction with α, β-unsaturated esters, according to the Davies methodology. ${ }^{18}$ Deallylation of allylamines $\mathbf{8}$ was achieved using Wilkinson's catalyst ${ }^{18 \mathrm{~b}, 19}$ via isomerisation to the corresponding enamides that are hydrolysed in situ. ${ }^{20}$ However, in the case of $\mathbf{8 g}$ several products were obtained; accordingly, allylic transfer was investigated, and was achieved using 1,3-dimethylbarbituric acid (3 equiv) with a catalytic quantity of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}$ in dichloromethane, affording $\mathbf{9 g}$ in 96% yield. Acylation of β-amino esters 9 using monomethyl malonate and EDC or, where that proved unsatisfactory, methyl malonyl chloride and $\mathrm{Et}_{3} \mathrm{~N}$ afforded the corresponding malonamides 10, which underwent ring closure upon treatment with sodium methoxide in ethanol; in two cases the intermediate sodium salts $\mathbf{1 1}$ were isolated, but since those were only needed to confirm the course of the reaction, direct ester hydrolysis and decarboxylation was otherwise achieved, either using warm dilute hydrochloric acid at reflux or in wet acetonitrile at reflux, affording the enantiopure 6-piperidine-2,4-diones $\mathbf{1 2}$ in a one-pot procedure from diesters 10. Using methanesulfonic acid (0.9 equiv) in toluene

Scheme 5. Enantioselective synthesis of substituted piperidine-2,4-diones and derivatives via Dieckmann cyclisations ($\mathrm{R}=(\mathrm{S})$-1-phenylethyl). Reagents and conditions: (a) BuLi (1 equiv), THF, $-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min} ; \mathrm{RCH}=\mathrm{CHCO}_{2} \mathrm{Me}$ (1 equiv), $-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (b) $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}(5 \mathrm{~mol} \%)$, aq MeCN, reflux, 16 h ; (c) methyl 3-chloro-3-oxopropanoate (1.1 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (1.2 equiv), $0^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (d) NaOMe (1.1 equiv), reflux 1 h , then dil. HCl ; (e) 1% water in MeCN, reflux 1 h ; (f) MsOH (0.9 equiv), toluene, reflux, 3 h .
at reflux, ${ }^{21}$ several of the N-alkylated products 12 were cleaved to the corresponding enantiopure piperidine-2,4-diones 6 lacking a 1substituent (Fig. 3). 3,3-Dimethylation of $\mathbf{6 1}$ with methyl iodide (3 equiv) in methanol in the presence of potassium carbonate afforded the 3,3,6-trisubstituted piperidine-2,4-dione $\mathbf{1 3}$. The route can also be used to prepare enantiomerically pure 4hydroxypiperidinones, as illustrated by the reduction of (R) - $\mathbf{6 f}$ to 14 using zinc borohydride. ${ }^{22}$ The 3-pyridyl derivative $\mathbf{1 2 f}$ could be a useful building block for the enantioselective synthesis of novel substituted piperidines related to the alkaloid anabasine.

Fig. 3. Enantioselective synthesis of substituted piperidine-2,4-diones and derivatives via Dieckmann cyclisations ($\mathrm{R}=(\mathrm{S}$)-1-phenylethyl).

This study shows that a variety of substituted piperidine-2,4diones, in which 1 -substitution may be present or absent, can be conveniently prepared by Dieckmann cyclisation. Use of the Davies ${ }^{18}$ conjugate addition of $(S)-N-(\alpha$-methylbenzyl)allylamine (7) to α, β-unsaturated esters afforded enantiopure β-amino esters that also underwent Dieckmann cyclisation to give, after hydrolysis and decarboxylation, the corresponding substituted piperidine-2,4-diones; the chiral auxiliary was cleaved using methanesulfonic acid, thereby achieving some enantioselective syntheses of substituted piperidine-2,4-diones without 1 -substitution. Synthesis of substituted piperidine-2,4-diones can be used to access to a variety of congeners of alkaloids or other pharmacologically active compounds, including 4-hydroxypiperidin-2-ones, the corresponding substituted piperidin-2-ones and piperidines; examples herein include the piperidine-2,4-dione $\mathbf{1 2 g}$, an analogue of anabasine, and ($4 R, 6 R$)-4-hydroxy-6-phenylpiperidin-2-one (14) prepared by reduction of $\mathbf{6 f}$ with LiAlH_{4}.

3. Experimental section

3.1. General

All moisture-sensitive reactions were performed under a nitrogen atmosphere and the glassware was pre-dried in an oven
$\left(130{ }^{\circ} \mathrm{C}\right)$. Evaporation refers to the removal of solvent under reduced pressure. Melting points were measured by a microscope hot-stage Electrothermal 9100 apparatus. Infra-red (IR) spectra were recorded on a Perkin-Elmer PE-983 spectrophotometer; absorptions are quoted in wavenumbers. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AC300 (300 MHz) spectrometer or a Bruker AMX $500(125 \mathrm{MHz})$ spectrometer; data are reported in parts per million (δ). Coupling constants (J) are given in Hertz (Hz). The following abbreviations were used in signal assignments: singlet (s), broad singlet (br s), doublet (d), triplet (t), quartet (q), and multiplet (m). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AC300 (300 MHz) spectrometer or a Bruker AMX 500 (125 MHz) spectrometer; data are reported in parts per million (d), with CHCl_{3} as an internal standard. Mass spectra were recorded on a VG7070H mass spectrometer with Finigan Incos II data system at University College London. Optical rotations were measured using a Per-kin-Elmer 343 digital polarimeter. Thin-layer chromatography was performed on Merck 0.2 mm aluminium-backed silica gel 60 F_{254} plates and visualised by UV (254 nm) or by staining with potassium permanganate with subsequent heating. Flash column chromatography was performed using Merck $0.040-0.063 \mathrm{~mm}$, $230-400$ mesh silica gel. Temperatures below $0^{\circ} \mathrm{C}$ were obtained using various mixtures of water, salt and ice, or acetone and dry ice.

The following compounds were prepared according to the literature: methyl 2-methyl-3-oxopentanoate (1d); ${ }^{23}$ methyl 3-amino-3-phenylpropanoate hydrochloride ($\mathbf{3 f}$); ${ }^{24}$ methyl 3-(2-methoxycarbonylacetylamino)-3-phenylpropanoate (4f); ${ }^{25}(\mathrm{~S})-\mathrm{N}-$ (α-methylbenzyl)allylamine (7); ${ }^{26}$ (E)-methyl 4-methylpent-2enoate; ${ }^{27}(E, E)$-methyl hexa-2,4-dienoate; ${ }^{28}$ methyl (2E)-3-cyclohexyl-2-propenoate; ${ }^{29} \quad(E)$-methyl $\quad 3$-(pyridin-3-yl)propenoate. ${ }^{30}$
3.1.1. General procedure A. Preparation of amidodiesters 4 and 10. Anhydrous 1-hydroxybenzotriazole (1.5 equiv) and N, N-diisopropylethylamine (4.0 equiv) were added to a stirred solution of the β-amino ester 3 (1.0 equiv) in dichloromethane at $0^{\circ} \mathrm{C}$, under nitrogen. Monomethyl malonate (3.0 equiv) in dichloromethane was added dropwise; $\quad N$-(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride (1.0 equiv) was added and the mixture was then allowed to warm to $20^{\circ} \mathrm{C}$ and stirred for 2 h . Saturated aqueous sodium hydrogen carbonate was then added and the aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified as described under the given product.
3.1.2. General procedure B. Preparation of amido diesters 4. Triethylamine (1.3 equiv) and methyl 3-chloro-3-oxopropanoate (1.2 equiv) were added to a stirred solution of the β-amino ester $\mathbf{3}$ (1 equiv) in dichloromethane at $0^{\circ} \mathrm{C}$, under nitrogen. The mixture was then allowed to warm to $20^{\circ} \mathrm{C}$ and stirred for 1 h . The mixture was diluted with dichloromethane and washed with saturated aqueous sodium hydrogen carbonate. The aqueous layer was extracted twice with dichloromethane and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified as described under the given product.
3.1.3. General procedure C for Dieckmann cyclisations. Sodium methoxide (1.2 equiv) in methanol was added to a stirred solution of the diester (1.0 equiv) in methanol at $20^{\circ} \mathrm{C}$ under nitrogen. The mixture was then heated under reflux for 1 h . After allowing to cool to $20^{\circ} \mathrm{C}$, the mixture was acidified with hydrochloric acid $(1 \mathrm{M})$ to pH 6 . The aqueous layer was extracted with dichloromethane, dried (MgSO_{4}), and evaporated. A solution of 1% water in acetonitrile was added to the oily residue, and the mixture was heated under reflux
for 1 h . The mixture was allowed to cool, then evaporated, and the residue was purified as described under the given product.
3.1.4. General procedure D for Michael addition. ${ }^{18} n$-Butyllithium (1.55 equiv) in THF was added dropwise via a syringe to a stirred solution of (S)- N -(α-methylbenzyl)allylamine (7) (1.6 equiv) in anhydrous THF at $-78{ }^{\circ} \mathrm{C}$ under nitrogen. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for a further 30 min . A solution of the α, β-unsaturated ester (1.0 equiv) in anhydrous THF was added dropwise via syringe at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for further 3 h at the same temperature. The mixture was then quenched with aqueous saturated ammonium chloride and allowed to warm to $20^{\circ} \mathrm{C}$ over about 15 min . Evaporation gave a pale yellow liquid that was partitioned between dichloromethane and aqueous 10% citric acid. The aqueous layer was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$) and all of the organic layers were combined, washed with saturated aqueous sodium hydrogen carbonate then brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was purified as described under the given product.
3.1.5. General procedure E for N-deallylation. ${ }^{18 b, 19}$ Tris(triphenylphosphine)rhodium(I) chloride (Wilkinson's catalyst, $5 \mathrm{~mol} \%$) was added in one portion to a stirred solution of the β amino ester (1.0 equiv) in acetonitrile-water ($85: 15$) at $20^{\circ} \mathrm{C}$. The mixture was then heated under reflux for 16 h . After allowing to cool, the mixture was extracted with dichloromethane, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified as described under the given product.
3.1.6. Methyl 3-amino-2-methylpent-2-enoate (2d). Ammonium acetate $(2.60 \mathrm{~g}, 33.8 \mathrm{mmol})$ and acetic acid (0.1 mL) were added to a stirred solution of methyl 2-methyl-3-oxopentanoate (1d) (0.98 g , 6.77 mmol) in benzene (50 mL). The mixture was heated under reflux for 72 h with the azeotropic removal of water. After allowing to cool to $20^{\circ} \mathrm{C}$, ethyl acetate (50 mL) was added and the mixture was washed with saturated aqueous sodium hydrogen carbonate (15 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give $\mathbf{2 d}(0.51 \mathrm{~g}, 52 \%)$ as an orange oil; IR $\nu_{\max } 3303,2924,1744,1656,1610,1462,1161 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.72(3 \mathrm{H}, \mathrm{s}) 2.25(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}) 1.75$ $(3 \mathrm{H}, \mathrm{s}) 1.15(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}, \%) 144\left([\mathrm{M}+\mathrm{H}]^{+}, 65\right)$. HRMS $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NO}_{2}$ calcd 144.1025, found 144.1019.
3.1.7. Methyl 3-aminohexanoate (3c). Ammonium acetate (30.0 g, $0.39 \mathrm{~mol})$ and acetic acid (0.1 mL) were added to a stirred solution of methyl 3-oxohexanoate (1c) ($11.2 \mathrm{~g}, 77.7 \mathrm{mmol}$) in benzene (160 mL). The mixture was heated under reflux for 72 h with the azeotropic removal of water. After allowing to cool to $20^{\circ} \mathrm{C}$, the mixture was diluted with ethyl acetate (150 mL), washed with saturated aqueous sodium hydrogen carbonate (15 mL), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated to give the crude β-enamino ester as an oil. Sodium borohydride ($7.15 \mathrm{~g}, 0.19 \mathrm{mmol}$) was added in portions to a stirred solution of glacial acetic acid (200 mL) maintaining the temperature at near $20^{\circ} \mathrm{C}$. The mixture was stirred for 30 min until there was no more hydrogen was evolved. The β-enamino ester was then added in one portion and the mixture was stirred at $20{ }^{\circ} \mathrm{C}$ for 3 h . The acetic acid was removed under reduced pressure and the residue was dissolved in ethyl acetate (100 mL). The mixture was extracted with water ($4 \times 100 \mathrm{~mL}$), and the pH of the combined aqueous layers was adjusted to pH 12 by potassium carbonate. The solution was extracted with chloroform $(3 \times 150 \mathrm{~mL})$ and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give $\mathbf{3 c}(3.61 \mathrm{~g}, 32 \%)$ as an orange oil; IR $\nu_{\text {max }}$ 3272, 2957, 1736, 1553, 1436, 1379, $1174 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.73(3 \mathrm{H}, \mathrm{s}) 3.18(1 \mathrm{H}, \mathrm{m}) 2.46(1 \mathrm{H}, \mathrm{dd}, J=15.7,4.0 \mathrm{~Hz}) 2.25$ ($1 \mathrm{H}, \mathrm{dd}, J=15.7,9.0 \mathrm{~Hz}$) $2.03(2 \mathrm{H}, \mathrm{br} \mathrm{s}) 1.36-1.33(4 \mathrm{H}, \mathrm{m}) 0.91(3 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1,51.5,48.0,42.3$,
39.7, 19.2, 14.0; m/z (CI, \%) $146\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{NO}_{2}$ calcd 146.1181, found 146.1183.
3.1.8. Methyl 3-amino-2-methylpentanoate (3d). Sodium borohydride ($0.64 \mathrm{~g}, 16.8 \mathrm{mmol}$) was added in small portions to a stirred solution of glacial acetic acid (11 mL), maintaining the temperature near $20^{\circ} \mathrm{C}$. The mixture was then stirred for 30 min until no more hydrogen was evolved. Ester $\mathbf{2 d}(0.93 \mathrm{~g}, 6.47 \mathrm{mmol}$) was then added in one portion and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 3 h . The acetic acid was removed under reduced pressure and the residue was dissolved in ethyl acetate (10 mL). The solution was extracted with water ($4 \times 10 \mathrm{~mL}$), and the pH of the combined aqueous layers was adjusted to pH 12 using potassium carbonate. The aqueous mixture was extracted with chloroform ($3 \times 15 \mathrm{~mL}$) and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give $3 \mathbf{d}(0.63 \mathrm{~g}, 67 \%)$ as an orange oil, IR $\nu_{\max }\left(\mathrm{cm}^{-1}\right)$ 3321, 2961, 1731, $1569 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of diastereoisomers) $\delta 3.67(3 \mathrm{H}, \mathrm{s}) 2.90-2.43(2 \mathrm{H}, \mathrm{m}) 1.53(2 \mathrm{H}, \mathrm{br}$ s) $1.42-1.16(2 \mathrm{H}, \mathrm{m}) 1.14-1.11(3 \mathrm{H}, \mathrm{m}) 0.96-0.90(3 \mathrm{H}, \mathrm{m}) . \mathrm{m} / \mathrm{z}(\mathrm{Cl}$, \%) $146\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{NO}_{2}$ calcd 146.1181, found 146.1179.
3.1.9. Methyl 3-amino-2-methyl-4-phenylbutanoate (3e). Trimethylsilyl chloride ($0.26 \mathrm{~mL}, 2.0 \mathrm{mmol}$) was added to a stirred mixture of zinc dust ($2.60 \mathrm{~g}, 39.3 \mathrm{mmol}$) in dichloromethane (13 mL) at $20^{\circ} \mathrm{C}$ under nitrogen, and the mixture was stirred for 30 min . Tetrahydrofuran (8 mL) was then added and the mixture was heated to $42{ }^{\circ} \mathrm{C}$. A mixture of benzyl cyanide $(1.00 \mathrm{~g}, 8.54 \mathrm{mmol})$ and methyl 2-bromopropanoate (2.85 g , 17.1 mmol) was added and the reaction mixture was then heated under reflux for 2 h . After allowing to cool the mixture was filtered, and sodium borohydride ($0.60 \mathrm{~g}, 15.4 \mathrm{mmol}$) and ethanol $(2.5 \mathrm{~mL})$ were added cautiously to the filtrate. The mixture was stirred for 3 h , then hydrochloric acid ($2 \mathrm{M}, 9 \mathrm{~mL}$) was then added and the aqueous layer was extracted with dichloromethane $(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Toluene (4 mL) was added to the residue and the mixture was made alkaline with 0.880 aqueous ammonia (3 mL). The aqueous layer was extracted with toluene $(2 \times 4 \mathrm{~mL})$, and the organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was purified by flash chromatography (20% ethyl acetate/hexane) to give 3 e $(0.27 \mathrm{~g}, 15 \%$) as a yellow oil; IR $\nu_{\max } 3368(\mathrm{~N}-\mathrm{H}), 2948(\mathrm{C}-\mathrm{H}), 1726,1664 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (1:1 mixture of diastereoisomers) $\delta 7.38-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) 3.69(3 \mathrm{H}, \mathrm{s}) 3.30(1 \mathrm{H}, \mathrm{m}) 2.82(1 \mathrm{H}, \mathrm{m})$ 2.60-2.40 $(2 \mathrm{H}, \mathrm{m}) 1.65\left(2 \mathrm{H}, \mathrm{br}\right.$ s) $1.26-1.18(3 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.1,175.9,139.1,139.1,129.4,129.3,129.1$, 128.6, 126.5, 55.5, 54.4, 51.7, 51.6, 45.7, 44.6, 41.8, 41.6, 14.5, 11.7; $\mathrm{m} / \mathrm{z}(\mathrm{Cl}, \%) 208\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{2}$ calcd 208.1338, found 208.1335 .
3.1.10. Dihydrochloride salt of methyl 3-amino-3-(pyridin-3-yl) propanoate (3g). 3-Amino-3-(pyridin-3-yl)propanoic acid was prepared as previously described ${ }^{31}$ and directly treated with thionyl chloride in methanol to give the dihydrochlorde salt of $\mathbf{3 g}$. To a stirred solution of pyridine-3-carboxaldehyde ($8.24 \mathrm{~g}, 76.8 \mathrm{mmol}$) in ethanol (15 mL) were added malonic acid ($8.0 \mathrm{~g}, 76.8 \mathrm{mmol}$) and ammonium acetate ($12.0 \mathrm{~g}, 0.156 \mathrm{mmol}$). The mixture was heated under reflux for 6 h . After allowing to cool, the mixture was filtered and the filtrate evaporated. The residue was dissolved in methanol $(150 \mathrm{~mL})$ and the solution cooled to $0{ }^{\circ} \mathrm{C}$. To the stirred solution thionyl chloride ($2.7 \mathrm{~mL}, 99.8 \mathrm{mmol}$) was added dropwise; the mixture was stirred at $0^{\circ} \mathrm{C}$ for an additional 30 min , then stirred at $20^{\circ} \mathrm{C}$ for 3 h . The mixture was then heated at reflux for 1 h . After allowing to cool, diethyl ether (200 mL) was added and the precipitate filtered to give the dihydrochloride salt of $\mathbf{3 g}(5.42 \mathrm{~g}, 43 \%)$
as a white solid, $\mathrm{mp} 202-200^{\circ} \mathrm{C}\left(\right.$ lit. $\left.^{32} \mathrm{mp} 197.5-199{ }^{\circ} \mathrm{C}\right)$; IR $\nu_{\text {max }}$ 3296, 2953, 1737, $1657 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.54(1 \mathrm{H}$, m) $8.50(1 \mathrm{H}, \mathrm{m}) 7.90(1 \mathrm{H}, \mathrm{m}) 7.47(1 \mathrm{H}, \mathrm{m}) 4.74(1 \mathrm{H}, \mathrm{dd}, J=7.9,6.6 \mathrm{~Hz})$ $3.70(3 \mathrm{H}, \mathrm{s}) 2.88(1 \mathrm{H}, \mathrm{dd}, J=16.3,7.9 \mathrm{~Hz}) 2.80(1 \mathrm{H}, \mathrm{dd}, J=16.3$, 6.6 Hz).
3.1.11. Methyl 3-(2-methoxycarbonylacetylamino)butanoate (4a). Following general procedure A, reaction of methyl 3aminobutanoate hydrochloride ($0.50 \mathrm{~g}, 3.3 \mathrm{mmol}$) in dichloromethane (7 mL), 1-hydroxybenzotriazole ($0.66 \mathrm{~g}, 4.9 \mathrm{mmol}$), $\mathrm{N}, \mathrm{N}-$ diisopropylethylamine $(2.3 \mathrm{~mL}, \quad 13 \mathrm{mmol}), \mathrm{N}$-(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride ($0.59 \mathrm{~g}, 3.3 \mathrm{mmol}$), and monomethyl malonate ($1.52 \mathrm{~g}, 9.8 \mathrm{mmol}$) in dichloromethane (10 mL) gave a pale yellow solid that was purified by flash chromatography (60% ethyl acetate/hexane) to give $\mathbf{4 a}$ ($0.33 \mathrm{~g}, 46 \%$) as a yellow gum; IR $\nu_{\max } 3293,2956,1730,1650 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(1 \mathrm{H}, \mathrm{br} \mathrm{s}) 4.35(1 \mathrm{H}, \mathrm{m}) 3.63(3 \mathrm{H}, \mathrm{s})$ $3.58(3 \mathrm{H}, \mathrm{s}) 3.19(2 \mathrm{H}, \mathrm{s}) 2.51-2.36(2 \mathrm{H}, \mathrm{m}) 1.13(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7,169.4,164.3,52.3,51.6,42.2,41.3$, 39.8, 19.8; m/z (CI, \%) $218\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{5}$ calcd 218.1023, found 218.1022.

