Palladium-Catalyzed Domino Coupling Reactions of Aryl Halides with Norbornene and Norbornene Derivatives - A Simple Route to Polycyclic Aromatic Compounds

Karsten Albrecht ${ }^{\mathbf{a}}$, Oliver Reiser ${ }^{\mathbf{a}}$, Martin Weber ${ }^{\mathbf{b}}$, Burkhard Knieriem ${ }^{\mathbf{a}}$, and Armin de Meijere ${ }^{\mathbf{a}}{ }^{\text {* }}$
Institut fur Organische Chemie der Georg-August-Universität Göttingen ${ }^{\text {a }}$, Tammannstrasse 2, D-37077 Göttingen, Germany Institut für Organische Chemie der Universität Hamburg ${ }^{\text {b }}$, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany

Abstract

Under palladium-catalysis, norbornene 1, dicyclopentadiene 10, norbornenol 13, and norbornenone 15 react with unsubstituted as well as substituted bromo- and iodobenzenes to give $1: 3$ coupling products with 4 -aryl-9,10dihydrophenanthrene units with up to 70% isolated yields. The structures of two such products $4 \mathbf{a}$ and 4 c were proved by X -ray crystal structure analysis. 2-Bromothiophene 17 reacts with 1 and 10 to yield a mixture of $2: 1$ and $3: 1$ coupling products, while 3-iodopyridine 22a, 3-iodo-6-methylpyridine 22b and 4-iodopyridine 25 give only $2: 1$ coupling products with 5,6 -dihydro- 3,8 -phenanthroline and 5,6 -dihydro- 2,9 -phenanthroline units, respectively. Some new mechanistic insights into this interesting four-component domino coupling reaction are presented. The products can easily be transformed by photocyclization/dehydrogenation and/or flash vacuum pyrolysis to a variety of cyclopentadiene-anellated polycyclic aromatic compounds in very high yields. The reported sequence also presents the easiest access to benzolelpyrene.

INTRODUCTION

Palladium-catalyzed sequential transformations, ${ }^{1}$ in which several new C,C bonds are formed in a single operation, have become a rapidly growing area of research, in which many imaginative new ideas have been tested and realized. ${ }^{2-7}$ Such transformations work particularly well for multifold alkene-alkene and alkenealkyne coupling reactions, in which all the sequential steps occur in an intramolecular fashion, but have also been reported for special intra-inter-intramolecular ${ }^{8 \mathrm{a}}$ and even inter-inter-intramolecular sequences. ${ }^{8 b, 9}$ In most of the latter examples, norbormene $\mathbf{1}$ has been the olefinic reaction partner, onto which alkynes as well as alkenyl and aryl halides have been coupled. ${ }^{8-10}$ Early on, Chiusoli et al. reported a sequential coupling of norbornene with two molecules of iodobenzene $\mathbf{2 a - I}$ (or bromobenzene $\mathbf{2 a - B r}$) to yield the norborneneanellated 9,10 -dihydrophenanthrene derivative $3 \mathrm{a} .{ }^{9}$ As we found later, 1 can also sequentially react with three molecules of an aryl halide 2-X to give norbornene-anellated 4 -phenyl-9,10-dihydrophenanthrene derivatives. ${ }^{10}$ We now report on the scope of this interesting four-component domino coupling reaction and some new mechanistic insights.

SCOPE AND LIMITATIONS OF THE FOUR-COMPONENT DOMINO COUPLING

The apparent difference for the two reported coupling modes of norbornene with aryl halides lies in the reaction conditions. While Chiusoli et al. used $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as a catalyst, and potassium t-butoxide as the base in anisole at $130^{\circ} \mathrm{C}, 9$ we applied the protocol developed by Jeffery ${ }^{11}$ with $\mathrm{Pd}(\mathrm{OAc})_{2}$ as the catalyst precursor,
potassium carbonate as the base in dimethylformamide (DMF) or N-methylpyrrolidone (NMP) at $60-100^{\circ} \mathrm{C}$, and with tetra- n-butylammonium bromide ${ }^{12}$ as a phase transfer catalyst. ${ }^{10}$ Under these conditions, bromo- 2 a $\mathbf{B r}$ and iodobenzene $\mathbf{2 a}$-I as well as the para-substituted aryl iodides $2 \mathbf{b}, \mathbf{c}, \mathrm{~d}, \mathrm{e}-\mathrm{I}$ with methoxy, fluoro, methyl and chloro substituents gave only the $3: 1$ coupling products $4 \mathrm{a}-\mathrm{e}$ (Scheme 1 and Table 1) except for biaryls as by-products in some cases. ${ }^{13}$ The exo-orientation of the 9,10 -dihydrophenanthrene units and the positions

$6 \mathrm{a}: \mathrm{R}=0-\mathrm{Me}$

7
b: $\mathrm{R}=m-\mathrm{Me}$

8

9

Scheme 1
of substituents in these products were corroborated by the NMR spectroscopic data and rigorously proved by Xray crystal structure analyses for compounds $\mathbf{4 a}$ and $\mathbf{4 c}$ (see Figure 1). ${ }^{14}$

4a

4c

Figure 1. Molecular structures of 4 a and 4 c in the crystals. ${ }^{14} 4 \mathrm{a}$: Triclinic crystals of space group $P \overline{1}, Z=2$, unit cell dimensions $a=9.676(2), b=9.858(2), c=10.653(3) \AA, \alpha=117.46(1), \beta=95.73(2), \gamma=101.65(1)^{\circ}$, $V=861.1(3) \AA^{3}$. Crystal size $0.2 \times 0.5 \times 0.8 \mathrm{~mm}, T=293 \mathrm{~K}, 2353$ reflections collected, final $R_{w}=5.5 \%$. -4 c : Triclinic crystals of space group $P \overline{1}, Z=2$, unit cell dimensions $a=9.714(6), b=10.199(6)$, $c=10.809(10) \AA, \quad \alpha=117.47(6), \quad \beta=95.62(7), \quad \gamma=101.06(0)^{\circ}, \quad V=910.9(11) \AA^{3} . \quad$ Crystal \quad size $1.0 \times 1.0 \times 1.0 \mathrm{~mm}, T=293 \mathrm{~K}, 2657$ reflections collected, final $R_{w}=4.8 \%$.

Aryl halides with unsaturated substituents in the para-position gave different results. ${ }^{16}$ While p-bromobenzonitrile $\mathbf{2 f}-\mathbf{B r}$ led to both the $2: 1$ and $\mathbf{3 : 1}$ coupling products $\mathbf{3 f}$ and $\mathbf{4 f}$, respectively, in poor yields, methyl p-iodobenzoate $\mathbf{2 g}$-I and p-iodonitrobenzene $\mathbf{2 h}-\mathrm{I}$ gave only the $2: 1$ coupling products $\mathbf{3 g}$ and $\mathbf{3 h}$, the latter was actually isolated as the dehydrogenated $2: 1$ product 5 , apparently due to the oxidizing ability of p iodonitrobenzene.

With an ortho or meta methyl substituent on the aryl iodide as in $\mathbf{6 a}, \mathbf{6 b}$, the $3: 1$ domino products were mixtures of isomers and obtained in only 5 and 33% yield, respectively. Even 2-bromonaphthalene 7 could be coupled with norbornene, albeit the $3: 1$ product 9 was obtained in only 2% yield and the $2 ; 1$ product 8 in 6%.

Table 1. Norbornene-Anellated 9,10-Dihydrophenanthrenes 3, 4-Phenyl-9,10-dihydrophenanthrenes 4, and Analogous Derivatives (for Details see Scheme 1).

Starting Materials		X	R	Reaction Conditions		Conversion (\%)	Products and Yields (\%) ${ }^{\text {a }}$			
Alkene	Aryl Halide			Temp. $\left[{ }^{\circ} \mathrm{C}\right]$	Time [h]					
1	2 a	I	H	65	52	85	3a	-	4 a	83
1	2 a	Br	H	80	12	100	3a	-	4 a	53
1	2b	I	OMe	65 and 80	25 and 30	69	3b	-	4b	79
1	2 c	Br	F	75	75	68	3c	-	4 c	48
1	2 d	I	Me	100	6	100	3 d	-	$4 d$	$36^{\text {b }}$
1	2 e	I	$\mathrm{Cl}^{\text {b }}$	80	24	100	3 e	-	4 e	$38^{\text {c }}$
1	$2 f$	Br	CN	75	50	35	3f	8	4 f	17
1	2 g	I	$\mathrm{CO}_{2} \mathrm{Me}$	65	98	60	3g	20	4g	-
1	2h	I	NO_{2}	75	194	47	5	19	4h	-
1	7	-	-	85	98	36	8	18	9	6
10	2 a	I	H	60	24	100	11	-	$12^{\text {d }}$	64
$10^{\text {e }}$	2a	I	H	60°	24	100	11	15	12	36
$13^{\text {f }}$	2 a	I	H	65	21	76			14	66
158	2 a	I	H	80	24	57			16	$83^{\text {h }}$

a Yields based on the difference between employed and recovered starting material 2-X. - ${ }^{\text {b }}$ The NMR data of $4 d$ appear not be consistent with the positions of the methyl groups as indicated in the formula, but the structure was proved unambigously by X-ray structure analysis. - ${ }^{\mathrm{c}}$ 4-Chloro-3,5-dideuterioiodobenzene was used. - ${ }^{\mathrm{d}}$ Mixture of double bond isomers. - e Triphenylphosphine (4 equiv. with respect to $\mathrm{Pd}(\mathrm{OAc})_{2}$) was added. -f Mixture of endo- and exo-isomers ($3.5: 1$). g Sodium bicarbonate instead of potassium carbonate was used in this case. ${ }^{-h}$ An unidentified second $1: 3$ coupling product was isolated in 5% yield.

On the other hand, substituents on the norbornene skeleton had no influence on the reaction mode. The less strained double bond in the anellated five-membered ring of dicyclopentadiene 10 remained untouched while three molecules of iodobenzene $2 \mathrm{a}-1$ were attached to the other double bond. The product 12 was a mixture of isomers with different positions of the double bond in the endo-cyclopentene unit. When triphenylphosphine was added to the catalyst cocktail, both the $2: 111$ and $3: 1$ domino products 12 were obtained (15 and 36%, respectively). Norbornenol 13 and norbornenone 15 also gave the corresponding $1: 3$ coupling products 14 and 16 , respectively, in good yields. In order to avoid enolate formation in the case of 15, the weaker base sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ was used instead of potassium carbonate. Because of the better solubility of NaHCO_{3} in DMF, no phase transfer catalyst $\mathrm{Bu}_{4} \mathrm{NBr}$ had to be added.

Heterocyclic aryl halides also underwent domino coupling reactions with norbornene 1 and dicyclopentadiene 10. 2-Bromothiophene 17 gave both the $2: 1$ and $3: 1$ products $\mathbf{1 8 / 2 0}$ and $19 / 21$, respectively, in

10

11

12

13

14

15

16
nearly equal yields (see Scheme 2); the conversion of 17 (or 2-iodothiophene) was only 50% even after 20 h at $90^{\circ} \mathrm{C}$. The composition of the product mixture was the same, when the coupling reaction was carried out in the presence of triphenylphosphine.

Scheme 2

The domino coupling of iodopyridines $22 \mathrm{a}, \mathrm{b}$ and 25 onto norbornene 1 and dicyclopentadiene 10 required even higher temperatures $\left(120^{\circ} \mathrm{C}\right)$ and the presence of triphenylphophine. In all cases, only $2: 1$ coupling products were obtained in up to 56% yield (Scheme 3).

$+$
$+2$

22 a: $R^{3}=H$
$10 \quad R^{1}-R^{2}=>$
b: $\mathrm{R}^{\mathbf{3}=\mathrm{Me}}$

10

23a $R^{1}, R^{2}, R^{3}=H(45 \%)$
23b $R^{1}, R^{2}=H, R^{3}=\operatorname{Me}(30 \%)$
24a $R^{1}-R^{2}=>, R^{3}=H(56 \%)$

26

Scheme 3

Unfortunately, the main products from 3-iodopyridines $22 a, b$ and 1 or 10 were not the ring-anellated 5,6 -dihydro-1,10-phenanthrolines, but the 3,8 -isomers 23a,b and 24a, respectively, with a trace (1%) of the 1,8 -isomer being isolated from the reaction of 10 with 22a. Dicyclopentadiene 10 and 4 -iodopyridine 25 gave a single product, namely the ring-anellated 5,6-dihydro-2,9-phenanthroline 26 , but only in 25% yield. The positions of the nitrogen atoms in 24a and the exo-orientation of its dihydrophenanthroline unit were proved by an X-ray crystal structure analysis (see Figure 2). ${ }^{14}$

24a
Figure 2. Molecular structure of $24 a$ in the crystal. ${ }^{14}$ Monoclinic crystals of space group $C 2 / \mathrm{c}, Z=8$, unit cell dimensions $a=20.785(4), b=15.770(3), c=11.262(2) \AA, \beta=104.20(3)^{\circ}, V=3578.7(12) \AA^{3}$. Crystal size $0.3 \times 0.6 \times 0.1 \mathrm{~mm}, T=293 \mathrm{~K}, 4336$ reflections collected, final $R_{w}=9.7 \%$.

MECHANISTIC ASPECTS OF THE FOUR-COMPONENT DOMINO COUPLING

The previously proposed mechanism ${ }^{10 a}$ does not account for the positions of the three substituents in $1: 3$ coupling products from norbornene 1 and p-substituted aryl iodides, as revealed by the X-ray crystal structure analysis of $\mathbf{4 c}$ (see Figure 1). It is now generally accepted that the catalytic cycle of both the $1: 2$ and 1:3 domino coupling reactions involves alternately squaric $\operatorname{Pd}(I I)$ and octahedral $\operatorname{Pd}(\mathrm{IV})$ intermediates. ${ }^{17,18}$ But the sequence and regioselectivity of oxidative addition and C,C bond forming (reductive elimination) steps has to be consistent with the structure of $\mathbf{4 c}$, and the new experimental observation that the doubly labelled 4-chloro-3,5-dideuterioiodobenzene $2 \mathrm{e}-\mathrm{I}$ gives a $3: 1$ adduct 4 e with only five deuterium labels remaining in the molecule (see Scheme 4). This indicates that the 4 -aryl substituent in the resulting 4-aryl9,10 -dihydrophenanthrene derivative is being attached as the last group onto one of the former deuterium labelled positions meta to the iodine and ortho to the chlorine in $\mathbf{2 e}-\mathrm{I}$. The whole sequence undoubtedly begins with an exo-syn-addition of arylpalladium halide to norbornene, ${ }^{19}$ the resulting Pd(II) complex 27 cyclizes by elimination of hydrogen iodide to give the palladacycle $28,{ }^{20}$ which reacts in another oxidative addition step with 2e-I to yield the octahedral Pd(IV) complex 29. The subsequent elimination of hydrogen iodide, in which the proton comes from one of the ortho-positions of the aryl ligand, can lead to the aryne-Pd(IV) complex $30,{ }^{21}$ which can undergo reductive elimination to form the seven-membered palladacycle 31. In the presence of a triphenylphosphine ligand, the complex of type 31 can apparently undergo further reductive elimination to yield the corresponding norbornene-anellated 9,10 -dihydrophenanthrene derivative, as observed for the reaction of dicyclopentadiene 10 with 2a-I (see above). Eventually, the palladium(II) in 31 can undergo a third oxidative addition of aryl iodide, and the resulting Pd(IV) complex 32, in a sequence of hydrogen iodide

$2 \mathrm{e}-\mathrm{I}$

27

-
$-\mathrm{HI}$

$+20-1$

Scheme 4. Proposed mechanism for the four-component domino coupling of norbornene 1 and aryl iodides 2\mathbf{X} as corroborated by an experiment with doubly labelled 4-chloro-3,5-dideuterioiodobenzene $\mathbf{2 e - I}$ (* indicates the position of deuterium labels in the intermediates).
elimination (deuterium iodide in this particular case) and two subsequent reductive elimination steps with C, C bond formation via the aryne $\mathrm{Pd}(\mathrm{IV})$ complex $\mathbf{3 3}^{21}$ and the $\mathrm{Pd}(I I)$ complex 34, reconstitutes the catalytically active $\operatorname{Pd}(0)$ species to yield the observed $1: 3$ domino coupling product of type $\mathbf{4 e}$.

TRANSFORMATIONS OF THE FOUR-COMPONENT DOMINO COUPLING PRODUCTS

The domino coupling products of type $\mathbf{3}$ and $\mathbf{4}$ offer an easy approach to a variety of other polycyclic aromatic compounds. ${ }^{10}$ As exemplified for 4 a , irradiation in cyclohexane in the presence of iodine results in cyclization with dehydrogenation of the 4 -phenyl-9,10-dihydrophenanthrene unit leading smoothly to the norbornene-anellated 4,5 -dihydrobenzo[e]pyrene derivative 35 (83%, Scheme 5). Further dehydrogenation with dichlorodicyanobenzoquinone (DDQ) leads to the norbornene-anellated benzo[e]pyrene 38 (85%). If instead, $\mathbf{4 a}$ is first dehydrogenated with DDQ to compound $37(67 \%)$, the photocyclization/dehydrogenation no longer takes place.

