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Abstract: An easy synthetic method to obtain phthalonitriles from
o-dibromobenzenes under mild conditions in high yields using
Zn(CN)2 and a catalytic amount of tris(dibenzylideneacetone)dipal-
ladium and 1,1¢-bis(diphenylphosphino)ferrocene is described.
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Phthalonitriles are the most important starting materials
for preparation of metal-free and metal phthalocyanines.1

A common pathway for the preparation of phthalonitriles
proceeds by the cyano-dehalogenation process known as
Rosenmund–von Braun reaction.2 Starting from 1,2-di-
bromobenzenes and reacting them with cuprous cyanide,
in refluxing DMF, this reaction often proceeds unsatisfac-
torily concerning the yields. The harsh reaction conditions
and subsequent oxidation of nitrile–cuprous halide, for
example, with NH4OH/air or O2, FeCl3 and HCl, prohibit
the presence of many functional groups.2,3 The use of cu-
prous cyanide also generally leads to the formation of the
corresponding copper phthalocyanine as a byproduct.

In our earlier work4 we proposed an easier method to pre-
pare substituted phthalonitriles from substituted catechols
via their corresponding aryl bistriflates. The displacement
of the triflate groups in catechol triflates by cyanide ions
proceeded in high yields using zinc cyanide and
tris(dibenzylideneacetone)dipalladium [Pd2(dba)3] and
1,1¢-bis(diphenylphosphino)ferrocene (DPPF) as catalyst.
The mild conditions tolerate numerous functional groups
and represent an improvement to the Rosenmund–
von Braun reaction for the synthesis of phthalonitriles.

Transition-metal-catalyzed cyanation of halobenzenes is
an alternate to Rosenmund–von Braun reaction for the
preparation of substituted benzonitriles. Most common
catalysts for exchange of halobenzenes or triflates with
cyanide are transition-metal complexes of the platinum
group, especially palladium or nickel complexes.5 In gen-
eral the cyanation of bromo- and iodobenzenes has been
performed in the presence of an excess of cyanide sources
like sodium, potassium, or zinc cyanide and potassium
hexacyanoferrate(II) in dipolar aprotic solvents like DMF,
DMAC, or NMP at 100–160 °C. Various sources for pal-

ladium such as PdCl2, Pd/C, Pd(OAc)2 and Pd2(dba)3 have
been employed successfully to convert the halobenzenes
into the corresponding benzonitriles.6

As an other alternative to Rosenmund–von Braun reaction
and our earlier triflate method for the preparation of sub-
stituted phthalonitriles we now introduce palladium-cata-
lyzed cyanation of mono- and disubstituted o-di-
bromobenzenes with Pd2(dba)3 and DPPF as the catalyst
system in dimethylacetamide (DMAC) as solvent with
Zn(CN)2 as cyanating agent at a temperature of 100–120
°C (Table 1).7 The reaction can be performed without an
inert atmosphere, which is otherwise a necessary condi-
tion for other palladium-catalyzed reactions. The use of
inert gas was avoided by using a small amount of poly-
methylhydrosiloxane (PMHS).8 Moreover, we did not
find any traces of corresponding phthalocyanine byprod-
uct. The reaction also is easier to perform as our earlier
described route via catecholtriflates.4 Tris(dibenzylidene-
acetone)dipalladium, DPPF, and Zn(CN)2 was used earli-
er with some iodo- and bromobenzenes as well as
aryltriflates which react with formation of the correspond-
ing benzonitriles.9 To the best of our knowledge, howev-
er, this catalyst system has not been applied for the
synthesis of phthalonitriles starting with o-dibromoben-
zenes.

The exchange of the bromo atoms in o-dibromobenzenes
against CN groups depends upon the substituents in the
para position of the bromo atoms in the benzene ring: o-
dibromobenzene (1a) itself and the dibromobenzenes 2a–
6a10 with electron-donating substituents in these positions
in comparatively short reaction times are converted into
the corresponding phthalonitriles 1b–6b in yields be-
tween 80 and 96% (Table 1). This is also true for 3,4-di-
bromoaniline (7a) and 3,4-dibromoacetanilide (8a).11 As
expected, 3,4-dibromophenol (10a)12a is also easily con-
verted into the corresponding phthalonitrile 9b; the same
applies to the protected tert-butyl(3,4-dibromophen-
oxy)dimethylsilane (9a)12a leading to 4-hydroxyphthalo-
nitrile (9b). The latter is probably formed after an initial
deprotection of 9a to form 10a, which is subsequently
converted into 4-hydroxyphthalonitrile (9b).

Also bromine and fluorine in para position to the reacting
bromide as in 1,2,4,5-tetrabromobenzene (11a), 1,2-di-
bromo-4-fluorobenzene (12a), and 1,2-dibromo-4,5-di-
fluorobenzene (13a) allow an easy exchange of the
bromine atoms against CN groups. Fluoro atoms are sta-
ble against an exchange reaction with the catalyst system.
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Table 1 Palladium-Catalyzed Cyanation of Various o-Dibromobenzenes

Substrate Producta Temp (°C) Time (h) Yield (%)

1a 1b 100 3 86

2a 2b 120 2 80

3a 3b 110 2 96

4a 4b 110 1.5 95

5a 5b 120 2.5 90

6a 6b 120 2 80

7a 7b 110 2 91

8a 8b 100 1.5 97

9a 9b 100 2 90

10a 9b 110 1.5 89

11a 11b 100 8 72

12a 12b 100 2 87

13a 13b 100 3 92

14a 14b 120 6 62

15a 15b 100–120 3–5 –

16a 11b 100 4 73

17a 17b 100–120 3–5 –
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The specific influence of the para substituents on the re-
activity of the bromo atoms can be seen especially clearly
with 4,5-dibromo-2-nitroaniline (14a):13 only the bromo
atom in the para position to the electron-donating NH2

group is exchanged against the CN group, the strong elec-
tron-attracting NO2 group (sp-NO2 = 0.778) in para posi-
tion to the second bromo atom prevents its exchange. This
is supported by the results with 1,2-dibromo-4,5-dini-
trobenzene (15a)14 which does not react with formation of
the corresponding dinitrophthalonitrile 15b.

Contrary to 1,2-dibromo-4,5-dinitrobenzene (15a), 4,5-
dibromophthalonitrile (16a)15 also with two but lesser
electron-attracting CN groups (sp-CN = 0.628) in para po-
sition to the bromine atoms reacts with formation of
1,2,4,5-tetracyanobenzene (11b) although in somewhat
lower yields.

In spite of the fact that 3,4-dibromophenol (10a) was con-
verted in high yields into the 4-hydroxyphthalonitrile
(9b), 4,5-dibromocatechol (17a) even after a longer reac-
tion time could not be reacted to form 4,5-dihydroxy-
phthalonitrile (17b). This is probably due to a partial
decomposition of the catalyst because of its reaction with
catechol 17a. 2,3-Dibromopyridine (18a) also reacts un-
der the applied conditions with formation of 2,3-di-
cyanopyridine (18b) in good yield. Only one
dibromonaphthalene was investigated: 6,7-dibromo-2,2-
dimethylnaphtho[2,3-d][1,3]dioxole (19a)16 was convert-
ed in a yield of 93% into the corresponding naphthaloni-
trile 19b17 within one hour at 110 °C.

In conclusion we have described another easier alternative
to Rosenmund–von Braun reaction, which can be easily
used to synthesize mono- and disubstituted phthalonitriles
containing various functional groups.
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