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Novel series of 3-amino-N-(4-aryl-1,1-dioxothian-4-yl)butanamides and 3-amino-N-(4-aryltetrahydro-
pyran-4-yl)butanamides were synthesized and evaluated as dipeptidyl peptidase IV (DPP-IV) inhibitors.
Derivatives incorporating the 6-substituted benzothiazole group showed highly potent DPP-IV inhibitory
activity. Oral administration of (3R)-3-amino-4-(2,4,5-trifluorophenyl)-N-{4-[6-(2-methoxyethoxy)ben-
zothiazol-2-yl]tetrahydropyran-4-yl}butanamide (12u) reduced blood glucose excursion in an oral glu-
cose tolerance test.

� 2008 Elsevier Ltd. All rights reserved.
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Dipeptidyl peptidase IV (DPP-IV) is a serine protease cleaving
dipeptide derived from the N-terminus of peptides. One of the
important roles of DPP-IV is a rapid inactivation of the glucagon-
like peptide 1 (GLP-1).1 GLP-1, which is an incretin secreted after
meal ingestion, stimulates insulin biosynthesis and release and
inhibits glucagon release. GLP-1 also inhibits gastric emptying
and regulates pancreatic b-cell mass.2 The inhibition of DPP-IV en-
hances the effects of the endogenous GLP-1; therefore, DPP-IV
inhibitors are a new candidate in the treatment of type 2 diabetes
without any side effects such as hypoglycemia and exhaustion of b-
cells.3 Several DPP-IV inhibitors including Sitagliptin,4,5 Vildaglip-
tin,6 Saxagliptin,7 and Alogliptin are currently under clinical devel-
opment.8 Among them, Sitagliptin have received approval from the
FDA (Fig. 1).9 Our goal was to identify novel inhibitors of DPP-IV
with good potency and oral activity.

Merck group reported the b-amino amides as a class of DPP-IV
inhibitors.10 In the course of our modification of the b-amino amide,
we found that benzyl piperazine moiety could be replaced by aryl
substituted ring which was readily derivatized because of no chiral
center. In this study, we report the discovery, structure–activity rela-
tionships (SARs), and pharmacological properties of the novel series
of 3-amino-N-(4-aryl-1,1-dioxothian-4-yl)butanamides and 3-ami-
no-N-(4-aryltetrahydropyran-4-yl)butanamides as potent DPP-IV
inhibitors.

The series and analogues of 3-amino-N-(4-aryl-1,1-dioxothian-
4-yl)butanamides 12 (Y = SO2) were prepared by the acylation of
amine 4 with (3R)-N-Boc-b-amino acid using a coupling reagent
ll rights reserved.

a).
followed by acidic deprotection (Scheme 1). In case Y was a sul-
fone, the corresponding sulfide 10 was converted to a sulfone 11
by oxidation using mCPBA or tetrapropylammonium perruthenate
(TPAP).11 The preparation of amine 4 from ketone 1 was carried out
by three methods. The first was the Ritter reaction: tertiary alcohol
2 derived from ketone 1 was converted to acetamide 3 followed by
acidic hydrolysis or deacetylation using titanium tetraisopropoxide
and diphenylsilane.12 The second method involved the use of
oxime: the reaction of oxime 6, which was obtained from ketone
(BMS-477118) (SYR-322)

Figure 1. Potent DPP-IV inhibitors.
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Scheme 1. Reagents and conditions: (i) RLi or RMgBr, THF, �78 �C to rt; (ii) MeCN, concd H2SO4, 0 �C to rt; (iii) 6M HCl, reflux; (iv) Ti(Oi–Pr)4, Ph2SiH2, THF, rt; (v)
BnONH2�HCl, AcONa, MeOH/H2O, 90 �C, quant.; (vi) 2-bromopyridine, n-BuLi, Et2O, �78 �C to rt, 75%; (vii) Mo(CO)6, MeCN/H2O, 100 �C, 31%; (viii) t-BuSONH2, Ti(OEt)4, THF,
reflux; (ix) n-BuLi, benzothiazole 14, �78 �C to rt; (x) HCl/MeOH, rt; (xi) (3R)-N-Boc-b-amino acid, EDCI, HOBt, N–Et morpholine, CH2Cl2, rt, or (3R)-N-Boc-b-amino acid,
HATU, N–Et morpholine, DMF, rt; (xii) mCPBA, CH2Cl2, 0 �C to rt; (xiii) TPAP, NMO, MS4A, MeCN, rt, 44%.
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5, with lithiated pyridine resulted in benzyloxyamine 7. Reductive
cleavage of the N–O bond was subsequently performed using
molybdenumhexacarbonyl.13 The third was Ellman’s method14,15

tert-butylsulfinimide 8 prepared from ketone 1 was treated with
a small excess lithiated benzothiazole derivative to yield sulfinam-
ide 9 followed by acidic deprotection. Benzothiazoles 14 were pre-
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Scheme 2. Reagents and conditions: (i) H3PO2 aq, NaNO2 aq, �15 �C to rt, 78%; (ii) HBr aq
H3PO2 aq, NaNO2 aq, �15 �C to rt; (v) 7 M NH3/MeOH, THF, rt; (vi) Br2, CHCl3, 0 �C to rt; (
THF, �78 �C, then H2O, 78%.
pared from commercially available 2-aminobenzothiazoles 13, 16
or arylisothiocyanate 17, as shown in Scheme 2. Deamination of
2-aminobenzothiazoles 13, 16 was carried out by diazotization
and subsequent treatment with phosphinic acid.16 Alkylation of
benzothiazole 15, which was prepared from benzothiazole 14l by
demethylation using hydrobromic acid, yielded benzothiazoles
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Table 1
DPP-IV inhibiting activity of compound 12a–j

F

NH2

N
H

O

R

Y

12a-j

Compound Y R IC50 (nM)

12a NBn Me 7800
12b NBn Ph 1000
12c NBn Bn 2200
12d NMe Ph 870
12e O Ph 2500
12f S Ph 3300
12g SO2 Ph 570
12h SO2 2-Pyridyl 470
12i SO2 2-Thiazolyl 190
12j SO2 2-Benzothiazolyl 64
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14t, x. The preparation of benzothiazole 14n began with the ami-
nolysis of arylisothiocyanate 17 with ammonia. The resulting thio-
urea 18 was cyclized using bromine to give 2-aminobenzothiazole
19,16c,17 which was then subjected to deamination and subsequent
debromination conditions to produce benzothiazole 14n.