3.1.12. Methyl 3-(2-methoxycarbonylacetylamino)-hexanoate

 (4c). Following general procedure A, reaction of methyl 3aminohexanoate 3c ($0.47 \mathrm{~g}, 3.3 \mathrm{mmol}$) in dichloromethane (7 mL), 1-hydroxybenzotriazole ($0.66 \mathrm{~g}, 4.9 \mathrm{mmol}$), N, N-diisopropylethylamine ($2.3 \mathrm{~mL}, 13 \mathrm{mmol}$), N-(3-dimethylaminopropyl)- N^{\prime} ethylcarbodiimide hydrochloride ($0.59 \mathrm{~g}, 3.3 \mathrm{mmol}$), and monomethyl malonate ($1.52 \mathrm{~g}, 9.8 \mathrm{mmol}$) in dichloromethane (10 mL) gave a pale yellow solid that was purified by flash chromatography (55:45 ethyl acetate/hexane) to give $\mathbf{4 c}(0.32 \mathrm{~g}, 40 \%)$ as a colourless gum; IR $\nu_{\max } 3292,2956,1734,1649 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.22(1 \mathrm{H}, \mathrm{br}$ s) $4.38(1 \mathrm{H}, \mathrm{m}) 3.74(3 \mathrm{H}, \mathrm{s}) 3.69(3 \mathrm{H}, \mathrm{s}) 3.31$ $(2 \mathrm{H}, \mathrm{s}) 2.56-2.54(2 \mathrm{H}, \mathrm{m}) 1.56-1.49(2 \mathrm{H}, \mathrm{m}) 1.35(2 \mathrm{H}, \mathrm{m}) 0.91(3 \mathrm{H}, \mathrm{t}$, $J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,169.7,164.3,52.4,51.7$, $46.0,41.2,38.4,36.1,19.3,13.8 ; \mathrm{m} / \mathrm{z}(\mathrm{Cl}, \%) 246\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{5}$ calcd 246.1336, found 246.1332.3.1.13. Methyl 3-(2-methoxycarbonylacetylamino)-2methylpentanoate (4d). Following general procedure B, reaction of ester $3 \mathbf{d}(0.30 \mathrm{~g}, 2.07 \mathrm{mmol})$, triethylamine ($0.38 \mathrm{~mL}, 2.7 \mathrm{mmol}$), and methyl 3-chloro-3-oxopropanoate ($0.27 \mathrm{~mL}, 2.48 \mathrm{mmol}$) in dichloromethane $(8 \mathrm{~mL})$ gave a pale yellow oil was purified by flash chromatography (40:60 ethyl acetate/hexane) to give $\mathbf{4 d}$ (0.20 g , 40%) as a pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of diastereoisomers) $\delta 7.35(1 \mathrm{H}, \mathrm{m}) 4.17(1 \mathrm{H}, \mathrm{m}) 3.75(3 \mathrm{H}, \mathrm{s}) 3.67(3 \mathrm{H}$, s) $3.34-3.30(2 \mathrm{H}, \mathrm{m}) 2.68(1 \mathrm{H}, \mathrm{m}) 1.61-1.55(2 \mathrm{H}, \mathrm{m}) 1.16(3 \mathrm{H}, \mathrm{d}$, $J=6.0 \mathrm{~Hz}) 0.92(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.7$, $174.8,169.6,169.3,165.0,164.8,52.8,52.7,52.4,52.3,51.7,48.6,43.3$, 42.0, 41.5, 41.2, 26.4, 24.7, 14.7, 12.8, 10.6; m/z (CI, \%) $246\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100). HRMS $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{5}$ calcd 246.1342, found 246.1345 .
3.1.14. Methyl 3-(2-methoxycarbonylacetylamino)-2-methyl-4phenylbutanoate ($\mathbf{4 e}$). Following general procedure B , reaction of amine $3 \mathbf{e}(0.13 \mathrm{~g}, 0.60 \mathrm{mmol})$, N, N-diisopropylethylamine (0.21 mL , 1.21 mmol), and methyl 3-chloro-3-oxopropanoate (0.10 mL , 0.90 mmol) in dichloromethane (4 mL) afforded an oil that was purified by flash chromatography (40:60 ethyl acetate:hexane) to give $\mathbf{4 e}(0.13 \mathrm{~g}, 67 \%)$ as a colourless oil; IR $\nu_{\text {max }} 3301,2953,1733$, $1657 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of diastereoisomers) $\delta 7.29-7.16(5 \mathrm{H}, \mathrm{m}) 4.51-4.13(1 \mathrm{H}, \mathrm{m}) 3.72(3 \mathrm{H}, \mathrm{s})$ $3.66(3 \mathrm{H}, \mathrm{s}) 3.27-3.12(2 \mathrm{H}, \mathrm{m}) 2.84-2.67(3 \mathrm{H}, \mathrm{m}) 1.22-1.18(3 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.9,174.8,169.8,169.4,164.8,164.3$, $137.8,137.6,129.3,129.2,128.5,128.4,126.7,126.6,53.1,52.4,52.3$, $51.9,42.9,42.6,41.5,41.0,40.7,39.9,37.8,37.7,13.2,12.9 ; m / z$ (EI, \%)
$308\left([\mathrm{M}+\mathrm{H}]^{+}, 5\right), 276\left(\left[\mathrm{M}-\mathrm{CH}_{4} \mathrm{O}\right]^{+}, 12\right)$. HRMS $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{5}$ calcd 308.1498, found 308.1491.
3.1.15. Methyl 3-(2-methoxycarbonylacetylamino)-4-(pyridin-3-yl) butanoate ($\mathbf{4 g}$). Following general procedure B, reaction of amine $3 \mathrm{~g}(0.50 \mathrm{~g}, 1.98 \mathrm{mmol}), N, N$-diisopropylethylamine (1.4 mL , 7.93 mmol), and methyl 3-chloro-3-oxopropanoate (0.32 mL , 2.98 mmol) in dichloromethane (12 mL) gave an oil was purified by flash chromatography (1:1 ethyl acetate:hexane) to give $\mathbf{4 g}$ (0.54 g , 97%) as a yellow oil; IR $\nu_{\max } 3273,2954,1733,1656 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of rotamers) $\delta 8.67(1 \mathrm{H}, \mathrm{s}) 8.53(1 \mathrm{H}, \mathrm{m})$ $7.64-7.55(1 \mathrm{H}, \mathrm{m}) 7.22(1 \mathrm{H}, \mathrm{m}) 5.38(1 \mathrm{H}, \mathrm{dd}, J=6.4,5.3 \mathrm{~Hz}) 3.67(3 \mathrm{H}$, s) $3.53(3 \mathrm{H}, \mathrm{s}) 3.26(2 \mathrm{H}, \mathrm{s}) 2.86(1 \mathrm{H}, \mathrm{dd}, J=16.0,6.4 \mathrm{~Hz}) 2.79(1 \mathrm{H}, \mathrm{dd}$, $J=16.0,5.3 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,169.3,164.8$, 148.8, 148.1, 136.2, 134.4, 123.6, 123.3,52.5, 52.0, 47.9, 41.3, 39.6; m/z (EI, \%) $281\left([\mathrm{M}+\mathrm{H}]^{+}, 51\right), 280\left(\mathrm{M}^{+}, 88\right)$. HRMS $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5}$ calcd 281.1137, found 281.1136.
3.1.16. 3-Methoxycarbonyl-6-phenylpiperidine-2,4-dione (5f). Sodium methoxide in methanol ($2.0 \mathrm{M}, 3.1 \mathrm{~mL}, 6.2 \mathrm{mmol}$) was added to a stirred solution of diester $\mathbf{4 f}^{25}(1.40 \mathrm{~g}, 5.0 \mathrm{mmol})$ in methanol (15 mL) at $20^{\circ} \mathrm{C}$ under nitrogen. The mixture was then heated under reflux for 2 h . After allowing to cool to $20^{\circ} \mathrm{C}$, the mixture was diluted with diethyl ether and filtered. The white precipitate was dissolved in water, and the solution acidified to $\mathrm{pH} 2-3$ by hydrochloric acid (1 M). After extraction with ethyl acetate ($3 \times 20 \mathrm{~mL}$) the combined organic layers were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give 5f ($0.86 \mathrm{~g}, 70 \%$) as a white solid, $\mathrm{mp} 122-125{ }^{\circ} \mathrm{C}$ (lit. ${ }^{13}$ $128-130{ }^{\circ} \mathrm{C}$); IR $\nu_{\max } 3311(\mathrm{O}-\mathrm{H}), 2952,1713,1638,1571 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.14(5 \mathrm{H}, \mathrm{m}) 6.22$ (1 H , br s) $4.64(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) 3.68(3 \mathrm{H}, \mathrm{s}) 2.81(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.5,172.0,164.8,139.6,129.1,128.7,126.5$, 97.4, 52.7, 52.3, 37.8 .
3.1.17. 6-Methylpiperidine-2,4-dione ($\mathbf{6 a}$). Following general procedure C, reaction of diester $4 \mathbf{a}(0.30 \mathrm{~g}, 1.38 \mathrm{mmol})$, and sodium methoxide in methanol ($1.84 \mathrm{M}, 1.5 \mathrm{~mL}, 2.76 \mathrm{mmol}$) in methanol $(2.0 \mathrm{~mL})$ gave $6 \mathbf{a}(74 \mathrm{mg}, 42 \%)$ as a pale yellow solid, mp $124-128{ }^{\circ} \mathrm{C}$; IR $\nu_{\max } 3217,2968,1726,1663, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.88(1 \mathrm{H}, \mathrm{m}) 3.26(2 \mathrm{H}, \mathrm{d}, J=19.8 \mathrm{~Hz}) 3.19(1 \mathrm{H}, \mathrm{d}$, $J=19.8 \mathrm{~Hz}) 2.64(1 \mathrm{H}, \mathrm{dd}, J=16.4,4.0 \mathrm{~Hz}) 2.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16.4,9.6 \mathrm{~Hz})$ 1.30 (3H, d, $J=6.5 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.4,169.8$, 47.0, 46.2, 44.6, 21.3; m/z (CI, \%) 128 ([M+H] ${ }^{+}, 100$). HRMS $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{NO}_{2}$ calcd 128.0711, found 128.0714.
3.1.18. 6-Propylpiperidine-2,4-dione ($\mathbf{6 c}$). Following general procedure C , reaction of diester $\mathbf{4 c}(0.17 \mathrm{~g}, 0.70 \mathrm{mmol})$, and sodium methoxide in methanol ($2.0 \mathrm{M}, 0.54 \mathrm{~mL}, 1.05 \mathrm{mmol}$) in methanol (1.0 mL) gave $\mathbf{6 c}\left(63 \mathrm{mg}, 58 \%\right.$) as a white solid, $\mathrm{mp} 112-116{ }^{\circ} \mathrm{C}$; IR $\nu_{\text {max }} 3249,2925,1736,1664 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.65$ $(1 \mathrm{H}, \mathrm{m}) 3.25(2 \mathrm{H}, \mathrm{m}) 2.66(1 \mathrm{H}, \mathrm{m}) 2.33(1 \mathrm{H}, \mathrm{m}) 1.50-1.22(4 \mathrm{H}, \mathrm{m})$ 0.93 (3H, m); ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 208.0, 176.1, 36.9, 34.0, 29.7, 21.1, 18.4, 13.9; m/z (CI, \%) $156\left([\mathrm{M}+\mathrm{H}]^{+}, 35\right) . \mathrm{HRMS} \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{2}$ calcd 156.1025, found 156.1022.
3.1.19. 6-Ethyl-5-methylpiperidine-2,4-dione (6d). Following general procedure C, reaction of diester $\mathbf{5 d}(0.12 \mathrm{~g}, 0.48 \mathrm{mmol}$), and sodium methoxide in methanol ($1.74 \mathrm{M}, 0.53 \mathrm{~mL}, 0.92 \mathrm{mmol}$) in methanol (3.0 mL) gave $\mathbf{6 d}$ ($53 \mathrm{mg}, 71 \%$) as a yellow oil; IR $\nu_{\text {max }}$ 3280, 2925, 1725, $1661 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of diastereoisomers) $\delta 7.95-7.79(1 \mathrm{H}, \mathrm{br}$ s) $3.75-3.69(1 \mathrm{H}, \mathrm{m}) 3.22$ $(2 \mathrm{H}, \mathrm{m}) 2.67-2.36(1 \mathrm{H}, \mathrm{m}) 1.73-1.52(2 \mathrm{H}, \mathrm{m}) 1.19-1.05(3 \mathrm{H}, \mathrm{m})$ $0.99-0.83(3 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 205.7, 170.0, 55.6, $54.5,46.4,46.4,46.0,41.0,26.2,24.4,11.6,10.1,10.0,8.5 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}, \%)$
$156\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{2}$ calcd 156.2023, found 156.2021.
3.1.20. 6-Benzyl-5-methylpiperidine-2,4-dione (6e). Following general procedure C , reaction of diester $5 \mathbf{e}(0.09 \mathrm{~g}, 0.30 \mathrm{mmol})$, and sodium methoxide in methanol ($2.0 \mathrm{M}, 0.2 \mathrm{~mL}, 0.38 \mathrm{mmol}$) in methanol (1.2 mL) gave $\mathbf{6 e}(36 \mathrm{mg}, 56 \%)$ as a yellow oil, IR $\nu_{\text {max }} 3245$ ($\mathrm{N}-\mathrm{H}$), 2923, 1721, $1661 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of diastereoisomers) $\delta 7.63-7.19(5 \mathrm{H}, \mathrm{m}) 3.92-3.83(1 \mathrm{H}, \mathrm{m})$ $3.27-3.13(2 \mathrm{H}, \mathrm{m}) 2.90(1 \mathrm{H}, \mathrm{m}) 2.65-2.61(1 \mathrm{H}, \mathrm{m}) 2.51-2.46(1 \mathrm{H}$, m) $1.28-1.25(3 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.8,204.7$, 169.2, 168.4, 136.0, 135.5, 129.5, 129.4, 129.3, 129.1, 127.7, 127.4, 55.8, 54.5, 47.4, 46.6, 46.1, 46.0, 41.0, 37.9, 12.1, 10.5; m/z (CI, \%) 218 $\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$. $\mathrm{HRMS} \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{2}$ calcd 218.1181, found 218.1189.
3.1.21. 6-Phenylpiperidine-2,4-dione (6f). Diester 5 f (0.31 g, 1.25 mmol) was added to 1% water in acetonitrile (6 mL). The mixture was heated under reflux for 2 h , allowed to cool and then evaporated. The residue was purified by flash chromatography (1:99 methanol:chloroform) to give $\mathbf{6 f}(0.25 \mathrm{~g}, 95 \%)$ as a white solid, $\mathrm{mp} 160-163{ }^{\circ} \mathrm{C}$ (lit. ${ }^{33} 167-169{ }^{\circ} \mathrm{C}$); IR $\nu_{\max } 3248,2927,1722$, $1664 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.28(5 \mathrm{H}, \mathrm{m}) 6.87(1 \mathrm{H}$, br s) $4.80(1 \mathrm{H}, \mathrm{dd}, J=8.7,4.5 \mathrm{~Hz}) 3.34(2 \mathrm{H}, \mathrm{s}) 2.88(1 \mathrm{H}, \mathrm{dd}, J=16.0$, $4.5 \mathrm{~Hz}) 2.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16.0,8.7 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 202.3, 169.0, 139.3, 129.4, 128.9, 126.0, 52.9, 47.2, 47.0; m/z (CI, \%) $190\left([\mathrm{M}+\mathrm{H}]^{+}, 95\right)$. HRMS $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NO}_{2}$ calcd 190.0863, found 190.0859.
3.1.22. 3,3-Dimethyl-6-phenylpiperidine-2,4-dione (6h). Potassium carbonate ($0.25 \mathrm{~g}, 1.84 \mathrm{mmol}$) and methyl iodide (0.11 mL , 1.84 mmol) were added to a solution of 6-phenylpiperidine-2,4dione ($\mathbf{6 f}$) $(0.12 \mathrm{~g}, 0.61 \mathrm{mmol})$ in acetone (3 mL). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 16 h . Filtration and evaporation of the filtrate gave a residue that was purified by flash chromatography (60:40 ethyl acetate/hexane) to give $\mathbf{6 h}(0.09 \mathrm{~g}, 65 \%$) as a white solid, mp $165-168{ }^{\circ} \mathrm{C}$ (lit. ${ }^{34} 168-169{ }^{\circ} \mathrm{C}$); IR $\nu_{\max } 3200,2978,1714$, $1649 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.26(5 \mathrm{H}, \mathrm{m}) 6.60(1 \mathrm{H}$, br s) $4.70(1 \mathrm{H}, \mathrm{dd}, J=4.7,2.5 \mathrm{~Hz}) 2.92(1 \mathrm{H}, \mathrm{dd}, J=15.5,4.7 \mathrm{~Hz}) 2.84$ $(1 \mathrm{H}, \mathrm{dd}, J=15.5,2.5 \mathrm{~Hz}) 1.39(3 \mathrm{H}, \mathrm{s}) 1.38(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 208.2,175.8,140.0,129.3,128.8,126.0,52.1,52.0,45.3,23.1$, 22.8.
3.1.23. 3-Methoxycarbonyl-3-methyl-6-phenylpiperidine-2,4-dione ($\boldsymbol{6 i}$). Tetrabutylammonium fluoride in THF ($1 \mathrm{M}, 0.8 \mathrm{~mL}$) and methyl iodide ($0.08 \mathrm{~mL}, 1.28 \mathrm{mmol}$) were added to 3 -methoxycarbonyl-6-phenylpiperidine-2,4-dione (5f) (0.16 g, $0.64 \mathrm{mmol})$ in THF (2 mL). The mixture was stirred at $20^{\circ} \mathrm{C}$ for 24 h . The solution was neutralised with hydrochloric acid (1 M), extracted with chloroform and evaporated. The residue that was purified by flash chromatography (55:45 ethyl acetate:hexane) to give $\mathbf{6 i}(0.11 \mathrm{~g}, 64 \%)$ as a colourless solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (1:1 mixture of diastereoisomers) $\delta 7.47-7.21(5 \mathrm{H}, \mathrm{m}) 6.60(1 \mathrm{H}, \mathrm{br}$ s) $4.82-4.49(1 \mathrm{H}, \mathrm{m}) 3.69$ and $3.64(3 \mathrm{H}, \mathrm{s}) 3.04-2.73(2 \mathrm{H}, \mathrm{m}) 1.57$ and $1.51(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.7, 201.6, 170.3, 169.6, 167.6, 167.5, 139.3, 139.2, 129.4, 129.3, 129.0, 128.9, 126.2, $126.1,63.8,63.7,53.5,53.4,52.4,52.0,45.7,45.6,18.3,18.2 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}$, \%) $262\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{4}$ calcd 262.1074, found 262.1067.