Upon flash vacuum pyrolysis (FVP, sublimation at 0.05 Torr through a $800^{\circ} \mathrm{C}$ hot quartz tube) ${ }^{22} 35$ cleanly cleaves off cyclopentene to give benzo[e]pyrene 36 (69%). The dehydrogenated compound 38 , under the same pyrolysis conditions, yields 95% cyclopentadieno(l]benzo[e]pyrene 39 (Scheme 5). A better overall

$4 a$

$\xrightarrow[\substack{\mathrm{N}_{2}, 4 \mathrm{~h} \\ 83 \%}]{\substack{\mathrm{C}_{8} \mathrm{C}_{1} \mathrm{H}_{12} \\ 83 \%}}$

DDQ,	Δ	
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$	$2 h$	67%

37

35

36

95\%

$\xrightarrow{<10^{-4} \text { Torr }}$

12

(E/Z)-42

40
$81 \% \left\lvert\, \begin{aligned} & \mathrm{H}_{2}, \\ & \mathrm{Pd} / \mathrm{C}\end{aligned}\right.$

43
Scheme 5
yield of this interesting ligand 39 for metal complexes ${ }^{10 b}, 23$ is obtained by photocyclization/dehydrogenation of $\mathbf{1 2}$, the $3: 1$ coupling product of iodobenzene $\mathbf{2 a} \mathbf{I}$ with dicyclopentadiene $\mathbf{1 0}$, and subsequent pyrolysis of $40(60 \%$ overall from 10), mainly because the dehydrogenation with DDQ is spared. The retro-Diels-Alder reaction ${ }^{24}$ of 40 is preceded by an intramolecular transfer of the two bridgehead hydrogens onto the double bond in the endo-oriented cyclopentene ring, 25 transforming 40 to 41 , which then easily cleaves off cyclopentene. In fact, cyclopentene was detected as the major volatile by-product in this and analogous pyrolyses, and ($\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{8}$) was also the major fragment ion in all of the mass spectra of 11, 12, 20, 21, 24a, 26 and 40.26 In a control experiment, 40 was first hydrogenated over palladium on charcoal and the resulting 43 then pyrolyzed, but no retro-Diels-Alder product could be observed.

Consequently, all the domino coupling products obtained from dicyclopentadiene 10 and aryl halides cleanly cleaved to the corresponding cyclopentadiene-anellated oligocyclic arenes. Compound 12 gave a mixture of the two double bond regioisomers (E) - and (Z)-42 in 85% yield (Scheme 5). The norbornene-

Scheme 6
annellated 4-phenylphenanthrene 37, which was obtained by dehydrogenation of 4a, could also be pyrolyzed to (E / Z)-42, but aside from the additional step, the overall yield was significantly lower (47 versus 59%). Flash vacuum pyrolysis of dicyclopentadiene derived products 11, 20, 24a and 26 to 9:10-cyclopentadienophenanthrene 45, 4:5-cyclopentadienobenzo[1,2-b:4,3-b]dithiophene 46, 5:6-cyclopentadieno-3,8-phenanthroline 47 and 5:6-cyclopentadieno-2,9-phenanthroline 48 all proceeded with high yields ($77-94 \%$, see Scheme 6).

ACKNOWLEDGEMENTS

This work was supported by the "Volkswagen-Stiftung" and the "Fonds der Chemischen Industrie" as well as the Degussa AG, Hoechst AG and Hüls AG through generous gifts of chemicals. O. R. thanks the "Studienstiftung des deutschen Volkes" for a graduate fellowship. We are indebted to Dr. M. Noltemeyer, Institut für Anorganische Chemie, Georg-August-Universität Gö̈ttingen, for carrying out the reported crystal structure analyses, and to S . Beußhausen for his technical assistance.

EXPERIMENTAL PART

${ }^{1} \mathrm{H}$ NMR: Bruker AW 250 (250 MHz), AM 250 (250 MHz), WH 270 (270 MHz), WM 400 (400 MHz), $\delta=0$ for tetramethylsilane as internal standard, 7.26 for chloroform, 7.15 for [D_{5}]benzene. $-{ }^{13} \mathrm{C}$ NMR: Bruker AW $250(62.5 \mathrm{MHz})$, AM $250(62.9 \mathrm{MHz})$, WH $270(67.9 \mathrm{MHz})$, WM $400(100.6 \mathrm{MHz}), \delta=77.0$ for deuteriochloroform, ${ }^{*}=$ assignment is interchangeable. The multiplicities of ${ }^{13} \mathrm{C}$ NMR signals were generally determined with the help of either DEPT- (Distortionless Enhancement of Polarization Transfer) or APTtechniques (Attached Proton Test) and are designated as follows: $\mathrm{CH}_{3}, \mathrm{CH}=(+)$ (DEPT and APT), $\mathrm{CH}_{2}=(-)$ (DEPT and APT), quaternary $\mathrm{C}=(-)(\mathrm{APT})$ or ($\mathrm{C}_{\text {qual }}$ (DEPT). - IR: Perkin-Elmer 125, 297, 298, 399, and 1720 FTIR. - MS: Varian MAT CH-7 with Varian Aerograph 1740, MAT 311A, MAT 731 (EI), Finnigan MAT 95, and VG-70-250S Fa. VG Analytical (high resolution). - UV/VIS: Cary 219 (Varian). - Melting points were determined with an Electrothermal melting point app. (Fa. Wagner und Munz, Fa. Büchi) and are uncorrected. - Column chromatography (CC): Merck silica gel 60 ($70-230$ mesh), Woelm $\mathrm{Al}_{2} \mathrm{O}_{3}$. - TLC was performed on aluminum sheets with UV fluorescence indicator (E. Merck, Silica Gel $60 \mathrm{~F}_{254}$; Macherey \& Nagel, Aluminum Oxide BF_{254}). - Elemental analyses were carried out by Mikroanalytisches Laboratorium, Institut für Organische Chemie, Universität Hamburg, Mikroanalytisches Laboratorium, Institut für Organische Chemie, Universität Göttingen. - HRMS: The molecular composition was determined by high resolution mass spectroscopy with preselective ion peak matching with $R \sim 10000$ within ± 2 ppm. - X-ray crystal structure analyses: Intensity data were measured with a Siemens Stoe AED 2 diffractometer, using graphite-monochromated Mo- K_{α} radiation $(\lambda=71.069 \mathrm{pm})$, structures were solved with SHELXTL-PLUS. 15

Further details of these crystal structure investigations are available on request from the Fachinformationszentrum Energie Physik Mathematik GmbH, D-76344 Eggenstein-Leopoldshafen. - The following abbreviations will be used: $\mathrm{PE}=$ petroleum ether bp $40-80, \mathrm{DMF}=N, N$-dimethylformamide, $\mathrm{NMP}=\mathrm{N}$ methylpyrrolidone, MTBE $=t$-butyl methyl ether.

