

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Antitumor agents. 271: Total synthesis and evaluation of brazilein and analogs as anti-inflammatory and cytotoxic agents

Chiao-Ting Yen^{a,b}, Kyoko Nakagawa-Goto^a, Tsong-Long Hwang^c, Pei-Chi Wu^a, Susan L. Morris-Natschke^a, Wan-Chun Lai^b, Kenneth F. Bastow^d, Fang-Rong Chang^b, Yang-Chang Wu^{b,e,*}, Kuo-Hsiung Lee^{a,*}

^a Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599 7568, USA

^b Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan

^c Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 333, Taiwan

^d Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 7568, USA

^e Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan

ARTICLE INFO

Article history: Received 27 August 2009 Revised 8 December 2009 Accepted 10 December 2009 Available online 14 December 2009

Keywords: Homoisoflavonoid Brazilein Anti-inflammatory Cytotoxic

ABSTRACT

The first total synthesis of the naturally occurring tetracyclic homoisoflavonoid brazilein (1) and 14 new analogs (1a–n) is reported. Target compounds and intermediates were assayed for anti-inflammatory effects on superoxide anion generation and elastase release by human neutrophils in response to fMLP/CB, and for cytotoxic activity against nasopharyngeal (KB), vincristine-resistant nasopharyngeal (KBvin), lung (A549) and prostate (DU-145) human cancer cell lines. The most active compound **1b** showed potent effects on superoxide anion generation and elastase release with IC₅₀ values of 1.2 and 1.9 μ M, respectively, and was 65 times more potent than phenylmethylsulfonyl fluoride (PMSF), the positive control, in the latter assay. Additionally, **1b** exhibited broad spectrum in vitro anticancer activity with IC₅₀ values of 6–11 μ M against the four tested cancer cell lines.

© 2009 Elsevier Ltd. All rights reserved.

Naturally occurring homoisoflavonoids (3-benzylidene-4-chromanones) are related structurally to flavonoids, and exhibit various biological activities.¹ Synthesis of the 3-benzylidene-4-chromanone skeleton is usually based on the condensation of 4-chromanones with aromatic aldehydes in the presence of an acidic or basic catalyst.^{2,3} Although members of this family have been the subjects of several syntheses,^{4,5} there are no reports on the total synthesis of brazilein (1) nor the preparation of 1-analogs.

In our prior study, we isolated the unique tetracyclic homoisoflavonoid brazilein (1), whose stereochemistry was obtained as dextrorotatory,⁶ from an ethyl acetate extract of *Caesalpinia sappan* L. (Legminosae). Brazilein ((6aR)-6a,7-dihydro-3,6a,10-trihydrobenz[*b*]indeno[1,2-*d*] pyran-9-(6*H*)-one) is a natural red pigment used in traditional Chinese medicine. It also exhibits significant cytotoxic activity against HepG2 and Hep3B (liver), MDA-MB-231 and MCF-7 (breast), A549 (lung), and Ca9-22 (gingival) human cancer cell lines (Table 1).^{6b} Previous literatures showed that brazilein (1) exhibited immunosuppressive activity in mice lymphocytes,⁷ cardiotonic effects in isolated rat hearts,⁸ and anti-oxidant properties.^{9,10} Brazilin (2) is the hydrogenation product of brazilein (1) in the proposed biosynthetic route,¹¹ and can be oxidized to brazilein (1) when the extract has been exposed to air and light. Beyond this redox chemistry, our interest in devising a general synthesis for this skeleton was based on literature reports that brazilin (2) has cytotoxicity (Table 1)⁶ and anti-inflammatory properties,^{12,13} acts as a micromolar telomerase inhibitor,¹⁴ and produces DNA nicks.¹⁵ These properties are often associated with useful anticancer agents. Additionally, to the best of our knowledge, brazilein (1) and its derivatives have not been studied for anti-inflammatory and cytotoxic effects. Considering the structural similarities between brazilin (2) and brazilein (1), we wanted to determine whether the latter exhibits a similar spectrum of in vitro anti-inflammatory and anticancer effects.

