Reductive Elimination from Metal Phosphonate Complexes: Circumvention of Competing Protonolysis Reactions

Robert A. Stockland, J r., *,† Adam M. Levine, ${ }^{\dagger}$ Matthew T. Giovine, ${ }^{\dagger}$
Ilia A. Guzei, \ddagger and J oseph C. Cannistra ${ }^{\ddagger}$
Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, and Molecular Structure Laboratory, University of Wisconsin at Madison, Madison, Wisconsin

Received October 11, 2003

The formation of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ by reductive elimination from $\mathrm{L}_{2} \mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)$ species has been investigated. The electronic and steric effects of the supporting ligands were investigated by studying reductive elimination reactions from a series of discrete complexes containing nitrogen- and phosphorus-based ligands. The $\mathrm{P}(\mathrm{O})-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bond-forming reaction is slow when the intermediate species contains bidentate nitrogen ligands or small basic monodentate phosphines. Anal ogous complexes bearing large bite angle di phosphines such as dppf and Xantphos undergo reductive elimination at ambient temperature. The rate of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ formation by reductive elimination from (dppf) $\mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)$ is not affected by the identity or concentration of added ligand (excess dppf or PPh_{3}), suggesting that the reductive elimination occurs from a four- or three-coordinate intermediate. When the rate of reductive elimination is slow, protonolysis reactions between $\mathrm{L}_{2} \mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)$ intermediates and $\mathrm{HP}(\mathrm{O})(\mathrm{OPh})_{2}$ leads to the formation of bis-phosphonate complexes. The protonolysis reaction can be circumvented by the use of large bite angle phosphines such as dppf and Xantphos, which lead to rapid rates of $\mathrm{P}(\mathrm{O})-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bond formation. These results demonstrate that the formation of $\mathrm{P}(\mathrm{O})-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bonds by reductive elimination from $\mathrm{L}_{2} \mathrm{PdRP}$ $(\mathrm{O})(\mathrm{OR})_{2}$ complexes is quite sensitive to the steric bulk of the supporting ligand and the presence of excess hydrogen phosphonate.

Introduction

Processes leading to the formation of $\mathrm{P}(\mathrm{O})-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bonds have been the subject of an intense amount of research, due to the myriad of applications the resulting compounds have in medicinal, organic, and agricultural chemistry. ${ }^{1}$ Historically, these compounds are prepared by Arbusov or Pudovik type reactions; ${ }^{19,2}$, however, the devel opment of a metal-mediated process is attractive, due to the ability of transition-metal catalysts to manipulate the regi oselectivity and stereoselectivity of a reaction by modification of the ligand architecture. While various transition-metal-catalyzed routes are known for the formation of $\mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{O}$, and $\mathrm{P}-\mathrm{C}\left(\mathrm{sp}^{2}\right.$,$\mathrm{sp}^{3}$) bonds, ${ }^{3}$ analogous processes that form $\mathrm{P}(\mathrm{O})-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bonds are rare. ${ }^{4}$ Of particular interest is the addition of hydrogen phosphonates to olefins (Scheme 1). Tanaka has reported the addition of a pinacol-derived hydrogen phosphonate to a variety of olefins; however, simple substrates such as $\mathrm{HP}(\mathrm{O})(\mathrm{OR})_{2}(\mathrm{R}=$ alkyl, aryl) were unreactive. ${ }^{4 a}$ Recently, Montchamp has reported the addition of hypophosphorus derivatives to alkenes and

[^0]

Scheme 1. Mechanism for the Palladium-Catalyzed Addition of a Hydrogen Phosphonate to an Olefin by Insertion of the Olefin into the Pd-H Bond ${ }^{6}$

alkynes, but substrates such as $\mathrm{HP}(\mathrm{O})(\mathrm{OBu})_{2}$ were unreactive. ${ }^{5}$ Despite the screening of a number of catalysts, the factors behind this lack of reactivity remain unknown.
A possible key step in the addition of hydrogen phosphonates to alkenes is the reductive elimination from $\mathrm{L}_{\mathrm{n}} \mathrm{PdR}\left(\mathrm{P}(\mathrm{O})(\mathrm{OR})_{2}\right)$ intermediates (eq 1). ${ }^{6}$ We have

recently found that complexes of this type are remarkably stable and can be isolated as crystalline solids. ${ }^{7}$

To investigate the importance of these key intermediates in $\mathrm{P}(\mathrm{O})-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bond-forming reactions and to further the understanding of thefactors behind carbonheteroel ement bond-forming reactions, we have studied the reductive elimination of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ from a series of $\mathrm{L}_{n} \mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)$ complexes bearing monodentate and bidentate phosphine ligands.