3.1.24. Methyl (3S, α S)-3-[N-allyl-N-(α-methylbenzyl)]aminobutanoate (8a). Following general procedure D, butyllithium in hexanes ($1.6 \mathrm{M}, 8.0 \mathrm{~mL}, 12.9 \mathrm{mmol}$) and methyl but-2-enoate ($0.83 \mathrm{~g}, 8.3 \mathrm{mmol}$) in anhydrous THF (9 mL) were added to (S) - N (α-methylbenzyl)allylamine (7) ($2.15 \mathrm{~g}, 13.3 \mathrm{mmol}$) in anhydrous THF (18 mL), affording an oil that was purified by flash chromatography ($15: 85$ ethyl acetate:hexane) to give $\mathbf{8 a}(1.85 \mathrm{~g}, 85 \%)$ as
a pale yellow oil; $[\alpha]_{D}^{21}+18.7\left(c \quad 0.75, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{35}$ for enantiomer $[\alpha]_{\mathrm{D}}^{26}-14.2\left(c 1.85, \mathrm{CHCl}_{3}\right)$; IR $\nu_{\max } 2970,1737 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.20(5 \mathrm{H}, \mathrm{m}) 5.85(1 \mathrm{H}, \mathrm{m}) 5.15(1 \mathrm{H}, \mathrm{dd}$, $J=17.2,10.4 \mathrm{~Hz}) 5.04(1 \mathrm{H}, \mathrm{dd}, J=17.2,4.6 \mathrm{~Hz}) 3.97(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz})$ $3.56(3 \mathrm{H}, \mathrm{s}) 3.49(1 \mathrm{H}, \mathrm{m}) 3.18(2 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}) 2.40(1 \mathrm{H}, \mathrm{dd}, J=14.2$, $7.0 \mathrm{~Hz}) 2.19(1 \mathrm{H}, \mathrm{dd}, J=14.2,7.5 \mathrm{~Hz}) 1.37(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) 1.07(3 \mathrm{H}, \mathrm{d}$, $J=6.8 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.9,145.2,139.2,128.1$, $127.6,126.8,115.6,57.7,51.4,50.6,48.6,40.4,18.8,17.5 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}, \%)$ $262\left([\mathrm{M}+\mathrm{H}]^{+}\right)$. $\mathrm{HRMS} \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{2}$ calcd 262.1807, found 262.1803.
3.1.25. Methyl (3R, α S)-3-[N-allyl-N-(α-methylbenzyl)amino]-4methylpentanoate (8b). Following general procedure D, butyllithium in hexanes ($2.5 \mathrm{M}, 5.3 \mathrm{~mL}, 13.3 \mathrm{mmol}$) and methyl 4-methylpent-2-enoate ($1.10 \mathrm{~g}, 8.58 \mathrm{mmol}$) in anhydrous THF (22 mL) were added to (S)- N -(α-methylbenzyl)allylamine (7) ($2.22 \mathrm{~g}, 13.7 \mathrm{mmol}$) in anhydrous THF (28 mL), affording an oil that was purified by flash chromatography ($12: 88$ ethyl acetate:hexane) to give $\mathbf{8 b}(1.70 \mathrm{~g}, 69 \%)$ as a pale yellow oil; $[\alpha]_{\mathrm{D}}^{21}+18.0$ (c 5.00 , CHCl_{3}); IR $\nu_{\text {max }} 2970,1736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.21(5 \mathrm{H}, \mathrm{m}) 5.90(1 \mathrm{H}, \mathrm{m}) 5.20(1 \mathrm{H}, \mathrm{m}) 5.07(1 \mathrm{H}, \mathrm{m}) 3.91(1 \mathrm{H}$, $\mathrm{q}, J=7.1 \mathrm{~Hz}) 3.58(3 \mathrm{H}, \mathrm{s}) 3.18(1 \mathrm{H}, \mathrm{m}) 3.09-3.06(2 \mathrm{H}, \mathrm{m}) 2.11(1 \mathrm{H}, \mathrm{dd}$, $J=15.6,7.8 \mathrm{~Hz}) 2.02(1 \mathrm{H}, \mathrm{dd}, J=15.6,4.0 \mathrm{~Hz}) 1.69(1 \mathrm{H}, \mathrm{m}) 1.43(3 \mathrm{H}, \mathrm{d}$, $J=7.1 \mathrm{~Hz}) 0.98(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}) 0.81(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.0,143.9,139.2,128.3,127.9,126.8,115.4$, $59.8,58.9,51.4,49.7,35.0,32.8,21.0,20.9,19.8 ; \mathrm{m} / \mathrm{z}(\mathrm{Cl}, \%) 290$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 40\right) 246\left(\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6}\right]^{+}, 100\right) 105\left(\mathrm{C}_{8} \mathrm{H}_{9}^{+}, 30\right)$. HRMS $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{2}$ calcd 290.2120, found 290.2123.
3.1.26. Methyl (3R, α S)-3-[N-allyl-N-(α-methylbenzyl)amino]hex-4enoate ($\mathbf{8 c}$). Following general procedure D, butyllithium in hexanes ($1.6 \mathrm{M}, 11.3 \mathrm{~mL}, 18.0 \mathrm{mmol}$) and (E, E)-methyl hexa-2,4dienoate ($1.47 \mathrm{~g}, 11.6 \mathrm{mmol}$) in anhydrous THF (15 mL) were added to (S)- N-(α-methylbenzyl)allylamine (7) ($3.00 \mathrm{~g}, 18.6 \mathrm{mmol}$) in anhydrous THF (15 mL), affording an oil that was purified by flash chromatography ($1: 9$ ethyl acetate:hexane) to give $\mathbf{8 c}(2.61 \mathrm{~g}, 78 \%)$ as a pale yellow oil; $[\alpha]_{\mathrm{D}}^{21}+3.4$ (c $2.95, \mathrm{CHCl}_{3}$), lit. ${ }^{17}$ for enantiomer $[\alpha]_{\mathrm{D}}^{13}-2.4\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR $\nu_{\max } 2970,1736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.17(5 \mathrm{H}, \mathrm{m}) 5.80(1 \mathrm{H}, \mathrm{m}) 5.51(2 \mathrm{H}, \mathrm{m})$ $5.12-5.00(2 H, m) 4.02(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}) 3.85(1 \mathrm{H}, \mathrm{m}) 3.56(3 \mathrm{H}, \mathrm{s})$ $3.12(2 \mathrm{H}, \mathrm{m}) 2.51(1 \mathrm{H}, \mathrm{dd}, J=14.3,5.8 \mathrm{~Hz}) 2.34(1 \mathrm{H}, \mathrm{dd}, J=14.3$, $7.5 \mathrm{~Hz}) 1.69(3 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}) 1.35(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,145.2,138.8,130.6,128.0,127.6,127.1$, 126.5, 115.7, 56.9, 56.8, 51.4, 49.6, 38.9, 18.1, 18.0; (EI, \%) 288 $\left([\mathrm{M}+\mathrm{H}]^{+}, 20\right), 105\left(\mathrm{C}_{8} \mathrm{H}_{9}^{+}, 100\right)$. HRMS $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{2}$ calcd 288.1964, found 288.1961.
3.1.27. Methyl (3R, α S)-3-[N-allyl-N-(α-methylbenzyl)]-3phenylpropanoate ($\mathbf{8 f}$). Following general procedure D, butyllithium in hexanes ($2.5 \mathrm{M}, 3.8 \mathrm{~mL}, 9.56 \mathrm{mmol}$) and methyl (E) cinnamate ($1.00 \mathrm{~g}, 6.17 \mathrm{mmol}$) in anhydrous THF (16 mL) to $(S)-\mathrm{N}-$ (α-methylbenzyl)allylamine (7) ($1.59 \mathrm{~g}, 9.86 \mathrm{mmol}$) in anhydrous THF (20 mL), affording an oil that was purified by flash chromatography ($10: 9$ ethyl acetate:hexane) to give $\mathbf{8 f}(1.80 \mathrm{~g}, 90 \%$) as a pale yellow oil; $[\alpha]_{\mathrm{D}}^{21}+1.5\left(c 4.10, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{35}$ for enantiomer $[\alpha]_{\mathrm{D}}^{26}$ -3.6 (c 0.85, CHCl_{3}); IR $\nu_{\max } 2973,1736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.55-7.33(10 \mathrm{H}, \mathrm{m}) 5.80(1 \mathrm{H}, \mathrm{m}) 5.17(1 \mathrm{H}, \mathrm{ddd}, J=17.2,8.6$, $1.4 \mathrm{~Hz}) 5.08(1 \mathrm{H}, \mathrm{ddd}, J=17.2,10.1,1.4 \mathrm{~Hz}) 4.54(1 \mathrm{H}, \mathrm{m}) 4.08(1 \mathrm{H}, \mathrm{q}$, $J=6.7 \mathrm{~Hz}) 3.57(3 \mathrm{H}, \mathrm{s}) 3.22-3.18(2 \mathrm{H}, \mathrm{m}) 2.91(1 \mathrm{H}, \mathrm{dd}, J=14.6$, $5.6 \mathrm{~Hz}) 2.69(1 \mathrm{H}, \mathrm{dd}, J=14.6,8.3 \mathrm{~Hz}) 1.18(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,144.9,141.5,138.8,128.4,128.1,127.7$, $127.5,127.3,126.7,116.0,58.9,56.3,51.5,49.8,38.0,16.6 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}, \%)$ $324\left([\mathrm{M}+\mathrm{H}]^{+}, 18\right), 105\left(\mathrm{C}_{8} \mathrm{H}_{9}^{+}, 100\right)$. HRMS $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{2}$ calcd 324.1964, found 324.1958).
3.1.28. Methyl (3R, α S)-3-[N-allyl-N-(α-methylbenzyl)]-3-(3-pyridyl) propanoate ($\mathbf{8 g}$). Following general procedure D, butyllithium in
hexanes ($2.5 \mathrm{M}, 1.9 \mathrm{~mL}, 4.75 \mathrm{mmol}$) and methyl 3-(pyridin-3-yl) propenoate $(0.50 \mathrm{~g}, 3.06 \mathrm{mmol})$ in anhydrous THF (5 mL) (S)- $\mathrm{N}-(\alpha-$ methylbenzyl)allylamine (7) ($0.95 \mathrm{~g}, 4.09 \mathrm{mmol}$) in anhydrous THF $(10 \mathrm{~mL})$ afforded an oil that was purified by flash chromatography ($1: 1$ ethyl acetate:hexane) to give $\mathbf{8 g}(0.52 \mathrm{~g}, 48 \%)$ as a yellow oil; $[\alpha]_{\mathrm{D}}^{21}-0.6\left(c 1.70, \mathrm{CHCl}_{3}\right)$; IR $\nu_{\max } 2972,1735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(1 \mathrm{H}, \mathrm{s}) 8.50(1 \mathrm{H}, \mathrm{m}) 7.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz})$ $7.37-7.22(6 \mathrm{H}, \mathrm{m}) 5.78(1 \mathrm{H}, \mathrm{m}) 5.16(2 \mathrm{H}$, ddd, $J=17.2,4.8,1.5 \mathrm{~Hz})$ $5.07(2 \mathrm{H}$, ddd, $J=17.2,10.2,1.5 \mathrm{~Hz}) 4.54(1 \mathrm{H}, \mathrm{m}) 4.02(1 \mathrm{H}, \mathrm{q}$, $J=6.8 \mathrm{~Hz}) 3.55(3 \mathrm{H}, \mathrm{s}) 3.19-3.13(2 \mathrm{H}, \mathrm{m}) 2.81(1 \mathrm{H}, \mathrm{dd}, J=15.2,6.0 \mathrm{~Hz})$ $2.67(1 \mathrm{H}, \mathrm{dd}, J=15.2,9.0 \mathrm{~Hz}) 1.23(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,149.7,148.6,144.2,138.2,137.2,135.3$, $128.3,127.5,127.0,123.3,116.4,56.9,56.6,51.7,49.8,36.7,17.6 ; \mathrm{m} / \mathrm{z}$ (EI, \%) $325\left([\mathrm{M}+\mathrm{H}]^{+}, 15\right), 105\left(\mathrm{C}_{8} \mathrm{H}^{+}, 100\right)$. HRMS $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$ calcd 325.1916, found 325.1916.
3.1.29. Methyl (3R, α S)-3-[N-allyl-N-(α-methylbenzyl)amino]-3cyclohexylpropanoate ($\mathbf{8 k}$). Following general procedure D, butyllithium in hexanes ($2.5 \mathrm{M}, 6.6 \mathrm{~mL}, 16.6 \mathrm{mmol}$) and methyl 3cyclohexylpropenoate ($1.80 \mathrm{~g}, 10.7 \mathrm{mmol}$) in anhydrous THF (27 mL) were added to (S) -N -(α-methylbenzyl)allylamine (7) ($2.76 \mathrm{~g}, 17.1 \mathrm{mmol}$) in anhydrous THF (34 mL), affording an oil that was purified by flash chromatography (12:88 ethyl acetate:hexane) to give $\mathbf{8 k}(2.40 \mathrm{~g}, 68 \%)$ as a pale yellow oil; $[\alpha]_{\mathrm{D}}^{25}+11.0$ (c 6.69, CHCl_{3}); IR $\nu_{\text {max }} 2923,1735 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.19(5 \mathrm{H}, \mathrm{m}) 5.85(1 \mathrm{H}, \mathrm{m}) 5.20(1 \mathrm{H}, \mathrm{m}) 5.07(1 \mathrm{H}, \mathrm{m}) 3.90(1 \mathrm{H}$, $\mathrm{q}, J=7.0 \mathrm{~Hz}) 3.57(3 \mathrm{H}, \mathrm{s}) 3.17-3.12(2 \mathrm{H}, \mathrm{m}) 3.06(1 \mathrm{H}, \mathrm{m}) 2.17-2.08$ $(2 \mathrm{H}, \mathrm{m}) 2.00(1 \mathrm{H}, \mathrm{dd}, J=15.7,3.7 \mathrm{~Hz}) 1.57-1.42(4 \mathrm{H}, \mathrm{m}) 1.39(3 \mathrm{H}, \mathrm{d}$, $J=7.0 \mathrm{~Hz}) 1.17-1.12(4 \mathrm{H}, \mathrm{m}) 0.88-0.76(2 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 174.0, 143.9, 139.2, 128.3, 127.9, 126.8, 115.4, 58.8, 51.4, 49.8, 42.7, 34.7, 31.1, 30.2, 27.0, 26.6, 21.0; m/z (CI, \%) 330 ([M+H] ${ }^{+}, 20$) $246\left(\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{10}\right]^{+}, 100\right)$. HRMS $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{2}$ calcd 330.2433 , found 330.2439 .
3.1.30. Methyl
(3S, α S)-3-[N-(α-methylbenzyl)]-butanoate $(\mathbf{9 a})$. Following general procedure E , reaction of amine $\mathbf{8 a}(1.00 \mathrm{~g}$, 3.83 mmol) and Wilkinson's catalyst ($180 \mathrm{mg}, 0.19 \mathrm{mmol}$) in ace-tonitrile-water ($85: 15,20 \mathrm{~mL}$) at $20^{\circ} \mathrm{C}$ afforded an oil that was purified by flash chromatography (15:85 ethyl acetate:hexane) to give $9 \mathbf{a}(0.73 \mathrm{~g}, 87 \%)$ as a pale brown oil; $[\alpha]_{\mathrm{D}}^{21}-22.5\left(c 1.29, \mathrm{CHCl}_{3}\right)$; IR $\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right) 2960,2923,1731 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.69-7.22(5 \mathrm{H}, \mathrm{m}) 3.87(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}) 3.66(3 \mathrm{H}, \mathrm{s}) 3.00(1 \mathrm{H}, \mathrm{m})$ $2.46(1 \mathrm{H}, \mathrm{m}) 2.37(1 \mathrm{H}, \mathrm{m}) 1.68(1 \mathrm{H}, \mathrm{br}$ s) $1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}) 1.05$ $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,132.0,128.6$, 127.0, 126.6, 55.3, 51.5, 47.8, 40.6, 24.6, 21.5; m/z (CI, \%) 222 ($[\mathrm{M}+\mathrm{H}]^{+}, 100$). $\mathrm{HRMS} \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{2}$ calcd 222.1494, found 292.1491.
3.1.31. Methyl (3R, α S)-3-[N-(α-methylbenzyl)]-4-methylpentanoate (9b). Following general procedure E, reaction of amine $\mathbf{8 b}(1.50 \mathrm{~g}$, 5.18 mmol) and Wilkinson's catalyst ($0.24 \mathrm{~g}, 0.26 \mathrm{mmol}$) in aceto-nitrile-water ($85: 15,30 \mathrm{~mL}$) at $20^{\circ} \mathrm{C}$ afforded an oil that was purified by flash chromatography (18:82 ethyl acetate:hexane) to give $\mathbf{9 b}(0.77 \mathrm{~g}, 59 \%)$ as a pale yellow oil; $[\alpha]_{\mathrm{D}}^{21}-48.1\left(c 2.35, \mathrm{CHCl}_{3}\right)$; IR $\nu_{\text {max }} 2957,1733 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.20(5 \mathrm{H}$, m) $3.84(1 \mathrm{H}, \mathrm{m}) 3.67(3 \mathrm{H}, \mathrm{s}) 2.65(1 \mathrm{H}, \mathrm{q}, J=6.3 \mathrm{~Hz}) 2.45(1 \mathrm{H}, \mathrm{dd}$, $J=14.6,9.0 \mathrm{~Hz}) 2.37(1 \mathrm{H}, \mathrm{dd}, J=14.6,5.5 \mathrm{~Hz}) 1.67(1 \mathrm{H}, \mathrm{m}) 1.31(3 \mathrm{H}, \mathrm{d}$, $J=6.3 \mathrm{~Hz}) 0.87(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) 0.80(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.5,132.0,128.3,126.9,126.5,57.6,55.5,51.5$, 35.9, 31.4, 24.9, 18.6, 18.5; m/z (CI, \%) $250\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) 206$ ([M-C $\left.\mathrm{C}_{3} \mathrm{H}_{6}\right]^{+}, 53$). HRMS $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{2}$ calcd 250.1807, found 250.1805.
3.1.32. (4E)-Methyl (3R, αS)-3-[N-(α-methylbenzyl)]hex-4-enoate (9c). Following general procedure E, reaction of amine $\mathbf{8 c}(5.10 \mathrm{~g}$, 17.8 mmol) and Wilkinson's catalyst ($0.82 \mathrm{~g}, 0.89 \mathrm{mmol}$) in aceto-nitrile-water ($85: 15,120 \mathrm{~mL}$) at $20^{\circ} \mathrm{C}$ afforded an oil that was purified by flash chromatography (1:9 ethyl acetate:hexane) to give