We report herein a strategy that enables the preparation of **1** by construction of the benzylidene moiety via acid- or base-catalyzed

l'able 1						
Cytotoxic	effects o	of brazi	lein (1)	and	brazilin	(2)

Compd		Cancer cell lines (IC ₅₀ value ^a , μ g/mL)				
	HepG2	Нер3В	MDA-MB-231	MCF7	A549	Ca9-22
Brazilein (1) Brazilin (2) Doxorubicin ^b	3.15 3.47 0.34	3.42 4.54 0.56	2.36 3.09 1.05	3.96 6.29 0.42	9.68 15.56 0.32	8.63 9.78 0.14

 a IC₅₀ represents the 50% inhibitory concentration.

^b Positive control.

^{*} Corresponding authors. Tel.: +886 7 312 1101 x 2197; fax: +886 7 311 4773 (Y.C.W.); tel.: +1 919 0962 0066; fax: +1 919 966 3893 (K.H.L.).

E-mail addresses: yachwu@kmu.edu.tw (Y.-C. Wu), khlee@unc.edu (K.-H. Lee).

aldol condensation with aryl aldehydes. All newly synthesized compounds, including structurally related intermediates, were assayed for in vitro cytotoxicity against four human cancer cell lines, [KB (nasopharyngeal), KBvin (multidrug-resistant nasopharngeal over-expressing P-gp), A549 (lung), and DU-145 (prostate)] and for anti-inflammatory action in terms of superoxide anion generation and elastase release by human neutrophils in response to fMLP/CB.

The general synthesis of brazilein (1) was achieved through the route outlined in Scheme 1. 7-Hydroxy-4-chromanone (5), a key intermediate, was readily obtained by reaction of resorcinol (3) and 3-chloropropionic acid promoted by trifluoromethanesulfonic acid to give 2',4'-dihydroxy-3-chloropropiophenone (4), which was further cyclized using 2 M NaOH¹⁶ to give 5 in 78% yield. Treatment of 5 with iodomethane in the presence of K₂CO₃/acetone gave 6 (60%). Acid catalyzed¹⁷ condensation of 6 with 3,4-dimethoxy-benzaldehyde afforded 7 (78%). Epoxidation of 7 with alkaline hydrogen peroxide gave epoxy ketone 8 (90%), which was reduced to the diol 9 (89%) with LiAlH₄.³ Cyclization to the desired product was affected by HClO₄³ to yield trimethylbrazilin 10 in 31% yield. Compound 10 was demethylated using pyridine hydrochloride¹⁸ to give 2 in 36% yield. Brazilin (2) was oxidized with a catalytic amount of iodine solution to give brazilein (1) in 78% yield.

In addition, the brazilein derivatives **1a**, **1b**/**c**, and **1d** were obtained by esterification of **1** with acetic anhydride, propionyl chloride, and benzoic chloride, respectively, in pyridine. For **1e** and **1f**, **1** was reacted in strong base (NaH) with dimethylcarbamyl chloride and diethylcarbamyl chloride respectively. Compounds **1g–n** were synthesized by the general Williamson method as described in previous reports.^{19,20} Specifically, **1g–n** were prepared by alkylation of **1** with iodomethane (**1g** and **h**), iodoethane (**1i** and **j**), benzyl bromide (**1k**), allylbromide (**1l** and **m**), and prenyl bromide (**1n**), in the presence of K₂CO₃ in acetone. Accordingly, the first total syntheses of **1** and **14** analogs (**1a–n**) (Fig. 1) were accomplished.

Anti-inflammatory activity: Synthesized **1**, **2**, and intermediates **7–10** together with analogs **1a–n**, which are divided into three classes based on the substitution pattern at C-3, C-6a, and C-10 and functionalized into ester, carbamate, and ether, were evaluated for anti-inflammatory action based on effects against super-oxide anion generation and elastase release by human neutrophils in response to fMLP/CB. The assays were performed using established protocols,^{21,22} which are widely used to identify potential anti-inflammatory compounds. Table 2 lists the results for the test compounds, as well as diphenyleneiodonium (DPI) and phenylmethylsulfonyl fluoride (PMSF), included as positive

Figure 1. Molecular structures of brazilein (1), brazilin (2), and synthetic 1-analogs.

controls for superoxide anion generation and elastase release, respectively. Results are expressed as the mean ± S.E.M., and comparisons were made using Student's *t*-test. A probability of 0.05 or less was considered significant.

