CF_{3} Oxonium Salts, \boldsymbol{O}-(Trifluoromethyl)dibenzofuranium Salts: In Situ Synthesis, Properties, and Application as a Real $\mathrm{CF}_{3}{ }^{+}$Species Reagent ${ }^{\text {§ }}$

Teruo Umemoto, ${ }^{*, \dagger}$ Kenji Adachi, ${ }^{\ddagger, \$ l}$ and Sumi Ishihara ${ }^{\ddagger, \$ 1}$
MEC Laboratory, Daikin Industries, Ltd., Miyukigaoka 3, Tsukuba, Ibaraki 305, Japan, and IM\&T Research, Inc., 6860 North Broadway, Suite B, Denver, Colorado 80221

teruo.umemoto@imandt.com
Received May 22, 2007

$\begin{aligned} & \mathrm{Nu}=\text { Alcohols, phenols, amines, pyridines, sulfonates, } \\ &-\mathrm{OTf}, \mathrm{BF}_{4}^{-}, \mathrm{PF}_{6}^{-}, \mathrm{SbF}_{6}^{-}, \\ & \mathrm{Sb}_{2} \mathrm{~F}_{11}-\end{aligned}$
We report in situ synthesis of the first CF_{3} oxonium salts, thermally unstable O-(trifluoromethyl)dibenzofuranium salts, which furthermore have different counteranions $\left(\mathrm{BF}_{4}{ }^{-}, \mathrm{PF}_{6}{ }^{-}, \mathrm{SbF}_{6}{ }^{-}\right.$, and $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$) and ring substituents (tert-butyl, F , and OCH_{3}), by photochemical decomposition of the corresponding 2-(trifluoromethoxy)biphenylyl-2'-diazonium salts at -90 to $-100^{\circ} \mathrm{C}$. The yields markedly increased in the order of $\mathrm{BF}_{4}{ }^{-}<\mathrm{PF}_{6}{ }^{-}<\mathrm{SbF}_{6}{ }^{-}<\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$. The CF_{3} oxonium salts were fully assigned by means of ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopy at low temperature. The CF_{3} salts decomposed to form CF_{4} and dibenzofurans. The half-life times at $-60^{\circ} \mathrm{C}$ of the 2-tert-butyl salts having different counteranions were 29 min for BF_{4}^{-}salt $\mathbf{2 d}$, 36 min for $\mathrm{PF}_{6}{ }^{-}$salt $\mathbf{2 c}$, 270 min for $\mathrm{SbF}_{6}{ }^{-}$salt $\mathbf{2 a}$, and 415 min for $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$salt $\mathbf{2 b}$. Those at $-60{ }^{\circ} \mathrm{C}$ of the $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$salts having different 2-substituents were 13 min for F salt $\mathbf{3 b}, 63 \mathrm{~min}$ for H (unsubstituted) salt $\mathbf{1 b}$, and 415 min for tert-butyl salt $\mathbf{2 b}$. Thus, the stability of the CF_{3} oxonium salts increased in the order of $\mathrm{BF}_{4}^{-}<\mathrm{PF}_{6}^{-}<\mathrm{SbF}_{6}^{-}<\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$and $\mathrm{F}<\mathrm{H}<$ tert-butyl, which is in accord with the increasing orders of the non-nucleophilicity of counteranions and the electrondonating effect of ring subsitituents. 2-tert-Butyl- O-(trifluoromethyl)dibenzofuranium hexafluoroantimonate (2a) was thus chosen and successfully applied as a real $\mathrm{CF}_{3}{ }^{+}$species source to the direct O - and N-trifluoromethylations of alcohols, phenols, amines, anilines, and pyridines under very mild conditions. The thermal decomposition method with a mixture of diazonium salt 17a and aryl- or alkylsulfonic acids, pyridine, or pyridines having an electron-withdrawing group also afforded $\mathrm{CF}_{3} \mathrm{O}$ or $\mathrm{CF}_{3} \mathrm{~N}$ products. The trifluoromethylation mechanism is discussed and an $\mathrm{S}_{\mathrm{N}} 2$ mechanism containing the transient formation of free $\mathrm{CF}_{3}{ }^{+}$is proposed. Thus, the present study has demonstrated that the exceedingly reactive $\mathrm{CF}_{3}{ }^{+}$ species can be generated much easier than the $\mathrm{CH}_{3}{ }^{+}$species, contrary to the common sense that $\mathrm{CF}_{3}{ }^{+}$is extremely difficult to generate in solution.

Introduction

As half of the recently sold top ten drugs contain fluorine atoms and even more fluorinated drugs are predicted to be

[^0]developed in the future, fluoroorganic compounds have gained tremendous attention in the field of chemistry and biochemistry. ${ }^{1}$ One or a few fluorine atoms substituted at a specific site in an organic compound can dramatically alter its chemical and biological nature because of the fluorine atom's chemical extremism resulting from its highest electronegativity and small size closest to the hydrogen atom. ${ }^{2}$ In particular, the trifluoromethyl $\left(\mathrm{CF}_{3}\right)$ group, three fluorine atoms collecting at one carbon, is useful because CF_{3} brings in high stability and

[^1]lipophilicity in addition to the high electronegativity and the mimic effect by its small size. ${ }^{2}$ However, introducing the CF_{3} group into an organic molecule easily, selectively, and safely presents synthetic challenges. Therefore, extensive efforts have been made to develop useful methodologies for it. ${ }^{1-4}$ In particular, nucleophilic trifluoromethylations have been studied extensively and applied to the preparation of trifluoromethylated compounds in this decade. ${ }^{5}$ However, electrophilic trifluoromethylations have been developed slowly. ${ }^{4} \mathrm{O}$-Trifluoromethyl oxonium salts have long been a target among chemists because the unique salts may be anticipated as a useful $\mathrm{CF}_{3}{ }^{+}$source since O-methyl oxonium salts, well-known as Meerwein reagents, have been studied and widely used as a $\mathrm{CH}_{3}{ }^{+}$source for methylation. ${ }^{6}$ However, the O-trifluoromethyl salts have not been synthesized yet.

Trifluoromethylation via the standard $\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$ mechanisms comprising the transition state of $\mathrm{CF}_{3}{ }^{+}$has been believed extremely hard to occur because it is so difficult to generate $\mathrm{CF}_{3}{ }^{+}$due to the three, most electronegative fluorine atoms bonded to the strongly electron-deficient cationic carbon. Although $\mathrm{CCl}_{3}{ }^{+}$and $\mathrm{CBr}_{3}{ }^{+}$were generated in this manner, an attempt to generate and isolate the $\mathrm{CF}_{3}{ }^{+}$species in solution failed. ${ }^{7,8}$ Calculations have predicted that $\mathrm{CF}_{3}{ }^{+}$is much less stable than $\mathrm{CCl}_{3}{ }^{+}$and $\mathrm{CBr}_{3}{ }^{+}$and that the electron-withdrawing effect of three fluorine atoms overwhelms their p-electrondonating effect to a carbocation. ${ }^{7}$ The trifluoromethylation by the $\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2 \mathrm{CF}_{3}{ }^{+}$mechanisms has never been described except for only a harsh reaction of triflic acid and fluorosulfonic acid at high temperature, giving trifluoromethyl triflate ($\mathrm{CF}_{3} \mathrm{OTf}$) in 19% yield. ${ }^{9}$ This reaction was suggested to proceed via the exceedingly reactive $\mathrm{CF}_{3}{ }^{+}$ion in the superacid media. However, this trifluoromethylation is not applicable to the

[^2]modern organic syntheses where complex and multifunctional compounds have been treated, because such strong reaction conditions hurt useful functional groups existing in the compounds. Accordingly, so far, there have been no reports of direct N -trifluoromethylation of amines, anilines, and pyridines, which may be expected to easily combine with the $\mathrm{CF}_{3}{ }^{+}$species to give $\mathrm{N}-\mathrm{CF}_{3}$ compounds if the $\mathrm{CF}_{3}{ }^{+}$species exist. Regarding direct O-trifluoromethylation, there have been some reports in addition to Olah's report ${ }^{9}$ described above. Schreeve et al. reported that $\mathrm{CF}_{3} \mathrm{~S}\left(\mathrm{OCF}_{3}\right)_{2} \mathrm{CF}_{3}$ reacted with phenol to give α, α, α-trifluoroanisole, but the nucleophlic attack of $\mathrm{CF}_{3} \mathrm{O}$ oxygen at the ipso position was proposed as a reaction mechanism. ${ }^{10}$ Feiring et al. reported that phenol was treated with CCl_{4} in anhydrous HF at $100-150{ }^{\circ} \mathrm{C}$ in an autoclave to give α, α, α-trifluoroanisoles, but the attack of ${ }^{+} \mathrm{CCl}_{n} \mathrm{~F}_{m}$ on phenol, followed by the exchange reaction of Cl to F , was proposed as a reaction mechanism. ${ }^{11}$ Kobayashi et al. reported that $\mathrm{CF}_{3} \mathrm{I}$ reacted with AgOTf in benzene at $200{ }^{\circ} \mathrm{C}$ to give $\mathrm{CF}_{3} \mathrm{OTf}$ in a high yield. ${ }^{12}$ Makarov et al. reported that $\mathrm{CF}_{3} \mathrm{OCH}_{3}$ was obtained by a free radical reaction resulting from the reaction of $\mathrm{CF}_{3} \mathrm{NO}$ with hydroxylamine in methanol. ${ }^{13}$ However, these reported O-trifluoromethylations have had a limited scope for application.
We have developed S-, $S e$-, and $T e$-(trifluoromethyl)dibenzo-thio-, -seleno-, and -telluro-phenium salts as power-variable electrophilic ${ }^{14}$ trifluoromethylating agents, whose reactivity varies depending on the electronegativity of the chalcogen atoms and ring substituents. ${ }^{15}$ The nonheterocyclic electrophilic trifluoromethylating agents have also been developed. ${ }^{16,17}$ Recently, a different type of trifluoromethyliodo(III) compound was reported. ${ }^{18}$ The reagents react with nucleophiles according to the trifluoromethylation power to give $C-, P$-, or $S-\mathrm{CF}_{3}$ products in good yields. ${ }^{15,16,19-21}$ However, even the most powerful S - CF_{3}-dinitrodibenzothiophenium triflate cannot produce O - and $\mathrm{N}-\mathrm{CF}_{3}$ compounds except for its heating in a phenol solvent giving a $O-\mathrm{CF}_{3}$ product, α, α, α-trifluoroanisole, in 13% yield. Their kinetic studies excluded the standard $\mathrm{S}_{\mathrm{N}} 2$ mechanism for the trifluoromethylation and suggested a mechanism via a transition state that is sensitive to steric circumstances. ${ }^{22} \mathrm{~A}$

[^3]
SCHEME 1

reaction mechanism via a $S-O$ sulfurane intermediate followed by a kind of $\mathrm{S}_{\mathrm{N}} 2$ type of trifluoromethylation was recently proposed for the reaction of $S-\mathrm{CF}_{3}$-dibenzothiophenium triflate with carbanions of β-ketoesters. ${ }^{21}$ However, it is not likely that these reactions proceed via a real $\mathrm{S}_{\mathrm{N}} 2 \mathrm{CF}_{3}{ }^{+}$trifluoromethylation mechanism because this type of trifluoromethylation was demonstrated to be well activated by UV irradiation. ${ }^{20}$ Therefore the electrophilic trifluoromethylating agents reported so far may be considered as pseudo- $\mathrm{CF}_{3}{ }^{+}$reagents. These results really attracted us to the yet unknown $O-\mathrm{CF}_{3}$ onium salts because the oxygen atom has the highest electronegativity in the heteroatom salt series ($\mathrm{Te}<\mathrm{Se}<\mathrm{S}<\mathrm{O}$). In this paper, we describe the in situ synthesis and properties of the first CF_{3} oxonium salts, O-(trifluoromethyl)dibenzofuranium salts, and their successful application as a real $\mathrm{CF}_{3}{ }^{+}$species reagent to the direct O - and N -trifluoromethylations.

Results and Discussions

Synthesis of 2-(Trifluoromethoxy)biphenylyl-2'-diazonium Salts. 2-(Trifluoromethyl)biphenylyl-2'-diazonium salts 17-22 were synthesized as precursors of O-(trifluoromethyl)dibenzofuranium salts 1-4. 1-Iodo-2-(trifluoromethoxy)benzene was heated with 1-bromo-2-nitrobenzene at $190^{\circ} \mathrm{C}$ for 4 h in the presence of copper to give 2-nitro- 2^{\prime}-(trifluoromethoxy)biphenyl (5) in 57% yield. The same treatment with 2 -bromo-4-fluoro-1-nitrobenzene gave $\mathbf{6}$ in 60% yield. Treatment of $\mathbf{6}$ with $\mathrm{CH}_{3}-$ ONa produced 5-methoxy-2-nitro-2'-(trifluoromethoxy)biphenyl (7) in 93% yield. Bromination of $\mathbf{5}$ with $\mathrm{Br}_{2} / \mathrm{Fe}$ produced 5-bromo-2'-nitro-2-(trifluoromethoxy)biphenyl (8) in 89% yield. 9 was obtained in 95% yield by treatment of $\mathbf{6}$ with dimethylamine. Reduction of $\mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}$, and $\mathbf{9}$ with tin gave amino derivatives $\mathbf{1 0}, \mathbf{1 2}, \mathbf{1 3}, \mathbf{1 4}$, and 16, respectively, in high yields. 5 -tert-Butyl derivative 11 was prepared in $60-73 \%$ yield by treatment of $\mathbf{1 0}$ with isobutanol $/ \mathrm{P}_{2} \mathrm{O}_{5} . \mathbf{1 1}$ was also prepared in 87% yield by coupling 2 -(trifluoromethoxy)phenylboric acid with 2-bromo-4-tert-butylaniline in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as a catalyst. 15 was prepared in 68% yield by treatment of $\mathbf{1 4}$
with $\mathrm{CH}_{3} \mathrm{ONa} / \mathrm{CuI} /$ collidine. 10 was treated with NOSbF_{6}, NOPF_{6}, and NOBF_{4} in dichloromethane to give diazonium $\mathrm{SbF}_{6}{ }^{-}$salt $\mathbf{1 7 a}, \mathrm{PF}_{6}{ }^{-}$salt $\mathbf{1 7} \mathbf{c}$, and $\mathrm{BF}_{4}{ }^{-}$salt $\mathbf{1 7 d}$ in $70 \%, 78 \%$, and 86% yields, respectively. Similarly, salts 18a, 18c, and 18d were synthesized from 11 in $58 \%, 88 \%$, and 59% yields, respectively, and salts 19a, 20, 21, and 22 were synthesized from 12, 13, 15, and 16 in $56 \%, 89 \%, 42 \%$, and 86% yields, respectively. $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$salts $\mathbf{1 7 b}, \mathbf{1 8 b}$, and 19b were in situ prepared by adding an equimolar amount of SbF_{5} to $\mathbf{1 7 a}, \mathbf{1 8 a}$, and 19a in dichloromethane. Triflate 17 e was synthesized in 90% yield by the counteranion exchange reaction of $\mathbf{1 7 d}$ with sodium triflate. Salt 17a was also synthesized in 71% yield from 17d by the exchange reaction with NaSbF_{6}.