Domino Coupling of Aryl Halides and Norbornene

General Procedure 1 (GP 1): To a mixture of 3 mmol of aryl halide, 6 mmol of $\mathrm{K}_{2} \mathrm{CO}_{3}, 3 \mathrm{mmol}$ of tetrabutylammonium bromide, and 0.03 mmol of palladium acetate in anhydrous NMP was added at $65-85^{\circ} \mathrm{C}$ simultaneously via a syringe pump a solution of 1 mmol of alkene in NMP and a solution of 0.06 mmol of palladium acetate in NMP at a rate of $2-3 \mathrm{mmol}$ of alkene per hour. The reaction mixture was further stirred at this temperature for the stated length of time. The reaction mixture was diluted with 100 ml of dichloromethane and extracted with 5 portions of water (100 ml each), the organic layer was dried over MgSO_{4}, then the solvents were evaporated, and the residue was purified by chromatography and/or recrystallisation.
exo-(4-Phenyl-9,10-dihydrophenanthreno)-2':3',9:10-norbornane (4a): According to GP 1 , to a mixture of $6.50 \mathrm{~g}(31.8 \mathrm{mmol})$ of $2 \mathrm{a}-\mathrm{I}, 10.27 \mathrm{~g}(31.9 \mathrm{mmol})$ of $\mathrm{Bu}_{4} \mathrm{NBr}, 8.82 \mathrm{~g}(63.8 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 24 mg (0.11 mmol) of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 30 ml of NMP was added at $65^{\circ} \mathrm{C}$ during 4.5 h a solution of $1.00 \mathrm{~g}(10.6 \mathrm{mmol})$ of 1 in 5 ml of NMP and a solution of $48 \mathrm{mg}(0.21 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 5 ml of NMP. The mixture was further heated for 2 d at $65^{\circ} \mathrm{C}$. After standard workup, the crude product was chromatographed on 200 g of silica gel ($6 \times 15 \mathrm{~cm}, \mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 9: 1$): fraction I: $\left(R_{\mathrm{f}}=0.57\right) 964 \mathrm{mg}$ of $2 \mathrm{a}-\mathrm{I}\left(\hat{=}=85 \%\right.$ conversion). $-\mathrm{II}\left(R_{\mathrm{f}}=\right.$ 0.33) $2.41 \mathrm{~g}(70 \%, 83 \%$ based on conversion of $2 \mathrm{a}-\mathrm{I})$ of 4 a , mp $154-155^{\circ} \mathrm{C} .-\mathrm{R}(\mathrm{KBr}): v=3050 \mathrm{~cm}^{-1}$, $2980,2960,2880,1600,1590,1440,1420,1180,800,770,760,740,700 .-1 \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, and $\left.{ }^{1} \mathrm{H}^{1} \mathrm{H} \operatorname{COSY}\right): \delta=1.07\left(\mathrm{~d},{ }^{2} J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{s y n}{ }^{*}\right), 1.44\left(\mathrm{~d},{ }^{2} J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 7{ }^{\prime}-\mathrm{H}_{\text {anti }}{ }^{*}\right), 1.61-1.75$ [m , $\left.4 \mathrm{H}, 5^{\prime}\left(6^{\prime}\right)-\mathrm{H}\right], 2.30\left(\mathrm{~s}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}^{* *}\right), 2.45\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}^{* *}\right), 3.31\left[\mathrm{AB}\right.$ system, $\delta_{\mathrm{A}}=3.23, \delta_{\mathrm{B}}=3.39,3 \mathrm{~J}=$ $\left.10.7 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right], 6.66\left(\mathrm{dt},{ }^{3} J=10.7,{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene-H), $6.85\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene-H), $6.98\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene- H$), 7.05(\mathrm{~m}, 1 \mathrm{H}$, arene- H$), 7.12\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene-H$), 7.19(\mathrm{~m}, 2 \mathrm{H}$, arene-H), $7.26-7.37$ (bs, $5 \mathrm{H}, 4$-phenyl-H). $-{ }^{13} \mathrm{C} \mathrm{NMR}\left(67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, and DEPT): $\delta=29.70\left(-, \mathrm{C}-5^{*}\right)$, $30.91\left(-, \mathrm{C}-6^{*}\right), 33.23\left(-, \mathrm{C}-7^{\prime}\right), 46.80\left(+, \mathrm{C}-1^{* * *}\right), 47.17\left(+, \mathrm{C}-4^{* * *}\right), 49.25\left(+, \mathrm{C}-2^{* * * *}\right), 49.91\left(+, \mathrm{C}-3^{\prime * * *}\right)$, $124.73(+), 126.56(+), 126.60\left(+\right.$, rel. intens. 2), $128.68(+), 128.69(+), 129.16\left(\mathrm{C}_{\text {quat }}\right), 129.59(+), 129.62$ $(+), 130.41(+), 131.16(+), 131.91\left(\mathrm{C}_{\text {quat }}\right), 138.91\left(\mathrm{C}_{\text {quat }}\right), 139.64\left(\mathrm{C}_{\text {quat }}\right), 140.61\left(\mathrm{C}_{\text {quat }}\right), 145.15\left(\mathrm{C}_{\text {quat }}\right) .-$ MS (70 eV), m/z (\%): $322(100)\left[\mathrm{M}^{+}\right], 255(53), 254(48)\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{8}\right], 253(94)\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{9}\right], 252(42) \mathrm{M}^{+}-$ $\left.\mathrm{C}_{5} \mathrm{H}_{10}\right]-\mathrm{C}_{25} \mathrm{H}_{22}$ (322.4): calcd. C $93.12, \mathrm{H} 6.88$; found $\mathrm{C} 93.21, \mathrm{H} 6.96 \%$.
exo-[4-(p-Methoxyphenyl)-3,6-dimethoxy-9,10-dihydrophenanthreno]-2:3;9:10-norbornane (4b): According to GP 1, to a mixture of $3.73 \mathrm{~g}(15.9 \mathrm{mmol})$ of $2 \mathrm{~b}-\mathrm{I}, 5.14 \mathrm{~g}(15.9 \mathrm{mmol})$ of $\mathrm{Bu}_{4} \mathrm{NBr}, 4.40 \mathrm{~g}(31.9$ $\mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and $18 \mathrm{mg}(1.5 \mathrm{~mol} \%)$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 30 ml of NMP was added at $65^{\circ} \mathrm{C}$ during 2.5 h a solution of $500 \mathrm{mg}(5.3 \mathrm{mmol})$ of 1 in 5 ml of NMP and a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($24 \mathrm{mg}, 2 \mathrm{~mol} \%$) in 1 ml of NMP. After stirring for 23 h at $65^{\circ} \mathrm{C}$, the temperature was raised to $80^{\circ} \mathrm{C}$ for another 30 h . After standard workup, the crude product was chromatographed on 200 g of silica gel ($6 \times 15 \mathrm{~cm}$, cyclohexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 9: 1$): fraction I ($R_{f}=0.56$): 1.20 g of $\mathbf{2 b}-\mathrm{I} .-\Pi\left(R_{\mathrm{f}}=0.28, \mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1\right): 1.17 \mathrm{~g}(54 \%, 79 \%$ based on conversion of $\mathbf{2 b - I}$) of $\mathbf{4 b}$, white solid, $\mathrm{mp} 170^{\circ} \mathrm{C}$. $-\mathrm{IR}(\mathrm{KBr}): v=2926 \mathrm{~cm}^{-1}, 2357,2330,1609,1514,1461,1315$, $1246,1175,1141,1098,1043,942,910,864,821,783,761,736,703 .-{ }^{1} \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $1.03\left(\mathrm{dt},{ }^{2} J=9.8,{ }^{3} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{s y n}{ }^{*}\right), 1.47\left(\mathrm{dt}, 2 J=9.8,3 J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{a n t i}{ }^{*}\right), 1.57-1.72[\mathrm{~m}, 4$ $\left.\mathrm{H}, 5^{\prime}\left(6^{\prime}\right)-\mathrm{H}\right], 2.24\left(\mathrm{~s}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}^{* *}\right), 2.34\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}^{* *}\right), 3.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.17\left[\mathrm{AB} \mathrm{system} ; \delta_{\mathrm{A}}=3.09, \delta_{\mathrm{B}}\right.$ $\left.=3.25,3^{3}=9.8 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right], 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.54-6.62(\mathrm{~m}, 2 \mathrm{H}$, arene-H$)$, $6.88-7.01\left(\mathrm{~m}, 2 \mathrm{H}\right.$, arene-H), $7.11\left(\mathrm{dd},{ }^{3} J=8.4,{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene-H), $7.19\left(\mathrm{dd},{ }^{3} J=8.4,{ }^{4} J=2.0 \mathrm{~Hz}, 1\right.$ H , arene- H), $7.38\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.4,{ }^{4} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene-H). ${ }^{13} \mathrm{C} \mathrm{NMR}(62.9 \mathrm{MHz}, \mathrm{CDCl} 3): \delta=29.73(\mathrm{C}-$ $\left.5^{*}\right), 30.69\left(\mathrm{C}-6^{*}\right), 32.98\left(\mathrm{C}-7^{*}\right), 46.02\left(\mathrm{C}-1^{* *}\right), 46.64\left(\mathrm{C}-4^{* * *}\right), 49.00\left(\mathrm{C}-2^{* * *}\right), 49.95\left(\mathrm{C}-3^{* * *}\right), 54.52$ $\left(\mathrm{OCH}_{3}\right), 55.30\left(\mathrm{OCH}_{3}\right), 56.07\left(\mathrm{OCH}_{3}\right), 110.85,112.84,114.18,114.25,115.30,127.16,129.53,130.69$, $131.68,132.03,132.15,132.23,132.62,133.11,155.79,156.53,158.43$. - MS (70 eV), $m / z(\%): 412$ $(100)\left[\mathrm{M}^{+}\right], 344(22)\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{8}\right], 329(12), 314$ (10), 269 (10), 255 (5), 239 (6), 226 (7), 156 (10). $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{3}$ (412.5): calcd. C 81.52, H 6.84 ; found C $81.60, \mathrm{H} 6.91 \%$.
exo-[4-(p-Fluorophenyl)-3,6-difluoro-9,10-dihydrophenanthreno]-2':3',9:10-norbornane (4c): According to GP 1 , to a mixture of $5.58 \mathrm{~g}(31.9 \mathrm{mmol})$ of $2 \mathrm{c}-\mathrm{Br}, 10.27 \mathrm{~g}(31.9 \mathrm{mmol})$ of $\mathrm{Bu}_{4} \mathrm{NBr}, 8.81 \mathrm{~g}(63.7$ mmol) of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and $27 \mathrm{mg}\left(1.1 \mathrm{~mol} \%\right.$) of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 30 ml of NMP was added at $75^{\circ} \mathrm{C}$ during 3.5 h a solution of $1.00 \mathrm{~g}(10.6 \mathrm{mmol})$ of 1 in 5 ml of NMP and a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(50 \mathrm{mg}, 2.1 \mathrm{~mol} \%)$ in 1 ml of NMP. The mixture was stirred for 72 h at $75^{\circ} \mathrm{C}$. After standard workup, the crude product was chromatographed on 90 g of silica gel $\left(4 \times 15 \mathrm{~cm}, \mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 9: 1\right)$: fraction $\mathrm{I}\left(R_{\mathrm{f}}=0.58\right): 1.79 \mathrm{~g}$ of $2 \mathrm{c}-\mathrm{Br}$. - II ($R_{\mathrm{f}}=0.32$): $1.29 \mathrm{~g}\left(32 \%, 48 \%\right.$ based on conversion) of 4 c , pale yellow crystals, mp $165^{\circ} \mathrm{C} .-\mathrm{IR}(\mathrm{KBr}): v=$ $3057 \mathrm{~cm}^{-1}, 2904,1895,1742,1606,1571,1510,1467,1420,1396,1328,1297,1277,1221,1195,1155$, $1128,1094,1080,1015,967,922,883,820,783,765,734,702,683,666,645 .-{ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta=1.08\left(\mathrm{dt},{ }^{2} J=10.0,{ }^{3} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}\right), 1.56-1.79\left[\mathrm{~m}, 4 \mathrm{H}, 5^{\prime}\left(6^{\prime}\right)-\mathrm{H}\right], 2.27\left(\mathrm{~s}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}^{*}\right), 2.35$ (s, $1 \mathrm{H}, 4^{\prime}-\mathrm{H}^{*}$), $3.21\left[\mathrm{AB}\right.$ system, $\left.\delta_{\mathrm{A}}=3.14, \delta_{\mathrm{B}}=3.20,{ }^{3} \mathrm{~J}=9.8 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right], 6.44$ (dd, ${ }^{3} \mathrm{~J}=12.8,{ }^{4} \mathrm{~J}=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}$, arene-H), 6.97-7.25 (m, 6 H , arene-H), 7.33-7.42 (m, 1 H , arene- H). $-\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~F}_{3}$ (376.4): calcd. C 79.77, H 5.09, F 15.44; found C 79.74, H 5.10, F 15.31%.
exo-[3,6-Dimethyl-4-(p-methylphenyl)-9,10-dihydrophenanthreno]-2':3',9:10-norbornane (4d): Under nitrogen a mixture of $1.00 \mathrm{~g}(10.6 \mathrm{mmol})$ of $1,2.31 \mathrm{~g}(10.6 \mathrm{mmol})$ of $2 \mathrm{~d}-\mathrm{I}, 3.41 \mathrm{~g}(10.6 \mathrm{mmol})$ of $\mathrm{Bu} \mathrm{m}_{4} \mathrm{NBr}$, 3.0 g (21.7 mmol) of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and $50 \mathrm{mg}(0.22 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 20 ml of DMF was vigorously stirred at $100^{\circ} \mathrm{C}$. The mixture was filtered, and the residue was washed with 100 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were extracted with 5 portions of water (100 ml each), dried, and concentrated. The residue was chromatographed on 50 g of silica gel ($12 \times 3.5 \mathrm{~cm}, \mathrm{PE}$) to yield 725 mg of a brown oil ($R_{\mathrm{f}}=0.58$), recrystallisation from heptane afforded $470 \mathrm{mg}(36 \%)$ of 4 d , white needles, $\mathrm{mp} 123-124^{\circ} \mathrm{C} .-\mathbf{I R}(\mathrm{KBr}): v=$ $3050 \mathrm{~cm}^{-1}, 2980,2960,2880,1600,1590,1440,1420,1180,800,770,760,740,700 .-{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}) $: ~ \delta=1.14\left(\mathrm{~d},{ }^{2} J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{s y n}{ }^{*}\right), 1.58\left(\mathrm{~d},{ }^{2} J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{\text {anti }}{ }^{*}\right), 1.74-1.80[\mathrm{~m}, 4 \mathrm{H}$, $\left.5^{\prime}\left(6^{\prime}\right)-\mathrm{H}\right], 1.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.43\left(\mathrm{~s}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}^{* *}\right), 2.47\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}^{* *}\right), 2.54(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $3.31\left[\mathrm{AB}\right.$ system, $\left.\delta_{\mathrm{A}}=3.24, \delta_{\mathrm{B}}=3.38,3 \mathrm{~J}=10.7 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right], 6.66(\mathrm{~s}, 1 \mathrm{H}$, arene-H), 6.91 (dd, ${ }^{3} J=7.5,{ }^{4} J=1.1 \mathrm{~Hz}, 1 \mathrm{H}$, arene-H), $7.13\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene-H), $7.15\left(\mathrm{dd},{ }^{3} J=7.5,4 J=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene-H), $7.21(\mathrm{~s}, 1 \mathrm{H}$, arene-H), $7.23(\mathrm{~s}, 1 \mathrm{H}$, arene- H$), 7.26(\mathrm{~m}, 1 \mathrm{H}$, arene- H$), 7.31(\mathrm{~d}, 3 \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, arene-H), $7.39\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene-H). ${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, and DEPT): $\delta=20.80(+$, CH_{3}), $21.11\left(+, \mathrm{CH}_{3}\right) 21.46\left(+, \mathrm{CH}_{3}\right) 30.17\left(-, \mathrm{C}-5^{\prime *}\right), 30.57\left(-, \mathrm{C}-6^{\prime *}\right), 33.17\left(-, \mathrm{C}-7^{\prime}\right), 46.35\left(+, \mathrm{C}-1^{* * *}\right)$, 47.17 (,$+ \mathrm{C}-4^{\prime * *}$), 49.50 (+ , C-2 ${ }^{* * * *), ~} 50.08$ (+, C-3****), 127.25 (+), 128.99 (+), 129.24 (+), $129.49(+)$, $129.63(+), 130.02(+), 130.14(+), 131.46\left(\mathrm{C}_{\text {quat }}\right), 132.45\left(\mathrm{C}_{\text {quat }}\right), 133.61\left(\mathrm{C}_{\text {quat }}\right), 134.70\left(\mathrm{C}_{\text {quat }}\right), 136.09$ $\left(\mathrm{C}_{\text {quat }}\right), 136.39\left(\mathrm{C}_{\text {quat }}\right), 137.94\left(\mathrm{C}_{\text {quat }}\right), 138.85\left(\mathrm{C}_{\text {quat }}\right), 140.95\left(\mathrm{C}_{\text {quat }}\right) . \mathrm{MS}(70 \mathrm{eV}), m / z(\%): 364(100)\left[\mathrm{M}^{+}\right]$, 349 (8) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 297$ (38), 296 (21)[M+ $\left.\mathrm{C}_{5} \mathrm{H}_{8}\right] .-\mathrm{C}_{28} \mathrm{H}_{28}$ (364.5): calcd. C 92.26, H 7.74; found C 92.31, H 7.76\%.
exo-[3,6-Dichloro-2,5,7-trideuterio-4-(4"-chloro-3",5"-dideuteriophenyl)-9,10-dihydrophenanthreno]$2^{\prime}: 3^{\prime}, 9: 10$-norbornane (4e): Under nitrogen a mixture of $1.00 \mathrm{~g}(7.2 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}, 1.28 \mathrm{~g}(4.0 \mathrm{mmol})$ of $\mathrm{Bu}_{4} \mathrm{NBr}, 15.2 \mathrm{mg}(0.07 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}, 200 \mathrm{mg}(2.1 \mathrm{mmol})$ of norbornene (1), and $1.53 \mathrm{~g}(6.4 \mathrm{mmol})$ of 4-chloro-3,5-dideuterioiodobenzene (2e-I) was vigorously stirred for 24 h at $80^{\circ} \mathrm{C}$ in a sealed bottle. Subsequently, 100 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, the mixture was filtered, and the residue was extracted with 5 portions of water (40 ml each), dried, and concentrated. The residue was chromatographed on 50 g of silica gel $\left(25 \times 3.5 \mathrm{~cm}, \mathrm{PE}, R_{\mathrm{f}}=0.19\right)$ to yield $343 \mathrm{mg}(38 \%)$ of 4 e , colorless crystals, $\mathrm{mp} 168^{\circ} \mathrm{C}$. $-\mathrm{IR}(\mathrm{KBr}): v=2930$ $\mathrm{cm}^{-1}, 2870,1440,1365,1030,905,740,725 .-{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.07\left(\mathrm{~d},{ }^{2} J=10 \mathrm{~Hz}, 1 \mathrm{H}, 7\right.$ '$\left.\mathrm{H}_{s y n}{ }^{*}\right), 1.37\left(\mathrm{~d},{ }^{2} \mathrm{~J}=10 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{\text {anti }}{ }^{*}\right), 1.58-1.76\left[\mathrm{~m}, 4 \mathrm{H}, 5^{\prime}\left(6^{\prime}\right)-\mathrm{H}\right], 2.26-2.36\left[\mathrm{~m}, 2 \mathrm{H}, 1^{\prime}\left(4^{\prime}\right)-\mathrm{H}\right], 3.18$ [AB system, $\left.\delta_{\mathrm{A}}=3.11, \delta_{\mathrm{B}}=3.26,{ }^{3} \mathrm{~J}=10.0 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right], 7.05\left(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}^{* *}\right), 7.08(\mathrm{~d}, 4 J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.2^{\prime \prime}-\mathrm{H}^{* * *}\right), 7.19\left(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}^{* *}\right), 7.32\left(\mathrm{~d}, 4 \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}^{* * *}\right) .-{ }^{13} \mathrm{C} \mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, and APT): $\delta=29.85(-), 30.49(-), 33.12(-), 45.93(+), 46.73(+), 49.30(+), 49.93(+), 126.98(\mathrm{t}, \mathrm{CD}$, $\left.{ }^{1} J_{\mathrm{C}, \mathrm{D}}=26 \mathrm{~Hz}\right), 127.81\left(\mathrm{t}, \mathrm{CD},{ }^{1} J_{\mathrm{C}, \mathrm{D}}=24 \mathrm{~Hz}\right), 128.4-129.4(\mathrm{~m}, 3 \mathrm{CD}), 130.48(+), 130.62(-), 130.98(+)$, $131.46(+), 131.70(+), 132.31(-), 132.67(-), 132.73(-), 133.70(-), 135.89(-), 137.65(-), 138.90(-)$, $139.90(-)$. MS (70 eV), $m / z(\%): 429 / 431(18 / 18)\left[\mathrm{M}^{+}\right], 318 / 320(62 / 38), 267(100), 250(91), 238(61), 69$ (72). $-\mathrm{C}_{25} \mathrm{H}_{14} \mathrm{D}_{5} \mathrm{Cl}_{3}$: calcd. and found: 429.0856 (HRMS).
exo-(3,6-Dicyano-9,10-dihydrophenanthreno)-2':3',9:10-norbornane (3f) and exo-[3,6-dicyano-4-(p-cyanophenyl)-9,10-dihydrophenanthreno]-2':3',9:10-norbornane (4f): According to GP 1, to a mixture of $2.90 \mathrm{~g}(15.9 \mathrm{mmol})$ of $2 \mathrm{f}-\mathrm{Br}, 5.14 \mathrm{~g}(15.9 \mathrm{mmol})$ of $\mathrm{Bu}_{4} \mathrm{NBr}, 4.40 \mathrm{~g}(31.9 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and $12 \mathrm{mg}(1.0$ $\mathrm{mol} \%$) of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 35 ml of NMP was added at $75^{\circ} \mathrm{C}$ during 2.5 h a solution of $500 \mathrm{mg}(5.3 \mathrm{mmol})$ of 1 in 5 ml of NMP and a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($24 \mathrm{mg}, 2 \mathrm{~mol} \%$) in 1 ml of NMP. The mixture was further stirred for 2 d at $75^{\circ} \mathrm{C}$. After standard workup, the crude product was chromatographed on 200 g of silica gel $\left(6 \times 15 \mathrm{~cm}, \mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 9: 1\right)$: fraction I $\left[R_{\mathrm{f}}=0.64\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]: 1.88 \mathrm{~g}$ of $\mathbf{2 f - B r}$. $-\mathrm{II}\left[R_{\mathrm{f}}=0.41\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]$: $66 \mathrm{mg}\left(8 \%\right.$ based on conversion of $\mathbf{2 f - B r}$) of $3 \mathrm{f}, \mathrm{mp} 219{ }^{\circ} \mathrm{C}$. - IR (KBr): $v=3078 \mathrm{~cm}^{-1}, 2955,2872,2228$, 1918, 1720, 1606, 1572, 1500, 1451, 1403, 1317, 1289, 1207, 1174, 888, 772, 736, 703. - ${ }^{1}$ H NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.12\left(\mathrm{dt},{ }^{2} J=10.4,{ }^{3} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{s y n}{ }^{*}\right), 1.28\left(\mathrm{dt}, 2 J=10.4,{ }^{3} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\right.$ $\left.\mathrm{H}_{\text {anti }}{ }^{*}\right), 1.64-1.80\left[\mathrm{~m}, 4 \mathrm{H}, 5^{\prime}\left(6^{\prime}\right)-\mathrm{H}\right], 2.40\left[\mathrm{t},{ }^{3} \mathrm{~J}=1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{l}^{\prime}\left(4^{\prime}\right)-\mathrm{H}\right], 3.27$ [d, $\left.{ }^{4} \mathrm{~J}=0.8 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right]$, $7.36\left[\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 1(8)-\mathrm{H}\right], 7.53\left[\mathrm{dd},{ }^{3} J=8.0,{ }^{4} J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, 2(7)-\mathrm{H}\right], 8.04[\mathrm{~d}, 4 J=1.6 \mathrm{~Hz}, 2 \mathrm{H}$, $4(5)-\mathrm{H}] .-{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$, and DEPT): $\boldsymbol{\delta}=30.17$ [-, C-5'(6')], $33.41\left(-, \mathrm{C}-7{ }^{\prime}\right), 45.97$ [+, C$\left.1^{\prime}\left(4^{\prime}\right)\right], 49.69\left[+, \mathrm{C}-2^{\prime}\left(3^{\prime}\right)\right], 110.89\left[\mathrm{C}_{\text {quat, }}, \mathrm{C}-3(6)\right], 118.66\left(\mathrm{C}_{\text {quat }}, \mathrm{CN}\right), 126.25(+), 130.74\left(\mathrm{C}_{\text {quat }}\right), 131.32(+)$, $131.63(+), 142.39\left(\mathrm{C}_{\text {quat }}\right)$ - MS (70 eV), $m / z(\%): 296(38)\left[\mathrm{M}^{+}\right], 228(100)\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{8}\right] .-\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2}$: calcd. 296.1313, found $296.1308(\mathrm{MS})$ - $-\amalg\left[R_{\mathrm{f}}=0.33\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]: 127 \mathrm{mg}$ (17% based on conversion of $2 \mathrm{f}-\mathrm{Br}$) of $4 f, \mathrm{mp}>230^{\circ} \mathrm{C} .-\operatorname{IR}(\mathrm{KBr}): \mathrm{v}=2955 \mathrm{~cm}^{-1}, 2872,2228,1702,1606,1396,1269,1181,841,736 .-{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.18\left(\mathrm{dtt}^{2} J=10.4,{ }^{3} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{5 y n}{ }^{*}\right.$), $1.32\left(\mathrm{dt},{ }^{2} J=10.4,3 J=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.7^{\prime}-\mathrm{H}_{\text {anti }}{ }^{*}\right), 1.67-1.84\left[\mathrm{~m}, 4 \mathrm{H}, 5^{\prime}\left(6^{\prime}\right)-\mathrm{H}\right], 2.35\left(\mathrm{~s}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}^{* *}\right), 2.46\left(\mathrm{~s}, 1 \mathrm{H}, 4^{-}-\mathrm{H}^{* *}\right), 3.32$ [AB system, $\delta_{\mathrm{A}}=$ $\left.3.24, \delta_{\mathrm{B}}=3.40,{ }^{3} \mathrm{~J}=9.8 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right], 6.89\left(\mathrm{~d},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene-H), $7.30-7.36(\mathrm{~m}, 3 \mathrm{H}$, arene-H), $7.43\left(\mathrm{dd},{ }^{3} J=8.0,{ }^{4} J=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene-H), $7.65\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, arene-H), $7.75\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene-H), $7.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene-H). - ${ }^{13} \mathrm{C}$ NMR (100.6 MHz , and DEPT): $\delta=29.80\left(-, \mathrm{C}-5^{\prime} *\right)$,
 $109.47\left(\mathrm{C}_{\text {quat }}\right), 113.02\left(\mathrm{C}_{\text {quat }}\right), 113.13\left(\mathrm{C}_{\text {quat }}\right), 117.72\left(\mathrm{C}_{\text {quat }}\right), 118.03\left(\mathrm{C}_{\text {quat }}\right), 128.85(+), 129.00(+), 130.30$ $(+), 130.64(+), 130.71(+), 130.85\left(\mathrm{C}_{\text {quat }}\right), 130.91(+), 131.23(+), 131.40(+), 132.57(+), 132.81(+), 133.16$ $(+), 133.32(+), 140.54\left(\mathrm{C}_{\text {quat }}\right), 143.92\left(\mathrm{C}_{\text {quat }}\right), 144.74\left(\mathrm{C}_{\text {quat }}\right), 146.23\left(\mathrm{C}_{\text {quat }}\right) .-\mathrm{MS}(70 \mathrm{eV}), \mathrm{m} / \mathrm{z}(\%): 397$ (15) $\left[\mathrm{M}^{+}\right], 329(45)\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{8}\right], 302(19), 67$ (100). $-\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{~N}_{3}$: calcd. 397.1579 , found 397.1584 (MS).
exo-(3,6-Methoxycarbonyl-9,10-dihydrophenanthreno)-2':3',9:10-norbornane (3g): According to GP 1, to a mixture of $4.17 \mathrm{~g}(15.9 \mathrm{mmol})$ of $2 \mathrm{~g}-\mathrm{I}, 5.14 \mathrm{~g}(15.9 \mathrm{mmol})$ of $\mathrm{Bu}_{4} \mathrm{NBr}, 4.40 \mathrm{~g}(31.9 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and $12 \mathrm{mg}(1.0 \mathrm{~mol} \%)$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 35 ml of NMP was added at $65^{\circ} \mathrm{C}$ during 2.5 h a solution of 500 mg (5.3 mmol) of 1 in 5 ml of NMP and a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(24 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$ in 1 ml of NMP. The mixture was further stirred for 96 h at $65^{\circ} \mathrm{C}$. After standard workup, the crude product was chromatographed on 200 g of silica gel ($6 \times 15 \mathrm{~cm}$, cyclohexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 5: 1$): fraction I $\left\{R_{\mathrm{f}}=0.3\left(\mathrm{PE}^{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1\right)\right]: 1.69 \mathrm{~g}$ of $2 \mathrm{~g}-\mathrm{I}$. - II $\left[R_{\mathrm{f}}=0.17\left(\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1\right)\right]: 346 \mathrm{mg}(20 \%$ based on conversion of $\mathbf{2 g - I})$ of $\mathbf{3 g}$. $-{ }^{1} \mathrm{HNMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=1.06\left(\mathrm{dt},{ }^{2} J=10.2,3 J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{\text {syn }}{ }^{*}\right), 1.32\left(\mathrm{dt},{ }^{2} J=10.2,{ }^{3} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{\text {anti }}{ }^{*}\right)$, $1.62-1.77\left(\mathrm{~m}, 4 \mathrm{H}, 5^{\prime}\left(6^{\prime}\right)-\mathrm{H}\right), 2.40\left[\mathrm{bs}, 2 \mathrm{H}, 1^{\prime}\left(4^{\prime}\right)-\mathrm{H}\right], 3.25\left[\mathrm{~s}, 2 \mathrm{H}, 2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right], 3.96\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 7.12$ [d, $3 \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 1(8)-\mathrm{H}], 7.88\left[\mathrm{dd},{ }^{3} \mathrm{~J}=8.0,4 \mathrm{~J}=1.6 \mathrm{~Hz}, 2 \mathrm{H}, 2(7)-\mathrm{H}\right], 8.60[\mathrm{~d}, 4 \mathrm{~J}=1.6 \mathrm{~Hz}, 2 \mathrm{H}, 4(5)-\mathrm{H}] .-$ ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, and DEPT): $\delta=30.21\left[-, \mathrm{C}-5^{\prime}\left(6^{\prime}\right)\right], 33.31$ (- , $\mathrm{C}-7^{\prime}$), 46.09 [+, C-1'(4')], 49.63 $\left[+, \mathrm{C}^{\prime}\left(3^{\prime}\right)\right], 52.10\left(+, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 122.89(+), 123.86(+), 128.48\left(\mathrm{C}_{\text {quat }}\right), 128.93(+), 130.35(+), 130.65(+)$, $130.88\left(\mathrm{C}_{\text {quat }}\right), 142.88\left(\mathrm{C}_{\text {quat }}\right), 167.08\left(\mathrm{C}_{\text {quat }}\right) .-\mathrm{MS}(70 \mathrm{eV}), m / z(\%): 362(100)\left[\mathrm{M}^{+}\right], 294(63), 263(47)$.