9c ($3.69 \mathrm{~g}, 84 \%$) as a pale yellow oil; $[\alpha]_{\mathrm{D}}^{21}-38.9\left(c 0.72, \mathrm{CHCl}_{3}\right)$; IR $\nu_{\text {max }} 3060,2965,1734 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.04$ $(5 \mathrm{H}, \mathrm{m}) 5.55(1 \mathrm{H}, \mathrm{m}) 5.27(1 \mathrm{H}, \mathrm{m}) 3.83(1 \mathrm{H}, \mathrm{q}, J=6.5 \mathrm{~Hz}) 3.66(3 \mathrm{H}, \mathrm{s})$ $3.48(1 \mathrm{H}, \mathrm{m}) 2.52-2.46(2 \mathrm{H}, \mathrm{m}) 1.63(3 \mathrm{H}, \mathrm{dd}, J=6.5,1.4 \mathrm{~Hz}) 1.31(3 \mathrm{H}$, d, $J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,146.2,132.7,128.5$, 127.1, 126.9, 126.7, 54.9, 54.7, 51.5, 40.5, 23.3, 17.8; (EI, \%) 247 $\left([\mathrm{M}+\mathrm{H}]^{+}, 5\right) 232\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 38\right), 105\left(\mathrm{C}_{8} \mathrm{H}_{9}^{+}, 100\right) . \mathrm{HRMS} \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}$ calcd 248.1650, found 248.1651.
3.1.33. Methyl (3R, α S)-3-[N-(α-methylbenzyl)]-3-phenylpropanoate (9 f). Following general procedure E , reaction of amine $\mathbf{8 f}$ (0.50 g , 1.55 mmol) and Wilkinson's catalyst ($72 \mathrm{mg}, 0.08 \mathrm{mmol}$) in ace-tonitrile-water ($85: 15,10 \mathrm{~mL}$) at $20^{\circ} \mathrm{C}$ gave an oil that was purified by flash chromatography (1:4 ethyl acetate:hexane) to give $\mathbf{9 f}$ ($0.33 \mathrm{~g}, 76 \%$) as a pale yellow oil; $[\alpha]_{\mathrm{D}}^{21}-13.5\left(c 7.47, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{36}$ $[\alpha]_{\mathrm{D}}^{20}-16.3\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR $\nu_{\max } 3050,2964,1732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.21(10 \mathrm{H}, \mathrm{m}) 4.21(1 \mathrm{H}, \mathrm{m}) 3.66(1 \mathrm{H}$, $\mathrm{q}, J=6.6 \mathrm{~Hz}) 3.62(3 \mathrm{H}, \mathrm{s}) 2.77(1 \mathrm{H}, \mathrm{m}) 2.68(1 \mathrm{H}, \mathrm{m}) 1.85(1 \mathrm{H}, \mathrm{br} \mathrm{s})$ 1.23 (3H, d, $J=6.6 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,132.0$, 128.6, 128.5, 127.5, 127.1, 126.7, 56.9, 54.8, 51.6, 42.5, 22.2; m/z (CI, \%) $284\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}$ calcd 284.1651, found 284.1648.