Among the esterified compounds **1a–d**, analogs **1a** (di-acetate) and **1d** (tri-benzoate) showed selective anti-inflammatory activity (**1a** vs superoxide anion generation, 18.7 μ M; **1d** vs elastase release, 13.3 μ M). Analog **1b** (tri-propionate) showed the highest potency against both superoxide anion generation and elastase release with significant IC₅₀ values of 1.2 and 1.9 μ M, respectively. Analog **1c** (di-propionate) was slightly less potent with IC₅₀ values of 1.65 and 3.28 μ M, but still was more active than the parent compound **1**. Therefore, replacing the hydroxy groups with propionate esters increased potency in both assays, particularly when all three hydroxyls were esterified in **1b**.

N-Diethyl carbamate **1f** showed a weak effect (IC_{50} 15.5 µM) in response to fMLP/CB-induced elastase release, but neither **1f** nor the *N*-dimethyl carbamate **1e** showed a significant effect against superoxide anion generation. Although the ester and carbamate functional group present parallel physical and chemical properties,

Scheme 1. Total synthesis of brazilein (1). Reagents and conditions: (a) 3-Chloropropionic acid, CF_3SO_3H , 80 °C, 1 h, 92%; (b) 2 M NaOH, 0 °C, 2 h, 78%; (c) iodomethane, K_2CO_3 , acetone, 60 °C, 5 h, 60%; (d) 3,4-dimethoxylbenzaldehyde, EtOH, HCl gas, rt, overnight, 78%; (e) H_2O_2 , dioxane, rt, 24 h, 90%; (f) LiAlH₄, THF, rt, overnight, 89%; (g) HClO₄, acetic acid, rt, overnight, 31%; (h) pyridine–HCl, 190–200 °C, 3 h, 36%; (i) 1 N $I_{2(ac)}$, rt, overnight, 78%.

Table 2

Inhibitory effects of compounds on superoxide anion generation and elastase release by human neutrophils in response to FMLP/CB

Compd	Superoxide anion IC ₅₀ (µM) ^a or (Inh%)	Elastase release IC ₅₀ (µM)ª or (Inh%)
Brazilein (1)	4.0 ± 0.42	14. 2 ± 1.32
Brazilin (2)	4.6 ± 0.63	16.7 ± 0.41
1a	18.71 ± 2.82	$(40.87 \pm 3.49)^{***}$
1b	1.2 ± 0.02	1.9 ± 0.31
1c	1.65 ± 0.09	3.28 ± 0.51
1d	(14.14 ± 5.70)*	13.25 ± 1.14
1e	(16.37 ± 3.71)	(11.39 ± 4.76)
1f	(-7.00 ± 4.90)	15.50 ± 2.40
1g	4.65 ± 1.31	13.6 ± 1.09
1h	(18.61 ± 6.29)*	(26.76 ± 6.60)*
1i	23.94 ± 5.48	$(35.54 \pm 1.71)^{***}$
1j	4.35 ± 0.91	8.37 ± 0.41
1k	(33.38 ± 7.75)**	8.76 ± 1.51
11	16.16 ± 0.40	11.83 ± 2.00
1m	19.72 ± 4.44	16.54 ± 1.70
1n	19.69 ± 5.82	10.06 ± 0.60
7	NT ^b	NT ^b
8	1.90 ± 0.32	$(43.71 \pm 2.00)^{***}$
9	8.38 ± 0.02	10.25 ± 0.14
10	4.52 ± 1.21	(35.76 ± 2.60)*
DPI ^c	0.7 ± 0.4	
PMSF ^c		130.9 ± 2.91

^a IC₅₀ represents the 50% inhibitory concentration of the compound. If 50% inhibition was not reached at any test dose, the percentage of inhibition obtained at a test dose of 10 µg/mL is given in parentheses (lnh%). Results are presented as mean ± S.E.M. (n = 3-5). *p < 0.05, **p < 0.01, and ***p < 0.001 compared with the control value.

^b Abnormal absorption at OD 405 and 550 nm.