Results and Discussion

Synthesis and Characterization of Discrete Com-

 pounds. The complex (${ }^{\text {Bu }} \mathrm{u}_{2}$ bipy) $\mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)(\mathbf{1}$; ${ }^{\text {t}}{ }^{\text {Bu }}$ 2bipy $=4,4$ '-di-tert-butyl-2,2'-bipyridine) was prepared by treatment of (${ }^{\left.\mathrm{E} B u_{2} b i p y\right) P d M e C l}$ with 1 equiv of $\mathrm{Ag}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{THF}$ followed by filtration and drying. Compound $\mathbf{1}$ is a col orless solid that is stable in solution or the solid statefor extended periods of time. No MeP(O)(OPh) $)_{2}$ was observed upon heating 1 (toluene, $\left.120{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}\right) .{ }^{7}$ Treatment of 1 with 2 equiv of a trialkylphosphine displaced the ${ }^{\text {tBu }} \mathrm{u}_{2}$ bipy ligand and formed complexes of the type $\left(\mathrm{PR}_{3}\right)_{2} \mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)$ ($\mathrm{PR}_{3}=\mathrm{PM} \mathrm{ePh}_{2}$ (2), $\mathrm{PM} \mathrm{e}_{2} \mathrm{Ph}(3), \mathrm{PEt}_{3}(4)$). M onitoring the reaction by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy showed that the displacement reaction was complete within minutes at $25^{\circ} \mathrm{C}$. The cis isomers of $\mathbf{2}$ and $\mathbf{4}$ were formed initially and slowly converted into the trans isomers upon standing in CDCl_{3} or $\mathrm{C}_{6} \mathrm{D}_{6}$. Only the trans isomer of $\mathbf{3}$ was observed upon treatment of $\mathbf{1}$ with $\mathrm{Me}_{2^{-}}$ PhP, even with deficiencies of $\mathrm{Me}_{2} \mathrm{PhP}$. Excess phosphine exchanged with the coordinated phosphine and accelerated the cis to trans isomerization. Once the trans isomer was formed, conversion back into the cis isomer was not observed. No $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ was observed at room temperature from solutions of 1-4. Although treatment of $\mathbf{1}$ with small basic phosphines generated the desired $\left(\mathrm{PR}_{3}\right)_{2} \mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)$ complexes, analogous reactions with 2 equiv of a bulky trialkylphosphine such as PCy_{3} afforded mixtures of $\mathbf{1}$, $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$, and $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{n}$. I ncreasing the amount of PCy_{3} increased the amount of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ that was formed in these reactions. Due to the difficulty of separating ${ }^{\text {tBu }}{ }_{2}$ bipy from 3 and 4, these complexes were isolated by starting from $\mathrm{Pd}(\mathrm{cod}) \mathrm{MeCl}(\mathrm{eq} \mathrm{2)}$).(3) F or recent reviews on $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ bond-forming reactions see: (a) Hartwig, J . F. Acc. Chem. Res. 1998, 31, 852. (b) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805. (c) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046. (d) Baranano, D.; Mann, G.; Hartwig, J. F. Curr. Org. Chem. 1997, 1, 287. For recent reports concerning $\mathrm{P}-\mathrm{C}\left(\mathrm{sp}^{2}, \mathrm{sp}^{3}\right)$ bond formation see: (e) M oncarz, J. R.; Laritcheva, N. F.; Glueck, D. S. J. Am. Chem. Soc. 2002, 124, 13356. (f) Wicht, D. K.; K ourkine, I. V.; Lew, B. M.; Nthenge, J. M.; Glueck, D. S. J. Am. Chem. Soc. 1997, 119, 5039. (g) M oncarz, J. R.; Brunker, T. J.; Glueck, D. S.; Sommer, R. D.; Rheingold, A. L. J . Am. Chem. Soc. 2003, 125, 1180. (h) Moncarz, J. R.; Brunker, T. J.; J ewett, J. C.; Orchowski, M.; Glueck, D. S.; Sommer, R. D.; Lam, K.C.; Incarvito, C. D.; Concolino, T. E.; Ceccarelli, C.; Zakharov, L. N.; Rheingold, A. L. Organometallics 2003, 22, 3205.
(4) (a) Han, L. B.; Mirzaei, F .; Zhao, C.-Q.; Tanaka, M. J . Am. Chem. Soc. 2000, 122, 5407. (b) Mirzaei F.; Han, L. B.; Tanaka, M. Tetrahe dron Lett. 2001, 42, 297. (c) Zhao, C. Q.; Han, L. B.; Tanaka, M. Organometallics 2000, 19, 4196. Han, L. B.; Zhao, C. Q.; Onozawa, S. Y.; Goto, M.; Tanaka, M. J . Am. Chem. Soc. 2002, 124, 3842.
(5) (a) M ontchamp, J. L.; Dumond, Y. R. J. Am. Chem. Soc. 2001, 123, 510. (b) Deprele, S.; M ontchamp, J. L. J. Am. Chem. Soc. 2002, 124, 9386.
(6) The formation of $\mathrm{L}_{n} \mathrm{PdR}\left(\mathrm{P}(\mathrm{O})(\mathrm{OR})_{2}\right)$ intermediates is a result of insertion of the alkene into the $\mathrm{Pd}-\mathrm{H}$ bond of a $\mathrm{L}_{n} \mathrm{PdH}\left(\mathrm{P}(\mathrm{O})(\mathrm{OR})_{2}\right)$ intermediate. Insertion into the $\mathrm{Pd}-\mathrm{P}$ bond is also possible: Wicht, D. K.; Kourkine, I. V.; Kovacik, I.; Glueck, D. S.; Concolino, T. E.; Yap, G. P. A.; Incarvito, C. D.; Rheingold, A. L. Organometallics 1999, 18, 5381.
(7) Levine, A. M.; Stockland, R. A., J r.; Clark, R.; Guzei, I. Organometallics 2002, 21, 3278.