3.1.34. Methyl

 propanoate(3R, α S)-3-[N-(α-methylbenzyl)]-3-(pyridin-3-yl) (9g). Tetrakis(triphenylphosphine)palladium(0) ($0.16 \mathrm{~g}, 0.01 \mathrm{mmol}$) and dimethylbarbituric acid ($0.73 \mathrm{~g}, 2.98 \mathrm{mmol}$) were added to a stirred solution of amine $\mathbf{8 g}(0.54 \mathrm{~g}, 1.51 \mathrm{mmol})$ in anhydrous dichloromethane (80 mL) at $30^{\circ} \mathrm{C}$ under nitrogen. After stirring the solution at $30^{\circ} \mathrm{C}$ for a further 3 h the mixture was washed with aqueous saturated sodium carbonate ($2 \times 10 \mathrm{~mL}$), and the combined organic layers dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give an oil that was purified by flash chromatography (6:4 ethyl acetate:hexane) to give $\mathbf{9 g}(0.41 \mathrm{~g}, 96 \%)$ as an orange oil; IR $\nu_{\max } 2982$, 2920, $1732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47(1 \mathrm{H}, \mathrm{s}) 8.40(1 \mathrm{H}$, m) $7.65(1 \mathrm{H}, \mathrm{m}) 7.43-7.14(6 \mathrm{H}, \mathrm{m}) 4.17(1 \mathrm{H}, \mathrm{dd}, J=7.5,6.3 \mathrm{~Hz}) 3.65$ $(1 \mathrm{H}, \mathrm{q}, J=6.4 \mathrm{~Hz}) 3.58(3 \mathrm{H}, \mathrm{s}) 2.75(1 \mathrm{H}, \mathrm{dd}, J=15.5,7.5 \mathrm{~Hz}) 2.63(1 \mathrm{H}$, dd, $J=15.5,6.3 \mathrm{~Hz}) 2.25\left(1 \mathrm{H}, \mathrm{br}\right.$ s, NH) $1.33(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7,149.3,148.8,145.4,138.2,133.7$, 132.0, 128.9, 128.5, 127.1, 55.4, 54.9, 51.7, 41.8, 22.9; m/z (CI, \%) 285 $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. $\mathrm{HRMS} \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ calcd 285.1603, found 285.1607.
3.1.35. Methyl (3R, α S)-3-[N-(α-methylbenzyl)]-3cyclohexylpropanoate ($\mathbf{9 k}$). Following general procedure E , reaction of amine $\mathbf{8 k}(1.86 \mathrm{~g}, 5.65 \mathrm{mmol})$ and Wilkinson's catalyst ($0.30 \mathrm{~g}, 0.32 \mathrm{mmol}$) in $85: 15$ acetonitrile:water (35 mL) at $20^{\circ} \mathrm{C}$ afforded an oil that was purified by flash chromatography (12:88 ethyl acetate:hexane) to give $\mathbf{9 k}(0.79 \mathrm{~g}, 53 \%)$ as a yellow oil; $[\alpha]_{D}^{25}$ -35.2 (c 1.90, CHCl_{3}); IR $\nu_{\max }$ 2985, 2922, $1732 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.20(5 \mathrm{H}, \mathrm{m}) 3.80(1 \mathrm{H}, \mathrm{m}) 3.67(3 \mathrm{H}, \mathrm{s}) 2.63$ $(1 \mathrm{H}, \mathrm{q}, J=5.9 \mathrm{~Hz}) 2.49(1 \mathrm{H}, \mathrm{dd}, J=14.7,5.5 \mathrm{~Hz}) 2.37(1 \mathrm{H}, \mathrm{dd}, J=14.7$, $6.3 \mathrm{~Hz}) 1.79-1.62(5 \mathrm{H}, \mathrm{m}) 1.31(3 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}) 1.17-1.08(4 \mathrm{H}, \mathrm{m})$ $0.96-0.86(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,132.0,128.3$, $127.0,126.9,57.0,55.5,51.5,41.8,35.9,29.3,29.1,26.6,26.5 ; \mathrm{m} / \mathrm{z}(\mathrm{Cl}$, \%) $290\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{2}$ calcd 290.2120, found 290.2112.
3.1.36. Methyl (3S, α S)-3-[N-(α-methylbenzyl), N-(2methoxycarbonylacetyl)]butanoate (10a). Following general procedure B, reaction of amine $9 \mathbf{a}(0.30 \mathrm{~g}, 1.36 \mathrm{mmol})$, triethylamine ($0.22 \mathrm{~mL}, 1.63 \mathrm{mmol}$) and methyl 3-chloro-3-oxopropanoate ($0.16 \mathrm{~mL}, 1.5 \mathrm{mmol}$) in dichloromethane (6 mL) afforded an oil that was purified by flash chromatography ($1: 1$ ethyl acetate:hexane) to give $\mathbf{1 0 a}(0.25 \mathrm{~g}, 58 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}^{21}-2.5$ (c 0.80 , CHCl_{3}); IR $\nu_{\text {max }} 2952,1736,1646 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.22(5 \mathrm{H}, \mathrm{m}) 4.95(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}) 3.78(3 \mathrm{H}, \mathrm{s}) 3.60(3 \mathrm{H}, \mathrm{s})$ $3.46(2 \mathrm{H}, \mathrm{s}) 3.08(1 \mathrm{H}, \mathrm{m}) 2.42(1 \mathrm{H}, \mathrm{m}) 2.08(1 \mathrm{H}, \mathrm{m}) 1.66(3 \mathrm{H}, \mathrm{d}$,
$J=6.8 \mathrm{~Hz}) 1.43(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3$, 168.3, 165.6, 139.0, 128.3, 128.1, 127.3, 56.9, 52.6, 51.4, 48.6, 42.9, 39.1, 18.7, 17.3; m/z (CI, \%) $321\left(\mathrm{M}^{+}, 5\right) 220\left(\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{3}\right]^{+}\right.$, 85) 105 $\left(\mathrm{C}_{8} \mathrm{H}_{9}, 100\right)$. HRMS $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{5}$ calcd 321.1576, found 321.1571.
3.1.37. Methyl (3R, α S)-3-[N-(α-methylbenzyl)], N-(2-methoxycarbonylacetyl)]-4-methylpentanoate (10b). Following general procedure B , reaction of amine $\mathbf{9 b}$ ($0.25 \mathrm{~g}, 1.0 \mathrm{mmol}$), triethylamine ($0.18 \mathrm{~mL}, 1.30 \mathrm{mmol}$) and methyl 3-chloro-3oxopropanoate ($0.13 \mathrm{~mL}, 1.2 \mathrm{mmol}$) in dichloromethane (4 mL) afforded a pale yellow oil that was purified by flash chromatography ($1: 1$ ethyl acetate:hexane) to give $\mathbf{1 0 b}(0.18 \mathrm{~g}, 50 \%)$ as a pale yellow oil; $[\alpha]_{\mathrm{D}}^{21}+74.3\left(c \quad 0.35, \mathrm{CHCl}_{3}\right)$; IR $\nu_{\max } 2953,1738$, $1647 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (presence of rotamers) $\delta 7.35-7.22(5 \mathrm{H}, \mathrm{m}) 5.00(1 \mathrm{H}, \mathrm{m}) 3.95(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}$, rotamer A) $3.78(3 \mathrm{H}, \mathrm{s}) 3.72(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}$, rotamer B) $3.68(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}$, rotamer A) $3.60(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}$, rotamer B) 3.46 and $3.36(3 \mathrm{H}, \mathrm{s})$ $3.27(1 \mathrm{H}, \mathrm{m}) 2.72(1 \mathrm{H}, \mathrm{dd}, J=18.0,6.9 \mathrm{~Hz}) 2.24(1 \mathrm{H}, \mathrm{dd}, J=18.0$, $2.5 \mathrm{~Hz}) 2.04(1 \mathrm{H}, \mathrm{m}) 1.88$ and $1.65(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}) 1.11$ and 0.99 $(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}) 0.92$ and $0.81(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7,171.9,168.6,168.4,167.6,165.9,139.2$, 128.8, 128.3, 127.9, 127.7, 126.8, 126.6, 62.3. 58.3, 56.6, 55.6, 52.6, $52.4,51.9,51.4,43.0,42.8,39.6,35.9,31.2,30.9,21.4,21.2,20.7,20.1$, 19.9, 18.3; $\mathrm{m} / \mathrm{z}(\mathrm{Cl}, \%) 372\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right], 100\right)$. HRMS C $_{19} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{Na}$ calcd 372.1787, found 372.1783.
3.1.38. (4E)-Methyl (3R, α S)-3-[N-(α-methylbenzyl)], N-(2-methoxycarbonylacetyl)]hex-4-enoate (10c). Following general procedure B, reaction of amine $\mathbf{9 c}(1.2 \mathrm{~g}, 4.85 \mathrm{mmol})$, triethylamine ($0.80 \mathrm{~mL}, 5.8 \mathrm{mmol}$) and methyl 3-chloro-3-oxopropanoate ($0.57 \mathrm{~mL}, 5.3 \mathrm{mmol}$) in dichloromethane (25 mL) afforded an oil that was purified by flash chromatography (3:7 ethyl acetate:hexane) to give $\mathbf{1 0 c}(1.58 \mathrm{~g}, 94 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}^{21}+5.5$ (c 1.82, $\left.\mathrm{CHCl}_{3}\right)$; IR $\nu_{\max } 3030(\mathrm{~N}-\mathrm{H}), 2952,1733,1641 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.21(5 \mathrm{H}, \mathrm{m}) 5.93(1 \mathrm{H}, \mathrm{m}) 5.65-5.56(2 \mathrm{H}$, m) $5.04(1 \mathrm{H}, \mathrm{q}, J=6.7 \mathrm{~Hz}) 3.78(3 \mathrm{H}, \mathrm{s}) 3.51(2 \mathrm{H}, \mathrm{s}) 3.45(3 \mathrm{H}, \mathrm{s}) 1.74$ $(2 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}) 1.64(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}) 1.58(3 \mathrm{H}, \mathrm{m}) ; m / z(\mathrm{CI}, \%) 370$ $\left(\mathrm{M}^{+}, 100\right), 311\left(\left[\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, 2\right)$. HRMS $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{Na}$ calcd 370.1630, found 370.1626 .
3.1.39. Methyl (3R, α S)-3-[N-(α-methylbenzyl), N-(2-methoxycarbonylacetyl)]-3-phenylpropanoate (10f). Following general procedure B, reaction of amine $\mathbf{9 f}(4.16 \mathrm{~g}, 14.7 \mathrm{mmol})$, triethylamine ($2.7 \mathrm{~mL}, 19 \mathrm{mmol}$) and methyl 3-chloro-3oxopropanoate ($1.9 \mathrm{~mL}, 17.6 \mathrm{mmol}$) in dichloromethane (45 mL) afforded an oil that was purified by flash chromatography (35:65 ethyl acetate:hexane) to give $\mathbf{1 0 f}(4.48 \mathrm{~g}, 80 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}^{21}+25.0\left(c 1.56, \mathrm{CHCl}_{3}\right) ;$ IR $\nu_{\max } 2950,1735,1647 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (presence of rotamers) $\delta 7.37-7.17(10 \mathrm{H}, \mathrm{m}) 5.32$ and $5.24(1 \mathrm{H}, \mathrm{m}) 4.98(1 \mathrm{H}, \mathrm{q}, J=6.1 \mathrm{~Hz}) 3.71(3 \mathrm{H}, \mathrm{s}) 3.56(2 \mathrm{H}, \mathrm{s}) 3.51$ $(3 \mathrm{H}, \mathrm{s}) 3.36-3.31(2 \mathrm{H}, \mathrm{m}) 2.96(1 \mathrm{H}, \mathrm{m}) 2.73-2.65(1 \mathrm{H}, \mathrm{m}) 1.25(3 \mathrm{H}$, $J=6.1 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,171.1,168.4,168.2$, 167.2, 166.5, 141.4, 140.4, 139.9, 139.0, 129.1, 129.0, 128.6, 128.5, 128.2, 128.0, 127.4, 127.2, 127.0, 126.6, 126.5, 56.8, 56.4, 55.2, 54.7, 52.6, 52.5, 52.1, 51.8, 43.0, 40.8, 38.9, $38.318 .6 ; \mathrm{m} / \mathrm{z}(\mathrm{Cl}, \%) 384$ $\left([\mathrm{M}-\mathrm{H}]^{+}, 100\right)$. HRMS $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{Na}$ calcd 384.1811, found 384.1803.
3.1.40. Methyl $(3 R, \alpha S)-3-[N-(\alpha-m e t h y l b e n z y l), N-(2-$ methoxycarbonylacetyl)]-3-(pyridin-3-yl)propanoate $(\mathbf{1 0 g})$. Following general procedure B, reaction of amine $\mathbf{9 f}(0.16 \mathrm{~g}$, $0.56 \mathrm{mmol})$, triethylamine ($0.11 \mathrm{~mL}, 0.73 \mathrm{mmol}$) and methyl 3-chloro-3-oxopropanoate ($0.07 \mathrm{~mL}, 0.67 \mathrm{mmol}$) in dichloromethane (3 mL) afforded an oil that was purified by flash chromatography ($1: 1$ ethyl acetate:hexane) to give $\mathbf{1 0 g}(0.16 \mathrm{~g}, 75 \%$) as a colourless oil; $[\alpha]_{\mathrm{D}}^{21}+15.0\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR $\nu_{\text {max }} 2952,1735,1648$,
$1496 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (presence of rotamers) $\delta 8.57$ $(1 \mathrm{H}, \mathrm{s}) 8.40(1 \mathrm{H}, \mathrm{m}) 7.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}) 7.64(1 \mathrm{H}, \mathrm{m}) 7.45-7.17$ $(5 \mathrm{H}, \mathrm{m}) 5.08(1 \mathrm{H}, \mathrm{q}, J=6.5 \mathrm{~Hz}) 4.86(1 \mathrm{H}, \mathrm{dd}, J=7.7,5.6 \mathrm{~Hz}) 3.74(3 \mathrm{H}, \mathrm{s})$ $3.58(2 \mathrm{H}, \mathrm{s}) 3.43(3 \mathrm{H}, \mathrm{s}) 2.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.1,7.7 \mathrm{~Hz}) 2.27(1 \mathrm{H}, \mathrm{dd}$, $J=17.1,5.6 \mathrm{~Hz}) 1.60(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,168.1,166.2,149.0,148.5,136.1,135.7,132.1,132.0,129.1$, 128.8, 128.4, 127.2, 123.3, 57.3, 53.3, 52.6, 51.8, 42.7, 38.7, 18.4; m/z $(\mathrm{CI}, \%) 385\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) 279\left(\left[\mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{8}\right]^{+}, 55\right)$. HRMS $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}$ calcd 385.1764, found 385.1761.
3.1.41. Methyl (3R, α S)-3-[N-(α-methylbenzyl), N-(2-methoxycarbonylacetyl)]-3-cyclohexylpropanoate (10k). Following general procedure B, reaction of amine $\mathbf{9 k}(0.25 \mathrm{~g}, 0.86 \mathrm{mmol})$, triethylamine ($0.16 \mathrm{~mL}, 1.12 \mathrm{mmol}$) and methyl 3-chloro-3oxopropanoate ($0.11 \mathrm{~mL}, 1.04 \mathrm{mmol}$) in dichloromethane (4 mL) afforded a pale yellow oil that was purified by flash chromatography ($1: 1$ ethyl acetate:hexane) to give $\mathbf{1 0 k}(0.22 \mathrm{~g}, 66 \%)$ as a pale yellow oil, $[\alpha]_{\mathrm{D}}^{25}+22.5\left(c 1.00, \mathrm{CHCl}_{3}\right)$; $\operatorname{IR} \nu_{\max } 2925,1737$, $1648 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (presence of rotamers) $\delta 7.32-7.16(5 \mathrm{H}, \mathrm{m}) 4.99-4.95$ and $4.30-4.28(1 \mathrm{H}, \mathrm{m}) 3.77(3 \mathrm{H}, \mathrm{s})$ $3.65(1 \mathrm{H}, \mathrm{s}) 3.60(1 \mathrm{H}, \mathrm{s}) 3.40(3 \mathrm{H}, \mathrm{s}) 2.72$ and $2.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz})$ $2.45-2.02(2 \mathrm{H}, \mathrm{m}) 1.84(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}) 1.73-1.61(5 \mathrm{H}, \mathrm{m})$ 1.29-0.82 ($6 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,172.7,168.7$, $168.4,167.6,165.8,142.6,139.3,128.7,128.3,128.2,127.9,126.9$, 126.8, 61.4, 57.2, 57.0, 55.5, 52.5, 51.5, 51.3, 50.0, 43.0, $42.841 .8,40.8$, $35.9,31.5,30.6,30.1,29.2,29.1,26.6,26.5,26.4,26.3,26.1,26.0,25.0$, 21.2; $\mathrm{m} / \mathrm{z}(\mathrm{Cl}, \%) 412\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$. HRMS $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{Na}$ calcd 412.2100, found 412.2115.