Photochemical Decomposition of Diazonium Salts: In Situ Synthesis of \boldsymbol{O}-(Trifluoromethyl)dibenzofuranium Salts 1a,b, $\mathbf{2 a}-\mathbf{d}, \mathbf{3 b}$, and $\mathbf{4 a}, \mathbf{b}$. We have found that photochemical decomposition of diazonium salts $\mathbf{1 7 a}, \mathbf{b}, \mathbf{1 8 a}-\mathbf{d}, \mathbf{1 9 b}, \mathbf{2 0}$, and 21 in dichloromethane with a high-pressure Hg lamp at low temperature $\left(-90\right.$ to $-100{ }^{\circ} \mathrm{C}$) produces O-(trifluoromethyl)dibenzofuranium salts $\mathbf{1 a}, \mathbf{b}$ and their tert-butyl $\mathbf{2 a} \mathbf{- d}$, fluoro $\mathbf{3 b}$, and methoxy 4a,b derivatives. The photoreaction of 19a was not carried out because 19a is insoluble in dichloromethane. The diazonium $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$salts and the tert-butyl-substituted diazonium salts are particularly suitable for the photochemical reaction because of high solubility in dichloromethane even at very low temperature. Diazonium salt 22 having $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ produced no CF_{3} oxonium salt under the same photoreaction.

As shown in Scheme 2 and Figure 1, tert-butyl diazonium salts $\mathbf{1 8} \mathbf{a}-\mathbf{d}$ were irradiated to give the CF_{3} oxonium salts $\mathbf{2 a} \mathbf{- d}$ and byproduct 23, yields of which greatly varied depending on the counteranions. As other byproducts, tetrafluoromethane and a small amount (3\%) of 5-tert-butyl-2-chloro-2'-(trifluoromethoxy)biphenyl (24) were observed. The former $\left(\mathrm{CF}_{4}\right)$ was identified by an authentic sample and the latter was tentatively assigned by GC-Mass and ${ }^{19}$ F NMR analysis. The chlorine atom of the latter $\mathbf{2 4}$ probably came from the solvent. The yields of $\mathbf{2 a}-\mathbf{d}$ increased and the byproduct $\mathbf{2 3}$ decreased with the

SCHEME 2

SCHEME 3

25
increase of non-nucleophilicity of the counteranions in the order of $\mathrm{BF}_{4}{ }^{-}<\mathrm{PF}_{6}{ }^{-}<\mathrm{SbF}_{6}{ }^{-}<\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$. The least nucleophilic $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$salt $\mathbf{2 b}$ in this series gave the highest yield (93\%) of the CF_{3} oxonium salt $\mathbf{2 b}$ and the lowest yield (1.4\%) of byproduct 23. $\mathrm{SbF}_{6}{ }^{-}$salt $\mathbf{2 a}$ was obtained in 87% yield together with 9% of 23.

The highest yield of $\mathbf{2 b}$ with the least nucleophilic $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$ anion is clearly explained as shown in Scheme 3. There may be two competitive reactions, routes a and b, of the intermediate biphenyl cation 25 with the oxygen atom of the $\mathrm{CF}_{3} \mathrm{O}$ group and with the fluorine atoms of the counteranions. Route a becomes more predominant with the decrease of nucleophilicity of the counteranion $\mathrm{AF}_{n}{ }^{-}$.

No formation of the CF_{3} oxonium salt from diazonium salt 22 having $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ can be explained by great deactivation of the intermediate biphenyl cation 26 by the strongly electrondonating group causing 27 , which may make it impossible to cyclize to the CF_{3} oxonium salt.

FIGURE 1. ${ }^{19} \mathrm{~F}$ NMR after photoreaction of 5-tert-butyl-2'-(trifluoromethoxy)biphenylyl-2-diazonium salts $\mathbf{1 8 a} \mathbf{- d}$.

$500 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$

FIGURE 2. COSY spectrum of CF_{3} oxonium salt 2a at $-70^{\circ} \mathrm{C}$.

NMR spectra of 2a with the increase of the temperature from -80 to $-30{ }^{\circ} \mathrm{C}$. The CF_{3} signal gradually decreased at more than $-70^{\circ} \mathrm{C}$ and completely disappeared at $-30^{\circ} \mathrm{C}$, while the signal of CF_{4} increased, but small byproducts 23 and 24 were not changed. The ${ }^{1} \mathrm{H}$ NMR changed in accord with the change in the ${ }^{19} \mathrm{~F}$ NMR. Other CF_{3} oxonium salts showed similar behavior. This indicates that the CF_{3} oxonium salts are thermally unstable and decompose to give CF_{4} and dibenzofuran 28 (Scheme 5).

By means of the ${ }^{19} \mathrm{~F}$ NMR technique, the half-life times of CF_{3} oxonium salts $\mathbf{1 b}, \mathbf{2 a}-\mathbf{d}$, and $\mathbf{3 b}$ were measured. Salts $\mathbf{4 a}, \mathbf{b}$ were excluded because they have a $\mathrm{CH}_{3} \mathrm{O}$ group whose oxygen atom may make a complex with SbF_{5} added or may react with the $\mathrm{CF}_{3}{ }^{+}$of its own molecule or another molecule. Figure 4 (left) shows the half-life times of the tert-butyl CF_{3} oxonium salts having different counteranions. The half-life times are 29 min for $\mathrm{BF}_{4}{ }^{-}$salt $\mathbf{2 d}$, 36 min for $\mathrm{PF}_{6}{ }^{-}$salt $\mathbf{2 c}$, 270 min for $\mathrm{SbF}_{6}{ }^{-}$salt 2a, and 415 min for $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$salt $\mathbf{2 b}$ at $-60^{\circ} \mathrm{C}$. This increasing order is in accordance with the increasing order of non-nucleophilicity of the counteranions $\left(\mathrm{BF}_{4}{ }^{-}<\mathrm{PF}_{6}{ }^{-}<\mathrm{SbF}_{6}{ }^{-}\right.$ $<\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$). Figure 4 (right) shows the half-life times of the CF_{3} oxonium $\mathrm{Sb}_{2} \mathrm{~F}_{11}^{-}$salts having different substituents at the 2-position. The half-life times are 13 min for F salt $\mathbf{3 b}, 63 \mathrm{~min}$ for H salt $\mathbf{1 b}$, and 415 min for tert-butyl salt $\mathbf{2 b}$ at $-60^{\circ} \mathrm{C}$. These are 4 min for $\mathbf{3 b}, 24 \mathrm{~min}$ for $\mathbf{1 b}$, and 46 min for $\mathbf{2 b}$ at $-50{ }^{\circ} \mathrm{C}$. This increasing order is in accordance with the increasing order of the electron-donating effect of the substituents ($\mathrm{F}<\mathrm{H}<$ tert-butyl). These results definitely demonstrate

SCHEME 5

SCHEME 6

that less nucleophilicity of the counteranion and more electrondonating effect of the substituent make the CF_{3} oxonium salts stabilized. The stabilizing effect by the substituents reflects the ${ }^{19} \mathrm{~F}$ chemical shifts of CF_{3} groups as discussed above.

Thermal Decomposition of 2-(Trifluoromethoxy)biphe-nylyl-2'-diazonium Salts. Triflate 17e was heated in dichloromethane $-d_{2}$ at $42{ }^{\circ} \mathrm{C}$ for 3 h . The decomposition products were $\mathrm{CF}_{3} \mathrm{OTf}$ (29), dibenzofuran (30), and 2-(trifluoromethanesulfo-nyloxy)-2'-(trifluoromethoxy)biphenyl (31) (Scheme 6). Their yields were $65 \%, 75 \%$, and 14%, respectively. The formation of products 29 and 30 can be explained by the immediate decomposition of thermally unstable O-(trifluoromethyl)dibenzofuranium triflate (33), which was formed through biphenyl cation 32 (Scheme 7).
Product 31 may be formed by the reaction of the reactive biphenyl cation 32 with the counteranion -OTf. As expected from the thermal instability of the CF_{3} oxonium salts, NMR trace experiment of the thermal decomposition at $42{ }^{\circ} \mathrm{C}$ did not show any intermediates other than the starting diazonium triflate and the decomposition products.

The thermal decomposition of the diazonium salts $\mathbf{1 7 a}, \mathbf{c}-\mathbf{e}$ in phenol was carried out (Scheme 8). The yields of $\mathbf{3 0}$ remained almost unchanged $(74-78 \%)$. This means that the cyclization to the thermally unstable CF_{3} oxonium salts in the thermal reactions occurred in almost the same yields regardless of the counteranions. However, a great difference was observed in the yields of $\mathbf{3 4}$ among the counteranions. Salt 17a having the least nucleophilic $\mathrm{SbF}_{6}{ }^{-}$in the series gave the highest yield (73\%) of $\mathbf{3 4}$, indicating that the intermediate CF_{3} oxonium $\mathrm{SbF}_{6}{ }^{-}$salt reacted almost exclusively with phenol, not with its own counteranion $\mathrm{SbF}_{6}{ }^{-}$. The possibility that $\mathrm{CF}_{3} \mathrm{OTf}$ (29) resulting from the decomposition of $\mathbf{3 3}$ reacted with phenol to give $\mathbf{3 4}$ in the case of triflate 17 e was excluded because 29 has been known not to act as a source of $\mathrm{CF}_{3}{ }^{+} .23$

Synthetic Application of Photochemically Prepared 2-tert-Butyl- O-(trifluoromethyl)dibenzofuranium Hexafluoroantimonate (2a) as a Real $\mathrm{CF}_{3}{ }^{+}$Species Reagent. As mentioned above, 2a can be synthesized in high yields and is more stable due to the electron-donating tert-butyl subsitituent and less nucleophilic SbF_{6}^{-}anion. In addition, 2a and its starting diazonium salt 18a are soluble in dichloromethane even at very low temperature. Therefore, $\mathbf{2 a}$ was chosen and its reactivity was examined. Reagent 2a was in situ prepared by the photoreaction of $\mathbf{1 8 a}$ at -90 to $-100^{\circ} \mathrm{C}$ and allowed to react with alcohols, phenols, amines, anilines, and pyridines at -90 to $-10{ }^{\circ} \mathrm{C}$ for 3 h . The results are shown in Table 1. Alcohols
(23) Kobayashi, Y.; Yoshida, T.; Kumadaki, I. Tetrahedron Lett. 1979, 3865-3866.

FIGURE 3. Thermal change of ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR of 2a at -80 to $-30{ }^{\circ} \mathrm{C}$.

FIGURE 4. Half-life times with different anions (left) and different substituents (right).
and phenols were smoothly trifluoromethylated with $\mathbf{2 a}$ at low temperature in the presence of 2-choloropyridine or di(isopropyl)ethylamine as an acid $\left(\mathrm{HSbF}_{6}\right)$ trap to give $O-\mathrm{CF}_{3}$ products in high yields. Primary and secondary amines and anilines gave $N-\mathrm{CF}_{3}$ products in high or good yields. For some cases, two equivalent amounts of amines and anilines were used, where an equivalent amount of them was consumed as an acid trap. As an acid trap, bulky di(isopropyl)ethylamine was better than 2-chloropyridine, because some of the 2-chloropyridine could be trifluoromethylated. Tertiary amines and pyridines gave
trifluoromethyl quaternary ammonium and pyridinium salts in fair to good yields. Pyridines with electron-withdrawing and -donating substituents gave similar yields of the N-trifluoromethylpyridinium salts.

