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The indole nucleus is found in numerous biologically impor-
tant natural products and synthetic drugs. Indoles with carbon
substituents in the 3-position are of pivotal importance in
central-nervous-system (CNS) drugs, particularly for antipsy-
chotics.[1] Although many indole syntheses are known, a truly
general approach has yet to be discovered.[2,3] Herein we
report a route to 3-substituted indoles from ortho-dihaloben-
zenes and allylic amines with two distinct steps: intermolec-
ular aryl amination and Heck cyclization. The aryl amination
reaction was first reported by Kondratenko et al.[4] and has
been developed extensively since the seminal work by Louie
and Hartwig, and by Buchwald and co-workers.[5] The aryl
amination has also been used in indole chemistry. Buchwald
and co-workers used the Fischer indole synthesis to close the
heterocyclic ring,[6] whereas Ackermann and co-workers used
either a Sonogashira reaction or C�H bond activation.[7] The
combination of a Heck reaction and a catalytic C�N coupling
reaction was reported by Edmondson et al.[8] and by Kondo
and co-workers.[9]

During our recent studies towards the development of a
three-component approach to promazine (1; Scheme 1),[10] we

observed that the inclusion of allylamine led to a complex
mixture of products, among which was 3-methylindole (3 ; ca.
5%). Hegedus and co-workers, Terpko and Heck, and Mori
et al. reported the synthesis of 3 and related compounds by
intramolecular Heck reactions between 1977 and 1980.[11–13]

Following this serendipitous finding, we evaluated a
selection of easily handled ligands for the one-flask synthesis
of 3 (Figure 1).[14] We observed the best result with dppf;[15]

davephos[16] and dpephos[17] were less efficient. The product 2
of aryl amination at the position with the iodide substituent
dominated with binap[18] and xantphos.[19] The use of
x-phos,[16] PtBu3,

[20] or N-heterocyclic carbenes[21] led to
complex product mixtures. With the ligands PPh3 and P(o-
tol)3, bromobenzene was obtained in approximately 50%

Scheme 1. One-flask approach to promazine (1). dba=dibenzylidene-
acetone, dppf=1,1’-bis(diphenylphosphanyl)ferrocene.

Figure 1. Ligand screening. Reactions were performed on a 0.33-mmol
scale in toluene (2 mL) in closed vials. Cy= cyclohexyl.
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yield. Control experiments confirmed the importance of the
ligand and the catalytic nature of the reaction.

The yield of 3 was improved from 59 to 85% by starting
the reaction at room temperature, heating to 140 8C over
about 0.5 h, and then heating at 140 8C for 2 h. When
[Pd2dba3] was replaced with Pd(OAc)2, the yield decreased
to 45%, whereas [Pd(dppf)Cl2]–CH2Cl2 did not promote the
desired reaction at all. The Heck reaction did not proceed
with K3PO4 as the base, and the yield decreased to 60% with
Cs2CO3.

On the basis of well-known intramolecular Heck
approaches to indoles and related compounds[11–13, 22] and the
use of allylamine as an ammonia equivalent in aryl amination
reactions,[23] it seemed plausible that the synthesis of 3
proceeds through an initial aryl amination. Indeed, the
isolation of the aniline 2 indicated that a clean stepwise
reaction takes place (Scheme 2). In accordance with this
observation, all substrates that could react to give regioiso-
meric products were transformed only into the isomer that
results from aryl amination at the position with the iodide
substituent.

The reaction proceeded well when electron-withdrawing
or electron-donating groups were present on the aromatic
ring of the substrate, and substitution ortho to the iodine or
bromine substituent was possible (Table 1). The 3-substituted
indoles were formed in yields ranging from 56 to 85 %, which
correspond to yields of 75–92 % per bond formed. The scope
of the reaction could be extended to the synthesis of an
azaindole when 2,3-dichloropyridine was used.[24] No aza-
indole was formed from other dihalogenated pyridines. The
reaction was also applicable to simple functionalized allylic
amines, as exemplified by the formation of 3-benzylindole in
good yield. The desired product was not formed from the
nonaflate derived from 2-bromophenol, and the use of 2-
iodobromobenzenes with an additional bromine substituent
led to complex product mixtures. Attempts to prepare chain-
elongated, functionalized indoles were largely unsuccess-
ful.[24]

Although the regiochemistry of the reaction was con-
trolled by the selective amination of the aryl iodide, 3 could
also be prepared from 2-bromochlorobenzene (in 66% yield),
2-chloroiodobenzene (47%), 1,2-dichlorobenzene (43 %),
1,2-dibromobenzene (70%), and 1,2-diiodobenzene (15 %).
Thus, the preparation of functionalized products is limited by
the accessibility of the corresponding 1,2-dihalo arenes. The
reaction could be scaled up to produce 3 in a quantity of 10 g

(76 % yield) from 2-bromoiodobenzene by treatment with
allylamine in the presence of [Pd2dba3] (1.25 mol%) in
p-xylene at reflux for 5 h.

It was possible to functionalize 3 through in situ
N arylation by adding either an aryl iodide or an aryl bromide
after the completion of the first two steps (Scheme 3).[25] One

C�C and two C�N bonds were formed in this way in
approximately 60 % yield per step. For comparison, 3 can be
coupled to 4-bromofluorobenzene in 62% yield under con-
ditions described by Hartwig and co-workers ([Pd2dba3]
(1.25 mol %), dppf (5 mol%), 140 8C).[26]

In summary, we have developed a novel approach to
indoles on the basis of sequential aryl amination and Heck
cyclization reactions in a one-flask operation with a single
catalyst.

Experimental Section
General procedure: [Pd2dba3] (1.25 mol%), dppf (5 mol%), NaO-
(tBu) (3.75 mmol), the aryl halide (1.5 mmol), toluene (4 mL), and
allylamine (1.5 mmol) were placed in a 7-mL screw-cap vial. The

Table 1: Synthesis of 3-substituted indoles.[a]

85% 71%[b] 67%[b] 72% 65%

75% 63% 64% 60% 56%

73% 64% 71% 61%[c] 59%[d]

[a] Reactions were performed on a 1.5-mmol scale in dry toluene (4 mL)
in closed vials. [b] [Pd2dba3]: 2.5 mol%; dppf: 10 mol%. [c] 2,3-Dichloro-
pyridine was used as the substrate. (No product was observed in the
absence of the catalyst). [d] (E)-3-Phenylallylammonium chloride was
used as the allylic substrate in the presence of 3.5 equivalents of
NaOtBu.

Scheme 2. The isolation of 2 suggests a stepwise reaction. The aniline
2 was obtained in 91% yield when the reaction was stopped after 0.5 h
(when the temperature reached 140 8C), whereas scatole (3) was
obtained in 85% yield after 2 h at 140 8C.

Scheme 3. In situ N arylation.
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resulting mixture was heated from room temperature to 140 8C over
approximately 0.5 h and then stirred at 140 8C for 5 h.
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