3,6-Dinitrophenanthreno-2':3',9:10-norbornene (5): According to GP 1, to a mixture of 3.97 g (15.9 mmol) of $\mathbf{2 h}-\mathrm{I}, 5.14 \mathrm{~g}(15.9 \mathrm{mmol})$ of $\mathrm{Bu}_{4} \mathrm{NBr}, 4.40 \mathrm{~g}(31.9 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and $9 \mathrm{mg}(0.8 \mathrm{~mol} \%)$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 30 ml of NMP was added at $75^{\circ} \mathrm{C}$ during 2.5 h a solution of $500 \mathrm{mg}(5.3 \mathrm{mmol})$ of 1 in 5 ml of NMP and a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(24 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$ in 1 ml of NMP. The mixture was further stirred for 8 d at $75^{\circ} \mathrm{C}$. After standard workup, the crude product was chromatographed on 200 g of silica gel $(6 \times 15 \mathrm{~cm}$, $\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:1): fraction I $\left[R_{\mathrm{f}}=0.72\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]: 2.09 \mathrm{~g}$ of $2 \mathrm{~h}-\mathrm{I}$. $-\mathrm{II}\left[R_{\mathrm{f}}=0.59\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]: 101 \mathrm{mg}$ of 4,4'Dinitrobiphenyl. - III $\left[R_{\mathrm{f}}=0.56\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]: 236 \mathrm{mg}(13 \%, 19 \%$ based on conversion of $2 \mathrm{~h}-\mathrm{I})$ of 5 , mp $>180^{\circ} \mathrm{C} .-{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta=1.20-1.29\left[\mathrm{~m}, 2 \mathrm{H}, 5^{\prime}\left(6^{\prime}\right)-\mathrm{H}\right], 1.84\left(\mathrm{dt},{ }^{2} J=8.8,{ }^{3} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.7^{\prime}-\mathrm{H}_{s y n}{ }^{*}\right), 2.03\left(\mathrm{dt},{ }^{2} J=8.8,{ }^{3} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{a n t i}{ }^{*}\right), 2.19\left[\mathrm{~m}, 2 \mathrm{H}, 5^{\prime}\left(6^{\prime}\right)-\mathrm{H}\right], 4.12\left[\mathrm{~m}, 2 \mathrm{H}, 1^{\prime}\left(4^{\prime}\right)-\mathrm{H}\right], 8.20$ $\left[\mathrm{d},{ }^{3} J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 1(8)-\mathrm{H}\right], 8.51\left[\mathrm{dd},{ }^{3} J=8.8,{ }^{4} J=2.0 \mathrm{~Hz}, 2(7)-\mathrm{H}\right], 9.66\left[\mathrm{~d},{ }^{4} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, 4(5)-\mathrm{H}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$, and DEPT) $\delta=26.75\left[-, \mathrm{C}-5^{\prime}\left(6^{\prime}\right)\right], 42.42\left[+, \mathrm{C}-1^{1}\left(4^{\prime}\right)\right], 49.46\left(-, \mathrm{C}-7^{\prime}\right), 120.04$ $[+, \mathrm{C}-4(5)], 121.67[+, \mathrm{C}-2(7)], 125.81[+, \mathrm{C}-1(8)], 129.34\left(\mathrm{C}_{\text {quat }}\right), 131.51\left(\mathrm{C}_{\text {quat }}\right), 145.79\left(\mathrm{C}_{\text {quat }}\right), 1 \mathrm{C}_{\text {quat }}$ not observed. - MS (70 eV), $m / z(\%): 334(8)\left[\mathrm{M}^{+}\right], 306(39), 276(2), 260(100)$.
exo-[4(5)-Phenyl-9,10-dihydrophenanthrenol-2':3',9:10-endo-5':6'-cyclopentenonorbornane (12): A mixture of $4.00 \mathrm{~g}(28.9 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}, 9.66 \mathrm{~g}(30.0 \mathrm{mmol})$ of $\mathrm{Bu} \mathrm{u}_{4} \mathrm{NB}$ and $67 \mathrm{mg}(0.3 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 40 ml of DMF was heated for 30 min to $60^{\circ} \mathrm{C}$; the color of the solution changed from yellow to red. Subsequently, 1.98 g (15.0 mmol) of dicyclopentadiene (10) and $9.30 \mathrm{~g}(45.6 \mathrm{mmol})$ of iodobenzene ($2 \mathrm{a}-\mathrm{I}$) in 20 ml of DMF were added during 12 h . After further heating for 12 h at this temperature, the mixture was cooled to r. t. and 150 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The mixture was filtered, the filtrate was extracted with 4 portions of water (50 ml each), dried and concentrated. Chromatography on 300 g of silica gel ($40 \times 4.5 \mathrm{~cm}$, PE) yielded $3.47 \mathrm{~g}(64 \%)$ of $12\left(R_{\mathrm{f}}=0.08\right)$. $-\mathbb{I R}(\mathrm{KBr}): v=3080 \mathrm{~cm}^{-1}, 2940,1480,1445,755,745,695$. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.33(\mathrm{~d}, 3 J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~d}, 3 J=11.0 \mathrm{~Hz}$, rel. intens. 0.5 H$), 1.73$ (d, ${ }^{3} J=11.0 \mathrm{~Hz}$, rel. intens. 0.5 H), 2.22-2.79 (m, 5 H , alkyl -H), $3.22\left[\mathrm{AB}\right.$ system, $\delta_{\mathrm{A}}=3.07, \delta_{\mathrm{B}}=3.35,{ }^{3} \mathrm{~J}=$ $\left.9.0 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right], 3.19-3.40(\mathrm{~m}, 1 \mathrm{H}), 5.77-5.92(\mathrm{~m}, 2 \mathrm{H}$, alkene-H), 6.55-6.68(m,1 H, arene-H), $6.80-7.62\left(\mathrm{~m}, 11 \mathrm{H}\right.$, arene-H). - ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=33.01,33.24,35.88,36.13,38.44,38.99$, $41.05,41.81,43.31,43.71,52.22,53.11,53.42,53.84,54.19,124.34,124.54,126.55,126.69,126.75,128.08$, $128.14,128.27,128.39,128.43,128.69,129.06,129.10,129.24,129.30,129.38,129.47,129.65,129.79$, $129.92,130.08,130.27,131.14,131.28,131.38,131.73,132.11,132.24,132.70,139.31,139.43,139.69$, 141.04, 141.52, 144.97, 145.09. - MS (70 eV), m/z (\%): $360(25)\left[\mathrm{M}^{+}\right], 292(100)\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{8}\right], 253(50), 252$ (44), $105(38), 91(56), 77(42) .-\mathrm{C}_{28} \mathrm{H}_{24}$ (360.5): calcd. C 93.29 , H 6.71 , found $\mathrm{C} 92.85, \mathrm{H} 6.77 \%$, calcd. and found: 360.1878 (HRMS).
exo-9,10-Dihydrophenanthreno-2':3'9:10-endo-5':6'-cyclopentenonorbornane (11): A mixture of 2.00 g $(14.5 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}, 4.83 \mathrm{~g}(15.0 \mathrm{mmol})$ of $\mathrm{Bu}_{4} \mathrm{NBr}, 33.2 \mathrm{mg}(0.15 \mathrm{mmol}) \mathrm{Pd}(\mathrm{OAc})_{2}$, and 159 mg (0.6 mmol) of PPh_{3} in 30 ml of DMF was heated for 20 min to $60^{\circ} \mathrm{C}$. Subsequently, $990 \mathrm{mg}(7.5 \mathrm{mmol})$ of 10 and 3.20 g (15.7 mmol) of $2 \mathrm{a}-\mathrm{I}$ in 10 ml of DMF were added during 12 h . After further heating for 12 h at this temperature, the mixture was cooled to r. t . and 100 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The mixture was filtered, the filtrate was extracted with 4 portions of water (50 ml each), dried and concentrated. Chromatography on 200 g of silica gel ($20 \times 3.5 \mathrm{~cm}, \mathrm{PE}$) yielded fraction $\mathrm{I}\left(R_{\mathrm{f}}=0.13\right)$: $320 \mathrm{mg}(15 \%)$ of $11, \mathrm{mp} 96-97^{\circ} \mathrm{C} .-\operatorname{IR}(\mathrm{KBr}): v$ $=3020 \mathrm{~cm}^{-1}, 2940,1445,755,730 .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.22\left(\mathrm{~d}, 2 J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{5 y n}{ }^{*}\right)$, $1.55\left(\mathrm{~d},{ }^{2} \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\text {anti }}{ }^{*}\right), 2.15-2.80\left(\mathrm{~m}, 5 \mathrm{H}\right.$, alkyl-H), $3.20\left[\mathrm{AB}\right.$ system, $\delta_{\mathrm{A}}=3.13, \delta_{\mathrm{B}}=3.26,{ }^{3} \mathrm{~J}$ $\left.=10.2 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right], 3.22-3.35(\mathrm{~m}, 1 \mathrm{H}), 5.71-5.82(\mathrm{~m}, 2 \mathrm{H}$, alkene -H$), 7.02-7.26(\mathrm{~m}, 6 \mathrm{H}$, arene-H), $7.77-7.92\left(\mathrm{~m}, 2 \mathrm{H}\right.$, arene-H). - ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, and APT): $\delta=33.06(-), 36.00(-), 37.73(+)$, $40.59(+), 43.40(+), 52.52(+), 53.62(+), 54.90(+), 121.95(+), 122.07(+), 125.93(+), 125.97(+), 127.51$ $(+), 127.55(+), 129.49(+), 130.25(+), 131.19(+), 131.64(-), 131.91(-), 132.70(+) 138.16(-), 138.56(-) .-$ MS $(70 \mathrm{eV}), m / z(\%): 284(22)\left[\mathrm{M}^{+}\right], 216(100), 178(38) .-\mathrm{C}_{22} \mathrm{H}_{20}:$ calcd. and found 284.1560 (HRMS). - II ($R_{\mathrm{f}}=0.08$): $675 \mathrm{mg}(36 \%)$ of 12.
exo-14(5)-Phenyl-9,10-dihydrophenanthreno $-5^{\prime}: 6^{\prime}, 9: 10$-norbornan-2-ol (14): According to GP 1 , to a mixture of $3.35 \mathrm{~g}(16.4 \mathrm{mmol})$ of $2 \mathrm{a}-\mathrm{I}, 5.28 \mathrm{~g}(16.4 \mathrm{mmol})$ of $\mathrm{Bu}_{4} \mathrm{NBr}, 4.53 \mathrm{~g}(32.8 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and $42 \mathrm{mg}(3.5 \mathrm{~mol} \%)$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 35 ml of DMF was added a solution of $602 \mathrm{mg}(6.4 \mathrm{mmol})$ of 1 in 5 ml of DMF and simultaneously $73 \mathrm{mg}(6 \mathrm{~mol} \%)$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 5 ml of DMF during 3 h . After stirring for 18 h at this temperature and standard workup, the crude product was chromatographed on 200 g of silica gel ($6 \times$ 15 cm, PE): fraction I: 796 mg of 2a-I. - II: 143 mg of biphenyl. - III: $933 \mathrm{mg}(66 \%$ based on conversion of $2 a-1)$ of 14. - IR (KBr): $v=3306 \mathrm{~cm}^{-1}, 3055,2953,1733,1667,1599,1493,1439,1337,1306,1181,1144$, $1120,1090,1061,1011,970,860,804,765,740,702,617,516$. - $^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.15-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.80(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.05-2.25(\mathrm{~m}, 3 \mathrm{H}), 3.18(\mathrm{~m}, 1 \mathrm{H}), 3.80-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~m}$, $1 \mathrm{H}), 6.65(\mathrm{~m}, 1 \mathrm{H}), 6.80-7.20(\mathrm{~m}, 10 \mathrm{H}), 7.78(\mathrm{~m}, 1 \mathrm{H})-{ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, and DEPT): $\delta=$ $31.88(-), 32.26(-), 32.51(-), 32.73(+), 35.48(+), 36.09(+), 36.81(-), 39.19(-), 39.93(-), 40.40(+), 45.89$ $(+), 46.45(+), 46.97(+), 48.26(+), 49.26(+), 49.59(+), 49.87(+), 55.38(+), 55.98(+), 56.18(+), 73.07(+)$, $73.19(+), 122.06(+), 122.17(+), 124.73(+), 126.17(+), 126.39(+), 126.64(+), 126.90(+), 126.94(+)$, $127.37(+), 127.71(+), 127.74(+), 128.54(+), 128.87(+), 129.49(+), 129.57(+), 129.70(+), 129.89(+)$,
$130.07(+), 130.40(+), 130.49\left(\mathrm{C}_{\text {quat }}\right), 131.60\left(\mathrm{C}_{\text {quat }}\right), 131.86\left(\mathrm{C}_{\text {quat }}\right), 137.31\left(\mathrm{C}_{\text {quat }}\right), 137.49\left(\mathrm{C}_{\text {quat }}\right), 138.64$ $\left(\mathrm{C}_{\text {quat }}\right), 140.35\left(\mathrm{C}_{\text {quat }}\right), 145.00\left(\mathrm{C}_{\text {quat }}\right) .-\mathrm{MS}(70 \mathrm{eV}), m / z(\%): 338(24)\left[\mathrm{M}^{+}\right], 262(82), 253$ (14), 252 (11), 244 (19), 229 (13), 215 (23), 179 (37), 178 (100). $-\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}$ (338.5): calcd. C 88.72, H 6.55; found C 88.52, H 6.55\%.
exo-[4(5)-Phenyl-9,10-dihydrophenanthreno]-5':6'9:10-norbornan-2-one (16): A mixture of 1.50 g (13.9 mmol) of bicyclo[2.2.1]hept-5-en-2-one (15), $8.50 \mathrm{~g}(41.7 \mathrm{mmol})$ of $2 \mathrm{a}-\mathrm{I}, 5.00 \mathrm{~g}(59.5 \mathrm{mmol})$ of NaHCO_{3}, and $71.3 \mathrm{mg}(0.32 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 40 ml of DMF was heated for 24 h to $80^{\circ} \mathrm{C}$. After the mixture was cooled to $\mathrm{r} . \mathrm{t}$. and 150 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, the mixture was filtered; the filtrate was extracted with 4 portions of water (50 ml each), dried and concentrated. The crude product was chromatographed on 200 g of silica gel ($30 \times 3.5 \mathrm{~cm}, \mathrm{PE} / \mathrm{MTBE} 1: 1$): fraction $\mathrm{I}\left(R_{\mathrm{f}}=0.7\right): 3.70 \mathrm{~g}(44 \%)$ of $\mathbf{2 a}$ I. $-\mathrm{II}\left(R_{\mathrm{f}}=0.06\right): 2.20 \mathrm{~g}(47 \%, 83 \%$ based on conversion of $2 \mathrm{a}-\mathrm{I})$ of $16, \mathrm{mp} 210-215^{\circ} \mathrm{C} .-\mathrm{IR}(\mathrm{KBr}): v=$ $2987 \mathrm{~cm}^{-1}, 2905,1746,1597,1492,1424,1404,1305,1214,1165,1071,973,807,765,745,702,614,525$. $-{ }^{1} \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.49-1.59(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 1 \mathrm{H}), 3.50$ $\left(\mathrm{AB}\right.$ system, $\left.\delta_{\mathrm{A}}=3.25, \delta_{\mathrm{B}}=3.73,{ }^{3} \mathrm{~J}=9.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.66-7.26(\mathrm{~m}, 10 \mathrm{H}$, arene- H$), 7.87-7.90(\mathrm{~m}, 2 \mathrm{H}$, areneH). ${ }^{13}{ }^{13} \mathrm{C} \mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=32.31,32.52,39.98,40.71,43.80,44.74,45.85,46.43,48.25,48.59$, $61.73,62.23,122.39,122.48,125.65,126.89,126.95,127.13,127.25,127.36,128.06,128.18,128.51,128.83$, $129.59,129.85,129.98,130.23,131.05,131.27,131.64,132.17,133.90,135.15,135.93,139.16,139.98$, 144.54, 216.52, 216.85. - MS (70 eV), $m / z(\%): 336(33)\left[\mathrm{M}^{+}\right], 260(100), 253(37), 218(17), 204(62), 191$ (14), 178 (78). $-\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}$ (336.4): calcd. C $89.25, \mathrm{H} 5.99$; found C 89.22, H 6.13\%.
exo-6,7-Dihydropentapheno-2':3',6:7-norbornane (8) and exo-113-(2'-naphthyl)-6,7-dihydropenta-phenol-2':3',6:7-norbornane (9): According to GP 1, to a mixture of $3.30 \mathrm{~g}(15.9 \mathrm{mmol})$ of $7,5.14 \mathrm{~g}$ (15.9 mmol) of $\mathrm{Bu}_{4} \mathrm{NBr}, 4.41 \mathrm{~g}(31.9 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and $12 \mathrm{mg}(0.05 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 30 ml of NMP was added at $85^{\circ} \mathrm{C}$ during 2.5 h a solution of 500 mg (5.3 mmol) of 1 in 5 ml of NMP and a solution of $24 \mathrm{mg}(0.1 \mathrm{mmol}) \mathrm{Pd}(\mathrm{OAc})_{2}$ in 5 ml of NMP. The mixture was further heated for 4 d at $85^{\circ} \mathrm{C}$. After standard workup, the crude product was chromatographed on 200 g of silica gel ($6 \times 15 \mathrm{~cm}, \mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 9: 1$): fraction I: ($R_{\mathrm{f}}=0.48$) 2.12 g of 7 ($=36 \%$ conversion). - II ($R_{\mathrm{f}}=0.24$): $177 \mathrm{mg}(18 \%$ based on conversion of 7) of $8, \mathrm{mp}$ $168^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.97\left(\mathrm{dt},{ }^{2} J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{s y n}{ }^{*}\right), 1.34(\mathrm{dt}, 2 J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$, $7^{\prime}-\mathrm{H}_{\text {anti }}{ }^{*}$), 1.73 [bs, $\left.4 \mathrm{H}, 5^{\prime}\left(6^{\prime}\right)-\mathrm{H}\right], 2.49\left[\mathrm{~s}, 2 \mathrm{H}, 1^{\prime}\left(4^{\prime}\right)-\mathrm{H}\right], 3.44\left[\mathrm{~s}, 2 \mathrm{H}, 2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right], 7.39$ [dd, ${ }^{3} \mathrm{~J}=6.2$, $\left.{ }^{4} J=3.2 \mathrm{~Hz}, 4 \mathrm{H}, 2(3,10,11)-\mathrm{H}\right], 7.33\left[\mathrm{dd}, 3 J=6.2,4 J=3.2 \mathrm{~Hz}, 2 \mathrm{H}, 1(12)-\mathrm{H}^{*}\right], 7.75[\mathrm{~s}, 2 \mathrm{H}, 5(8)-\mathrm{H}], 7.87$ [dd, $\left.{ }^{3} J=6.2,{ }^{4} J=3.2 \mathrm{~Hz}, 2 \mathrm{H}, 4(9)-\mathrm{H}^{*}\right], 8.53[\mathrm{~s}, 2 \mathrm{H}, 13(14)-\mathrm{H}] .-{ }^{13} \mathrm{C} \mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, and DEPT): $\delta=29.19\left[-, \mathrm{C}^{\prime} 5^{\prime}\left(6^{\prime}\right)\right], 33.10\left(-, \mathrm{C}^{\prime} 7^{\prime}\right), 45.88\left[+, \mathrm{C}^{\prime} 1^{\prime}\left(4^{\prime}\right)\right], 50.63\left[+, \mathrm{C}-2^{\prime}\left(3^{\prime}\right)\right], 121.33(+), 125.43(+)$, $125.89(+), 126.87(+), 128.10(+), 128.58(+), 130.16\left(\mathrm{C}_{\text {quat }}\right), 132.45\left(\mathrm{C}_{\text {quat }}\right), 133.39\left(\mathrm{C}_{\text {quat }}\right), 136.97\left(\mathrm{C}_{\text {quat }}\right)$. - MS (70 eV), $m / z(\%): 346(100)\left[\mathrm{M}^{+}\right], 278(95)\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{8}\right] .-\mathrm{III}\left(R_{\mathrm{f}}=0.14\right): 58 \mathrm{mg}$ (6% based on conversion of 7) of $9, \mathrm{mp}>230^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{H}), 1.76[\mathrm{~m}, 4 \mathrm{H}$, $\left.5^{\prime}\left(6^{\prime}\right)-\mathrm{H}\right], 2.45\left(\mathrm{~s}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H}^{*}\right), 2.52\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}^{*}\right), 3.54\left[\mathrm{AB}\right.$ system, $\delta_{\mathrm{A}}=3.47, \delta_{\mathrm{B}}=3.61,3 \mathrm{~J}=9.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right], 7.35-7.68\left(\mathrm{~m}, 10 \mathrm{H}\right.$, arene-H), $7.74-8.10(\mathrm{~m}, 8 \mathrm{H}$, arene- H$) .-{ }^{13} \mathrm{C} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta=29.70\left(\mathrm{C}-5^{*}\right), 30.60\left(\mathrm{C}-6^{*}\right.$), 33.08 (C-7), $46.53\left(\mathrm{C}-1^{* *}\right), 47.27\left(\mathrm{C}-4^{* *}\right), 50.36\left(\mathrm{C}-2^{* * *}\right), 51.24(\mathrm{C}-$ $\left.3^{* * *}\right), 124.68,125.20,125.72,125.99,126.02,126.16,126.22,126.96,127.03,127.79,127.87,128.10$, $128.16,128.22,128.27,128.45,128.48,128.51,129.15,129.40,129.75,129.84,129.95,130.21,132.25 .-$ $\mathrm{MS}(70 \mathrm{eV}), m / z(\%): 472(100)\left[\mathrm{M}^{+}\right], 405(11)\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{7}\right]$.