3.1.42. (1S,6R)-1-(α-Methylbenzyl)-3-methoxycarbonyl-6-phenylpiperidine-2,4-dione sodium salt (11f). Sodium methoxide in methanol ($1.97 \mathrm{M}, 0.2 \mathrm{~mL}, 0.38 \mathrm{mmol}$) was added to a stirred solution of diester $\mathbf{1 0 f}(0.13 \mathrm{~g}, 0.34 \mathrm{mmol})$ in methanol $(0.70 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$, under nitrogen. The mixture was then heated under reflux for 1 h , allowed to cool to $20^{\circ} \mathrm{C}$, then diluted with diethyl ether and filtered to give $\mathbf{1 1 f}(0.12 \mathrm{~g}, 97 \%)$ as a white solid, $\mathrm{mp} 230{ }^{\circ} \mathrm{C}$ (decomp.); IR $\nu_{\max } 3220,2972,1671,1650,1589 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.14(10 \mathrm{H}, \mathrm{m}) 6.21(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}) 4.33$ $(1 \mathrm{H}, \mathrm{dd}, J=6.9,1.3 \mathrm{~Hz}) 3.67(3 \mathrm{H}, \mathrm{s}) 2.64(1 \mathrm{H}, \mathrm{dd}, J=15.7,6.9 \mathrm{~Hz}) 2.15$ $(1 \mathrm{H}, \mathrm{dd}, J=15.7,1.3 \mathrm{~Hz}) 1.24(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (500 MHz , CDCl_{3}) $\delta 186.6,171.8,170.6,144.1,143.9,129.5,129.2,128.3,128.1$, 127.9, 127.7, 97.5, 53.6, 51.4, 50.5, 44.9, 17.0.
3.1.43. (1S,6R)-1-(α-Methylbenzyl)-3-methoxycarbonyl-6-(E)-prope-nylpiperidine-2,4-dione sodium salt (111). Sodium methoxide in methanol ($2.14 \mathrm{M}, 2.3 \mathrm{~mL}, 5.0 \mathrm{mmol}$) was added to a stirred solution of diester $\mathbf{1 0 1}(1.58 \mathrm{~g}, 4.6 \mathrm{mmol})$ in methanol (6 mL) at $20^{\circ} \mathrm{C}$, under nitrogen. The mixture was then heated under reflux for 1 h . After allowing to cool to $20^{\circ} \mathrm{C}$, the mixture was diluted with diethyl ether and filtered to give 111 ($1.46 \mathrm{~g}, 95 \%$) as a white solid, mp $203-207^{\circ} \mathrm{C}$; IR $\nu_{\max } 3064,2974,1660 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.35-7.22(5 \mathrm{H}, \mathrm{m}) 6.04(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}) 5.66(1 \mathrm{H}, \mathrm{m}) 5.53$ $(1 \mathrm{H}, \mathrm{m}) 3.66(3 \mathrm{H}, \mathrm{s}) 3.60(1 \mathrm{H}, \mathrm{m}) 2.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.7,6.2 \mathrm{~Hz}) 2.18$ ($1 \mathrm{H}, \mathrm{dd}, J=15.7,2.4 \mathrm{~Hz}$) 1.61 ($3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}$) $1.49(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.1,170.8,170.7,144.1,132.7,129.4$, $128.2,128.2,127.3,96.4,51.8,51.4,50.4,43.4,17.8,17.3$. HRMS $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}$ calcd 338.1368, found 338.1360.
3.1.44. (1S,6S)-1-(α-Methylbenzyl)-6-methylpiperidine-2,4-dione (12a). Following general procedure C, reaction of diester 10a $(0.23 \mathrm{~g}, 0.70 \mathrm{mmol})$, and sodium methoxide in methanol (2.0 M , $0.70 \mathrm{~mL}, 1.4 \mathrm{mmol}$) in methanol (5 mL) gave 12a ($0.16 \mathrm{~g}, 97 \%$) as a pale yellow oil, $[\alpha]_{\mathrm{D}}^{21}-198.1$ (c $3.09, \mathrm{CHCl}_{3}$); IR $\nu_{\max } 2975,1730$, $1642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.25(5 \mathrm{H}, \mathrm{m}) 6.10(1 \mathrm{H}$, q, $J=6.9 \mathrm{~Hz}) 3.55(1 \mathrm{H}, \mathrm{m}) 3.41-3.29(2 \mathrm{H}, \mathrm{m}) 2.24(1 \mathrm{H}, \mathrm{dd}, J=16.5$, $8.6 \mathrm{~Hz}) 2.17(1 \mathrm{H}, \mathrm{dd}, J=16.5,5.0 \mathrm{~Hz}) 1.59(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}) 1.25(3 \mathrm{H}$,
$\mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.6, 166.2, 140.0, 128.8, 128.1, 127.2, 50.9, 47.4, 46.5, 45.1, 22.7,16.9; m/z (CI, \%) 232 ([M+H] ${ }^{+}$, 100) $105\left(\mathrm{C}_{8} \mathrm{H}_{9}^{+}, 35\right)$. HRMS $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}$ calcd 232.1338, found 232.1334.
3.1.45. (1S,6R)-1-(α-Methylbenzyl)-6-phenylpiperidine-2,4-dione (12f). The piperidine-2,4-dione sodium salt $11 \mathrm{f}(0.10 \mathrm{~g}, 0.28 \mathrm{mmol})$ was added to hydrochloric acid ($1.3 \mathrm{M}, 5 \mathrm{~mL}$). The mixture was heated under reflux for 1 h , then allowed to cool to $20^{\circ} \mathrm{C}$ and extracted with dichloromethane $(2 \times 5 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, and the residue was purified by flash chromatography (1:1 ethyl acetate:hexane) to give $\mathbf{1 2 f}\left(69 \mathrm{mg}, 85 \%\right.$) as pale yellow solid, $\mathrm{mp} 104-107^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{21}+103.4$ (c 2.95, CHCl_{3}); IR $\nu_{\text {max }} 2923,1730,1648 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.39-7.11(10 \mathrm{H}, \mathrm{m}) 6.31(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}) 4.65(1 \mathrm{H}, \mathrm{dd}$, $J=6.1,2.2 \mathrm{~Hz}) 3.39(2 \mathrm{H}, \mathrm{s}) 2.68(1 \mathrm{H}, \mathrm{dd}, J=16.4,2.2 \mathrm{~Hz}) 2.51(1 \mathrm{H}, \mathrm{dd}$, $J=16.4,6.1 \mathrm{~Hz}) 1.35(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 203.2, 167.4, 140.1, 140.0, 129.2, 128.9, 128.1, 128.0, 127.5, 125.7, 53.0, 51.6, 48.8, 47.9, 16.4; m/z (EI, \%) $293\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) 105\left(\mathrm{C}_{8} \mathrm{H}_{9}^{\dagger}\right.$, 35) $77\left(\mathrm{C}_{6} \mathrm{H}_{5}^{+}, 10\right)$. $\mathrm{HRMS} \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}$ calcd 293.1416, found 293.1413.
3.1.46. (1S,6R)-1-(α-Methylbenzyl)-6-(pyridin-3-yl)piperidine-2,4dione (12g). Following general procedure C , reaction of diester $\mathbf{1 0 g}$ ($0.25 \mathrm{~g}, 0.65 \mathrm{mmol}$), and sodium methoxide in methanol (2.0 M , $0.65 \mathrm{~mL}, 1.30 \mathrm{mmol})$ in methanol (3 mL) gave $\mathbf{1 2 g}(0.19 \mathrm{~g}, 99 \%)$ as a brown oil, $[\alpha]_{D}^{25}-84.7$ (c 1.00, CHCl_{3}); IR $\nu_{\max } 2977,1730$, $1642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}) 8.48$ $(1 \mathrm{H}, \mathrm{s}) 7.65(1 \mathrm{H}, \mathrm{m}) 7.53-7.26(6 \mathrm{H}, \mathrm{m}) 6.31(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}) 4.66$ $(1 \mathrm{H}, \mathrm{dd}, J=6.0,1.8 \mathrm{~Hz}) 3.46(1 \mathrm{H}, \mathrm{d}, J=20.6 \mathrm{~Hz}) 3.35(1 \mathrm{H}, \mathrm{d}, J=20.6 \mathrm{~Hz})$ $2.66(1 \mathrm{H}, \mathrm{dd}, J=16.4,1.8 \mathrm{~Hz}) 2.56(1 \mathrm{H}, \mathrm{dd}, J=16.4,6.0 \mathrm{~Hz}) 1.34(3 \mathrm{H}, \mathrm{d}$, $J=7.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.1,167.1,149.6,147.6$, 139.5, 135.7, 133.2, 132.2, 129.1, 128.6, 128.3, 127.4, 123.8, 51.6, 51.1, 48.6, 47.7, 16.6; m/z (EI, \%) $294\left(\mathrm{M}^{+}, 15\right)$. HRMS $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ calcd 294.1368, found 294.1366.
3.1.47. (1S,6R)-1-(α-Methylbenzyl)-6-isopropylpiperidine-2,4-dione (12j). Following general procedure C, reaction of diester $\mathbf{1 0 j}(0.15 \mathrm{~g}$, $0.47 \mathrm{mmol})$ and sodium methoxide in methanol ($2.0 \mathrm{M}, 0.50 \mathrm{~mL}$, 1.0 mmol) in methanol (3 mL) afforded $\mathbf{1 2 j}$ ($0.12 \mathrm{~g}, 95 \%$) as a pale yellow oil, $[\alpha]_{\mathrm{D}}^{21}-177.9$ (c 1.31, CHCl_{3}); IR $\nu_{\max }$ 2968, 1726, $1644 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.26(5 \mathrm{H}, \mathrm{m}) 6.07(1 \mathrm{H}$, $\mathrm{q}, J=7.1 \mathrm{~Hz}) 3.42(1 \mathrm{H}, \mathrm{d}, J=21.3 \mathrm{~Hz}) 3.20(1 \mathrm{H}, \mathrm{d}, J=21.3 \mathrm{~Hz}) 3.16(1 \mathrm{H}$, m) $2.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16.7,5.0 \mathrm{~Hz}) 2.02-1.96(2 \mathrm{H}, \mathrm{m}) 1.65(3 \mathrm{H}, \mathrm{d}$, $J=7.1 \mathrm{~Hz}) 0.90(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}) 0.84(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.2,170.2,142.5,131.5,130.7,130.2,58.3,55.4$, 50.1, 43.7, 35.9, 22.9, 20.4, 20.2; m/z (EI') $259\left(\mathrm{M}^{+}, 100\right) 216$ $\left(\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right]^{+}\right.$, 99) $105\left(\mathrm{C}_{8} \mathrm{H}_{9}^{+}, 75\right) 77\left(\mathrm{C}_{6} \mathrm{H}_{5}^{+}, 40\right)$. HRMS $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}$ calcd 259.1572, found 259.1575 .
3.1.48. (1S,6R)-1-(α-Methylbenzyl)-6-cyclohexylpiperidine-2,4-dione (12k). Following general procedure C, reaction of diester $\mathbf{1 0 k}$ $(0.22 \mathrm{~g}, 0.57 \mathrm{mmol})$ and sodium methoxide in methanol $(2.0 \mathrm{M}$, $0.6 \mathrm{~mL}, 1.2 \mathrm{mmol}$) in methanol (3 mL) gave 12k ($0.13 \mathrm{~g}, 76 \%$) as a colourless oil, $[\alpha]_{\mathrm{D}}^{25}-133.1\left(c 3.40, \mathrm{CHCl}_{3}\right)$; IR $\nu_{\max } 2926,1726$, $1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.25(5 \mathrm{H}, \mathrm{m}) 6.03(1 \mathrm{H}$, $\mathrm{q}, J=7.2 \mathrm{~Hz}) 3.38(1 \mathrm{H}, \mathrm{d}, J=21.2 \mathrm{~Hz}) 3.26(1 \mathrm{H}, \mathrm{d}, J=21.2 \mathrm{~Hz}) 3.13(1 \mathrm{H}$, m) $2.49(1 \mathrm{H}, \mathrm{dd}, J=16.7,3.6 \mathrm{~Hz}) 1.95(1 \mathrm{H}, \mathrm{dd}, J=16.7,6.5 \mathrm{~Hz}) 1.74$ $(2 \mathrm{H}, \mathrm{m}) 1.61(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}) 1.59-1.47(3 \mathrm{H}, \mathrm{m}) 1.14-0.80(6 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.6,169.5,139.9,128.8,128.0,127.5$, $55.2,52.8,47.7,43.6,41.7,30.7,28.6,26.6,26.4,26.0,17.6 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}, \%)$ $300\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}$ calcd 300.1964, found 300.1953.
3.1.49. (1S,6R)-1-(α-Methylbenzyl)-6-(E)-propenylpiperidine-2,4dione (12l). The piperidine-2,4-dione sodium salt 111 (1.0 g , 2.96 mmol) was added to hydrochloric acid ($1.3 \mathrm{M}, 30 \mathrm{~mL}$). The
mixture was heated under reflux for 1 h , then allowed to cool to $20^{\circ} \mathrm{C}$ and extracted with dichloromethane ($2 \times 30 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give 121 $(0.56 \mathrm{~g}, 74 \%)$ as a pale yellow oil, $[\alpha]_{\mathrm{D}}^{21}-203.8\left(c 2.08, \mathrm{CHCl}_{3}\right)$; IR $\nu_{\text {max }}$ 3060, 2938, 1726, $1650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.26(5 \mathrm{H}, \mathrm{m}) 6.14(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}) 5.55(1 \mathrm{H}, \mathrm{ddq}, J=18.0,6.2$, $1.4 \mathrm{~Hz}) 5.41(1 \mathrm{H}, \mathrm{dq}, J=18.0,1.7 \mathrm{~Hz}) 3.92(1 \mathrm{H}, \mathrm{m}) 3.41-3.24(2 \mathrm{H}, \mathrm{m})$ $2.42(1 \mathrm{H}, \mathrm{dd}, J=17.0,2.1 \mathrm{~Hz}) 2.16(1 \mathrm{H}, \mathrm{dd}, J=17.0,5.1 \mathrm{~Hz}) 1.68(3 \mathrm{H}, \mathrm{dd}$, $J=6.2,1.7 \mathrm{~Hz}) 1.54(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.1, 166.6, 139.9, 129.8, 128.7, 128.0, 127.9, 127.3, 51.1, 50.2, 48.4, 44.9, 17.7, 16.5; m/z (Cl $\left.{ }^{+}\right) 257\left(\mathrm{M}^{+}, 70\right) 105\left(\mathrm{C}_{8} \mathrm{H}_{9}^{+}, 39\right) 77\left(\mathrm{C}_{6} \mathrm{H}_{5}^{+}, 15\right)$. HRMS $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$ calcd 257.1416, found 257.1428 .
3.1.50. ($6 R$)-Phenylpiperidine-2,4-dione (R)-($\mathbf{6 f}$). Methanesulfonic acid ($0.23 \mathrm{~mL}, 3.07 \mathrm{mmol}$) was added to a stirred solution of pi-peridine-2,4-dione $12 \mathrm{f}(1.0 \mathrm{~g}, 3.41 \mathrm{mmol}$) in toluene (15 mL) at $20^{\circ} \mathrm{C}$, under nitrogen. The mixture was then heated under reflux for 3 h , allowed to cool to $20^{\circ} \mathrm{C}$, evaporated, and the residue was purified by flash chromatography (9:1 ethyl acetate:hexane) to give (\boldsymbol{R})-6f $(0.36 \mathrm{~g}, 56 \%)$ as a white solid, $\mathrm{mp} 163-166{ }^{\circ} \mathrm{C}$ (lit. ${ }^{37}$ $\left.166-168{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}^{25}+119.1\left(c 1.00, \mathrm{CHCl}_{3}\right)\left(\right.$ lit. $^{37}[\alpha]_{\mathrm{D}}^{20}+124.3 c$ $0.35, \mathrm{CHCl}_{3}$); IR $\nu_{\max } 3185,2899,1716,1665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.21(5 \mathrm{H}, \mathrm{m}) 7.13(1 \mathrm{H}, \mathrm{br}$ s) $4.89(1 \mathrm{H}, \mathrm{m})$ $3.33(2 \mathrm{H}, \mathrm{s}) 2.85(1 \mathrm{H}, \mathrm{dd}, J=16.1,4.5 \mathrm{~Hz}) 2.73(1 \mathrm{H}, \mathrm{dd}, J=16.1,8.9 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.5,169.2,139.4,129.4,128.9,126.1$, 52.9, 47.3, 47.0; m/z (EI, \%) $189\left(\mathrm{M}^{+}, 100\right)$. HRMS $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$ calcd 189.0790, found 189.0787.