Complexes containing diphosphine ligands were prepared by treatment of $\mathbf{1}$ or (dNbipy)PdMe(P(O)(OPh)2) ${ }^{7}$ (dNbipy $=4,4^{\prime}$-dinonyl-2, 2'-bipyridine) with 1 equiv of the diphosphine in $\mathrm{Et}_{2} \mathrm{O}$ at ambient temperature. The metal phosphonate complexes LPdMe(P(O)(OPh)2) (58; $L=d p p e, d p p p, d p p b, d p p f)^{8}$ precipitated from solution and were isolated as analytically pure col orless to tan solids by simple filtration followed by washing with diethyl ether (eq 3). Similar to 2-4, complexes 5-8

were quite robust in the solid state and could be stored for long periods of time with minimal decomposition. Although free phosphine rapidly exchanged with coordinated phosphine in complexes 2-4, excess bidentate phosphine did not exchange with the coordinated phosphine in 5-8, as evidenced by sharp resonances in the ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectra for the metal complex and the free diphosphine. Attempts to prepare a diphosphine complex containing Xantphos were unsuccessful, since $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ was generated rapidly (quantitative formation within a few minutes at $25^{\circ} \mathrm{C}$) when 1 equiv of Xantphos was added to sol utions of 1. Carrying out this reaction at low temperature afforded mixtures.

Compounds 5-8 and the cis isomers of $\mathbf{2}$ and $\mathbf{4}$ exhibit three resonances in the ${ }^{31} \mathrm{P}$ NMR spectrum (Table 1) with the high-frequency signal due to the $-\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}$ group ($85.5-89.3 \mathrm{ppm}$). The coupling constant between the trans phosphorus nuclei lies between 564.3 and 602.8 Hz , whilethe cis coupling constant varies between 22.5 and 68.3 Hz . The signal in the ${ }^{1} \mathrm{H}$ NMR spectrum for the Pd-Me group in 5-8 and the cis isomers of $\mathbf{2}$ and 4 appears as a doublet of doublets of doublets with coupling constants between 3.1 and 9.9 Hz . The trans isomers of 2-4 exhibit two signals in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum which appear as a doublet and triplet with coupling constants between 35.4 and 58.7 Hz . The resonance in the ${ }^{1} \mathrm{H}$ NMR spectrum for the $\mathrm{Pd}-\mathrm{Me}$ group of the trans isomers of 2-4 appears as a doublet of triplets with trans couplings of $9.9-10.1 \mathrm{~Hz}$ and cis couplings between 6.2 and 7.0 Hz (Figure 1).

Compound 5 was further characterized by singlecrystal X-ray diffraction. The asymmetric unit contains two independent molecules of $5(5 \mathbf{a}, \mathbf{b})$ and two sym-metry-independent molecules of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The ORTEP diagram is shown in Figure 2, crystal refinement data are given in Table 2, and bond lengths and angles are

[^1]Table 1. ${ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR Data for $\mathrm{L}_{2} \mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)$ Complexes $^{\mathrm{a}}$

ligand	complex	P^{b}	P^{c}	P^{d}
PMePh_{2} (cis isomer)	$\mathbf{2}$	88.5	8.2	2.9
PMePh_{2} (trans isomer)	$\mathbf{2}$	99.6	16.5	16.5
PMe_{2} Ph (trans isomer)	$\mathbf{3}$	99.5	-0.3	-0.3
PEtt_{3} (cis isomer)	$\mathbf{4}$	87.4	12.1	10.3
PEt_{3} (trans isomer)	$\mathbf{4}$	99.8	17.8	17.8
dppe	$\mathbf{5}$	92.9	48.3	40.1
dppp	$\mathbf{6}$	89.3	11.0	-0.8
dppb	$\mathbf{7}$	88.4	30.6	7.6
dppf	$\mathbf{8}$	85.5	25.8	14.9

a NMR spectra recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$. F or the cis isomers, $\mathrm{Pb}^{\mathrm{b}}=-\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}, \mathrm{P}^{\mathrm{c}}=-\mathrm{PR}_{3}$ trans to $-\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}$, and $\mathrm{Pd}^{\mathrm{d}}=-\mathrm{PR}_{3}$ cis to $-\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}$. For the trans isomers, $\mathrm{P}^{\mathrm{b}}=-\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}$, and Pc^{c} and $\mathrm{Pd}^{d}=$ cis- PR_{3} groups.

Figure 1. Representative ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25\right.$ ${ }^{\circ} \mathrm{C}$) spectra (PdM eregion): (a) trans-($\left.\mathrm{Me}_{2} \mathrm{PhP}\right)_{2} \mathrm{PdMe}(\mathrm{P}(\mathrm{O})$ $\left.(\mathrm{OPh})_{2}\right) ;(\mathrm{b})(\mathrm{dppb}) \mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)$.

Figure 2. ORTEP diagram of one of the independent molecules of 5 with thermal ellipsoids shown at 50\% probability and hydrogen atoms removed for clarity.
listed in Table 3. The major difference between the two complexes is rotation of one of the -PPh h_{2} aryl rings. The $\mathrm{Pd}-\mathrm{Me}$ bond lengths in $\mathbf{5 a}, \mathbf{b}$ are indistinguishable (2.114(3) $\AA, 5 \mathbf{5} ; 2.110(3) \AA, \mathbf{5 b})$ and typical of methyl palladium complexes. ${ }^{9}$ The $\mathrm{Pd}-\mathrm{P}(\mathrm{O})$ distances are also indistinguishable in 5a,b (5a, 2.2871(7) \AA; 5b, 2.2869(8) \AA) and are similar to those in other palladium and platinum phosphonate complexes. ${ }^{10}$ The $\mathrm{Pd}-\mathrm{P}$ bonds lengths are similar (5a, 2.3352(7) and $2.3301(8) \AA$; 5b, $2.3128(7)$ and $2.3293(7) \AA$) with the $\mathrm{Pd}-\mathrm{P}$ bond trans
(9) The Cambridge Structural Database contains 142 entries which have palladium-methyl bonds; $\mathrm{Pd}-\mathrm{Me}$ distances range from 1.946 to 2.189 Å.
to the methyl group slightly shorter than thePd-P bond length trans to the $\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}{ }^{-}$group in 5 a and slightly longer in $\mathbf{5 b}$, suggesting that the trans influence of $\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}{ }^{-}$is similar to that of the methyl group. ${ }^{7}$