Palladium-Catalyzed Coupling of Norbornene (1) or Dicyclopentadiene (10) with 2-Bromothiophene (17)

General Procedure 2 (GP 2): Under nitrogen a mixture of $4.0 \mathrm{~g}(28.9 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}, 2.0 \mathrm{~g}$ $(6.2 \mathrm{mmol})$ of $\mathrm{Bu}_{4} \mathrm{NBr}$ and $40.3 \mathrm{mg}(0.18 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 40 ml of NMP was heated for 30 min to $60^{\circ} \mathrm{C}$. Subsequently, the temperature was raised to $90^{\circ} \mathrm{C}$ and a solution of $2.0 \mathrm{~g}(12.3 \mathrm{mmol})$ of 2bromothiophene (17) and 6.2 mmol of an alkene in 20 ml of NMP was added during 8 h . After further heating for 12 h at $90^{\circ} \mathrm{C}$, the mixture was cooled to r . t. and 150 ml of tert-butyl methyl ether (MTBE) was added. The mixture was filtered, and the filtrate was extracted with 5 portions of water (40 ml each), dried and concentrated. The crude product was purified by chromatography.
exo-4,5-Dihydrobenzo[1,2-b:4,3-b']dithiopheno-2':3',4:5-norbornane (18) and exo-[1-(2"-thienyl)-4,5-dihydrobenzo[1,2-b:4,3-b']dithiophenol-2':3;4:5-norbornane (19): According to GP $2,0.58 \mathrm{~g}$ (6.2 mmol) of 1 were allowed to react. Chromatography on 200 g of silica gel ($40 \times 4.5 \mathrm{~cm}$, PE) yielded: $\mathrm{I}\left(R_{\mathrm{f}}=0.20\right): 283$ $\mathrm{mg}(18 \%)$ of $18, \mathrm{mp} 111^{\circ} \mathrm{C} .-\mathrm{UV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}(\mathrm{lg} \varepsilon)=397 \mathrm{~nm}(1.70), 376$ (1.96), $362(1.88), 310$ (3.42). $-\mathbb{R}(\mathrm{KBr}): v=3080 \mathrm{~cm}^{-1}, 2940,2860,1435,1080,845,708,700 .-1 \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.22$ (dt, $\left.{ }^{3} J=1.0,{ }^{2} J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 7^{-}-\mathrm{H}\right), 1.50-1.67(\mathrm{~m}, 5 \mathrm{H}, \mathrm{alkyl}-\mathrm{H}), 2.46\left[\mathrm{bs}, 2 \mathrm{H}, 1^{\prime}\left(4^{\prime}\right)-\mathrm{H}\right], 3.43[\mathrm{bs}, 2 \mathrm{H}$, $\left.2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right], 6.99\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, and APT): $\delta=$ $29.19(-), 34.68(-), 45.07(+), 48.83(+), 122.61(+), 123.25(+), 131.36(-), 137.99(-) .-\mathrm{MS}(70 \mathrm{eV}), \mathrm{m} / \mathrm{z}$ (\%): 258 (36)[M ${ }^{+}$], 190 (23), 154 (19), 108 (58), 97 (36), 57 (100). $-\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~S}_{2}$ (258.4): calcd. C 69.72, H 5.46 ; found C 69.81, H 5.51%; calcd. and found: 258.0536 (HRMS). - II $\left(R_{\mathrm{f}}=0.18\right): 248 \mathrm{mg}(18 \%)$ of $19, \mathrm{mp}$ $147^{\circ} \mathrm{C}$. $-\mathbb{R}(\mathrm{KBr}): ~ v=3085 \mathrm{~cm}^{-1}, 2930,2905,2850,1450,1245,1220,835,700 .{ }^{-1} \mathrm{H}$ NMR $(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=1.43-1.71\left(\mathrm{~m}, 6 \mathrm{H}\right.$, alkyl-H), $2.51\left[\mathrm{bs}, 2 \mathrm{H}, 1^{\prime}\left(4^{\prime}\right)-\mathrm{H}\right], 3.44\left[\mathrm{bs}, 2 \mathrm{H}, 2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right], 6.34\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}=5.3 \mathrm{~Hz}\right.$, 1 H, arene-H), $6.89\left(\mathrm{~d},{ }^{3} J=5.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene-H), $7.05-7.11\left(\mathrm{~m}, 3 \mathrm{H}\right.$, arene-H), $7.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene-H). $-{ }^{13} \mathrm{C} \mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, and APT): $\delta=29.15(-), 29.69(-), 34.64(-), 44.79(+), 45.19(+)$, $49.05(+), 49.19(+), 122.33(+), 122.95(+), 123.60(+), 125.64(+), 126.97(+), 127.55(+), 130.39(-), 130.59$ $(-), 130.94(-), 138.41(-), 139.28(-), 139.49(-) .-\mathrm{MS}(70 \mathrm{eV}), m / z(\%): 340(17)\left[\mathrm{M}^{+}\right], 248(100), 203(21)$, 85 (27), 71 (39), 57 (68). - $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~S}_{3}$ (340.5): calcd. C 67.02, H 4.74; found C 66.95, H 4.84\%.
exo-4,5-Dihydrobenzo[1,2-b:4,3-b']dithiopheno-2':3',4:5-endo-5':6'-cyclopentenonorbornane (20) and exo-[1(8)-(2"-thienyl)-4,5-dihydrobenzo[1,2-b:4,3-b']dithiophenol-2':3',4:5-endo-5':6'-cyclopentenonorbornane (21): According to GP 2, 850 mg (6.4 mmol) of 10 was allowed to react. Chromatography on 200 g of silica gel $\left(40 \times 4.5 \mathrm{~cm}\right.$, PE) yielded: $\mathrm{I}\left(R_{\mathrm{f}}=0.13\right): 283 \mathrm{mg}(16 \%)$ of $20, \mathrm{mp} 106-108^{\circ} \mathrm{C} .-\operatorname{RR}(\mathrm{KBr}): v=3050$ $\mathrm{cm}^{-1}, 2950,1445,850,705 .-^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.43\left(\mathrm{dt},{ }^{2} J=10.0,3^{3} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\right.$ $\mathrm{H}_{\text {syn }}{ }^{*}$), $1.76\left(\mathrm{dt},{ }^{2} J=10.0,{ }^{3} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, 7{ }^{\prime}-\mathrm{H}_{\text {anti }}{ }^{*}\right), 2.34-2.63(\mathrm{~m}, 5 \mathrm{H}$, alkyl -H$), 3.07-3.31(\mathrm{~m}, 1 \mathrm{H}$, alkyl$\mathrm{H}), 3.39\left[\mathrm{AB}\right.$ system, $\left.\delta_{\mathrm{A}}=3.37, \delta_{\mathrm{B}}=3.42,3^{3} \mathrm{~J}=12.0 \mathrm{~Hz}, 2 \mathrm{H}, 2^{2}\left(3^{\prime}\right)-\mathrm{H}\right], 5.72-5.82(\mathrm{~m}, 2 \mathrm{H}$, alkene-H), $7.00-7.16\left(\mathrm{~m}, 4 \mathrm{H}\right.$, arene-H). ${ }^{-13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, and APT): $\delta=32.83(-), 37.13(+), 37.45(-)$, $40.35(+), 42.74(+), 51.86(+), 52.93(+), 53.96(+), 122.63(+), 122.68(+), 122.93(+), 123.13(+), 131.37$ $(+)$, $131.65(-), 131.85(-), 132.24(+), 138.39(-), 138.55(-) .-\mathrm{MS}(70 \mathrm{eV}), m / z(\%): 296(38)\left[\mathrm{M}^{+}\right], 248$ (16), 228 (100), $190(56), 84(44),-\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~S}_{2}(296.5)$: calcd. C $72.93, \mathrm{H} 5.44$; found C $72.80, \mathrm{H} 5.48 \%$ - III $\left(R_{\mathrm{f}}=0.10\right): 299 \mathrm{mg}(19 \%)$ of $\mathbf{2 1} .-\mathbb{R}(\mathrm{KBr}): v=3095 \mathrm{~cm}^{-1}, 2940,2920,1610,1460,845,710 .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.32\left(\mathrm{~d},{ }^{2} J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{s y n}{ }^{*}\right), 1.88\left(\mathrm{~d}, 2 J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\text {anti }}{ }^{*}\right), 2.24-2.81$ (m, 5 H , alkyl-H), $3.08-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.36\left[\mathrm{AB}\right.$ system, $\left.\delta_{\mathrm{A}}=3.31, \delta_{\mathrm{B}}=3.43,{ }^{3} \mathrm{~J}=12.0 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right]$, $5.78-5.87\left(\mathrm{~m}, 2 \mathrm{H}\right.$, alkene-H), $6.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene-H), $6.86-6.92(\mathrm{~m}, 1 \mathrm{H}$, arene- H$), 6.94-7.16(\mathrm{~m}$, 3 H , arene- H), $7.30-7.41\left(\mathrm{~m}, 1 \mathrm{H}\right.$, arene-H). $-{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, and APT): $\delta=32.86(-), 36.96$ $(+), 37.42(-), 37.43(+), 40.19(+), 40.59(+), 42.81(+), 52.16(+), 52.96(+), 54.20(+), 122.01(+), 122.24$ $(+), 123.05(+), 123.31(+), 123.32(+), 123.51(+), 125.60(+), 126.95(+), 127.54(+), 130.74(-), 130.94(-)$, $130.96(-), 131.02(-), 131.08(-), 131.19(-), 131.38(+), 131.49(+), 132.20(+), 132.28(+), 138.53(-)$, $139.74(-), 139.90(-), 139.96(-), 140.12(-) .-\mathrm{MS}(70 \mathrm{eV}), m / z(\%): 378(36)\left[\mathrm{M}^{+}\right], 310(100), 272(42), 227$ (30), 195 (20). - $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~S}_{3}$ (378.6): calcd. C $69.80, \mathrm{H} 4.79$; found C $69.45, \mathrm{H} 5.12 \%$.