3.1.51. (6R)-Isopropylpiperidine-2,4-dione

(R)-
($\mathbf{6 j}$). Methanesulfonic acid ($0.02 \mathrm{~mL}, 0.26 \mathrm{mmol}$) was added to a stirred solution of piperidine-2,4-dione $\mathbf{1 2 j}$ ($76 \mathbf{m g}, 0.29 \mathrm{mmol}$) in toluene (2 mL) at $20^{\circ} \mathrm{C}$, under nitrogen. The mixture was heated under reflux for 3 h , then allowed to cool, evaporated, and the residue was purified by flash chromatography (ethyl acetate) to give (\boldsymbol{R})-6j ($22 \mathrm{mg}, 48 \%$) as a pale yellow oil; $[\alpha]_{\mathrm{D}}^{21}+30.6$ (c 0.49 , $\left.\mathrm{CHCl}_{3}\right)$, lit. ${ }^{38}[\alpha]_{\mathrm{D}}^{13}+35.3(c 1.00, \mathrm{MeOH})$; IR $\nu_{\max } 3212,2922,1722$, $1665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.05(1 \mathrm{H}, \mathrm{br} \mathrm{s}) 3.49(1 \mathrm{H}, \mathrm{m})$ $3.28(2 \mathrm{H}, \mathrm{s}) 2.63(1 \mathrm{H}, \mathrm{dd}, J=16.1,4.4 \mathrm{~Hz}) 2.45(1 \mathrm{H}, \mathrm{dd}, J=16.1,9.1 \mathrm{~Hz})$ $1.82(1 \mathrm{H}, \mathrm{m}) 1.01-0.95(6 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.5$, $170.2,54.3,47.2,41.6,32.5,18.2,17.9 ; \mathrm{m} / \mathrm{z}(\mathrm{ES}, \%) 155\left(\mathrm{M}^{+}, 50\right)$. HRMS $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}$ calcd 155.0946, found 155.0940.