In contrast to reactions involving $\mathbf{1}$ and small basic trialkylphosphines, treatment of $\mathbf{1}$ with triarylphosphines such as $\mathrm{PPh}_{3}, \mathrm{P}\left(4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)_{3}$, and $\mathrm{P}\left(4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)_{3}$ did not afford complexes of the type $\left(\mathrm{PR}_{3}\right)_{2} \mathrm{PdMe}(\mathrm{P}(\mathrm{O})$ (OPh) 2). Monitoring the reaction by NMR spectroscopy revealed that the resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum for the ${ }^{\text {tBu }}{ }_{2}$ bipy aromatic hydrogens were broadened into the baseline. Additionally, the signals in the ${ }^{31} \mathrm{P}$ \{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR spectrum for PR_{3} were broadened as well (ca. $\sim 80 \mathrm{~Hz}$). These data suggested that the metal complex was undergoing reversible coordination of the phosphine and/or intramolecular interconversion of a five-coordinate species. This type of dynamic solution behavior is well-known for d^{8} square-planar complexes. ${ }^{11}$ After the mixture stood at $25{ }^{\circ} \mathrm{C}$ for several hours, $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ was observed in the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ \{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR spectra (50% conversion by NMR). Treatment of a $\left(\mathrm{PR}_{3}\right)_{2} \mathrm{PdMeCl}$ precursor with 1 equiv of $\mathrm{Ag}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)$ was a successful alternative method for the formation of $\left(\mathrm{PR}_{3}\right)_{2} \mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)$ complexes containing PEt_{3} and $\mathrm{PMe}_{2} \mathrm{Ph}$; however, these reactions afforded an intractable mixture of metal-containing products and $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ when $\mathrm{PPh}_{3}, \mathrm{P}\left(4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)_{3}$, and $\mathrm{P}\left(4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)_{3}$ were used.

The reaction stoichiometry was also monitored by NMR spectroscopy using $\mathbf{1}+\mathrm{PPh}_{3}$ as the model system. Addition of 2 equiv of PPh_{3} to a CDCl_{3} solution of $\mathbf{1}$ at $25^{\circ} \mathrm{C}$ under nitrogen afforded 0.5 equiv of $\mathrm{MeP}(\mathrm{O})$ $(\mathrm{OPh})_{2}, 0.5$ equiv of unreacted $\mathbf{1}$, and 0.5 equiv of Pd $\left(\mathrm{PPh}_{3}\right)_{4}$ after standing for 24 h (eq 4). Although Pd $\left(\mathrm{PPh}_{3}\right)_{4}$ is known to dissociate into $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{3}$ and free $\mathrm{PPh}_{3},{ }^{12}$ there was no further generation of $\mathrm{MeP}(\mathrm{O})$ $(\mathrm{OPh})_{2}$. The addition of 4 equiv of PPh_{3} resulted in

[^2]Table 2. Summary of Crystallographic Data for 5, 9, and 13

	13	5	9
empirical formula	$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Pd}$	$\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{O}_{3} \mathrm{P}_{3} \mathrm{Pd}$	$\mathrm{C}_{78} \mathrm{H}_{72} \mathrm{Cl}_{4} \mathrm{O}_{8} \mathrm{P}_{6} \mathrm{Pd}$
formula wt	728.92	837.92	1571.38
temp (K)	173(2)	100(2)	100(2)
wavelength (\AA)	0.71073	0.71073	0.71073
cryst syste	monoclinic	triclinic	monoclinic
space group	$\mathrm{P} 21 / \mathrm{n}$	P1	$\mathrm{P} 2_{1} / \mathrm{C}$
unit cell dimens			
a (\AA)	9.3946(3)	9.4090(8)	12.5532(15)
b (\AA)	34.3472(9)	11.6613(10)	16.599(2)
$c(\AA)$	19.4549(5)	17.6423(15)	17.600(2)
α (deg)	90	93.0130(10)	90
β (deg)	101.726(1)	104.8470(10)	99.375(2)
γ (deg)	90	96.9180(10)	0
$V\left(\AA^{3}\right)$	6146.7(3)	1850.4(3)	3618.2(8)
Z	8	2	2
calcd density ($\mathrm{Mg} / \mathrm{m}^{3}$)	1.575	1.504	1.442
abs coeff (mm^{-1})	0.758	0.814	0.593
F (000)	2960	856	1616
cryst size (mm^{3})	$0.38 \times 0.26 \times 0.18$	$0.39 \times 0.30 \times 0.19$	$0.39 \times 0.25 \times 0.18$
θ range (deg)	1.22-26.36	$2.05-26.50$	$2.35-26.46$
no. of rfins collected	47497	42244	29205
no. of unique rflns	12541 (R (int) = 0.0337)	15070 (R (int) $=0.0353$)	7400 (R (int) $=0.0572$)
completeness to θ	99.8\%	99.0\%	99.1
abs cor .	empirical with DIFABS	multiscan with SADABS	multiscan with SADABS
max and min transmissn	0.8757 and 0.7616	0.8607 and 0.7420	0.9007 and 0.8016
no. of data/restraints/params	12 541/0/811	15 070/3/885	7400/0/439
goodness of fit on F^{2}	1.063	1.030	1.118
final R indices ($1>2 \sigma(\mathrm{l})$)	$\mathrm{R} 1=0.0322$	$\mathrm{R} 1=0.0272$	$\mathrm{R} 1=0.0662$
	$w R 2=0.0700$	$w R 2=0.0653$	$w R 2=0.1441$
R indices (all data)	$\mathrm{R} 1=0.0395$	$\mathrm{R} 1=0.0283$	$\mathrm{R} 1=0.0853$
	$w R 2=0.0728$	$w R 2=0.0659$	$\mathrm{wR} 2=0.1511$
largest diff peak and hole (e/ \AA^{3})	0.401 and -0.440	1.019 and -0.439	1.020 and -1.076