It is worthy to note that the reactive $\mathbf{2 a}$ did not react with aromatics such as toluene and naphthalene. Reagent 2a was in situ prepared photochemically and was treated with 2 equiv of toluene and naphthalene in dichloromethane at low temperature to room temperature. But we did not detect any (trifluoromethyl)toluene and -naphthalene. Although we did not search for

TABLE 1. O - and N-Trifluoromethylations with 2-tert-Butyl- O-(trifluoromethyl)dibenzofuranium Hexafluoroantimonate (2a)

run	substrate ${ }^{\text {a }}$	base b	product	yield (\%) ${ }^{c}$	${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$
1	2-phenylethanol	α-chloropyridine	$\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{OCF}_{3}$	80	-59.8 (s)
2	$n-\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{OH}$	$(i-\mathrm{Pr})_{2} \mathrm{NEt}$	$n-\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{OCF}_{3}{ }^{d}$	82	-59.6 (s)
3	phenol	$(i-\mathrm{Pr})_{2} \mathrm{NEt}$	PhOCF_{3}	75	-57.5 (s)
4	p-cresol	$(i-\mathrm{Pr})_{2} \mathrm{NEt}$	p-TolylOCF ${ }_{3}$	78	-57.6 (s)
5	p-methoxyphenol	$(i-\mathrm{Pr})_{2} \mathrm{NEt}$	$p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OCF}_{3}$	83	-58.0 (s)
6	p-bromophenol	$(i-\mathrm{Pr})_{2} \mathrm{NEt}$	$p-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{OCF}_{3}$	74	-57.3 (s)
7	p-acetylphenol	$(i-\mathrm{Pr})_{2} \mathrm{NEt}$	$p-\mathrm{CH}_{3} \mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{OCF}_{3}$	83	-57.3 (s)
8	p-cyanophenol	$(i-\mathrm{Pr})_{2} \mathrm{NEt}$	$p-\mathrm{NCC}_{6} \mathrm{H}_{4} \mathrm{OCF}_{3}$	85	-57.4 (s)
9	p-nitrophenol	$(i-\operatorname{Pr})_{2} \mathrm{NEt}$	$p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OCF}_{3}$	81	-57.4 (s)
10	aniline	aniline	$\mathrm{PhNHCF}_{3}{ }^{e}$	93	$-55.1(\mathrm{~d}, J=5.6 \mathrm{~Hz})$
11	N-methylaniline	N -methylaniline	$\mathrm{PhN}\left(\mathrm{CH}_{3}\right) \mathrm{CF}_{3}{ }^{f}$	71	-59.6 (s)
12	N, N-dimethylaniline		$\mathrm{PhN}^{+}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CF}_{3} \mathrm{SbF}_{6}^{-}{ }^{-g}$	49	-73.5 (s)
13	benzylamine	benzylamine	$\mathrm{PhCH}_{2} \mathrm{NHCF}_{3}{ }^{h}$	74	$-57.2(\mathrm{~d}, J=7.4 \mathrm{~Hz})$
14	tert-butylamine	tert-butylamine	t - $\mathrm{BuNHCF}_{3}{ }^{i}$	38	-49.1 (d, $J=7.7 \mathrm{~Hz})$
15	diethylamine	diethylamine	$\mathrm{Et}_{2} \mathrm{NCF}_{3}{ }^{j}$	49	-59.4 (s)
16	indoline	$(i-\mathrm{Pr})_{2} \mathrm{NEt}$	$N-\mathrm{CF}_{3}$-indoline ${ }^{k}$	68	-60.6 (s)
17	dibenzylamine	$(i-\mathrm{Pr})_{2} \mathrm{NEt}$	$\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{NCF}_{3}{ }^{l}$	46	-59.1 (s)
18	pyridine		$N-\mathrm{CF}_{3}$-pyridinium SbF_{6}	70	-60.2 (s)
19	3-chloropyridine		N - CF_{3}-3-Cl-pyridinium SbF_{6}	64	-59.7 (s)
20	4-cyanopyridine		N - CF_{3}-4-CN-pyridinium SbF_{6}	66	-59.9 (s)
21	methyl isonicotinate		$N-\mathrm{CF}_{3}-4-\mathrm{CH}_{3} \mathrm{OCO}$-pyridinium SbF_{6}	82	-59.8 (s)
22	4-methylpyridine		N - CF_{3}-4- CH_{3}-pyridinium SbF_{6}	64	-60.5 (s)

${ }^{a}$ An equimolar amount of a substrate to 18a was used. ${ }^{b}$ An equimolar amount of a base to $\mathbf{1 8 a}$ was used except for runs 12 and $18-22$ where a base was not used. ${ }^{c}$ Yields were determined by ${ }^{19} \mathrm{~F}$ NMR with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CF}_{3}$ as a standard and calculated based on 2a, which was in situ prepared in $87-89 \%$ yield. ${ }^{d}$ Kuroboshi, M.; Suzuki, K.; Hiyama, T. Tetrahedron Lett., 1992, 33, 4173-4176. ${ }^{e}$ Ruppert, I. Tetrahedron Lett., 1980, 21, 4893-4896. ${ }^{f}$ High MS; M ${ }^{+}$ 175.06116 (calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}$ 175.06088). ${ }^{g}$ High MS; $\mathrm{M}^{+} 190.08480$ (calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}$ 190.08436). ${ }^{h}$ High $\mathrm{MS} ; \mathrm{M}^{+} 175.06045$ (calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}$ 175.06088). ${ }^{i}$ See footnote e. ${ }^{j}$ Pawelke, G. J. Fluorine Chem. 1991, 52, 229-234. ${ }^{k}$ Hiyama, T.; Kuroboshi, M.; Wakakuri, S. Jpn Kokai Tokkyo Koho JP05 78,286. ${ }^{l}$ Kuroboshi, M.; Hiyama, T. Tetrahedron Lett. 1992, 33, 4177-4178.

SCHEME 7

SCHEME 8

the formation of CF_{4} at that time, it may be thought that $\mathbf{2 a}$ as a hard acid reacted with a hard base, the fluoride anion of $\mathrm{SbF}_{6}{ }^{-}$, to give CF_{4}, which is an extremely stable compound, but $\mathbf{2 a}$ could not react with such a soft base as toluene and naphthalene.

Synthetic Application of Thermally Prepared \boldsymbol{O}-(Trifluoromethyl)dibenzofuranium Hexafluoroantimonate (1a) as a Real $\mathrm{CF}_{3}{ }^{+}$Species Reagent. A synthetic application of thermally prepared 1a was also carried out as shown in Table 2. An equimolar mixture of its precursor 17a, 2-phenylethanol, and 2-chloropyridine in dichloromethane was heated under reflux for 3 h to give trifluoromethyl 2-phenylethyl ether in a low yield (run 1). When 2 equiv of 2 -phenylethanol were used, the product was obtained in 52% yield. An equimolar mixture of $\mathbf{1 7 a}$, p-toluenesulfonic acid, and pyridine in dichloromethane
was heated under reflux for 4 h to give trifluoromethyl p-toluenesulfonate in a high yield (run 3). Similarly, trifluoromethyl p-octylbenzenesulfonate, trifluoromethyl 2-naphthalenesulfonate, and trifluoromethyl 3-bromocamphor-8-sulfonate were obtained in $52 \%, 61 \%$, and 56% yields, respectively. An equimolar mixture of 17a and pyridine, 3-chloro-, 4-cyano-, or 4 -(methoxycarbonyl)pyridine gave the corresponding $N-\mathrm{CF}_{3}-$ pyridinium salts in $50 \%, 53 \%, 46 \%$, and 33% yields, respectively, but 4-methylpyridine gave only 4% of $N-\mathrm{CF}_{3}-4$ methylpyridinium salt (run 11). The low yield of the latter case is probably due to more nucleophilicity of 4-methylpyridine, which may interfere with cyclization of the intermediate biphenyl cation to the CF_{3}-oxonim salt 1a, because analogous $\mathbf{2 a}$, which was in situ prepared photochemically at low temperature, reacted with 4-methylpyridine to give the $N-\mathrm{CF}_{3}-4$ methylpyridinium salt in 64% yield (Table 1, run 22).

Trifluoromethylation Mechanism. The decomposition reaction of the CF_{3} oxonium salts giving CF_{4} can be considered as a trifluoromethylation reaction of a CF_{3} oxonium cation with its counteranion that is a nucleophile. Since the life time of the CF_{3} oxonium salt depends on the nucleophilicity of the counteranion, it is evident that the trifluoromethylation reaction is rate-determined by the nucleophilicity of nucleophile. From a reaction mechanism standpoint, this trifluoromethylation is a bimolecular nucleophilic substitution, that is, the $\mathrm{S}_{\mathrm{N}} 2$ mechanism. The N - and O-trifluoromethylations occur with alcohols, amines, etc. that are nucleophiles.

As shown in Scheme 9, routes i and ii may be considered for the $\mathrm{CF}_{3}{ }^{+}$trifluoromethylation. Route i is a mechanism via five-coordinated carbon transition state 36 where a cationic charge is neutralized as much as possible by a nucleophile, and has often been thought as being a standard $\mathrm{S}_{\mathrm{N}} 2$ methylation mechanism in hydrocarbon chemistry. Route ii is a mechanism of the formation of a definite and transient $\mathrm{CF}_{3}{ }^{+}$ion in equilibrium with $\mathbf{3 5}$, as shown in $\mathbf{3 7}$, which then abstracts a

TABLE 2. O - and N-Trifluoromethylations by Means of Thermal Decomposition of 2-(Trifluoromethoxy)biphenylyl-2'-diazonium Hexafluoroantimonate (17a)

run	substrate ${ }^{a}$	base b	products	yield (\%) ${ }^{c}$
1	2-phenylethanol	2-chloropyridine	$\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{OCF}_{3}$	36
2	(2-naphthyl)methanol	2-chloropyridine	(2-naphthyl)- $\mathrm{CH}_{2} \mathrm{OCF}_{3}$	11^{e}
3	p-toluenesulfonic acid ${ }^{d}$	pyridine	p-tolyl- $\mathrm{SO}_{2} \mathrm{OCF}_{3}$	79
4	sodium p-(n-octyl)benzenesulfonate		p-(n-octyl)benzene- $\mathrm{SO}_{2} \mathrm{OCF}_{3}$	52
5	2-naphthalenesulfonic acid	pyridine	(2-naphthyl)- $\mathrm{SO}_{2} \mathrm{OCF}_{3}$	61
6	ammonium 3-bromocamphor-8-sulfonate ${ }^{f}$		3-bromocamphor-8- $\mathrm{SO}_{2} \mathrm{OCF}_{3}$	56
7	pyridine		N-CF3-pyridinium SbF_{6}	50
8	3-chloropyridine		$N-\mathrm{CF}_{3}$-3-Cl-pyridinium SbF_{6}	53
9	4-cyanopyridine		$N-\mathrm{CF}_{3}-4$-CN-pyridinium SbF_{6}	46
10	methyl isonicotinate		$N-\mathrm{CF}_{3}-4-\mathrm{CH}_{3} \mathrm{OCO}$-pyridinium SbF_{6}	33
11	4-methylpyridine		N - CF_{3}-4- CH_{3}-pyridinium SbF_{6}	4

${ }^{a}$ An equimolar amount of a substrate to $\mathbf{1 7 a}$ was used. ${ }^{b}$ An equimolar amount of a base to $\mathbf{1 7}$ a was used except for runs 4 and $6-11$ where a base was not used. ${ }^{c}$ Yields were determined by ${ }^{19} \mathrm{~F}$ NMR with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CF}_{3}$ as a standard. ${ }^{d}$ Monohydrate was used. ${ }^{e}$ When 5 and 10 equiv of (2-naphthyl)methanol to 17a were used, 40% and 48% yields were obtained, respectively. ${ }^{f}$ Ammonium ($1 R$)-(endo,anti)-(+)-3-bromocamphor-8-sulfonate was used as a substrate.

fluoride anion from the counteranions or couples with alcohols, amines, etc. at their O - and N-sites. The $\mathrm{CF}_{3}{ }^{+}$ion is on and off the lone-paired electrons of the oxygen atom of the dibenzofuran. Route ii may be likely to occur, because it is unthinkable that $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$attacks the CF_{3} carbon according to route i since $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$is known to be a really non-nucleophilic anion. ${ }^{24}$ Christe's calculation has evaluated the fluoride anion affinity (pF^{-}12.7) of $\mathrm{Sb}_{2} \mathrm{~F}_{10}$ to be extremely high, which is larger than $\mathrm{pF}^{-} 11.3$ of $\mathrm{SbF}_{5} .{ }^{24}$ Furthermore, $\mathrm{CF}_{3}{ }^{+}$may be strongly stabilized by the conjugation of the lone-paired p-electrons of the three fluorine atoms (Figure 5). This is quite different from the case of methylation in hydrocarbon, in which such stabilization is not expected in the $\mathrm{CH}_{3}{ }^{+}$ion because of no p-electrons on a hydrogen atom. It has been calculated that $\mathrm{CF}_{3}{ }^{+}$is more stable by about $20 \mathrm{kcal} / \mathrm{mol}$ than $\mathrm{CH}_{3}{ }^{+} .{ }^{25}$ By this great difference, it is understandable that the CF_{3} oxonium salts are thermally unstable, in other words, the $\mathrm{CF}_{3}{ }^{+}$species is easily generated, while O-methyldibenzofuranium-tetrafluoroborate and -2,4,6-trinitrobenzenesulfonate are stable solids to at least $80^{\circ} \mathrm{C}$ since they were synthesized by heating the corresponding biphenylyldiazonium salts under reflux in a benzene solvent. ${ }^{6 c}$

[^4]

FIGURE 5. Conjugation of lone-paired p-electrons of three fluorine atoms.

To our knowledge, the decomposition reaction of the CF_{3} oxonium $\mathrm{Sb}_{2} \mathrm{~F}_{11}^{-}$salts giving CF_{4} is the first example of the fact that the so-called non-nucleophilic $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$anions become a source of fluoride anions, that is, a nucleophile. ${ }^{26}$ The formation of biphenyl fluoride 23 by the photodecomposition of 18b may be another example. It has been known that $\mathrm{BF}_{4}{ }^{-}$ is a source of a fluoride anion as seen in the Schieman reaction, a decomposition reaction of aryldiazonium $\mathrm{BF}_{4}{ }^{-}$salts in which aryl cations attack $\mathrm{BF}_{4}{ }^{-}$to give aryl fluorides. ${ }^{27}$ The driving force of the reaction of $\mathrm{CF}_{3}{ }^{+}$with $\mathrm{PF}_{6}{ }^{-}, \mathrm{SbF}_{6}{ }^{-}$, and $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$ ions giving CF_{4} may be the great formation energy of a very stable CF_{4} molecule. Contrary to the exceeding reactivity of $\mathrm{CF}_{3}{ }^{+}$, it was surprising to us that the CF_{3} oxonium salt 2 a could not react with aromatics such as toluene and naphthalene as mentioned above. Thus, it may be supposed that $\mathrm{CF}_{3}{ }^{+}$has no potential to react with such aromatics since this reaction does not generate enough formation energy to take place.