3.1.52. (6R)-Cyclohexylpiperidine-2,4-dione

(R)-
($\boldsymbol{6 k}$). Methanesulfonic acid ($0.04 \mathrm{~mL}, 0.61 \mathrm{mmol}$) was added to a stirred solution of piperidine-2,4-dione $\mathbf{1 2 k}(0.14 \mathrm{~g}, 0.47 \mathrm{mmol})$ in toluene (3 mL) at $20^{\circ} \mathrm{C}$, under nitrogen. The mixture was heated under reflux for 5 h , then allowed to cool to $20^{\circ} \mathrm{C}$, and evaporated to give an oil that was purified by flash chromatography (ethyl acetate) to give (\boldsymbol{R})-6k ($38 \mathrm{mg}, 42 \%$) as yellow solid, mp $125-127^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{21}+14.2(c 1.26, \mathrm{MeOH})$; IR $\nu_{\max } 3223,2925,1724$, $1665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10(1 \mathrm{H}, \mathrm{br}$ s) $3.55(1 \mathrm{H}, \mathrm{m})$ $3.25(2 \mathrm{H}, \mathrm{s}) 2.61(1 \mathrm{H}, \mathrm{dd}, J=16.1,4.8 \mathrm{~Hz}) 2.50(1 \mathrm{H}, \mathrm{dd}, J=16.1,8.1 \mathrm{~Hz})$ $1.80-1.74(3 \mathrm{H}, \mathrm{m}) 1.70-1.69(2 \mathrm{H}, \mathrm{m}) 1.60(1 \mathrm{H}, \mathrm{m}) 1.25-1.14(3 \mathrm{H}, \mathrm{m})$ $1.00(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 203.9, 169.4, 53.6, 47.3, 42.4, 41.7, 28.8, 28.5, 26.1, $25.925 .8 ; ~ m / z(E I, \%) 195\left(\mathrm{M}^{+}, 2\right) 112$ ($\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11}\right]^{+}, 100$). HRMS $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{2}$ calcd 195.1259, found 195.1255.
3.1.53. (1S,6R)-1-(α-Methylbenzyl)-3,3-dimethyl-6-(E)-propenylpi-peridine-2,4-dione (13). To piperidine-2,4-dione 121 (0.13 g , 0.51 mmol) in ethanol (2 mL) was added potassium carbonate ($0.21 \mathrm{~g}, 1.52 \mathrm{mmol}$) and methyl iodide ($0.1 \mathrm{~mL}, 1.52 \mathrm{mmol}$). The mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h then filtered. The filtrate was evaporated and the residue was dissolved in chloroform (5 mL) and the solution was filtered. Evaporation afforded an oil that was purified by flash chromatography (15:85 ethyl acetate:hexane) to give
$13(0.11 \mathrm{~g}, 76 \%)$ as a colourless oil, $[\alpha]_{\mathrm{D}}^{21}-142.9\left(c 0.35, \mathrm{CHCl}_{3}\right)$; IR $\nu_{\text {max }} 2923,1724,1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.24$ $(5 \mathrm{H}, \mathrm{m}) 6.07(1 \mathrm{H}, \mathrm{q}, J=6.5 \mathrm{~Hz}) 5.48(1 \mathrm{H}, \mathrm{m}) 5.25(1 \mathrm{H}, \mathrm{m}) 3.82(1 \mathrm{H}, \mathrm{m})$ $2.65(1 \mathrm{H}, \mathrm{dd}, J=13.8,5.7 \mathrm{~Hz}) 2.30(1 \mathrm{H}, \mathrm{dd}, J=13.8,2.5 \mathrm{~Hz}) 1.63(3 \mathrm{H}, \mathrm{d}$, $J=6.5 \mathrm{~Hz}) 1.51(3 \mathrm{H}, \mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}) 1.38(3 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}) 1.35(3 \mathrm{H}$, $\mathrm{d}, J=1.9 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.2,174.0,140.5,131.1$, 128.7, 128.3, 127.7, 127.3, 52.4, 52.1, 50.6, 44.4, 26.5, 21.7, 17.6, 16.8; $\mathrm{m} / \mathrm{z}(\mathrm{EI}, \%) 286\left(\mathrm{M}^{+}, 4\right) ; 105\left(\mathrm{C}_{8} \mathrm{H}_{9}^{+}, 100\right)$. HRMS $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{2}$ calcd 286.1807, found 286.1803.
3.1.54. (4R,6R)-4-Hydroxy-6-phenylpiperidin-2-one (14). Zinc borohydride ($2.0 \mathrm{~mL}, 1.37 \mathrm{M}, 2.74 \mathrm{mmol}$) was added to a stirred solution of the piperidine-2,4-dione $(\boldsymbol{R})-\mathbf{6 f}(0.19 \mathrm{~g}, 0.98 \mathrm{mmol})$ in anhydrous dichloromethane (2 mL) at $0^{\circ} \mathrm{C}$, under nitrogen. The mixture was then stirred at $20^{\circ} \mathrm{C}$ for 20 h . Water (5 mL) was added to the mixture, which was then extracted with ethyl acetate $(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was recrystallised from iso-propanol-hexane to give $14(0.08 \mathrm{~g}, 43 \%)$ as a white solid, mp $206-210^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{10 \mathrm{~b}} 213^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}^{25}+53.3(c 1.20, \mathrm{MeOH})$, lit. ${ }^{10 \mathrm{~b}}[\alpha]_{\mathrm{D}}^{20}$ +52.3 (c 0.88, MeOH); IR $\nu_{\max } 3269,2896,1648 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.38-7.28(5 \mathrm{H}, \mathrm{m}) 4.51(1 \mathrm{H}, \mathrm{dd}, J=11.6,4.3 \mathrm{~Hz})$ $4.11(1 \mathrm{H}, \mathrm{m}) 2.71(1 \mathrm{H}, \mathrm{ddd}, J=17.1,5.6,2.3 \mathrm{~Hz}) 2.33-2.26(2 \mathrm{H}, \mathrm{m})$ 1.62 (1 H , ddd, $J=15.6,11.6,10.8 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.1,143.5,129.8,129.0,127.4,65.6,56.2,42.7,41.4 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}, \%) 192$ $\left(\mathrm{M}^{+}, 100\right)$. HRMS $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}$ calcd 192.1025, found 192.1028.

References and notes

1. Vitaku, E.; Smith, D. T.; Njardarson, T. J. Med. Chem. 2014, 57, 10257.
2. (a) Michael, J. P. Nat. Prod. Rep. 1999, 16, 675; (b) Daly, J. W. J. Nat. Prod. 1998, 61, 162; (c) Schneider, M. In Alkaloids: Chemical and Biochemical Perspectives; Pelletier, S. W., Ed.; Elsevier Science: Oxford, UK, 1996; Vol. 10, p 155; (d) Strunz, G. M.; Findlay, J. A. In The Alkaloids; Brossi, A., Ed.; Academic: New York, NY, 1985; Vol. 26, p 89; (e) Fodor, G. B.; Colasanti, B. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley: New York, NY, 1985; Vol. 3, p 1; (f) Jones, T. H.; Blum, M. S. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley: New York, NY, 1983; Vol. 1, p 33.
3. (a) Jones, T. H.; Blum, M. S. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley: New York, NY, 1985; Vol. 3, p 1; (b) Lognay, G.; Hemptinne, J. L.; Chan, F. Y.; Gaspar, C. H.; Marlier, M. N.; Braekman, J. C.; Daloze, D.; Pasteels, J. M. J. Nat. Prod. 1996, 59, 510; (c) Williams, P. G.; Yoshida, W. Y.; Moore, R. E.; Paul, V. J. J. Nat. Prod. 1996, 66, 620; (d) Bonjoch, J.; Solé, D. Chem. Rev. 2000, 100, 3455.
4. (a) Pei, Z.; Li, X.; von Geldren, T. W.; Longenecker, K.; Pieh, D.; Stewart, K. D.; Backes, B. J.; Lai, C.; Lubben, T. H.; Balleron, S. J.; Beno, D. W. A.; Kempf-Grote, A. J.; Sham, H. L.; Trevillyan, J. M. J. Med. Chem. 2005, 50, 1983; (b) Reichard, G. A.; Spitler, J.; Mergelsberg, I.; Miller, A.; Wong, G.; Raghavan, R.; Jenkins, J.; Gan, T.; McPhail, A. T. Tetrahedron: Asymmetry 2002, 13, 939; (c) Nishimura, Y.; Adachi, H.; Satoh, T.; Shitara, E.; Nakamura, H.; Kojima, F.; Takeuchi, T. J. Org. Chem. 2000, 65, 4871.
5. (a) Buffat, M. G. P. Tetrahedron 2004, 60, 1701; (b) Weintraub, P. M.; Sabol, J. S.; Kane, J. M.; Borcherding, D. R. Tetrahedron 2003, 59, 2953.
6. (a) Xin, D.; Perez, L. M.; Ioerger, T. R.; Burgess, K. Angew. Chem., Int. Ed. 2014, 53, 3594; (b) Menichincheri, M.; Bargiotti, A.; Berthelsen, J.; Bertrand, J. A.; Bossi, R.; Ciavolella, A.; Cirla, A.; Cristiani, C.; Croci, V.; D’Alessio, R.; Fasolini, M.; Fiorentini, F.; Forte, B.; Isacchi, A.; Martina, K.; Molinari, A.; Montagnoli, A.; Orsini, P.; Orzi, F.; Pesenti, E.; Pezzetta, D.; Pillan, A.; Poggesi, I.; Roletto, F.; Scolaro, A.; Tato, M.; Tibolla, M.; Valsasina, B.; Varasi, M.; Volpi, D.; Santocanale, C.; Vanotti, E. J. Med. Chem. 2009, 52, 293; (c) Xie, Y.; Raffo, A.; Ichise, M.; Deng, S.; Harris, P. E.; Landry, D. W. Bioorg. Med. Chem. Lett. 2008, 18, 5111; (d) Leflemme, N.; Dallemagne, P.; Rault, S. Tetrahedron Lett. 2001, 42, 8997; (e) Desmaële, D.; Mekouar, K.; d'Angelo, J. J. Org. Chem. 1997, 62, 3890; (f) Vanotti, E.; Menichincheri, M.; Orsini, P.; Scolaro and Varasi, Scolaro, A.; Varasi, M. US2007/142414 Pharmacia Italia, 21.06.07. (g) Macdonald, G. J.; TrabancoSuarez, A. A.; Conde-Seide, S.; Tresadern, G. J.; Bartolome-Nebreda, J. M.; Pastor-Fernandez, J. WO2011/073339 Janssen Pharmaceutica, 23.06.11.
7. (a) Thaker, M. N.; García, M.; Koteva, K.; Waglechner, N.; Sorensen, D.; Medina, R.; Wright, G. D. Med. Chem. Commun. 2012, 3, 1020; (b) Rowlands, M. G.; Bunnett, M. A.; Foster, A. B.; Jarman, M.; Stanek, J.; Schweizer, E. J. Med. Chem. 1988, 31, 971; (c) Leonardi, A.; Barlocco, D.; Montesano, F.; Cignarella, G.; Motta, G.; Testa, R.; Poggesi, E.; Seeber, M.; De Benedetti, P. G.; Fanelli, F. J. Med. Chem. 2004, 47, 1900.
8. Kuznetsov, N. Y.; Maleev, V. I.; Khrustalev, V. N.; Mkrtchyan, A. F.; Godovikov, I. A.; Strelkova, T. V.; Bubnov, Y. N. Eur. J. Org. Chem. 2012, 2, 334.
9. Comins, D. L.; Zhang, Y.; Joseph, S. P. Org. Lett. 1999, 1, 657.
10. (a) Davis, F. A.; Chao, B.; Rao, A. Org. Lett. 2001, 3, 3169; (b) Davis, F. A.; Fang, T.; Chao, B.; Burns, D. M. Synthesis 2000, 14, 2106.
11. Li, X.; Taechalertpaisarn, J.; Xin, D.; Burgess, K. Org. Lett. 2015, 17, 632.
12. Huckin, S. N.; Weiler, L. J. Am. Chem. Soc. 1974, 96, 1082.
13. Ashton, M. J.; Hills, S. J.; Newton, C. G.; Taylor, J. B.; Tondu, S. C. D. Heterocycles 1989, 28, 1015.
14. Prévost, N.; Shipman, M. Tetrahedron 2002, 58, 7165.
15. Grauert, M.; Bechtel, W. D.; Weiser, T.; Stransky, W.; Nar, H.; Carter, A. J. J. Med. Chem. 2002, 45, 3755.
16. Bulman Page, P. C.; Hamzah, A. S.; Leach, D. C.; Allin, S. M.; Andrews, D. M.; Rassias, G. A. Org. Lett. 2003, 5, 353.
17. Krapcho, P. A.; Weimaster, J. F.; Eldridge, J. M.; Jahngen, E. G. E.; Lovey, A. J.; Stephens, W. P. Org. Lett. 1978, 43, 138.
18. (a) Davies, S. G.; Fletcher, A. M.; Roberts, P. M.; Smith, A. D. Tetrahedron 2009, 65, 10192; (b) Davies, S. G.; Garner, A. C.; Nicholson, R. I.; Osborne, J.; Roberts, P. M.; Savory, E. D.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem. 2009, 12, 2604.
19. Laguzza, B. C.; Ganem, B. Tetrahedron Lett. 1978, 19, 1689.
20. Zacuto, M. J.; Xu, F. J. Org. Chem. 2007, 72, 6298.
21. Paik, S.; Lee, J. Y. Tetrahedron Lett. 2006, 47, 1813.
22. Davis, F. A.; Chao, B.; Andemichael, Y. W.; Mohanty, P. K.; Fang, T.; Burns, D. M.; Rao, A.; Szewczyk, J. M. Heteratom Chem. 2002, 13, 486.
23. Rioz-Martinez, A.; Shaik, A. A.; Azeeza, S.; Malik, M. S.; Sandbhor, M. Angew. Chem., Int. Ed. 2011, 50, 8387.
24. Adriaensens, L. V.; Hartley, R. C. J. Org. Chem. 2007, 72, 10287.
25. Weis, R.; Presser, A.; Seebacher, W. Monatsch. Chem. 2003, 134, 1129.
26. Cardillo, G.; Galeazzi, R.; Mobbili, G.; Orena, M.; Rossetti, M. Heterocycles 1994, 2663.
27. Cardillo, G.; Gentilucci, L.; Tolomelli, A.; Tomasini, C. J. Org. Chem. 1998, 63, 2351.
28. Joel, S. P.; Marson, C. M.; Savy, P. WO2004/46094 Queen Mary \& Westfield College, University College London, Barts and London NHS Trust, 23.06.03.
29. Tosatti, P.; Horn, J.; Campbell, A. J.; House, D.; Nelson, A.; Marsden, S. P. Adv. Synth. Catal. 2010, 352, 3153.
30. Hatano, M.; Horibe, T.; Ishihara, K. Angew. Chem., Int. Ed. 2013, 52, 4549.
31. Soucy, F.; Grenier, L.; Behnke, M. L.; Destree, A. T.; McCormack, T. A.; Adams, J.; Plamondon, L. J. Am. Chem. Soc. 1999, 121, 9967.
32. Zhong, H. M.; Cohen, J. H.; Abdel-Magid, A. F.; Kenney, B. D.; Maryanoff, C. A.; Shah, R. D.; Villani, F. J., Jr.; Zhang, F.; Zhang, X. Tetrahedron Lett. 1999, 40, 7721.
33. Erichsen, M. N.; Huynh, T. H. V.; Abrahamsen, B.; Bastlund, J. F.; Bundgaard, C.; Monrad, O.; Bekker-Jensen, A.; Nielsen, C. W.; Frydenvang, K.; Jensen, A. A.; Bunch, L. J. Med. Chem. 2010, 53, 7180.
34. Lutz, A. H.; Schnider, O. Helv. Chim. Acta 1956, 39, 81.
35. Chen, B. L.; Wang, B.; Lin, G. Q. Sci. China Chem. 2014, 57, 945.
36. Bentley, S. A.; Davies, S. G.; Lee, J. A.; Roberts, P. M.; Russell, A. J.; Thomson, J. E.; Toms, S. M. Tetrahedron 2010, 66, 4604.
37. Davis, F. A.; Chao, B.; Fang, T.; Szewczyk, J. M. Org. Lett. 2000, 2, 1041.
38. Marin, J.; Didierjean, C.; Aubry, A.; Casimir, J.-R.; Briand, J.-P.; Guichard, G. J. J. Org. Chem. 2004, 69, 130.

[^0]: * Corresponding author. Tel.: +44 (0) 207679 4712; fax: +44 (0) 2076797463 ; e-mail address: c.m.marson@ucl.ac.uk (C.M. Marson).