Table 3. Selected Bond Distances (\AA) and Angles (deg) for 5

Pd(1)-C(1)	2.114(3)	$\mathrm{Pd}(2)-\mathrm{P}(5)$	2.3293(7)
Pd(1)-P(1)	2.2871(7)	$\mathrm{P}(1)-\mathrm{O}(1)$	1.4827(19)
Pd(1)-P(2)	$2.3301(8)$	$\mathrm{P}(1)-\mathrm{O}(2)$	1.650(2)
$\mathrm{Pd}(1)-\mathrm{P}(3)$	$2.3352(7)$	$\mathrm{P}(1)-\mathrm{O}(3)$	1.6553(19)
Pd(2)-C(40)	2.110(3)	$\mathrm{P}(4)-\mathrm{O}(4)$	1.484(2)
Pd(2)-P(4)	2.2869(8)	$\mathrm{P}(4)-\mathrm{O}(6)$	1.642(2)
Pd(2)-P(6)	$2.3128(7)$	$\mathrm{P}(4)-\mathrm{O}(5)$	1.6537(19)
$C(1)-P d(1)-P(1)$	82.90(8)	$C(1)-P d(1)-P(3)$	95.25(8)
$C(1)-P d(1)-P(2)$	178.72(9)	$P(1)-P d(1)-P(3)$	175.84(3)
$P(1)-P d(1)-P(2)$	97.38(3)	$P(2)-P d(1)-P(3)$	84.37(3)
$\xrightarrow{2 \mathrm{PR}_{3}} 0 .$	$0.5 \mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}+0.5 \mathrm{~L}+0.5[\mathrm{Pd}]+0.51$ (4)		
$\xrightarrow{4 \mathrm{PR}_{3}} \mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}+\mathrm{L}+[\mathrm{Pd}]$			
$L={ }^{t} \mathrm{Bu}_{2} \mathrm{bipy},[\mathrm{Pd}]=$	$\left(\mathrm{PR}_{3}\right)_{n}$		

complete conversion into the desired methylphosphonate and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (eq 5). These reactions were also sensitive to the solvent. When chl orinated solvents were used, the reductive elimination was 50% complete after 24 h when 2 equiv of PPh_{3} was added. Longer reaction times or heating $\left(110^{\circ} \mathrm{C}\right)$ did not increase the yield of the methyl phosphonate above 50\%. Experiments carried out with $\mathrm{C}_{6} \mathrm{D}_{6}$ or toluene as the solvent resulted in a slight increase in the concentration of the methylphosphonate at ambient temperature ($65 \%, 72 \mathrm{~h}, \mathrm{C}_{6} \mathrm{D}_{6}$), while vigorous heating ($120^{\circ} \mathrm{C}$) resulted in excellent yields of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ (quantified by NMR). The addition of excess $\mathrm{PPh}_{3}(10,100$ equiv) resulted in the formation of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ in high yields at $25^{\circ} \mathrm{C}$ (Table 4). Thus, the formation of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ from solutions of $\mathbf{1}+\mathrm{PR}_{3}$ was a ligand-induced process. However, reductive elimination from the isolated com-

Table 4. Percent Conversion of 1 into $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ upon Addition of $\mathrm{PR}_{3}{ }^{\mathrm{a}}$

entry	1	$\xrightarrow{ }$	$\stackrel{\mathrm{O}}{\mathrm{MeP}(\mathrm{OP}}$		
	PR_{3}	conversn (\%) for PR_{3} added ${ }^{\mathrm{b}}$			
		2 equiv	5 equiv	10 equiv	100 equiv
1	PPh_{3}	50 (60)	94 (95)	93 (96)	91 (94)
2	$\mathrm{P}\left(4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)_{3}$	50 (57)	90 (95)	97 (92)	95 (93)
3	$\mathrm{P}\left(4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)_{3}$	52 (55)	93 (92)	94 (92)	95 (91)
4	$\mathrm{PPh}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)_{2}$	0 (0)	0 (0)	0 (0)	0 (0)
5	$\mathrm{P}\left(2,4,6-\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}\right)_{3}$	0 (0)	0 (0)	0 (0)	0 (0)
6	$\mathrm{P}\left(2,4,6-\mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{OMe})_{3}\right)_{3}$	0 (0)	0 (0)	0 (0)	0 (0)
7	Me2PhP	0 (0)	0 (0)	0 (0)	0 (0)
8	MePh ${ }_{2} \mathrm{P}$	0 (0)	0 (0)	0 (0)	0 (0)
9	PCy_{3}	37 (50)	65 (70)	70 (99)	95 (99)
10	PEt_{3}	0 (0)	0 (0)	0 (0)	0 (0)