Comparison of $\mathbf{C F}_{3}$ Oxonium Salts with $\mathbf{C F}_{3}$ Sulfonium and Selenium Salts. The reactivity of the CF_{3} oxonium (O CF_{3}) salts was compared with that of S - and Se -(trifluorometh-yl)dibenzothio- and -seleno-phenium triflates, which are stable solids. ${ }^{15 a, b}$ It showed a completely different reaction manner. With phenol in the presence of a base, the $O-\mathrm{CF}_{3}$ salt produced an O-trifluoromethylated product, α, α, α-trifluoroanisole, while 3,7-dinitro- S - CF_{3}-dibenzothiophenium triflate gave C-trifluoromethylated products, p - and $o-\mathrm{CF}_{3}$-phenol. S - CF_{3}-dibenzothiophenium triflate remained unreacted when heated in a phenol solvent without a base at $90^{\circ} \mathrm{C}$ for 22 h , but the more reactive 3,7-dinitro- S - CF_{3}-dibenzothiophenium triflate produced α, α, α-trifluoroanisole in 13% yield when heated at $80^{\circ} \mathrm{C}$ for 1.5 h . The $S-\mathrm{CF}_{3}$ thiophenium triflate was heated at $200{ }^{\circ} \mathrm{C}$ to give $\mathrm{CF}_{3} \mathrm{OTf}(\mathbf{2 9})$ and the 3,7-dinitro- S - CF_{3} thiophenium triflate at $140{ }^{\circ} \mathrm{C}$ produced 29. The reactivity of the 3,7-dinitro $S-\mathrm{CF}_{3}$ salt activated by two strong electron-withdrawing nitro groups

[^5]
SCHEME 10

comes closer to that of the $O-\mathrm{CF}_{3}$ salts which exclusively undertake O-trifluoromethylation. With aniline, the $O-\mathrm{CF}_{3}$ salt 2a produced $\mathrm{N}-\mathrm{CF}_{3}$ aniline, while S - and $\mathrm{Se}-\mathrm{CF}_{3}$ salts gave $C-\mathrm{CF}_{3}$ products, a mixture of o - and $p-\mathrm{CF}_{3}$ anilines. With an alkyl amine, the $O-\mathrm{CF}_{3}$ salt 2a produced the $N-\mathrm{CF}_{3}$ amine, while S - CF_{3}-dibenzothiophenium triflate decomposed to give $\mathrm{CF}_{3} \mathrm{H}$. This decomposition of the $S-\mathrm{CF}_{3}$ salt may be explained to occur via a one-electron-transfer mechanism from an easily oxidizable amine to the electron-deficient $S-\mathrm{CF}_{3}$ salt, forming a free radical $\mathrm{CF}_{3} \cdot$ species that abstracts a hydrogen atom from the amine or solvent to give $\mathrm{CF}_{3} \mathrm{H}$.

These remarkable differences should be due to the difference in the reaction mechanism. The $O-\mathrm{CF}_{3}$ salts may exclusively undertake the $\mathrm{S}_{\mathrm{N}} 2$ mechanism including the real $\mathrm{CF}_{3}{ }^{+}$as discussed above, while the S - and $\mathrm{Se}-\mathrm{CF}_{3}$ salts may undertake a different reaction mechanism varying from $\mathrm{CF}_{3}{ }^{\bullet}$ to $\mathrm{CF}_{3}{ }^{+}$ depending on the reactivity of nucleophiles, the trifluoromethylating power of the S - and $\mathrm{Se}-\mathrm{CF}_{3}$ salts, and reaction conditions. The difference between $O-\mathrm{CF}_{3}$ and S - and $\mathrm{Se}-\mathrm{CF}_{3}$ salts should be due to that of the electron-withdrawing effect of the hetero atoms bonding to the CF_{3} carbon. The oxygen atom of the $\mathrm{CF}_{3}-$ O^{+}salt would have a strong electron-withdrawing effect enough to generate the real $\mathrm{CF}_{3}{ }^{+}$, but the effect of the sulfur and selenium atoms of the $\mathrm{CF}_{3}-\mathrm{S}^{+}$and $-\mathrm{Se}^{+}$salts would be insignificant enough to generate the $\mathrm{CF}_{3}{ }^{+}$and thus the reaction mechanism varies.

Conclusions

The first CF_{3} oxonium salts, thermally unstable O-(trifluoromethyl)dibenzofuranium salts having different counteranions and ring substituents, have been in situ synthesized and characterized. The non-nucleophilicity of the counteranions is important for the synthesis, and both significant effects of the counteranions and the ring substituents on the stability and reactivity of the CF_{3} oxonium salts have been disclosed from the measurement of their half-life times. The CF_{3} oxonium salts generate $\mathrm{CF}_{3}{ }^{+}$species at low temperature, which is exceedingly reactive since it abstracts a fluoride anion from the extremely non-nucleophilic $\mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$at low temperature to give CF_{4}. 2-tert-Butyl- O-(trifluoromethyl)dibenzofuranium hexafluoroantimonate (2a) was chosen as a real $\mathrm{CF}_{3}{ }^{+}$species reagent and successfully applied to the direct O - and N -trifluoromethylations of a variety of organic compounds, which were difficult to do by conventional methods. Thus, these results have eliminated the common sense that the $\mathrm{CF}_{3}{ }^{+}$species is extremely difficult to generate in a solution.

Experimental Section

2-Nitro-2'-(trifluoromethoxy)biphenyl (5). A mixture of 36.0 $\mathrm{g}(125 \mathrm{mmol})$ of 2-(trifluoromethoxy)iodobenzene, 20.2 g (100 mmol) of 2-bromonitrobenzene, and 20 g (0.314 g -atom) of Cu powder (copper bronze from Aldrich) was heated with stirring on
an oil bath at $190{ }^{\circ} \mathrm{C}$ for 3 h . After cooling, the reaction mixture was combined with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through celite to remove Cu powder. The filtrate was concentrated and column chromatographed on silica gel with ethyl acetate (EtOAc)-hexane (1/5) as an eluent to give $17.8 \mathrm{~g}(63 \%)$ of $\mathbf{5}: \mathrm{mp} 47-48{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.33(1 \mathrm{H}$, $\mathrm{dt}, J=8,1 \mathrm{~Hz}), 7.36-7.40(2 \mathrm{H}, \mathrm{m}), 7.40(1 \mathrm{H}, \mathrm{dm}, J=8 \mathrm{~Hz})$, $7.45(1 \mathrm{H}, \mathrm{ddd}, J=8,7,2 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{td}, J=8,1 \mathrm{~Hz}), 7.68$ $(1 \mathrm{H}, \mathrm{td}, J=8,1 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{dd}, J=8,1 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR δ $-58.0(3 \mathrm{~F}, \mathrm{~s})$; IR (KBr) $1530\left(\mathrm{NO}_{2}\right) 1359\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1}$; MS m / z $283\left(\mathrm{M}^{+}\right), 198\left(\mathrm{M}^{+}-\mathrm{OCF}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FNO}_{3}$: C, 55.13; H, 2.85; N, 4.95. Found: C, 55.17; H, 2.79; N, 4.81 .

5-Fluoro-2-nitro-2'-(trifluoromethoxy)biphenyl (6). Similarly to $\mathbf{5}, 90 \mathrm{~g}(0.31 \mathrm{~mol})$ of 2-(trifluoromethoxy)iodobenzene, 55 g $(0.25 \mathrm{~mol})$ of 2-bromo-4-fluoronitrobenzene, and $80 \mathrm{~g}(1.26 \mathrm{~g}$-atom) of Cu powder were reacted and posttreated to give $43.9 \mathrm{~g}(61 \%)$ of 6: mp 67.1-67.6 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.10(1 \mathrm{H}, \mathrm{dd}, J=8,3 \mathrm{~Hz})$, $7.24(1 \mathrm{H}, \mathrm{ddd}, J=9,7,3 \mathrm{~Hz}), 7.32-7.37(2 \mathrm{H}, \mathrm{m}), 7.41(1 \mathrm{H}, \mathrm{td}$, $J=8,1 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{td}, J=8,2 \mathrm{~Hz}), 8.14(1 \mathrm{H}, \mathrm{dd}, J=9,5$ $\mathrm{Hz}) ;{ }^{19} \mathrm{~F}$ NMR $-58.0\left(3 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}_{3}\right), 104.1(1 \mathrm{~F}$, ddd, $J=5,7,8 \mathrm{~Hz}$, F); IR (KBr) $1531\left(\mathrm{NO}_{2}\right) 1358\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1}$; MS m/z $216\left(\mathrm{M}^{+}-\right.$ OCF_{3}). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{FNO}_{3}: \mathrm{C}, 51.84 ; \mathrm{H}, 2.34 ; \mathrm{N}, 4.65$. Found: C, 51.83; H, 2.20; N, 4.61.

5-Methoxy-2-nitro-2'-(trifluoromethoxy)biphenyl (7). Under an Ar atmosphere, a solution of $4.51 \mathrm{~g}(15 \mathrm{mmol})$ of $\mathbf{6}$ in 30 mL of MeOH was added into a solution of $2.85 \mathrm{~g}(53 \mathrm{mmol})$ of NaOMe in 60 mL of methanol. The mixture was heated under reflux for 6 h. After cooling, the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was separated, washed with saturated brine, dried with MgSO_{4}, and filtered. The filtrate was evaporated under reduced pressure to give crude 7 , which was column chromatographed on silica gel with EtOAc-hexane (1: 10) as an eluent to give $4.37 \mathrm{~g}(93 \%)$ of pure 7: $\mathrm{mp} 70-71^{\circ} \mathrm{C}$ (EtOAc-hexane): ${ }^{1} \mathrm{H}$ NMR $\delta 3.91(3 \mathrm{H}, \mathrm{s}), 6.82(1 \mathrm{H}, \mathrm{d}, J=3$ $\mathrm{Hz}), 7.00(1 \mathrm{H}, \mathrm{dd}, J=3,9 \mathrm{~Hz}), 7.28-7.52(4 \mathrm{H}, \mathrm{m}), 8.16(1 \mathrm{H}, \mathrm{d}$, $J=9 \mathrm{~Hz}$); ${ }^{19} \mathrm{~F}$ NMR $\delta-57.9(\mathrm{~s}) ; \mathrm{IR}(\mathrm{KBr}) 1575,1514,1346$, $1308 \mathrm{~cm}^{-1}$; MS m/z $313\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{4}$: C, 53.68 ; H, 3.22; N, 4.47. Found: C, 53.68 H, 3.08 ; N, 4.43.

5-Bromo-2'-nitro-2-(trifluoromethoxy)biphenyl (8). Under an Ar atmosphere, $15.0 \mathrm{~g}(53 \mathrm{mmol})$ of $\mathbf{5}$ and 0.5 g of Fe powder were put into a flask with a condenser cooled with dry ice-acetone and the reaction mixture was heated to $140^{\circ} \mathrm{C}$. Into the mixture, $12.7 \mathrm{~g}(80 \mathrm{mmol})$ of Br_{2} was added in one portion. The reaction mixture was heated at $140^{\circ} \mathrm{C}$ for 20 min , cooled, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with 6 N aq HCl solution, water, 10% aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, and saturated brine, dried with MgSO_{4}, and filtered. The filtrate was evaporated to dryness to give 17.1 g (89%) of crude 8 , which was purified by column chromatography on silica gel with EtOAc-hexane (1:10) as an eluent. 8: mp 63$64{ }^{\circ} \mathrm{C}$ (EtOAc-hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 7.20(1 \mathrm{H}, \mathrm{dd}, J=9,1 \mathrm{~Hz})$, $7.39(1 \mathrm{H}, \mathrm{dd}, J=8,1 \mathrm{~Hz}), 7.48-7.65(3 \mathrm{H}, \mathrm{m}), 7.71(1 \mathrm{H}, \mathrm{td}, J=$ $8,1 \mathrm{~Hz}), 8.12(1 \mathrm{H}, \mathrm{dd}, J=8,1 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-58.4(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz})$; IR (KBr) $1524\left(\mathrm{NO}_{2}\right), 1354\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1}$; MS m/z 363, $361\left(\mathrm{M}^{+}\right)$, 278, $276\left(\mathrm{M}^{+}-\mathrm{OCF}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{BrF}_{3}{ }^{-}$ $\mathrm{NO}_{3}: \mathrm{C}, 43.12$; H 1.95; N, 3.87. Found: C, $43.23 ; \mathrm{H}, 1.83$; N, 3.81.

5-Dimethylamino-2-nitro-2'-(trifluoromethoxy)biphenyl (9). Into a solution of $0.60 \mathrm{~g}(2 \mathrm{mmol})$ of $\mathbf{6}$ in 4 mL of EtOH was added $0.63 \mathrm{~mL}(6 \mathrm{mmol})$ of $50 \% \mathrm{aq} \mathrm{Et}_{2} \mathrm{NH}$ solution. The mixture was stirred for 24 h at room temperature, poured into $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$ and saturated brine, and dried with MgSO_{4}, and filtered. The filtrate was evaporated to dryness to give a residue, which was column chromatographed on silica gel with EtOAc -hexane (1:5) as an eluent to give $0.62 \mathrm{~g}(95 \%)$ of $9: \mathrm{mp} 136-138{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR δ $3.09(6 \mathrm{H}, \mathrm{s}), 6.41(1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{dd}, J=3,9 \mathrm{~Hz})$, $7.25-7.48(4 \mathrm{H}, \mathrm{m}), 8.16(1 \mathrm{H}, \mathrm{d} J=9 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-57.6(\mathrm{~d}$, $J=1 \mathrm{~Hz}) ; \operatorname{IR}(\mathrm{KBr}) 1599\left(\mathrm{NO}_{2}\right), 1490\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{z}$
$326\left(\mathrm{M}^{+}\right)$, 325, $241\left(\mathrm{M}^{+}-\mathrm{OCF}_{3}\right)$, 240. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $55.22 ; \mathrm{H}, 4.02$; N, 8.59. Found: C, $55.12 ; \mathrm{H}$, 3.95; N, 8.53.

Reduction of 2-Nitro-2'-(trifluoromethoxy)biphenyl (5): A Typical Procedure. Into a solution of $7.1 \mathrm{~g}(25 \mathrm{mmol})$ of $\mathbf{5}$ in 125 mL of EtOH was added 50 mL of concd HCl solution and 6.3 g of tin powder. The solution was heated under reflux for 2 h . After cooling, the reaction mixture was poured into ice water. After being neutralized with 10% aq NaOH solution, it was extracted with $\mathrm{Et}_{2} \mathrm{O}$ several times and the combined ethereal solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and then with saturated brine and dried on MgSO_{4}. After filtration, the filtrate was evaporated to dryness to give 5.94 g (94%) of $\mathbf{1 0}$. Compounds $\mathbf{1 2}, \mathbf{1 3}, 14$, and 16 were prepared in a similar manner as 10.