^c DPI and PMSF were used as positive controls.

the data showed that the former did provide better activity against either superoxide anion generation or elastase release.

Among the eight compounds (1g-n) containing ether substituents, 1g (tri-methoxy) and 1j (di-ethoxy) displayed potent effects in the superoxide anion assay (IC₅₀ 4.7 and 4.4 μ M, respectively). Analog 1j (di-ethoxy) also showed a moderate effect (IC₅₀ 8.4 μ M) against elastase release, as did 1k (di-benzoxy) (IC₅₀ 8.8 μ M). Compounds 1l-n (allyl and prenyl ethers) were nonselective, but with only weak inhibitory effects in both assays (IC₅₀ 10–20 μ M). These findings suggest that 1g and 1j merit further investigation as potential anti-inflammatory compounds.

Furthermore, among the synthetic intermediates **7–10** (Table 1), the epoxy ketone **8** was significantly potent and selective $(IC_{50} \ 1.9 \ \mu\text{M})$ against superoxide anion generation. The diol **9** was moderately active in both anti-inflammatory assays ($IC_{50} \ 8.4$ and 10.3 μ M), while the tetracyclic **10** was potent only against superoxide anion generation ($IC_{50} \ 4.5 \ \mu$ M).

In conclusion, among all screened compounds, including ester (**1a–d**), carbamate (**1e** and **1f**), and ether (**1g–n**) derivatives, the preliminary structure–activity relationship were addressed in the order: a) ester > ether > carbamate; b) ethyl = methyl > allyl = prenyl > benzyl. In particular, the most potent analog **1b** was 65-fold more active than PMSF, the positive control, in the elastase release assay.

Anti-cancer activity: The homoisoflavonoids 1a-n as well as the synthesized 1, 2 and intermediates 7–10 were examined for in vitro cytotoxic activity against four human cancer lines. Table 3 lists the IC₅₀ values obtained with test compounds compared to the anticancer drug paclitaxel as a positive control. Among the 14 derivatives (1a–n), seven compounds (1a–c, 1g, 1i, 1j, and 1m) showed moderate potency against the tested human cancer cell lines with IC₅₀ values of 5–18 μ M; however, they all were much less active than paclitaxel.

In our previous study, the parent compound **1** showed moderate cytotoxic activity against six cancer cell lines (IC_{50} 8–34 μ M,

Table 3

Cytotoxic effects of 1 -analogs

Compd	Cancer cell line (IC ₅₀ value ^a , µM)				
	KB	KBvin	A549	DU-145	
1a	10.0 ± 1.3	ND ^b	8.1 ± 1.2	8.2 ± 0.72	
1b	6.6 ± 2.21	11.3 ± 1.53	13.5 ± 1.12	11.0 ± 0.47	
1c	7.7 ± 3.5	ND ^b	7.8 ± 0.65	7.1 ± 0.44	
1g	15.2 ± 1.41	16.9 ± 0.42	>20	17.5 ± 0.67	
1i	18.9 ± 1.11	17.9 ± 0.9	>20	18.1 ± 1.54	
1j	11.3 ± 0.78	16.5 ± 1.56	15.3 ± 1.04	11.0 ± 0.67	
1m	5.4 ± 0.29	ND ^b	9.4 ± 0.49	9.1 ± 0.75	
7	>20	18.3 ± 0.26	>20	>20	
8	9.8 ± 1.28	6.4 ± 0.67	>20	10.6 ± 0.42	
9	>20	>20	>20	>20	
10	10.5 ± 0.48	7.6 ± 0.73	>20	13.8 ± 1.26	
Paclitaxel ^c	$1.55 imes 10^{-3}$	$1.09 imes 10^{-3}$	$1.93 imes 10^{-3}$	$2.35 imes 10^{-3}$	

^a Data are expressed as mean \pm SD (n = 3).

^b ND: not determined.

^c Positive control.

Table 1).^{6b} Comparison of **1** to its synthetic intermediates **2** and **7–10** showed that the epoxy ketone **8** had comparable or enhanced activity, while the reduced diol **9** was inactive ($IC_{50} > 20 \mu M$). In addition, trimethylbrazilin **10** was more active than **2** with IC_{50} values of 10–15 μ M against all four human cancer cell lines. The enhanced cytotoxicity of epoxide analog **8** could account for its twofold greater potency than **1** against superoxide anion generation.