Palladium-Catalyzed Coupling of Norbornene (1) or Dicyclopentadiene (10) with N-Heterocycles

General Procedure 3 (GP 3): Under nitrogen a mixture of $1.90 \mathrm{~g}(13.7 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}, 2.20 \mathrm{~g}$ (6.8 mmol) of $\mathrm{Bu}_{4} \mathrm{NBr}, 33.6 \mathrm{mg}(0.15 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$, and $157 \mathrm{mg}(0.6 \mathrm{mmol})$ of PPh_{3} in 20 ml of DMF was heated at $70^{\circ} \mathrm{C}$ for 30 min . Subsequently, a solution of 5.0 mmol of alkene and 10.0 mmol of pyridyl halide in 15 ml of DMF was added during 12 h . The temperature was raised to $120^{\circ} \mathrm{C}$, stirring continued for 24 h . After cooling to r. t. 150 ml of MTBE was added, the solids were removed by filtration, and the solution was extracted twice with 50 ml of 2 N HCl each. The combined aqueous layers were extracted with 50 ml of MTBE, and after addition of solid $\mathrm{NaOH}(\mathrm{pH}=12)$, extracted again with 4 portions of MTBE (50 ml each). The combined organic layers from the last extraction cycle were washed twice with 50 ml of water each, dried and concentrated. The residue was purified by chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ ($\mathrm{PE} / \mathrm{MTBE} /$ pyridine $10: 10: 1$).
exo-(5,6-Dihydro-3,8-phenanthrolino)-2':3',5:6-norbornane (23a): 0.47 g (5.0 mmol) of 1 and 2.10 g (10.2 mmol) of 3-iodopyridine (22a) were allowed to react according to GP 3 . Chromatography on 80 g of $\mathrm{Al}_{2} \mathrm{O}_{3}(20 \times 3.5 \mathrm{~cm})$ yielded $560 \mathrm{mg}(45 \%)$ of 23a, $R_{\mathrm{f}}=0.09$ (PEMTBE 1:1), $\mathrm{mp} 98^{\circ} \mathrm{C} .-\mathbb{R}(\mathrm{KBr}): v=$ $3020 \mathrm{~cm}^{-1}, 2950,2870,1575,1410,820,765,635 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.16\left(\mathrm{~d},{ }^{2} J=14.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{\text {syn }}{ }^{*}$), $1.28\left(\mathrm{~d},{ }^{2} J=14.5 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{\text {anti }}{ }^{*}\right), 1.71-1.75\left(\mathrm{~m}, 4 \mathrm{H}\right.$, alkyl-H), $2.45\left[\mathrm{bs}, 2 \mathrm{H}, \mathrm{l}^{\prime}\left(4^{\prime}\right)-\mathrm{H}\right]$, $3.29\left[\mathrm{bs}, 2 \mathrm{H}, 2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right], 7.62\left[\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, 1(10)-\mathrm{H}\right], 8.47\left[\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, 2(9)-\mathrm{H}\right], 8.56[\mathrm{~s}, 2 \mathrm{H}$, $4(7)-\mathrm{H}] .-{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, and APT): $\delta=30.24(-), 33.37(-), 42.90(+), 49.21(+), 116.15(+)$, $133.10(-), 136.24(-), 147.80(+), 152.46(+) .-\mathrm{MS}(70 \mathrm{eV}), m / z(\%): 248(74)\left[\mathrm{M}^{+}\right], 207(20), 180(100) .-$ $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2}$ (248.3): calcd. C 82.24, H 6.50, N 11.28 ; found C 82.17, H 6.57, N 11.33%.
exo-(2,9-Dimethyl-5,6-dihydro-3,8-phenanthrolino)-2':3',5:6-norbornane (23b): 0.47 g (5.0 mmol) of $\mathbf{1}$ and 2.19 g (10.0 mmol) of 3-iodo-6-methylpyridine (22 b) were allowed to react according to GP 3. Chromatography on 80 g of $\mathrm{Al}_{2} \mathrm{O}_{3}(20 \times 3.5 \mathrm{~cm})$ yielded $414 \mathrm{mg}(30 \%)$ of 23 b , colorless crystals, $R_{\mathrm{f}}=0.12$ (PE/MTBE 1:1), mp $155^{\circ} \mathrm{C}$ - IR (KBr): $v=3005 \mathrm{~cm}^{-1}, 2940,2880,1600,1575,860 .{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.06\left(\mathrm{~d},{ }^{2} J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{\text {syn }}{ }^{*}\right), 1.15\left(\mathrm{~d},{ }^{2} J=14.0 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{\text {anti }}{ }^{*}\right), 1.56-1.81(\mathrm{~m}, 4 \mathrm{H}$, alkyl-H), 2.37 [bs, $\left.2 \mathrm{H}, \mathrm{l}^{\prime}\left(4^{\prime}\right)-\mathrm{H}\right], 2.58\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.23$ [bs, $\left.2 \mathrm{H}, 2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right], 7.50[\mathrm{~s}, 2 \mathrm{H}, 1(10)-\mathrm{H}], 8.44$ [s, 2 $\mathrm{H}, 4(7)-\mathrm{H}] .-^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, and APT): $\delta=26.98(+), 30.16(-), 33.21(-), 42.56(+), 49.16$ $(+), 115.38(+), 130.26(-), 136.65(-), 151.76(+), 156.13(-)$. MS (70 eV), m/z (\%): $276(78)\left[\mathrm{M}^{+}\right], 247$ (18), 235 (28), 208 (100). - $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2}$ (276.4): calcd. C 82.57, H 7.29; found C $82.61, \mathrm{H} 7.27 \%$.
exo-(5,6-Dihydro-3,8-phenanthrolino)-2'3',5:6-endo-5'6'-cyclopentenonorbornane (24a): 660 mg (5.0 mmol) of $\mathbf{1 0}$ and 2.19 g (10.7 mmol) of 3-iodopyridine (22 a) were allowed to react according to GP 3 . Chromatography on 100 g of $\mathrm{Al}_{2} \mathrm{O}_{3}(30 \times 3.5 \mathrm{~cm})$ yielded $800 \mathrm{mg}(56 \%)$ of $24 \mathrm{a}, R_{\mathrm{f}}=0.11$ (PE/MTBE 1:1), $\mathrm{mp} 170-171^{\circ} \mathrm{C} .-\mathrm{UV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}(\lg \varepsilon)=412 \mathrm{~nm}(1.51), 377(1.93), 363(1.71), 268(4.12) .-\mathbb{R}(\mathrm{KBr}):$ $v=3020 \mathrm{~cm}^{-1}, 2940,2910,1570,1405,815 .-{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.36\left[\mathrm{AB}\right.$ system, $\delta_{\mathrm{A}}=1.31$, $\left.\delta_{\mathrm{B}}=1.43,2 J=14.0 \mathrm{~Hz}, 2 \mathrm{H}, 7^{\prime}-\mathrm{H}\right], 2.18-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.91(\mathrm{~m}, 1 \mathrm{H}), 3.25[\mathrm{AB}$ system, $\left.\delta_{\mathrm{A}}=3.17, \delta_{\mathrm{B}}=3.32,{ }^{3} \mathrm{~J}=11.0 \mathrm{~Hz}, 2 \mathrm{H}, 2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right], 3.20-3.38(\mathrm{~m}, 1 \mathrm{H}), 5.85-5.98(\mathrm{~m}, 2 \mathrm{H}$, alkene-H$)$, $7.66\left[\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 1(10)-\mathrm{H}\right], 8.48-8.58\left(\mathrm{~m}, 4 \mathrm{H}\right.$, pyridyl-H). ${ }^{13} \mathrm{C}$ NMR $\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, and APT): $\delta=32.99(-), 34.91(+), 35.99(), 37.68(+), 43.48(+), 51.97(+), 53.65(+), 54.56(+), 116.02(+)$, $116.12(+), 131.68(+), 132.28(+), 133.56(-), 133.78(-), 136.44(-), 136.72(-), 146.25(+), 147.50(+)$, $151.85(+), 152.39(+)$. $-\mathrm{MS}(70 \mathrm{eV}), m / z(\%): 286(16)\left[\mathrm{M}^{+}\right], 218(100), 180(38) .-\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2}(286.4):$ calcd. C 83.88, H 6.34, N 9.78 ; found C 83.52, H 6.77, N 9.69%.
exo-(5,6-Dihydro-2,9-phenanthrolino)-2':3',5:6-endo-5':6'-cyclopentenonorbornane (26): $\quad 660 \mathrm{mg}$ (5.0 mmol) of 10 and 2.05 g (10.0 mmol) of 4-iodopyridine (25) were allowed to react according to GP 3 . Chromatography on 100 g of $\mathrm{Al}_{2} \mathrm{O}_{3}(30 \times 3.5 \mathrm{~cm})$ yielded $357 \mathrm{mg}(25 \%)$ of $26, R_{\mathrm{f}}=0.11$ (PE/MTBE 1:1), $\mathrm{mp} 158-160^{\circ} \mathrm{C} .-\mathrm{UV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\lg \varepsilon)=412 \mathrm{~nm}(1.51), 377(1.93), 363(1.71), 268(4.12) .-\mathrm{IR}(\mathrm{KBr}):$ $v=3044 \mathrm{~cm}^{-1}, 2960,2850,1605,1595,1550,1415,1350,845,705 .-{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.38$ (dt, ${ }^{2} J=11.0,{ }^{3} J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{\text {syn }}{ }^{*}$), $1.45\left(\mathrm{dtt}^{2} J=11.0,{ }^{3} J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 7^{-}-\mathrm{H}_{\text {anti }}{ }^{*}\right), 2.26-2.81(\mathrm{~m}, 5 \mathrm{H})$, $3.15\left[\mathrm{AB}\right.$ system, $\delta_{\mathrm{A}}=3.09, \delta_{\mathrm{B}}=3.20,3^{3} \mathrm{~J}=10.0 \mathrm{~Hz}, 2 \mathrm{H} .2^{\prime}\left(3^{\prime}\right)$ - H$], 3.15-3.35(\mathrm{~m}, 1 \mathrm{H}) .5 .68-5.89(\mathrm{~m}, 2 \mathrm{H}$, alkene-H), $7.03\left(\mathrm{~d},{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}^{* *}\right), 7.07\left(\mathrm{~d}, 3 J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}^{* *}\right), 8.41\left[\mathrm{~d},{ }^{3} J=5.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $3(8)-\mathrm{H}], 9.14[\mathrm{~s}, 2 \mathrm{H}, 1(10)-\mathrm{H}] .-{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, and APT): $\delta=33.03(-), 36.36(-), 37.07(+)$, $39.88(+), 43.28(+), 51.99(+), 53.44(+), 54.37(+), 123.82(+), 124.51(+), 125.64(-), 125.88(-), 131.72$ $(+), 132.32(+), 143.58(+), 143.69(+), 146.67(-), 147.02(-), 148.81(+), 148.91(+) .-\mathrm{MS}(70 \mathrm{eV}), m / z(\%):$ $286(18)\left[\mathrm{M}^{+}\right], 218(100)\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{8}\right], 180(8)-\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2}$ (286.4): calcd. C 83.88, H 6.34, N 9.78 ; found C 82.65, H 6.43, N 9.40%.