2-Amino-2'-(trifluoromethoxy)biphenyl (10): oil; ${ }^{1} \mathrm{H}$ NMR δ $3.2-3.8(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.73-6.87(2 \mathrm{H}, \mathrm{m}), 7.06(1 \mathrm{H}, \mathrm{dd}, J=8,1$ $\mathrm{Hz}), 7.19(1 \mathrm{H}, \mathrm{dd}, J=8,1 \mathrm{~Hz}), 7.32-7.47(4 \mathrm{H}, \mathrm{m})$; IR (neat) $3473\left(\mathrm{NH}_{2}\right), 3385\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1}$; MS m/e $253\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}: \mathrm{C}, 61.66 ; \mathrm{H}, 3.98$; N, 5.53. Found: C, 61.79; H, 3.98; N, 5.34.

2-Amino-5-fluoro-2'-(trifluoromethoxy)biphenyl (12): yield 94%; oil; ${ }^{1} \mathrm{H}$ NMR $\delta 6.71(1 \mathrm{H}, \mathrm{dd}, J=9,5 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{dd}, J$ $=9,3 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{td}, J=9,3 \mathrm{~Hz}), 7.34-7.46(4 \mathrm{H}, \mathrm{m}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-57.7\left(3 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}_{3}\right), 127.3(1 \mathrm{~F}, \mathrm{td}, J=9,5 \mathrm{~Hz}, \mathrm{~F})$; IR (neat) $3472\left(\mathrm{NH}_{2}\right) 3385\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1}$; MS m/e $271\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~F}_{4} \mathrm{NO}: \mathrm{C}, 57.57 ; \mathrm{H}, 3.34 ; \mathrm{N}, 5.16$. Found: C, 57.40 ; H, 3.18; N, 5.07.

2-Amino-5-methoxy-2'-(trifluoromethoxy)biphenyl (13): yield 91%; oil; ${ }^{1} \mathrm{H}$ NMR $\delta 3.18(2 \mathrm{H}, \mathrm{br}$ s), $3.75(3 \mathrm{H}, \mathrm{s}), 6.67(1 \mathrm{H}, \mathrm{d}, J$ $=3 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{dd}, J=9,1 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{dd}, J=9,3 \mathrm{~Hz})$, $7.30-7.50(4 \mathrm{H}, \mathrm{m}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-57.6$ (s); IR (neat) $3448\left(\mathrm{NH}_{2}\right)$, $3372\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1}$; MS m/z $283\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3^{-}}$ NO_{2} : C 59.37; H; 4.27; N, 4.95. Found: C, 59.12; H, 4.15; N, 4.94.

2-Amino-5'-bromo-2'-(trifluoromethoxy)biphenyl (14): yield 80%; oil; ${ }^{1} \mathrm{H}$ NMR $\delta 6.76(1 \mathrm{H}, \mathrm{dd}, J=8,1 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{td}, J$ $=8,1 \mathrm{~Hz}), 7.03(1 \mathrm{H}, \mathrm{dd}, J=8,2 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{td}, J=8,2 \mathrm{~Hz})$, $7.25(1 \mathrm{H}, \mathrm{dq}, J=9,1 \mathrm{~Hz}), 7.52(1 \mathrm{H}, \mathrm{dd}, J=9,3 \mathrm{~Hz}), 7.57(1 \mathrm{H}$, d, $J=3 \mathrm{~Hz}$); ${ }^{19} \mathrm{~F}$ NMR $\delta-57.9(\mathrm{~d}, J=1 \mathrm{~Hz}$); IR (neat) 3474 $\left(\mathrm{NH}_{2}\right), 3385\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1}$; MS m/z 333, $331\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrF}_{3} \mathrm{NO}: \mathrm{C}, 47.01 ; \mathrm{H}, 2.73$; N, 4.22. Found: C, 46.91; H, 2.60; N, 4.29.

2-Amino-5-dimethylamino-2'-(trifluoromethoxy)biphenyl (16): yield 85%; mp $48-49{ }^{\circ} \mathrm{C}$ (EtOAc-hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 2.84(6 \mathrm{H}$, br s), $3.22(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.57(1 \mathrm{H}, \mathrm{br}$ s), $6.74(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.32-7.45$ (4H, m); ${ }^{19} \mathrm{~F}$ NMR $\delta-57.5$ (s); IR (KBr) $3389\left(\mathrm{NH}_{2}\right), 3201\left(\mathrm{NH}_{2}\right)$ $\mathrm{cm}^{-1} ;$ MS m/z $296\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 60.81$; H, 5.10; N, 9.45. Found: C, 60.35; H, 5.16; N, 9.53.

2-Amino-5-tert-butyl-2'-(trifluoromethoxy)biphenyl(11).Method A: A mixture of $6.36 \mathrm{~g}(25 \mathrm{mmol})$ of $\mathbf{1 0}, 3.9 \mathrm{~g}(27.5 \mathrm{mmol})$ of $\mathrm{P}_{2} \mathrm{O}_{5}$, and $3.71 \mathrm{~g}(50 \mathrm{mmol})$ of isobutanol under N_{2} atmosphere was heated in an autoclave at $220{ }^{\circ} \mathrm{C}$ for 12 h . After cooling, 80 mL of $\mathrm{H}_{2} \mathrm{O}$ was added to the reaction and the mixture was extracted with EtOAc. The organic layer was separated and washed with aq alkaline solution and then with saturated brine and dried on MgSO_{4}. After filtration, the filtrate was concentrated and the residue was column chromatographed on silica gel with hexane and then a mixture of hexane and EtOAc (20/1 $\rightarrow 3 / 1$) as an eluent to give $4.89 \mathrm{~g}(63 \%)$ of 11: oil; ${ }^{1} \mathrm{H}$ NMR $\delta 7.45(1 \mathrm{H}, \mathrm{dd}, J=7.1,1.8$ $\mathrm{Hz}), 7.40-7.34(3 \mathrm{H}, \mathrm{m}), 7.22(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}), 7.10(1 \mathrm{H}$, d, $J=2.3 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 1.29\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right)$; ${ }^{19} \mathrm{~F}$ NMR $\delta-57.6(\mathrm{~s}) ;$ IR (KBr) 2964, 1621, 1508, 1257, 1220, $1168 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{z} 309\left(\mathrm{M}^{+}\right), 294\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 279$ $\left(\mathrm{M}^{+}-2 \mathrm{CH}_{3}\right)$.

Method B: A mixture of 7.0 g (31 mmol) of 2-bromo-4-tertbutylaniline, $12.7 \mathrm{~g}(61 \mathrm{mmol})$ of 2-(trifluoromethoxy)phenylboric acid, $5.16 \mathrm{~g}(61 \mathrm{mmol})$ of $\mathrm{NaHCO}_{3}, 3.55 \mathrm{~g}(3 \mathrm{mmol})$ of tetra(triphenylphosphine)palladium, and 330 mL of dimethoxyethane/ $\mathrm{H}_{2} \mathrm{O}(10 / 1 \mathrm{v} / \mathrm{v})$ was purged with argon and heated under reflux for

64 h . After cooling, the reaction mixture was poured into aq NaHCO_{3} solution. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the ether layer was separated and dried with MgSO_{4}. After filtration, the filtrate was concentrated and the residue was column chromatographed on silica gel with hexane-EtOAc $(20 / 1 \rightarrow 7 / 1)$ to give $8.3 \mathrm{~g}(87 \%)$ of $\mathbf{1 1}$.

2-Amino-5'-methoxy-2'-(trifluoromethoxy)biphenyl (15). Into 30 mL of dry MeOH were added $2.1 \mathrm{~g}(90 \mathrm{mmol})$ of Na and then 30 mL of collidine and $5.8 \mathrm{~g}(30 \mathrm{mmol})$ of dry CuI . A solution of $10.0 \mathrm{~g}(30 \mathrm{mmol})$ of $\mathbf{1 4} \mathrm{in} 50 \mathrm{~mL}$ of collidine was added into the mixture under stirring. The reaction mixture was heated under reflux on an oil bath at $140^{\circ} \mathrm{C}$ for 21 h . After the solution was cooled, EtOAc was added to the reaction mixture and the mixture was filtered through celite. The filtrate was evaporated and the residue was column chromatographed on silica gel with EtOAc-hexane (1:5) to give $5.8 \mathrm{~g}(68 \%)$ of $\mathbf{1 5}: \mathrm{mp} 83-89^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 3.60$ $(2 \mathrm{H}, \mathrm{br}$ s), $3.82(3 \mathrm{H}, \mathrm{s}), 6.77(1 \mathrm{H}, \mathrm{dd}, J=8,1 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{td}$, $J=8,1 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{dd}, J=8,3 \mathrm{~Hz})$, $7.07(1 \mathrm{H}, \mathrm{dd}, J=8,1 \mathrm{~Hz}), 7.19(1 \mathrm{H}, \mathrm{td}, J=8,1 \mathrm{~Hz}), 7.28(1 \mathrm{H}$, $\mathrm{dm}, J=8 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-58.3$ (s); IR (KBr) $3432\left(\mathrm{NH}_{2}\right), 3381$ $\left(\mathrm{NH}_{2}\right) \mathrm{cm}^{-1}$; MS m/z $283\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{2}$: C, 59.37; H, 4.27; N, 4.95. Found: C, 59.59; H, 4.06; N, 4.81.

Preparation of Diazonium Salts 17a, 17c, 17d, 18a, 18c, 18d, 19a, 20, 21, and 22: A Typical Procedure. Into a stirred solution of $1.27 \mathrm{~g}(5 \mathrm{mmol})$ of $\mathbf{1 0}$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cooled at $-78{ }^{\circ} \mathrm{C}$ was added $1.46 \mathrm{~g}(5.5 \mathrm{mmol})$ of NOSbF_{6}. The mixture was gradually warmed to $0{ }^{\circ} \mathrm{C}$ for a period of $3 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}$ was added to the reaction mixture and the resulting precipitate was collected by filtration. The precipitates were recrystallized from $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{Et}_{2} \mathrm{O}$ to give $1.75 \mathrm{~g}(70 \%)$ of diazonium salt $\mathbf{1 7 a}$. Similarily, $\mathbf{1 7} \mathrm{c}$ and $\mathbf{1 7 d}$ were prepared by the reaction of $\mathbf{1 0}$ with NOPF_{6} and NOBF_{4} in 78% and 86% yields, respectively. 18a, 18c, and 18d were prepared by the reaction of $\mathbf{1 1}$ with $\mathrm{NOSbF}_{6}, \mathrm{NOPF}_{6}$, and NOBF_{4} in $58 \%, 88 \%$, and 59% yields, respectively. 19a and 20 were prepared by the reaction of $\mathbf{1 2}$ and $\mathbf{1 3}$ with NOSbF_{6} and NOBF_{4} in 56% and 89% yields, respectively. 21 and 22 were prepared by the reaction of $\mathbf{1 5}$ and $\mathbf{1 6}$ with NOSbF_{6} in 42% and 86% yields, respectively.

2-(Trifluoromethoxy)biphenylyl-2'-diazonium hexafluoroantimonate (17a): $\mathrm{mp} 80-81.5{ }^{\circ} \mathrm{C} \operatorname{dec}\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.58-7.73(3 \mathrm{H}, \mathrm{m}), 7.73-7.86(1 \mathrm{H}, \mathrm{m}), 7.92-8.10$ $(2 \mathrm{H}, \mathrm{m}), 8.37(1 \mathrm{H}, \mathrm{td}, J=8,1 \mathrm{~Hz}), 8.62(1 \mathrm{H}, \mathrm{dd}, J=8,1 \mathrm{~Hz})$; ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta-57.3\left(3 \mathrm{~F}, \mathrm{~d}, J=1.5 \mathrm{~Hz}, \mathrm{CF}_{3}\right),-102$ to -143 (6F, m, SbF 6); IR (KBr) $2265\left(\mathrm{~N}_{2}{ }^{+}\right) \mathrm{cm}^{-1}$; MS (FAB) m/e $265\left(\mathrm{M}^{+}-\mathrm{SbF}_{6}\right), 237\left(265-\mathrm{N}_{2}\right)$; high mass $\mathrm{M}^{+}-\mathrm{SbF}_{6}$ $\left(\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}\right) 265.05825$ (calcd 265.05887).

2-(Trifluoromethoxy)biphenylyl-2'-diazonium hexafluorophosphate (17c): mp $91-96{ }^{\circ} \mathrm{C} \operatorname{dec}\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.58-7.73(3 \mathrm{H}, \mathrm{m}), 7.73-7.86(1 \mathrm{H}, \mathrm{m}), 7.92-8.10$ $(2 \mathrm{H}, \mathrm{m}), 8.37(1 \mathrm{H}, \mathrm{td}, J=8,1 \mathrm{~Hz}), 8.62(1 \mathrm{H}, \mathrm{dd}, J=8,1 \mathrm{~Hz}) ;$ ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta-57.2\left(3 \mathrm{~F}, \mathrm{~d}, J=1.5 \mathrm{~Hz}, \mathrm{CF}_{3}\right),-71.6(6 \mathrm{~F}$, $\left.\mathrm{d}, J=706 \mathrm{~Hz}, \mathrm{PF}_{6}\right) ; \mathrm{IR}(\mathrm{KBr}) 2276\left(\mathrm{~N}_{2}{ }^{+}\right) \mathrm{cm}^{-1}$; MS (FAB) m / z $265\left(\mathrm{M}^{+}-\mathrm{PF}_{6}\right), 237\left(265-\mathrm{N}_{2}\right)$; high mass $\mathrm{M}^{+}-\mathrm{PF}_{6}$ $\left(\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}\right) 265.05810$ (calcd 265.05887).