Acknowledgments

This investigation was supported by a Grant CA 17625 from National Cancer Institute, NIH, USA (K.H.L.), and by the National Science Council, Taiwan (Y.-C.W.) and KMU-EM-97-2.1.b (Y.-C.W.).

References and notes

- Lockhart, I. M.. In Ellis, G. P., Ed.; The Chemistry of Heterocylic Compounds; Chromenes, Chromanones and Chromones; John Wiley & Sons: New York, 1977.
- 2. Malhotra, S.; Sharma, V. K.; Parmar, V. S. J. Chem. Res. 1988, 179.
- 3. Farkas, L.; Gottsegen, A.; Norgradi, M. Tetrahedron 1970, 26, 2787.
- 4. Huang, Y. D.; Zhang, J.; Pettus, T. Org. Lett. 2005, 26, 5841.
- 5. Davis, F.; Chen, B. C. J. Org. Chem. 1993, 58, 1751.
- (a) Kim, D. S.; Baek, N. I.; Oh, S. R.; Jung, K. Y.; Lee, I. S.; Lee, H. K. Phytochemistry 1997, 46, 177; b Lai, W. C. Master Thesis, Kaohsiung Medical University, July 2007.
- Ye, M.; Xie, W. D.; Lei, F.; Meng, Z.; Zhao, Y. N.; Su, H.; Du, L. J. Int. Immunopharmacol. 2006, 6, 426.
- Zhao, Y. N.; Pan, Y.; Tao, J. L.; Xing, D. M.; Du, L. J. *Pharmacology* **2006**, *7*6, *7*6.
 Kabbash, A.; Yagi, A.; Ishizu, T.; Haraguchi, H.; Fujioka, T.; Moustafa, S. M.; El-
- Bassuony, A. A. Saudi Pharm. J. **2008**, *16*, 25. 10. Hu, J.; Yan, X.; Wang, W.; Wu, H.; Hua, L.; Du Lijun. Tsinghua Sci. Technol. **2008**,
- Hikino, H.; Taguchi, T.; Fujimura, H.; Hiramatsu, Y. Planta Med. 1977, 31, 214.
- Bae, I. K.; Min, H. Y.; Han, A. R.; Seo, E. K.; Lee, S. K. Eur. J. Pharmacol. 2005, 513, 237.
- Nagai, M.; Nagumo, S.; Lee, S. M.; Eguchi, I.; Kawai, K. I. Chem. Pharm. Bull. 1986, 34, 1.
- 14. Tolman, R. L.; Chin, A. C. WO Patent 0,193,864, Dec 13, 2001.
- Mar, W.; Lee, H. T.; Je, K. H.; Choi, H. Y.; Seo, E. K. Arch. Pharmacol. Res. 2003, 26, 147.
- Namikoshi, M.; Nakata, H.; Yamada, H.; Nagai, M.; Saitoh, T. Chem. Pharm. Bull. 1987, 35, 2761.
- 17. Venkateswarlu, S.; Panchanula, G. P.; Guraiah, M. B.; Subbaraju, G. V. *Tetrahedron* **2005**, *61*, 3013.
- Siddaiah, V.; Rao, C. V.; Venkateswarlu, S.; Krishnaraju, A. V.; Subbaraju, G. V. Bioorg. Med. Chem. 2006, 14, 2545.
- 19. Gao, G. Y.; Li, D. J.; Keung, W. M. Bioorg. Med. Chem. 2003, 11, 4069.
- 20. Hosoda, S.; Hashimoto, Y. Bioorg. Med. Chem. Lett. 2007, 17, 5414.
- Chang, H. L.; Chang, F. R.; Chen, J. S.; Wang, H. P.; Wu, Y. H.; Wang, C. C.; Wu, Y. C.; Hwang, T. L. Eur. J. Pharmacol. 2008, 586, 332.
- Hwang, T. L.; Yeh, S. H.; Leu, Y. L.; Chern, C. Y.; Hsu, H. C. Br. J. Pharmacol. 2006, 148, 78.