${ }^{\text {a }}$ Reaction mixtures were stirred at $25^{\circ} \mathrm{C}$ for 24 h with $\mathbf{1}(0.005$ $\mathrm{g}, 0.08 \mathrm{mmol}), \mathrm{CDCl}_{3}(0.5 \mathrm{~mL})$, and the appropriate amount of phosphine. ${ }^{\text {b }}$ Percent conversion was determined by integration of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ relative to an internal standard: $\mathrm{C}_{6} \mathrm{Me}_{6}(0.001 \mathrm{~g}$, 0.012 mmol), a sealed capillary containing cyclooctadiene ($1.0 \mu \mathrm{~L}$, $0.082 \mathrm{mmol}, \mathrm{DMSO}-\mathrm{d}_{6}$ solution), or $\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{3}(0.003 \mathrm{~g}, 0.01 \mathrm{mmol})$. Numbers in parentheses refer to reactions carried out in toluene/ $\mathrm{C}_{6} \mathrm{D}_{6}$.
pound 8 (vide infra) was not a ligand-assisted process. While the overall reaction between $\mathbf{1}$ and PR_{3} was an assisted process, it is likely that the role of the excess ligand was to promote displacement of the ${ }^{\text {tBu}}{ }_{2}$ bipy ligand from the metal center, although it should be noted that the elimination from 8 could proceed through a different mechanism.
Bulky triarylphosphines such as PMes_{3} and $\mathrm{P}(2,4,6$ $\left.\mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{OMe})_{3}\right)_{3}$ or weakly basic phosphines such as PPh-$\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)_{2}{ }^{13}$ did not add to the palladium complex, as evidenced by sharp peaks for $\mathbf{1}$ and the free phosphine (identical with the chemical shifts for the isolated
species) in the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra. Treatment of 1 with up to 100 equiv of PMes_{3} or $\mathrm{PPh}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)_{2}$ did not generate $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ upon standing at $25^{\circ} \mathrm{C}$, but heating to $120{ }^{\circ} \mathrm{C}$ afforded the methylphosphonate in high yields. The use of PCy_{3} as the supporting ligand afforded moderate yields of the desired product under mild conditions (Table 4, entry 9).

Thermolysis Reactions of 2-8. While heating a CDCl_{3} solution of $\mathbf{2}, \mathbf{3}$, or $\mathbf{4}$ resulted in the formation of an intractable mixture of products with only traces of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ being observed, heating tol uene or $\mathrm{C}_{6} \mathrm{D}_{6}$ solutions of these compounds to $120{ }^{\circ} \mathrm{C}$ generated the methyl phosphonate in high yields. In the presence of up to 100 equiv of free phosphine, the only reaction products observed were the methylphosphonate and a $\mathrm{Pd}\left(\mathrm{PR}_{3}\right)_{n}$ species.

The relationship between the bite angle of a bidentate phosphine and the rate of reductive elimination has been the subject of numerous experimental and theoretical investigations. ${ }^{14,15}$ In general, the larger the bite angle, the faster the rate of reductive elimination. ${ }^{16}$ Although diphosphine bite angle effects have been well studied as they relate to carbon-carbon bond formation, their effects on $\mathrm{P}(\mathrm{O})-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bond-forming reactions have received less attention.

To investi gate the rel ationship between the bite angle of the diphosphine and the rate of reductive elimination from $\mathrm{L}_{2} \mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)$ complexes, thermolysis reactions of 5-8 were carried out and monitored by NMR spectroscopy. Complexes containing small bite angles such as 5 and 6 or moderately large bite angles such as 7 did not undergo a $\mathrm{P}(\mathrm{O})-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bond-forming reaction at room temperature (Table 5). H eating $\mathrm{CDCl}_{3}\left(120{ }^{\circ} \mathrm{C}\right)$ solutions of 5-7 afforded low yields of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$. However, analogous reactions with toluene as the solvent afforded high yields of the desired product. While the reductive elimination of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ from 5-7 was sluggish at ambient temperature, complex 8 readily reductively eliminated the methylphosphonate in CDCl_{3}, toluene, or $\mathrm{C}_{6} \mathrm{D}_{6}$ at $25{ }^{\circ} \mathrm{C}$. Additionally, treatment of $\mathbf{1}$ with 1 equiv of Xantphos (bite angle 111°) generated quantitative yields of the methylphosphonate within minutes at $25{ }^{\circ} \mathrm{C}$ in CDCl_{3}, toluene, or $\mathrm{C}_{6} \mathrm{D}_{6}$. The increased rate of reductive elimination in these reactions was attributed to either the large bite angle of the dppf or Xantphos ligand ${ }^{17}$ or dissociation of one end of the diphosphine to generate a highly reactive threecoordinate complex. Buchwald has suggested that dis-

[^3]Table 5. Bite Angle and Temperature Effects on MeP(O)(OPh) ${ }_{2}$ F ormationa