2-(Trifluoromethoxy)biphenylyl-2'-diazonium tetafluoroborate (17d): $\mathrm{mp} 90-93{ }^{\circ} \mathrm{C} \operatorname{dec}\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3}-\right.$ $\mathrm{CN}) \delta 7.58-7.73(3 \mathrm{H}, \mathrm{m}), 7.73-7.87(1 \mathrm{H}, \mathrm{m}), 7.92-8.10(2 \mathrm{H}$, m), $8.37(1 \mathrm{H}, \mathrm{td}, J=8,1 \mathrm{~Hz}), 8.64(1 \mathrm{H}, \mathrm{dd}, J=8,1 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta-57.2\left(3 \mathrm{~F}, \mathrm{~d}, J=1.5 \mathrm{~Hz}, \mathrm{CF}_{3}\right),-150.4(4 \mathrm{~F}, \mathrm{~s}$, BF_{4}); IR (KBr) $2282\left(\mathrm{~N}_{2}{ }^{+}\right) \mathrm{cm}^{-1}$; MS (FAB) m/z $265\left(\mathrm{M}^{+}-\mathrm{BF}_{4}\right)$, 237 ($265-\mathrm{N}_{2}$); high MS M ${ }^{+}-\mathrm{BF}_{4}\left(\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}\right) 265.05833$ (calcd 265.05887).

5-tert-Butyl-2'-(trifluoromethoxy)biphenylyl-2-diazonium hexafluoroantimonate (18a): $\mathrm{mp} 84.7-85.8{ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR $\delta 8.67$ $(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.96(1 \mathrm{H}, \mathrm{dd}, J=8.9,1.9 \mathrm{~Hz}), 7.77(1 \mathrm{H}, \mathrm{d}$, $J=1.9 \mathrm{~Hz}), 7.74-7.69(2 \mathrm{H}, \mathrm{m}), 7.63(1 \mathrm{H}, \mathrm{dt}, J=1.0,7.7 \mathrm{~Hz})$, $7.54(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 1.44\left(9 \mathrm{H}, \mathrm{s}, t-\mathrm{C}_{4} \mathrm{H}_{9}\right) ;{ }^{19} \mathrm{~F}$ NMR $\delta-58.4$ (3F, s, CF_{3}), -96 to $-149\left(6 \mathrm{~F}, \mathrm{~m}, \mathrm{SbF}_{6}\right)$; IR (KBr) 2974, 2262
$\left(\mathrm{N}_{2}{ }^{+}\right), 1589,1560,1248,1220,1196,1071 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ $321\left(\mathrm{M}^{+}-\mathrm{SbF}_{6}\right)$; high $\mathrm{MS} \mathrm{M}{ }^{+}-\mathrm{SbF}_{6}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}\right) 321.12033$ (calcd 321.12147).

5-tert-Butyl-2'-(trifluoromethoxy)biphenylyl-2-diazonium hexafluorophosphate (18c): $\mathrm{mp} 95.0-95.7^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.76(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.94(1 \mathrm{H}, \mathrm{dd}, J=8.9,1.9 \mathrm{~Hz}), 7.74$ $(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}), 7.72-7.68(2 \mathrm{H}, \mathrm{m}), 7.61(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.6$ $\mathrm{Hz}), 7.53(1 \mathrm{H}, \mathrm{m}), 1.42(9 \mathrm{H} \mathrm{s}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-58.32(3 \mathrm{~F}, \mathrm{~s}),-72.81$ (6F, d, $J=712 \mathrm{~Hz}$); IR (KBr) 2970, 2267, 1590, 1562, 1245, 1220, $1183,1073 \mathrm{~cm}^{-1}$; low mass (FAB) m/z $321\left(\mathrm{M}^{+}-\mathrm{PF}_{6}\right)$; high MS $\mathrm{M}^{+}-\mathrm{PF}_{6}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}\right) 321.12116$ (calcd 321.12147).

5-tert-Butyl-2'-(trifluoromethoxy)biphenylyl-2-diazonium tetrafluoroborate (18d): oily and sticky product; ${ }^{1} \mathrm{H}$ NMR $\delta 8.91$ $(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.93(1 \mathrm{H}, \mathrm{dd}, J=8.9,1.9 \mathrm{~Hz}), 7.79(1 \mathrm{H}, \mathrm{dd}$, $J=7.7,1.7 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}), 7.69(1 \mathrm{H}, \mathrm{dt}, J=1.7$, $7.7 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}), 7.52(1 \mathrm{H}, \mathrm{dd}, J=1.1,7.7$ $\mathrm{Hz}), 1.42(9 \mathrm{H}, \mathrm{s}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-58.22(3 \mathrm{~F}, \mathrm{~s}),-151.60(4 \mathrm{~F}, \mathrm{~s}) ;$ IR (KBr) 2971, 2268, 1589, 1562, 1260, 1220, 1178, $1072 \mathrm{~cm}^{-1}$; MS (FAB) m/z $321\left(\mathrm{M}^{+}-\mathrm{BF}_{4}\right)$; high $\mathrm{MS} \mathrm{M}{ }^{+}-\mathrm{BF}_{4}\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}\right)$ 321.12209 (calcd 321.12147).

5-Fluoro-2'-(trifluoromethoxy)biphenylyl-2-diazonium hexafluoroantimonate (19a): $\mathrm{mp} 130-131{ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta$ $7.58-7.89(6 \mathrm{H}, \mathrm{m}), 8.71(1 \mathrm{H}, \mathrm{dd}, J=9,5 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3}-\right.$ $\mathrm{CN}) \delta-57.2\left(3 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}_{3}\right),-82.2(1 \mathrm{~F}, \mathrm{td}, J=8,5 \mathrm{~Hz}, \mathrm{~F}),-102$ to $-144\left(6 \mathrm{~F}, \mathrm{~m}, \mathrm{SbF}_{6}\right)$; IR $(\mathrm{KBr}) 2272\left(\mathrm{~N}_{2}{ }^{+}\right) \mathrm{cm}^{-1}$; MS (FAB) $m / z 283\left(\mathrm{M}^{+}-\mathrm{SbF}_{6}\right)$; high $\mathrm{MS} \mathrm{M}^{+}-\operatorname{SbF}_{6}\left(\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}\right)$ 283.04965 (calcd 283.04945).

5-Methoxy-2'-(trifluoromethoxy)biphenylyl-2-diazonium tetrafluoroborate (20): $\mathrm{mp} 65-67{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 4.11$ $(3 \mathrm{H}, \mathrm{s}), 7.32-7.50(2 \mathrm{H}, \mathrm{m}), 7.55-7.85(4 \mathrm{H}, \mathrm{m}), 8.55(1 \mathrm{H}, \mathrm{d}, J=$ $9 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta-57.2\left(3 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}_{3}\right),-150.4(4 \mathrm{~F}, \mathrm{~s}$, BF_{4}); IR (KBr) $2228\left(\mathrm{~N}_{2}{ }^{+}\right) \mathrm{cm}^{-1}$; MS (FAB) $m / z 295\left(\mathrm{M}^{+}-\mathrm{BF}_{4}\right)$; high MS M ${ }^{+}-\mathrm{BF}_{4}\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right) 295.07023$ (calcd 295.06944).

5-Methoxy-2-(trifluoromethoxy)biphenylyl-2'-diazonium hexafluoroantimonate (21): mp $78-80^{\circ} \mathrm{C} \operatorname{dec}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 3.89(3 \mathrm{H}, \mathrm{s}), 7.18(1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}), 7.29$ $(1 \mathrm{H}, \mathrm{dd}, J=9,3 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{dm}, J=9 \mathrm{~Hz}), 7.98(1 \mathrm{H}, \mathrm{dd}, J$ $=8,1 \mathrm{~Hz}), 8.01(1 \mathrm{H}, \mathrm{td}, J=8,1 \mathrm{~Hz}), 8.37(1 \mathrm{H}, \mathrm{td}, J=8,1 \mathrm{~Hz})$, $8.61(1 \mathrm{H}, \mathrm{dd}, J=8,1 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta-57.7(3 \mathrm{~F}, \mathrm{~s}$, $\left.\mathrm{CF}_{3}\right),-96$ to $-149\left(6 \mathrm{~F}, \mathrm{~m}, \mathrm{SbF}_{6}\right)$; IR (KBr) $2284\left(\mathrm{~N}_{2}{ }^{+}\right) \mathrm{cm}^{-1}$; MS (FAB) m/z $295\left(\mathrm{M}^{+}-\mathrm{SbF}_{6}\right)$; high MS M ${ }^{+}-\mathrm{SbF}_{6}\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ 295.06848 (calcd 295.06944).

5-Dimethylamino-2'-(trifluoromethoxy)biphenylyl-2-diazonium hexafluoroantimonate (22): mp $136-139^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.10(1 \mathrm{H}, \mathrm{d}, J=9.7 \mathrm{~Hz}), 7.72-7.51(4 \mathrm{H}$, m), $7.01(1 \mathrm{H}, \mathrm{dd}, J=9.7,2.5 \mathrm{~Hz}), 6.82(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 3.40$ $(3 \mathrm{H}, \mathrm{s}), 3.35(3 \mathrm{H}, \mathrm{s}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta-57.92(3 \mathrm{~F}, \mathrm{~s})$

Counteranion Exchange Reaction of Diazonium Salt 17dPreparation of Diazonium Salts 17a and 17e: A Typical Procedure. Into a stirred solution of $997 \mathrm{mg}(5.7 \mathrm{mmol})$ of NaOTf cooled at $-20^{\circ} \mathrm{C}$ was added $2.0 \mathrm{~g}(5.7 \mathrm{mmol})$ of $\mathbf{1 7 d}$. The mixture was gradually warmed to room temperature for a period of 2 h . Some $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to the mixture and the insoluble solid was removed by filtration. The filtrate was evaporated to dryness under reduced pressure without heating. The residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ to give $2.13 \mathrm{~g}(90 \%)$ of 17e. Similarly, 17a was prepared in 71% yield from $\mathbf{1 7 d}$ with NaSbF_{6} instead of NaOTf and agreed with the product (17a) from the reaction of $\mathbf{1 0}$ and NOSbF_{6}.

2-(Trifluoromethoxy)biphenylyl-2'-diazonium triflate (17e): mp $76-78{ }^{\circ} \mathrm{C} \operatorname{dec}\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.63-$ $7.69(3 \mathrm{H}, \mathrm{m}), 7.80(1 \mathrm{H}$, ddd, $J=8,7,3 \mathrm{~Hz}), 7.97(1 \mathrm{H}, \mathrm{dd}, J=8$, $1 \mathrm{~Hz}), 8.01(1 \mathrm{H}, \mathrm{td}, J=8,1 \mathrm{~Hz}), 8.37(1 \mathrm{H}, \mathrm{td}, J=8,1 \mathrm{~Hz}), 8.63$ $(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta-57.1\left(3 \mathrm{~F}, \mathrm{~s}, \mathrm{OCF}_{3}\right)$, $-77.9\left(3 \mathrm{~F}, \mathrm{~s}, \mathrm{SCF}_{3}\right)$; IR (KBr) $2286\left(\mathrm{~N}_{2}{ }^{+}\right) \mathrm{cm}^{-1}$; MS (FAB) m/e $265\left(\mathrm{M}^{+}-\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 40.59$; H, 1.95; N, 6.76. Found: C, 40.61; H, 1.85; N, 6.89.

Photochemical Decomposition of 2-(Trifluoromethoxy)biphe-nylyl-2'-diazonium Salts-In Situ Synthesis of \boldsymbol{O}-(Trifluorom-
ethyl)dibenzofuranium Salts 1a,b, 2a-d, 3b, and 4a,b: A Typical Procedure. A solution of $6.5 \mathrm{mg}(12 \mu \mathrm{~mol})$ of 18a and $1.1 \mathrm{mg}(7.5 \mu \mathrm{~mol})$ of benzotrifluoride (as an internal standard for ${ }^{19} \mathrm{~F}$ NMR analysis) in 0.6 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was placed into a Pyrex glass NMR tube, then the tube was sealed after being purged with N_{2}. The tube was immersed in an EtOH-liquid N_{2} bath (a Pyrex glass container) cooled to $-106^{\circ} \mathrm{C}$, and irradiated for 45 min from about 3.5 cm away with a high-pressure mercury lamp (400 W ; main light wavelength, 253.7 nm) positioned outside of the bath. A bath temperature of -90 to $-100^{\circ} \mathrm{C}$ was maintained during the irradiation. After the irradiation, the ${ }^{19} \mathrm{~F}$ NMR was measured at $-80{ }^{\circ} \mathrm{C}$. The reaction solution in the NMR tube at the low temperature of -90 to $-106{ }^{\circ} \mathrm{C}$ was homogeneous both before and after irradiation. The analysis of the NMR spectrum showed 2a was produced in 87% yield and $\mathbf{2 3}$ and $\mathbf{2 4}$ were produced in 9% and 3% yield, respectively.