4-Phenylphenanthreno- $2^{\prime}, 3: 9,10$-norbornene (37): A solution of $140 \mathrm{mg}(0.43 \mathrm{mmol})$ of 4 a and 110 mg (0.48 mmol) of 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) in 20 ml of toluene was refluxed for 2 h . The solution was concentrated, the residue was filtered over 25 g of silica gel ($6 \times 3.5 \mathrm{~cm}, \mathrm{PE} 60 / 70$) to yield $127 \mathrm{mg}(91 \%)$ of a colorless oil ($R_{\mathrm{f}}=0.13$), which on sublimation (0.01 Torr, $100^{\circ} \mathrm{C}$) afforded $94 \mathrm{mg}(67 \%)$ of 37 , white solid, mp $123^{\circ} \mathrm{C} .-^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.32\left[\mathrm{~m}, 2 \mathrm{H}, 5^{\prime}\left(6^{\circ}\right)-\mathrm{H}\right], 1.88[\mathrm{AB}$ system, $\left.\delta_{\mathrm{A}}=1.76, \delta_{\mathrm{B}}=2.00,2^{2} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 7^{\prime}-\mathrm{H}\right], 2.13\left[\mathrm{~m}, 2 \mathrm{H}, 5^{\prime}\left(6^{\prime}\right)-\mathrm{H}\right], 4.08\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{l}^{\prime}-\mathrm{H}^{*}\right), 4.11\left(\mathrm{~s}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}^{*}\right)$,
$7.08\left(\mathrm{t},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene- H$), 7.50(\mathrm{~m}, 7 \mathrm{H}, \operatorname{arene}-\mathrm{H}), 7.64\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene- H$), 7.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$, arene-H), $8.01\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene-H), $8.09\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arene- H$) .{ }^{13} \mathrm{C}$ NMR $\left(67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, and DEPT): $\delta=27.42\left[-, \mathrm{C}-5^{\prime}\left(6^{\prime}\right)\right], 42.28\left(+, \mathrm{C}-1^{*}\right), 42.56\left(+, \mathrm{C}-4^{*}\right), 48.92\left(-, \mathrm{C}-7^{\prime}\right)$, $123.34\left(+\right.$, rel. intens. 2), $123.53\left(+\right.$, rel. intens. 2), $125.41(+), 125.78(+), 126.64(+), 127.99\left(\mathrm{C}_{\text {quat }}\right), 128.68$ $(+), 129.07\left(\mathrm{C}_{\text {quat }}\right), 129.25(+), 129.36(+), 129.60(+), 129.99\left(\mathrm{C}_{\text {quat }}\right), 141.26\left(\mathrm{C}_{\text {quat }}\right), 141.57\left(\mathrm{C}_{\text {quat }}\right), 141.92$ $\left(\mathrm{C}_{\text {quat }}\right), 146.06\left(\mathrm{C}_{\text {quat }}\right) .-\mathrm{C}_{25} \mathrm{H}_{20}(320.4)$: calcd. C $93.71, \mathrm{H} 6.29$; found $\mathrm{C} 93.81, \mathrm{H} 6.29 \%$.
exo-4,5-Dihydrobenzo[elpyreno-2',3':4:5-norbornane (35): A solution of 910 mg (2.82 mmol) of 4 a and 720 mg (2.84 mmol) of iodine in 1.41 of cyclohexane was irradiated for 4 h with a 250 W Hg medium pressure lamp and a quartz filter. The solution was concentrated, the residue was filtered over 25 g of silica gel ($6 \times 3.5 \mathrm{~cm}, \mathrm{PE}^{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1, R_{\mathrm{f}}=0.86$), and recrystallized from heptane/toluene $10: 1$ to yield 750 mg (83%) of 35 , yellow crystals, $\mathrm{mp} 203^{\circ} \mathrm{C}$. - IR (KBr): $v=3050 \mathrm{~cm}^{-1}, 3000,2950,2850,1440,1400,800,750 .-$ ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.07\left(\mathrm{~d},{ }^{2} J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{s y n}{ }^{*}\right), 1.39\left(\mathrm{~d},{ }^{2} J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 7^{\prime}-\mathrm{H}_{a n t i}{ }^{*}\right)$, $1.75\left[\mathrm{~A}_{2} \mathrm{~B}_{2}\right.$ system, $\left.\delta_{\mathrm{A}}=1.72, \delta_{\mathrm{B}}=1.78,2 J=9.5 \mathrm{~Hz}, 4 \mathrm{H}, 5^{\prime}\left(6^{\prime}\right)-\mathrm{H}\right], 2.49\left[\mathrm{bs}, 2 \mathrm{H}, \mathrm{l}^{\prime}\left(4^{\prime}\right)-\mathrm{H}\right], 3.49[\mathrm{bs}, 2 \mathrm{H}$, $\left.2^{\prime}\left(3^{\prime}\right)-\mathrm{H}\right] 7.46\left[\mathrm{~d},{ }^{3} J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, 3(6)-\mathrm{H}\right], 7.55[\mathrm{t}, 3 J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, 2(7)-\mathrm{H}], 7.60\left[\mathrm{XX}^{\prime}\right.$ part of an AA'XX' system, $\left.{ }^{3} J=6.2,{ }^{4} J=3.3 \mathrm{~Hz}, 2 \mathrm{H} 10(11)-\mathrm{H}\right], 8.40\left[\mathrm{~d},{ }^{3} J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, 1(8)-\mathrm{H}\right], 8.58$ [AA' part of an AA'XX' system, $\left.{ }^{3} J=6.2,{ }^{4} J=3.3 \mathrm{~Hz}, 2 \mathrm{H}, 9(12)-\mathrm{H}\right] .-{ }^{13} \mathrm{C} \mathrm{NMR}\left(67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, and DEPT): $\delta=30.31[-, \mathrm{C}-$ $\left.5^{\prime}\left(6^{\prime}\right)\right], 33.54(-, \mathrm{C}-7), 46.20\left[+, \mathrm{C}-1^{\prime}\left(4^{\prime}\right)\right], 50.38\left[+, \mathrm{C}-2^{\prime}\left(3^{\prime}\right)\right], 120.64(+), 123.51(+), 126.10\left(\mathrm{C}_{\text {quat }}\right), 126.70$ $\left(+\right.$, rel. intens. 2), $128.17(+), 128.72\left(\mathrm{C}_{\text {quat }}\right), 129.96\left(\mathrm{C}_{\text {quat }}\right), 137.65\left(\mathrm{C}_{\text {quat }}\right) .-{ }^{13} \mathrm{C} \mathrm{NMR}\left(67.9 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, and DEPT): $\delta=30.47\left[-, \mathrm{C}-5^{\prime}\left(6^{\prime}\right)\right], 33.62\left(-, \mathrm{C}-7^{\prime}\right), 46.42\left[+, \mathrm{C}-1^{\prime}\left(4^{\prime}\right)\right], 50.60\left[+, \mathrm{C}-2^{\prime}\left(3^{\prime}\right)\right], 121.13(+), 123.91$ $(+), 126.59\left(\mathrm{C}_{\text {quat }}\right), 127.26(+), 128.32(+), 128.42(+), 129.48\left(\mathrm{C}_{\text {quat }}\right), 130.50\left(\mathrm{C}_{\text {quat }}\right), 137.85\left(\mathrm{C}_{\text {quat }}\right)$ - MS (70 eV), $m / 2$ (\%): $320(90)\left[\mathrm{M}^{+}\right], 252(100)\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{8}\right] .-\mathrm{C}_{25} \mathrm{H}_{20}(320.4):$ calcd. C 93.71, H 6.29; found C $93.69, \mathrm{H} 6.26 \%$.
exo-4,5-Dihydrobenzolelpyreno-2':3',4:5-endo-5':6'-cyclopentenonorbornane (40): A solution of 500 mg (1.4 mmol) of 12 and 355 mg (1.4 mmol) of iodine in 200 ml of cyclohexane was irradiated for 4 h with a 500 W Hg medium pressure lamp and a quartz filter. The solution was concentrated, the residue was chromatographed on 50 g of silica gel ($30 \times 3.5 \mathrm{~cm}, \mathrm{PE}, R_{\mathrm{f}}=0.17$) to yield $455 \mathrm{mg}(91 \%)$ of $\mathbf{4 0}, \mathrm{mp} 210^{\circ} \mathrm{C}$. $\mathrm{UV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}(\mathrm{gg} \varepsilon)=401 \mathrm{~nm}(1.83), 376(2.23), 363(2.11), 333(2.92), 264(4.93) .-\mathbb{R}(\mathrm{KBr}): \mathrm{V}=$ $3060 \mathrm{~cm}^{-1}, 3042,2920,2860,1570,1480,1414,750,732,712,695 .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.25$ (dt, ${ }^{2} J=11.7,{ }^{3} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{\text {syn }}{ }^{*}$), 1.52 (dt, ${ }^{2} J=11.7,{ }^{3} J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}_{a n t i}{ }^{*}$), 2.31 (bs, 1 H), $2.41-2.82(\mathrm{~m}, 4 \mathrm{H}), 3.21-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.44\left(\mathrm{~d},{ }^{3} J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{2}-\mathrm{H}^{* *}\right), 3.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~B}^{3}\right.$ $\mathrm{H}^{* *}$), $5.78-5.81\left(\mathrm{~m}, 2 \mathrm{H}\right.$, alkene-H), $7.35\left(\mathrm{dd},{ }^{3} J=8.0,{ }^{3} J=6.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.52\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.58$ (dd, $\left.{ }^{3} J=6.2,{ }^{4} J=3.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.39\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.61\left(\mathrm{dd},{ }^{3} J=6.2,4 J=3.3 \mathrm{~Hz}, 2 \mathrm{H}\right) .-{ }^{13} \mathrm{C}$ NMR (62.9 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, and APT): $\delta=33.16(-), 36.29(-), 37.89(+), 40.79(+), 43.40(+), 53.33(+), 53.59(+), 55.66$ $(+), 120.35(+), 123.46(+), 126.26(-), 126.54(-), 126.93(+), 126.97(+), 127.56(+), 127.86(+), 127.95(+)$, $128.01(-) 128.13(-), 128.27(+), 128.56(+), 128.66(+), 129.85(-), 129.90(-), 131.31(+), 132.81(+)$, $138.18(-), 138.38(-) .-\mathrm{MS}(70 \mathrm{eV}), m / z(\%): 358(62)\left[\mathrm{M}^{+}\right], 290(100), 252(53) .-\mathrm{C}_{28} \mathrm{H}_{22}(358.5)$: calcd. C 93.81, H 6.19 ; found C 93.72 , H 6.17%.

Benzofelpyreno-2', 3:4,5-norbornene (38): A solution of 2.00 g (6.2 mmol) of 35 and $1.44 \mathrm{~g}(6.3 \mathrm{mmol})$ of DDQ in 30 ml of toluene was refluxed for 4 h . The mixture was concentrated, and the residue was washed with 200 ml of $5 \% \mathrm{NaOH}$ (aq.) and recrystallized from heptane to yield $1.68 \mathrm{~g}(85 \%)$ of $\mathbf{3 8}$, yellow crystals, $\mathrm{mp} 181^{\circ} \mathrm{C}$. $-\mathbb{R}(\mathrm{KBr}): v=3050 \mathrm{~cm}^{-1}, 2980,2880,1600,1440,1300,810,760,720 .{ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}$, CDCl_{3}): $\delta=1.32$ [dd, $\left.{ }^{2 J}=7.3,3^{3}=2.2 \mathrm{~Hz}, 2 \mathrm{H}, 5^{\prime}\left(6^{\prime}\right)-\mathrm{H}\right], 1.82\left(\mathrm{~d},{ }^{2} J=8.4 \mathrm{~Hz}, 77^{\prime}-\mathrm{H}_{\text {syn }}{ }^{*}\right.$), 2.05 (d, $\left.{ }^{2} J=8.4 \mathrm{~Hz}, 7-\mathrm{H}_{\text {anti }}{ }^{*}\right), 2.17\left[\mathrm{dd},{ }^{2} J=7.3,{ }^{3} J=2.2 \mathrm{~Hz}, 2 \mathrm{H}, 5\left(6^{\prime}\right)-\mathrm{H}\right], 4.19\left[\mathrm{~s}, 2 \mathrm{H}, 1^{1}\left(4^{\prime}\right)-\mathrm{H}\right], 7.72\left[\mathrm{dd},{ }^{3} J=6.2\right.$, $4 J=3.3 \mathrm{~Hz}, 2 \mathrm{H}, 10(11)-\mathrm{H}], 8.04\left[\mathrm{t},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2(7)-\mathrm{H}\right], 8.30\left[\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 3(6)-\mathrm{H}\right], 8.85[\mathrm{~m}$, $\left.{ }^{3} J=6.2,{ }^{3} J=8.1,{ }^{4} J=3.3 \mathrm{~Hz}, 4 \mathrm{H}, 1(8,9,12)-\mathrm{H}\right]-{ }^{13} \mathrm{C} \mathrm{NMR}\left(67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, and DEPT): $\delta=27.37[-$, C-5' $\left.\left.{ }^{\prime} 6^{\prime}\right)\right], 42.40\left[+\right.$, C-1 $\left.{ }^{\prime}\left(4^{\prime}\right)\right], 49.27\left(-\right.$, C- $\left.^{\prime}\right), 119.14(+), 121.73(+), 123.72(+), 125.68(+), 127.35(+), 127.41$ $\left(\mathrm{C}_{\text {quat }}\right), 129.91\left(\mathrm{C}_{\text {quat }}\right), 130.50\left(\mathrm{C}_{\text {quat }}\right), 142.11\left(\mathrm{C}_{\text {quat }}\right), 1 \mathrm{C}_{\text {quat }}$ not observed. $-\mathrm{MS}(70 \mathrm{eV}), m / z(\%): 318$ $(40)\left[\mathrm{M}^{+}\right], 290(100)\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4}\right], 252(10)\left[\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{6}=\right.$ benzo[e]pyrene]. $-\mathrm{C}_{25} \mathrm{H}_{18}$ (318.4): calcd. C 94.30, H 5.70 ; found C 94.46, H 5.81%.

Aryl Anellated Cyclopentadienes by Flash Vacuum Pyrolysis

General Procedure 4 (GP 4): The specified amount of an alkene was sublimed through a quartz tube ($50 \times 3 \mathrm{~cm}, 750^{\circ} \mathrm{C}$) in vacuo ($p \leq 10^{-4} \mathrm{Torr}$). The product was collected in the cold zone of the quartz tube.

Cyclopentadieno-9:10-phenanthrene (45): According to GP $4,42 \mathrm{mg}(0.15 \mathrm{mmol})$ of 11 was sublimed at $125^{\circ} \mathrm{C}$ during 7 h through the quartz tube to yield $25 \mathrm{mg}(77 \%)$ of 45 , coloness crystals, mp $106^{\circ} \mathrm{C}$. - UV $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\lg \varepsilon)=366 \mathrm{~nm}(2.96), 316(3.76), 303(3.77), 257(4.45)$. - Fluorescence $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, excitation at 330 nm): $\lambda_{\text {max }}=448 \mathrm{~nm} .-{ }^{1} \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.78-3.95(\mathrm{~m}, 2 \mathrm{H}, 13-\mathrm{H}), 6.62-6.82(\mathrm{~m}, 1 \mathrm{H}$, alkene-H), $7.32-7.85(\mathrm{~m}, 5 \mathrm{H}), 7.89-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.10-8.25(\mathrm{~m}, 1 \mathrm{H}), 8.59-8.82(\mathrm{~m}, 2 \mathrm{H}) .-{ }^{13} \mathrm{CNMR}$ $\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, and APT): $\delta=38.49(-), 123.29(+), 123.46(+), 123.96(+), 124.38(+), 125.21(+)$, $125.72(+), 126.44(+), 126.76(+), 127.79(-), 128.83(-), 129.65(-), 130.03(+), 130.22(-), 133.76(+)$, $138.52(-), 139.38(-) .-\mathrm{MS}(70 \mathrm{eV}), m / z(\%): 216(100)\left[\mathrm{M}^{+}\right], 178(82) .-\mathrm{C}_{17} \mathrm{H}_{12}$: calcd. and found 216.0939 (HRMS).

4(5)-Phenyicyclopentadieno-9:10-phenanthrene ((E / Z)-42): According to GP $4,65.2 \mathrm{mg}(0.18 \mathrm{mmol})$ of 12 was sublimed at $135^{\circ} \mathrm{C}$ during 9 h through the quartz tube to yield $45 \mathrm{mg}(85 \%)$ of $(E / Z)-42$, light yellow solid. $-\mathbb{R}(\mathrm{KBr}): v=3025 \mathrm{~cm}^{-1}, 2920,1570,1450,820,740 .-1 \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.84-3.95$ $(\mathrm{m}, 2 \mathrm{H}, 13-\mathrm{H}), 6.71-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.95-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.35-8.25\left(\mathrm{~m}, 12 \mathrm{H}\right.$, arene-H). - ${ }^{13} \mathrm{C}$ NMR $\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, and APT): $\delta=39.53(-), 39.92(-), 123.33(+), 123.49(+), 123.65(+), 123.85(+), 123.90$ $(+), 123.96(+), 125.53(-), 125.85(+), 125.91(-), 126.17(+), 126.90(+), 127.04(+), 127.12(+), 127.15(+)$, $127.21(-), 127.28(+), 128.17(-), 128.22(-), 128.50(-), 128.57(+), 128.61(-), 128.72(+), 128.92(+)$, $129.09(+), 129.16(+), 129.29(+), 129.62(+), 130.01(+), 130.12(-), 130.27(+), 130.80(-), 133.74(+)$, $133.99(+), 138.54(-), 138.88(-), 139.75(-), 140.98(-), 141.15(-), 145.66(-), 145.71(-) .-\mathrm{MS}(70 \mathrm{eV})$, $m / z(\%): 292(100)\left[\mathrm{M}^{+}\right], 276(16) .-\mathrm{C}_{23} \mathrm{H}_{16}:$ calcd. and found 292.1251 (HRMS).