The synthesized compounds were evaluated for the inhibition
of DPP-IV derived from human colonic carcinoma cells (Caco-
2).18 The results are shown in Tables 1 and 2. The potencies of
compounds having various Y groups were in the following order:
sulfide (compound 12f) < ether (compound 12e) < benzylamino
(compound 12b) < methylamino (compound 12d) < sulfone (com-
pound 12g). As the substituent R, the compounds with an aryl
group were more potent than those with a methyl group (com-
pound 12a); the maximum potency was displayed by a compound
having a 2-benzothiazolyl group (compound 12j) (IC50 = 64 nM). In
the series of compounds possessing a substituted benzothiazolyl
group, the use of 5 or 6-substituents resulted in an increase in
Table 2
DPP-IV inhibiting activity and microsomal stability of compound 12j–x

F

NH2

N
H

O

R1

R2

12j-x

Compound R1 R2 Y R0

Testosterone — — — —
12j H H SO2 H
12k F F SO2 H
12l H H SO2 6-OMe
12m F F SO2 6-OMe
12n F F SO2 5-OMe
12o H H SO2 4-OMe
12p H H SO2 6-Cl
12q H H SO2 4-Cl
12r H H SO2 6-Me
12s H H SO2 4-Me
12t F F SO2 6-OCH2CH2OMe
12u F F O 6-OCH2CH2OMe
12v Cl H SO2 6-OCH2CH2OMe
12w Cl H O 6-OCH2CH2OMe
12x F F SO2 6-OCH2CH2-morpholino

a ND, no data.
the inhibitory effects of DPP-IV. On the contrary, the use of 4-sub-
stituents resulted in a decrease in the inhibitory effects (com-
pounds 12o, q, and s).

Compounds 12v, x were the most potent inhibitors and their
IC50 values were of a subnanomolar concentration (compound
12v: IC50 = 0.64 nM, compound 12x: IC50 = 0.79 nM). Based on the
previously reported SAR of the phenyl moiety in b-amino acid, it
can be said that trifluoro derivatives (compounds 12k, m) are more
potent than nonsubstituted ones (compounds 12j, l).19 Chloroflu-
oro derivatives (compounds 12v, w) showed stronger inhibitory ef-
fects than trifluoro derivatives (compounds 12t, u). To the best of
our knowledge, these results are new information on SAR.

Some compounds showing high DPP-IV inhibitory effects were
tested in vitro for human, rat, and mouse cytochromes P450
(CYP) metabolism.20 As shown in Table 2, some differences based
on species were observed between the human, rat, and mouse
metabolism of these compounds. As a general trend, in comparison
with testosterone, the readily metabolizable reference, the metab-
olism of a mouse was steady for the compounds 12t, u, v, w, and x,
while that of a rat was stable only in the case of compounds 12t, v,
and x. Moreover, compound 12x, one of the most potent inhibitors,
was metabolized in humans as rapidly as testosterone
(CLint = 0.0928 mL/min/mg). Of the assessed compounds, com-
pound 12u was most stable in vitro during human CYP metabolism
(CLint = 0.0219 mL/min/mg). Rat plasma DPP-IV activity was mea-
sured after oral administration of compound 12u,21 which was
metabolically stable in humans and exhibited potent DPP-IV inhi-
bition. The compound inhibited the plasma DPP-IV activity in a
dose-dependent manner (ID50 = 2.7 mg/kg). When 30 mg/kg of
compound 12u was administered orally to an ICR mouse, blood
glucose excursion in an oral glucose tolerance test (OGTT) was re-
duced (Fig. 2).22

In conclusion, the novel series of 3-amino-N-(4-aryl-1,1-dioxo-
thian-4-yl)butanamides and 3-amino-N-(4-aryltetrahydropyran-
4-yl)butanamides exhibited profound DPP-IV inhibitory effects.
The compounds having a 6-substituted-2-benzothiazolyl group
were the most potent. Oral administration of the compound 12u,
Y

S

N

R'

4
5

6

Human DPP-IV IC50 (nM) CLint (mL/min/mg)a

Human Rat Mouse

— 0.1093 0.3756 0.3126
64 0.0346 0.0734 ND
13 0.0399 0.0644 ND
12 0.0262 0.0515 ND
2.7 0.0323 0.0423 ND
3.3 ND ND ND
270 ND ND ND
35 ND ND ND
130 ND ND ND
70 ND ND ND
350 ND ND ND
1.0 0.0466 0.0219 0.0341
3.6 0.0219 0.0496 0.0221
0.64 0.0638 0.0315 0.0330
1.9 0.0342 0.0981 0.0286
0.79 0.0928 0.0260 0.0345
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Figure 2. Effect of 12u in OGTT in ICR mice.
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which was stable during in vitro human CYP metabolism, reduced
the blood glucose excursion in OGTT. Further optimization of the
derivatives is now being investigated.
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