2-tert-Butyl- O-(trifluoromethyl)dibenzofuranium hexafluoroantimonate (2a): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ at $\left.-70^{\circ} \mathrm{C}\right) \delta 8.30(1 \mathrm{H}, \mathrm{dd}$, $J=7.6,1.5 \mathrm{~Hz}, 5-\mathrm{H}), 8.21(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, 1-\mathrm{H}), 8.09(1 \mathrm{H}$, $\mathrm{dm}, J=9.1 \mathrm{~Hz}, 8-\mathrm{H}), 8.03(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 6-\mathrm{H}), 7.99(1 \mathrm{H}, \mathrm{dq}$, $J=9.5,2.3 \mathrm{~Hz}, 4-\mathrm{H}), 7.92(1 \mathrm{H}$, ddd, $J=9.1,7.6,1.5 \mathrm{~Hz}, 7-\mathrm{H})$, $7.89(1 \mathrm{H}, \mathrm{dd}, J=9.5,2.3 \mathrm{~Hz}, 3-\mathrm{H}), 1.44\left(9 \mathrm{H}, \mathrm{s}, 2-t-\mathrm{C}_{4} \mathrm{H}_{9}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ at $\left.-70^{\circ} \mathrm{C}\right) \delta-52.65\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$. 5-tert-Butyl-2-fluoro-$\mathbf{2}^{\prime}$-(trifluoromethoxy)biphenyl (23): ${ }^{1} \mathrm{H}$ NMR $\delta 7.44-7.41$ (2 H , m), $7.39-7.35(3 \mathrm{H}, \mathrm{m}), 7.33(1 \mathrm{H}, \mathrm{dd}, J=2.5,7.1 \mathrm{~Hz}), 7.07(1 \mathrm{H}$, $\mathrm{t}, J=9.1 \mathrm{~Hz}), 1.33(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-57.66\left(3 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}_{3}\right)$, -21.22 (1F, s, 2-F); IR (neat) 3065, 2967, 1509, 1486, 1258, 1219, 1169, 823, $761 \mathrm{~cm}^{-1}$; GC-MS m/z $312\left(\mathrm{M}^{+}\right), 297\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$, $269\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$. \boldsymbol{O}-(Trifluoromethyl)dibenzofuranium hexafluoroantimonate (1a): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ at $\left.-70{ }^{\circ} \mathrm{C}\right) \delta 8.26(2 \mathrm{H}$, br d, $J=8 \mathrm{~Hz}, 4,5-\mathrm{H}), 8.09(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8 \mathrm{~Hz}, 1,8-\mathrm{H}), 8.00(2 \mathrm{H}$, br t, $J=8 \mathrm{~Hz}, 3,6-\mathrm{H}$), 7.91 ($2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=8 \mathrm{~Hz}, 2,7-\mathrm{H}$); ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ at $\left.-70{ }^{\circ} \mathrm{C}\right) \delta-52.38$ (s, CF_{3}). \boldsymbol{O}-(Trifluoromethyl)dibenzofuranium undecafluorodiantimonate (1b): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ at $\left.-70{ }^{\circ} \mathrm{C}\right) \delta 8.31(2 \mathrm{H}, \mathrm{dd}, J=1.4,7.6 \mathrm{~Hz}, 4,5-\mathrm{H}), 8.13$ $(2 \mathrm{H}, \mathrm{dd}, J=2.3,8.9 \mathrm{~Hz}, 1,8-\mathrm{H}), 8.04(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, 3,6-\mathrm{H})$, $7.94(2 \mathrm{H}$, ddd, $J=8.9,7.6,1.4 \mathrm{~Hz}, 2,7-\mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ at $-70{ }^{\circ} \mathrm{C}$) $\delta-51.99\left(\mathrm{~s}, \mathrm{CF}_{3}\right.$). 2-tert-Butyl- \boldsymbol{O}-(trifluoromethyl)dibenzofuranium undecafluorodiantimonate (2b): ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ at $\left.-70{ }^{\circ} \mathrm{C}\right) \delta-52.64\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$. 2-tert-Butyl- O -(trifluoromethyl)dibenzofuranium hexafluorophosphate (2 c): ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ at $\left.-70{ }^{\circ} \mathrm{C}\right) \delta-52.96\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$. 2-tert-Butyl- O -(trifluoromethyl)dibenzofuranium tetrafluoroborate (2 d): ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ at $\left.-70{ }^{\circ} \mathrm{C}\right) \delta-52.79\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$. 2-Fluoro- \boldsymbol{O}-(trifluoromethyl)dibenzofuranium undecafluorodiantimonate (3b): ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ at $\left.-70{ }^{\circ} \mathrm{C}\right) \delta-51.88\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$. 2-Methoxy- \boldsymbol{O}-(trifluoromethyl)dibenzofuranium hexafluoroantimonate (4a): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ at $\left.-70{ }^{\circ} \mathrm{C}\right) \delta 8.26(1 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, 5-\mathrm{H}), 8.11(1 \mathrm{H}, \mathrm{d}, J$ $=8 \mathrm{~Hz}, 4-\mathrm{H}), 8.05-7.98(2 \mathrm{H}, \mathrm{m}, 6,8-\mathrm{H}), 7.93(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}$, $7-\mathrm{H}), 7.65(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 7.33(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ at $\left.-70{ }^{\circ} \mathrm{C}\right) \delta-53.22\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$. 2-Methoxy- O (trifluoromethyl)dibenzofuranium tetrafluoroborate (4b): ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$ at $\left.-70{ }^{\circ} \mathrm{C}\right) \delta-53.20\left(\mathrm{~s}, \mathrm{CF}_{3}\right)$.

Measurement of Half-Life Time of \boldsymbol{O}-(Trifluoromethyl)dibenzofuranium Salts. Into a NMR tube were placed the diazonium salt (0.025 mmol), benzotrifluoride ($1.5-2 \mu \mathrm{~L}$) and $\mathrm{CD}_{2^{-}}$ $\mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ containing a trace amount of CFCl_{3} as a standard for ${ }^{19} \mathrm{~F}$ NMR, then the NMR tube was sealed. The NMR tube was irradiated with a high-pressure Hg lump in a bath of -90 to $-100{ }^{\circ} \mathrm{C}$ for 45 min . After the irradiation, the reaction mixture was solidified by immersing the NMR tube into liquid nitrogen. The NMR tube was set at $-70{ }^{\circ} \mathrm{C}$ in the NMR instrument and its NMR spectrum was measured to identify the O-(trifluoromethyl)dibenzofuranium salts. After that, the ${ }^{19} \mathrm{~F}$ NMR spectra were measured at the designated temperature $\left(-60\right.$ or $\left.-50^{\circ} \mathrm{C}\right)$ successively with a time interval. A half-life time was determined as the time when the amount of the $O-\mathrm{CF}_{3}$-dibenzofuranium salt was reduced to half. The results are described in the text.

Thermal Decomposition of $\mathbf{1 7 e}$ in $\mathbf{C D}_{2} \mathbf{C l}_{2}$. In a NMR tube were placed $21 \mathrm{mg}(0.05 \mathrm{mmol})$ of $\mathbf{1 7 e}, 0.7 \mathrm{~mL}$ of $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 6.1 \mu \mathrm{~L}(0.05$ mmol) of benzotrifluoride as a standard for ${ }^{19} \mathrm{~F}$ NMR analysis, and a trace amount of CFCl_{3}. The NMR tube was sealed and heated in an oil bath at $42{ }^{\circ} \mathrm{C}$ for 3 h . After cooling, the reaction mixture was analyzed by NMR measurement and the yields of products 29 and 31 were determined. After that, the NMR tube was opened. The reaction solution was added with 5.4 mg of hexadecane as a GC standard and the yield of $\mathbf{3 0}$ was determined by GC. The yields of $\mathbf{2 9}, \mathbf{3 0}$, and $\mathbf{3 1}$ were $65 \%, 75 \%$, and 14%, respectively. A new compound 31 was isolated and identified.

2-Trifluoromethanesulfonyloxy-2'-(trifluoromethoxy)biphenyl (31): oil; ${ }^{1} \mathrm{H}$ NMR $\delta 7.33-7.56$ (m); ${ }^{19} \mathrm{~F}$ NMR $\delta-57.7$ (3F, $\mathrm{s}, \mathrm{OCF}_{3}$), -74.7 (3F, d, SCF_{3}); IR (neat) 1478, 1424, 1248, 1214, 1174, 1139, 889, $767 \mathrm{~cm}^{-1}$; GC-MS m/z $386\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 43.53$; H, 2.09. Found: C, 43.79; H, 2.00.

Thermal Decomposition of 2-(Trifluoromethoxy)biphenylyl-$\mathbf{2}^{\prime}$-diazonium Salts 17a, $\mathbf{c}-\mathbf{e}$ in Phenol. A mixture of 0.30 mmol of the diazonium salt and 1 mL of phenol in a sealed glass tube was stirred for 3 h on a bath at $42^{\circ} \mathrm{C}$. The reaction mixture was analyzed by GC with hexacosane as a standard and by ${ }^{19} \mathrm{~F}$ NMR with benzotrifluoride as a standard. The results are shown in Scheme 8.

O - and N -Trifluoromethylation of Alcohols, Phenols, Primary and Secondary Amines, and Anilines with 2a: A Typical Procedure. A solution of 0.05 mmol of 18 a and 0.025 mmol of benzotrifluoride (as an internal standard for ${ }^{19} \mathrm{~F}$ NMR) in 0.4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was placed into a Pyrex glass tube, which was then immersed in a Pyrex glass vessel filled with an EtOH-liquid N_{2} bath at -90 to $-100^{\circ} \mathrm{C}$ and irradiated for 70 min with a highpressure Hg lamp (400 W) positioned outside of the vessel at about 3.5 cm from the tube of the solution. The ${ }^{19} \mathrm{~F}$ NMR measured at $-90^{\circ} \mathrm{C}$ after the irradiation showed that $\mathbf{2 a}$ was prepared in the solution in $87-89 \%$ yield. And then a solution of 0.05 mmol of a substrate and 0.05 mmol of an acid-trap (shown in Table 1) in 50 $\mu \mathrm{L}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added into the solution kept at $-90^{\circ} \mathrm{C}$ and the reaction mixture was gradually warmed to $-10^{\circ} \mathrm{C}$ over a period of 3 h . After that, a portion of the reaction mixture was diluted with $\mathrm{CD}_{3} \mathrm{CN}$ and analyzed by ${ }^{19} \mathrm{~F}$ NMR. The yield of the product was calculated from the amount of the standard (benzotrifluoride). The results are shown in Table 1. The products were identified by the NMR and GC-mass or high mass analysis or by comparing with authentic samples. Some of the products were isolated for identification. Data for the new compound are as follows.
2-Phenylethyl trifluoromethyl ether: ${ }^{1} \mathrm{H}$ NMR $\delta 3.00$ ($2 \mathrm{H}, \mathrm{t}$, $J=7 \mathrm{~Hz}), 4.15(2 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 7.21(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 7.25$ $(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 7.32(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-61.2(\mathrm{~s}) ;$ GC-MS m/z $190\left(\mathrm{M}^{+}\right)$; high MS calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}$ 190.06055, found 190.06069.

N -Trifluoromethylation of Tertiary Amines and Pyridines with 2a. These reactions were carried out in the same manner as for O - and N -trifluoromethylation of an alcohol etc. mentioned above except for a tertiary amine or a pyridine instead of a nucleophile and an acid-trap. The results are shown in Table 1. Spectral data and elemental analysis of the new compounds are as follows.
N-(Trifluoromethyl)pyridinium hexafluoroantimonate: mp $138-141{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.36(2 \mathrm{H}, \mathrm{t}, J$ $=7 \mathrm{~Hz}), 8.96(1 \mathrm{H}, \mathrm{tt}, J=7,1 \mathrm{~Hz}), 9.21(2 \mathrm{H}, \mathrm{dm}, J=7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta-60.2\left(3 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}_{3}\right),-96$ to $-149\left(6 \mathrm{~F}, \mathrm{~m}, \mathrm{SbF}_{6}\right)$; IR (KBr) 3150, 3104, 2343, 1634, 1491, 1276, 1252, 1235, 1209, 1110, 1084, 1048, 787, $657 \mathrm{~cm}^{-1}$; MS (FAB) $\mathrm{m} / \mathrm{z} 148\left(\mathrm{M}^{+}-\mathrm{SbF}_{6}\right)$. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}_{9} \mathrm{NSb}: \mathrm{C}, 18.77$; $\mathrm{H}, 1.31$; N, 3.65. Found: C, 18.99; H,1.18; N, 3.79.

3-Chloro- N -(trifluoromethyl)pyridinium hexafluoroantimonate: mp $162.5-165.5^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ $\delta 8.35(1 \mathrm{H}, \mathrm{t}, J=8.6,6.2 \mathrm{~Hz}), 8.95(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 9.18$ $(1 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}), 9.42(1 \mathrm{H}, \mathrm{s}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta-59.9$
(3F, s, CF_{3}), -103 to -143 ($6 \mathrm{~F}, \mathrm{~m}, \mathrm{SbF}_{6}$); IR (KBr) 3138, 3086, 1627, 1490, 1453, 1262, 1222, 1195, 1089, 1025, 817, 742, 658 $\mathrm{cm}^{-1} ;$ MS (FAB) m / z 184, $182\left(\mathrm{M}^{+}-\mathrm{SbF}_{6}\right)$. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{4}-$ $\mathrm{ClF}_{9} \mathrm{NSb}: \mathrm{C}, 17.23$; H, 0.96 ; N, 3.35. Found: C, 17.29 ; H, 0.79 ; N, 3.42.

4-Cyano- N -(trifluoromethyl)pyridinium hexafluoroantimonate: mp 139-145 ${ }^{\circ} \mathrm{C}$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.70(2 \mathrm{H}, \mathrm{d}, J=$ $7 \mathrm{~Hz}), 9.45(2 \mathrm{H}, \mathrm{dm}, J=7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta-59.9(3 \mathrm{~F}$, s, CF_{3}), -96 to $-150\left(6 \mathrm{~F}, \mathrm{~m}, \mathrm{SbF}_{6}\right)$; IR (KBr) 3140, 3086, 1646, $1562,1462,1314,1263,1223,1181,1084,1042,863,757,662$, $638 \mathrm{~cm}^{-1}$; MS (FAB) m/z $173\left(\mathrm{M}^{+}-\mathrm{SbF}_{6}\right)$. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~F}_{9} \mathrm{~N}_{2} \mathrm{Sb}$: C, 20.56; H, 0.99; N, 6.85. Found: C, 20.96; H, 0.98 ; N, 7.00.

4-Methoxycarbonyl- N -(trifluoromethyl)pyridinium hexafluoroantimonate: $\mathrm{mp} 160-164{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 4.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 8.72(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 9.39$ $(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta-60.0\left(3 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}_{3}\right),-102$ to $-144\left(6 \mathrm{~F}, \mathrm{~m}, \mathrm{SbF}_{6}\right)$; IR (KBr) 3154, 3074, 1741, 1646, 1576, 1465, 1439, 1338, 1318, 1273, 1245, 1229, 1209, 1130, 1082, 1041, 796, $665 \mathrm{~cm}^{-1}$; MS (FAB) $\mathrm{m} / \mathrm{z} 206\left(\mathrm{M}^{+}-\mathrm{SbF}_{6}\right)$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~F}_{9} \mathrm{NO}_{2} \mathrm{Sb}: \mathrm{C}, 21.75 ; \mathrm{H}, 1.60 ; \mathrm{N}, 3.17$. Found: C, 21.82; H, 1.44; N, 3.17.