4:5-Cyclopentadienobenzole]pyrene (39): A: According to GP $4,560 \mathrm{mg}$ (1.76 mmol) of 38 was sublimed at $150^{\circ} \mathrm{C}$ during 6 h through the quartz tube $\left(650^{\circ} \mathrm{C}\right.$) to yield 485 mg (95%) of 39 , light yellow solid. - IR (KBr): $v=3050 \mathrm{~cm}^{-1}, 3020,2990,1600,1440,1370,1160,905,845,795,745,715 .-{ }^{1} \mathrm{H} \mathrm{NMR}$ ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.01\left(\mathrm{t},{ }^{3} J=1.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, alkyl-H), $6.86\left(\mathrm{dt},{ }^{3} J=4.2,{ }^{3} J=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, alkene-H), $7.64\left(\mathrm{dt},{ }^{3} J=4.2,{ }^{3} J=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, alkene-H), $7.73\left(\mathrm{dd},{ }^{3} J=7.0,{ }^{4} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, arene-H), $8.04(\mathrm{~m}$, ${ }^{3} J=6.0,{ }^{4} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}$, arene-H), 8.28 (dd, ${ }^{3} J=6.0,{ }^{4} J=0.8 \mathrm{~Hz}, 1 \mathrm{H}$, arene-H), 8.45 (dd, ${ }^{3} J=6.0$, $4 J=0.8 \mathrm{~Hz}, 1 \mathrm{H}$, arene-H), $8.87\left(\mathrm{~m}, 4 \mathrm{H}\right.$, arene-H). $-\mathrm{C}_{23} \mathrm{H}_{14}(290.4)$: calcd. C $95.14, \mathrm{H} 4.86$; found C 95.25 , H 4.83\%.
B : According to GP $4,40 \mathrm{mg}(0.11 \mathrm{mmol})$ of 40 was sublimed at $150^{\circ} \mathrm{C}$ during 2.5 h through the quartz tube ($750{ }^{\circ} \mathrm{C}$) to yield $31 \mathrm{mg}(96 \%)$ of 39.

Benzo[e]pyrene (36): According to GP 4, but at $p=0.05-0.01$ Torr, $150 \mathrm{mg}(0.47 \mathrm{mmol})$ of 35 was sublimed at $150-200^{\circ} \mathrm{C}$ during 4 h through the quartz tube $\left(800^{\circ} \mathrm{C}\right.$) to yield 104 mg of a mixture of 35 (ca. 10%) and 36 (ca. 90%), which was separated by crystallization from n-heptane to yield 82 mg (69%) of 36 .

4:5-Cyclopentadienobenzo[1,2-b:4,3-b'Jdithiophene (46): According to GP 4, $45.6 \mathrm{mg}(0.15 \mathrm{mmol}$) of 20 was sublimed at $130^{\circ} \mathrm{C}$ during 7 h through the quartz tube to yield 29 mg (85%) of $46, \mathrm{mp} 128^{\circ} \mathrm{C}$ (decomp.). $-\mathrm{UV}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}(\lg \varepsilon)=429 \mathrm{~nm}(2.39), 307$ (3.77), 252 (4.06). - Fluorescence $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, excitation at 319 nm): $\lambda_{\max }$ (rel. intens.) $=498 \mathrm{~nm}(1.0), 477(0.97) .-{ }^{1} \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.75$ $\left(\mathrm{dd},{ }^{3} J=5.0,{ }^{4} J=1.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, alkyl-H), $6.71\left(\mathrm{dt},{ }^{3} J=5.0,{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, alkene-H), $7.15\left(\mathrm{dt},{ }^{4} J=1.0,{ }^{3} J=\right.$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}$, alkene-H), $7.44\left(\mathrm{~d},{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.53\left(\mathrm{~d},{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.73\left(\mathrm{~d},{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.75$ $\left(\mathrm{d},{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right) .-{ }^{13} \mathrm{C} \mathrm{NMR}\left(62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, and APT): $\delta=39.36(-), 122.41(+), 122.62(+), 124.35$ $(+), 125.03(+), 130.01(-), 130.29(+), 132.84(-), 133.49(+), 133.61(-), 134.02(-), 134.62(-), 138.21(-)$. - MS (70 eV), $m / 2(\%): 228$ (100)[M $\left.\mathrm{M}^{+}\right], 91$ (39), 71 (83), 55 (37). $-\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~S}_{2}$: calcd. and found 228.0067 (HRMS).

5:6-Cyclopentadieno-3,8-phenanthroline (47): According to GP 4, $55 \mathrm{mg}(0.2 \mathrm{mmol}$) of 24 a was sublimed at $130^{\circ} \mathrm{C}$ during 8 h through the quartz tube to yield $41 \mathrm{mg}(94 \%)$ of $47, \mathrm{mp} 135^{\circ} \mathrm{C}$ (decomp.). -

UV (iso-octane): $\lambda_{\text {max }}(\lg \varepsilon)=441 \mathrm{~nm}(1.55), 435$ (1.55), 429 (1.56), 418 (1.57), 385 (3.37), 365 (3.30), 348 (3.05), 325 (3.67), 313 (3.75), 228 (4.27). - Fluorescence (iso-octane, excitation at 313 nm): $\lambda_{\max }$ (rel. intens.) $=433 \mathrm{~nm}(0.31), 409(0.82), 388(1.00) .-\mathbb{R}(\mathrm{KBr}): v=3055 \mathrm{~cm}^{-1}, 2960,1445,800,760,700 .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.93(\mathrm{dd}, 3 J=1.7,4 J=1.2 \mathrm{~Hz}, 2 \mathrm{H}, 13-\mathrm{H}), 6.95\left(\mathrm{dt}, 3 J=4.0,{ }^{3} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}\right)$, $7.57\left(\mathrm{dt},{ }^{3} J=4.0,4 J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}\right), 8.38\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}^{*}\right), 8.40\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}^{*}\right)$, $8.76\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}^{* *}\right), 8.84\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}^{* *}\right), 9.46\left(\mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{H}^{* * *}\right), 9.60(\mathrm{~s}, 1 \mathrm{H}, 4-$ $\mathrm{H}^{* * *}$). $-{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, and APT): $\delta=39.12(-), 116.74(+), 116.79(+), 123.48(-), 125.80$ $(-), 128.56(+), 131.38(-), 132.76(-), 136.08(+), 138.34(-), 140.55(-), 144.19(+), 145.25(+), 148.18(+)$, $148.29(+) .-$ MS $(70 \mathrm{eV}), m / z(\%): 218(100)\left[\mathrm{M}^{+}\right], 190(18), 163(16) .-\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2}$: calcd. and found 218.0843 (HRMS).

5:6-Cyclopentadieno-2,9-phenanthroline (48): According to GP $4,50.3 \mathrm{mg}(0.17 \mathrm{mmol})$ of 26 was sublimed at $150^{\circ} \mathrm{C}$ during 7 h through the quartz tube to yield $29 \mathrm{mg}\left(78 \%\right.$) of 48 , yellow solid. - ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.85\left(\mathrm{dd},{ }^{3} J=4 J=1.0 \mathrm{~Hz}, 2 \mathrm{H}, 13-\mathrm{H}\right), 6.96\left(\mathrm{dt},{ }^{3} J=6.2,{ }^{3} J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H}\right)$, $7.43\left(\mathrm{dt},{ }^{3} J=6.2,4 J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, 11-\mathrm{H}\right), 7.80\left(\mathrm{~d},{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}^{*}\right), 7.96\left(\mathrm{~d}, 3 J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}^{*}\right)$, $8.77\left(\mathrm{~d}, 3 J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}^{* *}\right), 8.83\left(\mathrm{~d}, 3 J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}^{* *}\right), 10.10\left(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}^{* * *}\right), 10.14(\mathrm{~s}, 1 \mathrm{H}, 10-$ $\left.\mathrm{H}^{* * *}\right) .-\mathrm{MS}(70 \mathrm{eV}), m / z(\%): 218(100)\left[\mathrm{M}^{+}\right], 190(11), 163(22) .-\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{2}$: calcd. and found 218.0843 (HRMS).

REFERENCES AND NOTES

1. For a recent review on sequential reactions in general see: U. Beifuss, L.-F. Tietze, Angew. Chem. 1993, 105, 137-170; Angew. Chem. Int. Ed. Engl. 1993, 32, 131-164.
2. (a) B. M. Trost, Y. Shi, J. Am. Chem. Soc. 1991, 113, 701-703. - (b) B. M. Trost, Y. Shi, ibid. 1992, 114, 791-792.
3. (a) Y. Zhang, E.-I. Negishi, J. Am. Chem. Soc. 1989, 111, 3454-3456. - (b) G.-Z. Wu, F. Lamaty, E.-I. Negishi, J. Org. Chem. 1989, 54, 2507-2508. - (c) Y. Zhang, G.-Z. Wu, G. Agnel, E.-I. Negishi, J. Am. Chem. Soc. 1990, 112, 8590-8592.
4. (a) N. E. Carpenter, D. J. Kucera, L. E. Overman, J. Org. Chem. 1989, 54, 5846-5848. - (b) M. M. Abelman, L. E. Overman, J. Am. Chem. Soc. 1988, I10, 2328-2329. - (c) D. J. Kucera, L. E. Overman, Abstracts of Papers, 200th National Meeting of the American Chemical Society, Washington, DC, Aug. 1990.
5. (a) R. Grigg, V. Santhakumar, V. Sridharan, P. Stevenson, A. Teasdale, M. Thornton-Pett, T. Worakun, Tetrahedron 1991, 47, 9703-9720. - (b) R. Grigg, M. J. Dorrity, J. F. Malone, V. Sridharan, S. Sukirthalingam, Tetrahedron Lett. 1990, 31, 1343-1346. - (c) R. Grigg, V. Loganathan, V. Santhakumar, V. Sridharan, A. Teasdale, Tetrahedron Lett. 1991, 32, 687-690.
6. (a) R. C. Larock, B. E. Baker, Tetrahedron Lett. 1988, 29, 905-908. - (b) R. C. Larock, H. Song, B. E. Baker, W. H. Gong, ibid. 1988, 29, 2919-2922.
7. (a) F. E. Meyer, P. J. Parsons, A. de Meijere, J. Org. Chem. 1991, 56, 6487-6488. - (b) F. E. Meyer, A. de Meijere, Synlett 1991, 777-778. - (c) F. E. Meyer, J. Brandenburg, P. J. Parsons, A. de Meijere, J. Chem. Soc., Chem. Commun. 1992, 390-392. - (d) F. E. Meyer, H. Henniges, A. de Meijere, Tetrahedron Lett. 1992, 33, 8039-8042.
8. (a) S. Torii, H. Okumoto, A. Nishimura, Tetrahedron Lett. 1991, 32, 4167-4168; P. J. Parsons, M. Stefinuvic, P. Willis, F. E. Meyer, Synlett 1992, 864-866. - (b) S. Torii, H. Okumoto, T. Kotani, S. Nakayasu, H. Ozaki, Tetrahedron Lett. 1992, 33, 3503-3506.
9. M. Catellani, G. P. Chiusoli, J. Organomet. Chem. 1985, 286, C13-C16. - Review: G. P. Chiusoli, ibid. 1986, 300, 57-80 and references cited therein.
10. For preliminary reports on this work see: (a) O. Reiser, M. Weber, A. de Meijere, Angew. Chem. 1989, 101, 1071-1072; Angew. Chem. Int. Ed. Engl. 1989, 28, 1037-1038. - (b) K. Albrecht, O. Reiser, M. Weber, A. de Meijere, Synlett 1992, 521-523.
11. T. Jeffery, Tetrahedron Lett. 1985, 26, 2667-2670. - See also: T. Jeffery, Tetrahedron Lett. 1990, 31, 6641-6644.
12. In most cases, the less expensive tetra- n-butylammonium bromide could be substituted for the chloride originally used by Jeffery, ${ }^{11}$ with as good results.
13. In the absence of norbornene, the palladium catalyzed aryl aryl coupling can be achieved with yields up to 87%, by raising the reaction temperature to $150^{\circ} \mathrm{C} . \mathrm{Cf} . \mathrm{K}$. Albrecht, M. Weber, A. de Meijere, unpublished results. - M. Weber, Dissertation, Universität Hamburg, 1992; K. Albrecht, Dissertation, Universität Göttingen, 1993. - This is superior to a recently published palladium-catalyzed aryl aryl coupling which requires the presence of triphenylarsine: M. Brenda, A. Knebelkamp, A. Greiner, W. Heitz, Synlett 1991, 11, 809-810.
14. Siemens Stoe AED 2 diffractometer, Mo- K_{α} radiation, structures were solved with SHELXTL-PLUS. ${ }^{15}$ Further details of these crystal structure investigations are available on request from the Fachinformationszentrum Energie Physik Mathematik GmbH, D-76344 Eggenstein-Leopoldshafen, on quoting the depository number CSD-57602, the names of the authors, and the journal citation.
15. G. M. Sheldrick, SHELXTL-PLUS: Program for Crystal Structure Determination, Göttingen 1986.
16. A rate retarding effect of electron-withdrawing substituents in palladium catalyzed aryl halide coupling reactions has been noted. Cf. P. J. Harrington, K. A. DiFiore, Tetrahedron Lett. 1987, 28, 495-498.
17. M. Catellani, G. P. Chiusoli, C. Castagnoli, J. Organomet. Chem. 1991, 407, C30-C33; M. Catellani, G. P. Chiusoli, ibid. 1988, 346, C27-C30, and earlier references cited therein. - For a detailed mechanistic study see: J. M. Brown, N. A. Cooley, Organometallics 1990, 9, 353-359.
18. For a review on the role of Pd(IV) complexes see: A. J. Canty, Acc. Chem. Res. 1992, 25, 83-90.
19. The primary addition product of phenylpalladium iodide to norbornene, a complex of type 29 with $\mathrm{L}=\mathrm{PPh}_{3}$, has been isolated and fully characterized by X -ray crystal structure analysis. C .-S. Li, $\mathrm{C} . \mathrm{H}$. Cheng, F.-L. Liao, S.-L. Wang, J. Chem. Soc., Chem. Commun. 1991, 710-712.
20. M. Catellani, G. P. Chiusoli, J. Organomet. Chem. 1992, 425, 151-154, and earlier references cited therein.
21. This is conceived in close analogy to known aryne $\mathrm{Pt}(\mathrm{II})$ complexes. Cf. M. A. Bennett, H. P. Schwemlein, Angew. Chem. 1989, 101, 1349-1373; Angew. Chem. Int. Ed. Engl. 1989, 28, 1296. The frequently formulated possibility (cf. B. A. Markies, P. Wijkens, H. Kooijman, A. L. Spek, J. Boersma, G. van Koten, J. Chem. Soc., Chem. Commun. 1992, 1420-1423 and references cited therein) that the ortho $\mathrm{C}-\mathrm{H}$ activation occurs as a consequence of an electrophilic attack of $\mathrm{Pd}(\mathrm{II})$ or $\mathrm{Pd}(\mathrm{IV})$ on the adjacent arene unit appears to be less likely in this case, as it would bave to occur via a highly distorted σ-complex.
22. For reviews on this pyrolysis technique see: (a) E. Hedaya, Acc. Chem. Res. 1969, 2, 367-373. - (b) U. E. Wiersum, Rec. Trav. Chim. Pays-Bas 1982, 101, 317-332. - (c) U. E. Wiersum, ibid. 1982, 101 , 365-381. - (d) G. Seybold, Angew. Chem. 1977, 89, 377-385; Angew. Chem. Int. Ed. Engl. 1977, 16, 365-373.
23. For the use of ring-anellated cyclopentadienes as ligands in metal complexes see: (a) L. A. Paquette, K. J. Moriarty, P. Meunier, B. Gautheron, C. Sornay, R. D. Rogers, A. L. Rheingold, Organometallics 1989, 8, 2159-2167, and references cited therein. - (b) R. L. Haltermann, K. P. C. Vollhardt, Organometallics 1988, 7, 883-892. - (c) G. Erker, A. A. H. van der Zeijden, Angew. Chem. 1990, 102, 543-545; Angew. Chem. Int. Ed. Engl. 1990, 29, 512. - (d) G. S. Hermann, H. G. Alt, M. D. Rausch, J. Organomet. Chem. 1991, 401, C5-C9. - (e) G. Erker, R. Nolte, R. Aul, S. Wilker, C. Krüger, R. Noe, J. Am. Chem. Soc. 1991, 113, 7594-7602.
24. (a) M. Karpf, Angew. Chem. 1986, 98, 413-429; Angew. Chem. Int. Ed. Engl. 1986, 25, 414. - (b) A. Ichihara, Synthesis 1987, 207-222.
25. This intramolecular double hydrogen migration has precedence in polycyclic hydrocarbon chemistry. For related examples see: (a) J.-P. Hagenbuch, B. Stampfli, P. Vogel, J. Am. Chem. Soc. 1981, 103, 3934-3935. - (b) L. A. Paquette, G. A. O'Doherty, J. Am. Chem. Soc. 1991, 113, 7761-7762.
26. This fragmentation in the mass spectrometer most probably is a thermal process: H. Budzikiewicz, Z. Anal. Chem. 1969, 244, 1-6.