$\mathrm{a} \mathrm{i}=1$ equiv of $\mathrm{R}_{2} \mathrm{P}^{-} \mathrm{PR}_{2}$ as a trapping agent. Conversions listed refer to reactions carried out in CDCl_{3}, while numbers in parentheses refer to reactions carried out in toluene/ $C_{6} D_{6}$ (5:1). Reactions were carried out using the disphosphine complex 5, 6, 7, or $8(0.005 \mathrm{~g})$. Due to rapid formation of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ in runs 9 and 10, $\mathbf{1}+$ Xantphos was used as the model system. ${ }^{\text {b }}$ Temperature is reported in ${ }^{\circ} \mathrm{C} .{ }^{\mathrm{c}}$ Natural bite angles (in deg) were taken from ref 12. ${ }^{\text {d }}$ Conversion (in percent) was determined by integration of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ relative to an internal standard: $\mathrm{C}_{6} \mathrm{M} \mathrm{e}_{6}$ ($0.001 \mathrm{~g}, 0.012 \mathrm{mmol}$), a sealed capillary containing cydooctadiene ($1.0 \mu \mathrm{~L}, 0.082 \mathrm{mmol}, \mathrm{DMSO}_{6}$ solution), or $\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{3}(0.003 \mathrm{~g}, 0.01$ mmol).
sociation of one end of the Xantphos ligand was responsible for the ability of this ligand to promote coupling reactions, ${ }^{18}$ and recent studies have shown that the formation of carbon-nitrogen bonds by reductive elimination from three-coordinate compounds was faster than from four-coordinate species. ${ }^{19}$

Complex 6 was used to study the thermolysis reaction in the presence of 1 equiv of the ${ }^{\text {t } B u_{2}}$ bipy ligand. Treatment of 6 with 1 equiv of ${ }^{\text {tB }} \mathrm{u}_{2}$ bipy followed by heating to $75{ }^{\circ} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ afforded 0.5 equiv of $\mathrm{MeP}(\mathrm{O})$ $(\mathrm{OPh})_{2}, 0.5$ equiv of (dppp) ${ }_{2} \mathrm{Pd}$, and 0.5 equiv of (${ }{ }^{(\mathrm{B}} \mathrm{u}_{2^{-}}$ bipy)PdMe(P(O)(OPh)2) (eq 6). Further heating to 120

$$
\begin{gathered}
6 \frac{\text { tBu } u_{2} \text { bipy }}{\text { toluene, } 75^{\circ} \mathrm{C}} 0.51+0.5 \mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}+0.5[\mathrm{Pd}] \\
{[\mathrm{Pd}]=(\mathrm{dppp})_{2} \mathrm{Pd}}
\end{gathered}
$$

${ }^{\circ} \mathrm{C}$ afforded moderate yields of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}(85 \%)$ and a mixture of (dppp) ${ }_{2} P d$, free Pd metal, and ${ }^{\text {TBu}} \mathrm{u}_{2}$ bipy. In the presence of excess dppp (5, 10, or 100 equiv), the ${ }^{\text {tBu }} u_{2}$ bipy ligand did not affect the reaction outcome, and the only species observed after heating to $120^{\circ} \mathrm{C}$ for 12 h was the desired methylphosphonate (>95\% yield), free ${ }^{\text {tB }} u_{2}$ bipy ligand, the trapped $\operatorname{Pd}(0)$ species, and free dppp.

The possibility of a ligand-assisted reductive elimination reaction from 5-8 was investigated kinetically using 8 as the model system with 1-6 equiv of ligand (PPh_{3}, dppf) added to trap the generated $\mathrm{Pd}(0)$ species. ${ }^{20}$ The complex, added ligand, internal standard, and solvent were added to an NMR tube, and ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ -

[^4]

Figure 3. ORTE P of the cation of 9 with thermal ellipsoids shown at 50\% probability and hydrogen atoms removed for clarity.
Table 6. Selected Bond Distances (\AA) and Angles (deg) for the Cation of 9

$\mathrm{Pd}-\mathrm{P}(2) \mathrm{A}$	$2.3348(10)$	$\mathrm{P}(1)-\mathrm{C}(1)$	$1.814(4)$
$\mathrm{Pd}-\mathrm{P}(2)$	$2.3348(10)$	$\mathrm{P}(1)-\mathrm{C}(7)$	$1.821(4)$
$\mathrm{Pd}-\mathrm{P}(1)$	$2.3469(10)$	$\mathrm{P}(1)-\mathrm{C}(13)$	$1.830(4)$
$\mathrm{Pd}-\mathrm{P}(1) \mathrm{A}$	$2.3469(10)$	$\mathrm{P}(2)-\mathrm{C}(15)$	$1.810(4)$
$\mathrm{Cl}(1)-\mathrm{C}(39)$	$1.747(5)$	$\mathrm{P}(2)-\mathrm{C}(21)$	$1.818(4)$
$\mathrm{Cl}(2)-\mathrm{C}(39)$	$1.764(6)$	$\mathrm{P}(2)-\mathrm{C}(14)$	$1.851(4)$
$\mathrm{P}(2) \mathrm{A}-\mathrm{Pd}-\mathrm{P}(2)$	$180.00(6)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(7)$	$103.79(19)$
$\mathrm{P}(2) \mathrm{A}-\mathrm{Pd}-\mathrm{P}(1)$	$97.34(4)$	$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{C}(14)$	$105.90(19)$
$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{P}(1)$	$82.66(4)$	$\mathrm{C}(15)-\mathrm{P}(2)-\mathrm{Pd}$	$119.01(14)$
$\mathrm{P}(2) \mathrm{A}-\mathrm{Pd}-\mathrm{P}(1) \mathrm{A}$	$82.66(4)$	$\mathrm{C}(21)-\mathrm{P}(2)-\mathrm{Pd}$	$111.31(13)$
$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{P}(1) \mathrm{A}$	$97.34(4)$	$\mathrm{C}(14)-\mathrm{P}(2)-\mathrm{Pd}$	$108.79(13)$
$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{P}(1) \mathrm{A}$	$180.00(7)$		