4-Methyl- N-(trifluoromethyl)pyridinium hexafluoroantimonate: mp 148.6-149.5 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{3} \mathrm{CN}-\mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.99$ $(2 \mathrm{H}, \mathrm{dm}, J=7 \mathrm{~Hz}), 8.14(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 2.80(3 \mathrm{H}, \mathrm{s}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta-60.41\left(3 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}_{3}\right),-96$ to $-149\left(6 \mathrm{~F}, \mathrm{~m}, \mathrm{SbF}_{6}\right)$; IR (KBr) 3148, 3092, 1642, 1485, 1256, 1198, 1084, 1043, 828, $662 \mathrm{~cm}^{-1}$; MS (FAB) m/z $162\left(\mathrm{M}^{+}-\mathrm{SbF}_{6}\right)$; high MS M ${ }^{+}-\mathrm{SbF}_{6}$ $\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NF}_{3}\right) 162.05275$ (calcd 162.05306).

O - and N -Trifluoromethylation of Alcohols, Sulfonic Acids, and Pyridines by Thermal Decomposition of 17a: A Typical Procedure. Under an Ar atmosphere, a stirred solution of 1 mmol of a substrate, 1 mmol of a base, and 1 mmol of $\mathbf{1 7 a}$ in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was heated under reflux for 3 h . The base was not used in the case that the substrate is a salt of sulfonic acid and a pyridine. After cooling, 0.5 mmol of benzotrifluoride as a ${ }^{19} \mathrm{~F}$ NMR reference was added into the reaction mixture and the yield of the product was determined by ${ }^{19} \mathrm{~F}$ NMR analysis. The results are shown in Table 2. Data for the new compounds are as follows.
(2-Naphthyl)methyl trifluoromethyl ether: mp $55.5-56.5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 5.15(2 \mathrm{H}, \mathrm{s}), 7.46(1 \mathrm{H}, \mathrm{dd}, J=9,2 \mathrm{~Hz}), 7.51(2 \mathrm{H}, \mathrm{td}$, $J=9,3 \mathrm{~Hz}), 7.83(1 \mathrm{H}, \mathrm{s}), 7.83-7.88(2 \mathrm{H}, \mathrm{m}), 7.88(1 \mathrm{H}, \mathrm{d}, J=$ 9 Hz); ${ }^{19}$ F NMR $\delta-60.7$ (s); IR (KBr) 1408, 1303, 1205, 1123, 857, 824, 755, $474 \mathrm{~cm}^{-1}$; GC-MS m/z $226\left(\mathrm{M}^{+}\right), 141\left(\mathrm{M}^{+}-\mathrm{OCF}_{3}\right)$, $69\left(\mathrm{CF}_{3}{ }^{+}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}: \mathrm{C}, 63.72 ; \mathrm{H}, 4.01$. Found: C,63.37; H, 3.89.

Trifluoromethyl \boldsymbol{p}-toluenesulfonate: oil; ${ }^{1} \mathrm{H}$ NMR $\delta 2.50$ (3 H , s), $7.43(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.90(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR δ -54.4 (s); IR (neat) $1598,1411,1226,1160,1087,945,814,749$, 664, 572, $548 \mathrm{~cm}^{-1}$; GC-MS m/z $240\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 40.00$; H, 2.94. Found: C, 40.14; H, 2.81.

Trifluoromethyl 2-naphthalenesulfonate: $\mathrm{mp} 47-47.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.70(1 \mathrm{H}, \mathrm{td}, J=8,2 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{td}, J=8,2 \mathrm{~Hz})$, $7.94(1 \mathrm{H}, \mathrm{dd}, J=8,2 \mathrm{~Hz}), 7.98(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.05(1 \mathrm{H}, \mathrm{d}$, $J=8 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.62(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-54.2$ (s); IR (KBr) 1412, 1249, 1218, 1197, 1163, 1072, 951, 816, 756, 664, 636, 568, $548 \mathrm{~cm}^{-1}$; GC-MS m/z $276\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 47.83 ; \mathrm{H}, 2.55$. Found: C, 47.89; H, 2.51 .

Trifluoromethyl \boldsymbol{p}-octylbenzenesulfonate: oil; ${ }^{1} \mathrm{H}$ NMR $\delta 0.88$ $(3 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 1.15-1.45(10 \mathrm{H}, \mathrm{m}), 1.66(2 \mathrm{H}, \mathrm{m}), 2.73(2 \mathrm{H}, \mathrm{t}$, $J=8 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{dd}, J=8,2 \mathrm{~Hz}), 7.92(2 \mathrm{H}, \mathrm{dd}, J=8,2 \mathrm{~Hz}) ;$ ${ }^{19} \mathrm{~F}$ NMR $\delta-54.29$ (s); IR (neat) 2930, 2858, 1414, 1226, 1160, 1088, 946, 750, $576 \mathrm{~cm}^{-1}$; GC-MS m/z $338\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 53.24 ; \mathrm{H}, 6.26$. Found: $\mathrm{C}, 53.22 ; \mathrm{H}$, 6.38.

Trifluoromethyl 3-bromocamphor-8-sulfonate: oil; ${ }^{1} \mathrm{H}$ NMR; $\delta 1.05(3 \mathrm{H}, \mathrm{s}), 1.30(3 \mathrm{H}, \mathrm{s}), 1.57-1.71(2 \mathrm{H}, \mathrm{m}), 1.92-2.12(1 \mathrm{H}$,
m), $2.26-2.43(1 \mathrm{H}, \mathrm{m}), 3.05(1 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}), 3.39(1 \mathrm{H}, \mathrm{d}, J=14$ $\mathrm{Hz}), 3.73(1 \mathrm{H}, \mathrm{d}, J=14 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{dd}, J=5,2 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\delta-53.69$ (s); IR (neat) 2974, 1759, 1408, 1230, 1144, 944, $769,638,567 \mathrm{~cm}^{-1}$; GC-MS m/z 380 and $378\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrF}_{3} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 34.84 ; \mathrm{H}, 3.72$. Found: $\mathrm{C}, 34.90 ; \mathrm{H}$, 3.61 .

Supporting Information Available: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of new compounds and $\mathrm{H}-\mathrm{H}$ COSY spectrum of $\mathbf{1 b}$. This material is available free of charge via the Internet at http://pubs.acs.org.

JO070896R

[^0]: ${ }^{\text {§ A part of this work was described in U.S. patent 6,239,289 B1 (2001) and }}$ a review article: Umemoto, T. Recent Advances in Perfluoroalkylation Methodology. In Fluorine-Containing Synthons; Soloshonok, V. A., Ed.; ACS Symp. Ser. No. 911; American Chemical Society: Washington, D.C., 2005; Chapter 1, pp 2-15.
 ${ }^{\dagger}$ IM\&T Research, Inc.

 * MEC Laboratory, Daikin Industries, Ltd.
 ${ }^{I}$ Present address: Chemical Division, Daikin Industries, Ltd., 1-1 Nishi Hitotsuya, Settsu-shi, Osaka 566-8585, Japan.

[^1]: (1) Fabulous Fluorine. Chem. Eng. News 2006, June 5, 15-32.

[^2]: (2) (a) Biomedical Aspects of Fluorine Chemistry; Filler, R., Kobayashi, Y., Eds.; Kodansha Ltd.: Tokyo, Japan, 1982. (b) Fluorine in Bioorganic Chemistry; Welch, J. T., Eswarakrishman, S., Eds.; A Wiley-Interscience Publication, John Wiley \& Sons, Inc.: New York, 1991. (c) Organofluorine Compounds in Medicinal Chemistry and Biochemical Applications; Filler, R., Kobayashi, Y., Yagupolskii, L. M., Eds.; Elsevier: Amsterdam, The Netherlands, 1993. (d) Organofluorine Chemistry-Principles and Commercial Applications; Banks, R. E., Smart, B. E., Tatlow, J. C., Eds.; Plenum Press: New York, 1994. (e) Biomedical Frontiers of Fluorine Chemistry; Ojima, I., McCarthy, J. R., Welch, J. T., Eds.; ACS Books; American Chemical Society: Washington, DC, 1996. (f) Organofluorine Compounds, Chemistry and Applications; Hiyama, T., Ed.; Springer: New York, 2000.
 (3) (a) Kirsch, P. Modern Fluoroorganic Chemistry; Wiley-VCH: Weinheim, Germany 2004. (b) Fluorine-Containing Synthons; Soloshonok, V. A., Ed.; ACS Symp. Ser. No. 911; American Chemical Society: Washington, DC, 2005.
 (4) Ma, J.-A.; Cahard, D. Chem. Rev. 2004, 104, 6119-6146.
 (5) (a) Prakash, G. K. S.; Yudin, A. K. Chem. Rev. 1997, 97, 757-786. (b) Singh, P. R.; Shreeve, J. M. Tetrahedron 2000, 56, 7613-7632. (c) Prakash, G. K. S.; Hu, J.; Olah, G. A. J. Org. Chem. 2003, 68, 44574463. (d) Prakash, G. K. S.; Hu, J.; Olah, G. A. Org. Lett. 2003, 5, 32533256. (e) Langlois, B. R.; Billard, T. Synthesis 2003, 185-194. (f) Roussel, S.; Billard, T.; Langlois, B. R.; Saint-Jalmes, L. Synlett. 2004, 2119-2122. (g) Roussel, S.; Billard, T.; Langlois, B. R.; Saint-James, L. Chem. Eur. J. 2005, 11, 939-944. (h) Langlois, B. R.; Billard, T.; Roussel, S. J. Fluorine Chem. 2005, 126, 173-179. (i) Chang, Y.; Cai, C. Tetrahedron Lett. 2005, 46, 3161-3164. (j) Pooput, C.; Dolbier, W. R., Jr.; Medebielle, M. J. Org. Chem. 2006, 71, 3564-3568.
 (6) (a) Meerwein, H. Org. Syn., Collect. 1973, 5, 1080-1082 and 10961098. (b) Helmkamp, G. K.; Pettitt, D. J. Org. Syn, Collect. 1973, 5, 10991103. (c) Downie, I. M.; Heaney, H.; Kemp, G.; King, D.; Wosley, M. Tetrahedron 1992, 48, 4005-4016
 (7) Olah, G. A.; Heiliger, L.; Prakash, G. K. S. J. Am. Chem. Soc. 1989, 111, 8020-8021.
 (8) It has been known that $\mathrm{CF}_{3}{ }^{+}$is generated in a gas phase. See the following recent paper: Mayer, P. S.; Leblanc, D.; Morton, T. H. J. Am. Chem. Soc. 2002, 124, 12185-14194.
 (9) Olah, G. A.; Ohyama, T. Synthesis. 1976, 319-320.

[^3]: (10) Kitazume, T.; Shreeve, J. M. J. Am. Chem. Soc. 1977, 99, 41944196.
 (11) Feiring, A. E. J. Org. Chem. 1979, 44, 2907-2910.
 (12) Kobayashi, Y.; Yoshida, T.; Kumadaki, I. Tetrahedron Lett. 1979, 40, 3865-3866.
 (13) Makarov, S. P.; Yakubovich, A. Ya.; Filatov, A. S.; Nikoforova, T. Ya. Zh. Obshch. Khim. 1968, 38, 709.
 (14) The term "electrophilic trifluoromethylating agents" used in fluorocarbon chemistry may simply mean the reagents that trifluoromethylate nucleophilic substrates. It does not mean that the reactive species in the trifluoromethylations are $\mathrm{CF}_{3}{ }^{+}$. This may be different from "electrophilic methylating agents" or "electrophlic methylations" used in hydrocarbon chemistry, in which it is implied that the reactive species are $\mathrm{CH}_{3}{ }^{+}$, accurately, $\mathrm{CH}_{3}{ }^{+}$or $\delta+$.
 (15) (a) Umemoto, T.; Ishihara, S. Tetrahedon Lett. 1990, 31, 35793582. (b) Umemoto, T.; Ishihara, S. J. Am. Chem. Soc. 1993, 115, 21562164. (c) Umemoto, T.; Adachi, K. J. Org. Chem. 1994, 20, 115-118. (d) Umemoto, T.; Ishihara, S. J. Fluorine Chem. 1999, 98, 75-81.
 (16) Yang, J.-J.; Kirckmeier, R. L.; Shreeve, J. M. J. Org. Chem. 1998, 63, 2656-2660.
 (17) Magnier, E.; Blazejewski, J.-C.; Tordeux, M.; Wakselman, C. Angew. Chem., Int. Ed. 2006, 45, 1279-1282.
 (18) Eisenberger, P.; Gischig, S.; Togni, A. Chem. Eur. J. 2006, 12, 2579-2586.
 (19) Tamiaki, H.; Nagata, Y.; Tsudzuki, S. Eur. J. Org. Chem. 1999, 2471-2473.
 (20) Blazejewski, J.-C.; Wilmshurst, M. P.; Popkin, M. D.; Wakselman, C.; Laurent, G.; Nonclercq, D.; Cleeren, A.; Ma, Y.; Seo, H.-S.; Leclercq, G. Bioorg. Med. Chem. 2003, 11, 335-345.
 (21) Ma, J.-A.; Cahard, D. J. Org. Chem. 2003, 68, 8726-8729.
 (22) Ono, T.; Umemoto, T. J. Fluorine Chem. 1996, 80, 163-166.

[^4]: (24) (a) Christe, K. O.; Dixon, D. A.; McLemore, D.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. J. Fluorine Chem. 2000, 101, 151-153. (b) Dagani, R. Chem. Eng. News March 3, 2003, p 44-47.
 (25) Reynolds, C. H. J. Chem. Soc., Chem. Commun. 1991, 975-976.

[^5]: (26) Lectka et al. have shown that aryl cations can abstract fluoride anions from CF_{3} substituents of aromatic rings: Ferraris, D.; Cox, C.; Anand, R.; Lectka, T. J. Am. Chem. Soc. 1997, 119, 4319-4320.
 (27) Roe, A. Org. React. 1968, 4, 193-228.