$\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were periodically recorded. The rate of the reductive elimination reaction was first order in metal complex and was not affected by the identity ($\mathrm{PPh}_{3}, \mathrm{dppf}$) or the concentration of the added ligand (1-6-fold excess of dppf). This suggested that the reductive elimination reaction was occurring from a three or four-coordinate intermediate. However, our kinetic model cannot distinguish between elimination from a four-coordinate complex and dissociation of one of the arms of the diphosphine to generate a threecoordinate species which rapidly undergoes reductive elimination of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ followed by trapping of the Pd(0) species by free diphosphine.

Sensitivity of Phosphine-Containing Complexes. While quite robust in the solid state, complexes 2-8 were very sensitive to oxygen and moisture in sol ution. A solution of $5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded a mixture of compounds after stirring at room temperature for 24 h . Cooling of the solution to $-40{ }^{\circ} \mathrm{C}$ afforded crystals of $\left[\mathrm{Pd}(\mathrm{dppe})_{2}\right]\left[\mathrm{PO}_{2}(\mathrm{OPh})_{2}\right]_{2}(9 ; \sim 2 \%$ yield), which were separated by filtration. The ORTEP diagram of 9 is shown in Figure 3, crystal refinement data are listed in Table 2, and bond lengths and angles are listed in Table6. The complex $\left[\mathrm{Pd}(\text { dppe })_{2}\right]\left[\mathrm{PO}_{2}(\mathrm{OPh})_{2}\right]_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ crystallized as discrete anions and cations. The Pd(II) atom occupies a crystallographic inversion center, rendering the geometry about the metal center square planar. The Pd-P distance in 9 is 2.341(7) \AA (average) and the ligand bite angle, $\mathrm{P} 1-\mathrm{Pd}-\mathrm{P} 2$, is $82.66(4)^{\circ}$ (average).

Protonolysis Reactions of Metal Phosphonate Complexes. The protonolysis of metal alkyl complexes is an efficient way to generate unsaturated metal complexes and metal-heteroelement bonds. ${ }^{21}$ Thus, it is conceivable that treatment of $\mathrm{L}_{2} \mathrm{PdR}\left(\mathrm{P}(\mathrm{O})(\mathrm{OR})_{2}\right)$ with $\mathrm{HP}(\mathrm{O})(\mathrm{OR})_{2}$ could generate RH and $\mathrm{L}_{2} \mathrm{Pd}\left(\mathrm{P}(\mathrm{O})(\mathrm{OR})_{2}\right)_{2}$. Additionally, if the rate of the protonol ysis reaction was comparable to the reductive elimination reaction, it could compete with the $\mathrm{P}(\mathrm{O})-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bond-forming reaction. This process was realized in several recent reports. Treatment of ZnMe_{2} with phenylphosphonic acid resulted in the formation of methane and $\mathrm{Zn}\left(\mathrm{O}_{3} \mathrm{PC}_{6} \mathrm{H}_{5}\right) .{ }^{22}$ Tanaka reported that treatment of (dppe)PdMe2 with 1 equiv of diphenylphosphinic acid afforded (dppe)PdMe($\left.\mathrm{OP}(\mathrm{O}) \mathrm{Ph}_{2}\right),{ }^{23}$ and Schmidbaur has shown that $\mathrm{PPh}_{3}-$ AuMe reacted with $\mathrm{HP}(\mathrm{O}) \mathrm{R}_{2}$ ($\mathrm{R}=$ alkyl, alkoxy, aryl) complexes to generate gold phosphonate complexes of the type $\mathrm{Ph}_{3} \mathrm{PAuP}(\mathrm{O}) \mathrm{R}_{2} .{ }^{24}$ To investigate the scope of this reaction as it relates to potential side reactions in metal-mediated $\mathrm{P}(\mathrm{O})-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bond-forming reactions, we have investigated the reaction of $\mathrm{L}_{2} \mathrm{PdMe}(\mathrm{P}(\mathrm{O})$ $\left.(\mathrm{OPh})_{2}\right)(\mathrm{L}=$ nitrogen- or phosphorus-based ligand) with the representative hydrogen phosphonate $\mathrm{HP}(\mathrm{O})$ (OPh) 2 .

Since complexes of the type ($\left.\mathrm{N}^{\wedge} \mathrm{N}\right) \mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)$ ($\mathrm{N}^{\top} \mathrm{N}=$ bipy, ${ }^{\text {tBu }} \mathrm{Z}_{2}$ bipy, dNbipy) did not reductively eliminate $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ upon standing or heating, they provide a discrete system by which the protonation reaction can be studied in the absence of $\mathrm{P}(\mathrm{O})-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bond-forming reactions. Treatment of (bipy)PdMe(P(O)$(\mathrm{OPh})_{2}$ or $\mathbf{1}$ with $\mathrm{HP}(\mathrm{O})(\mathrm{OPh})_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 72 \mathrm{~h}\right)$ afforded methane and a mixture of palladium-containing complexes. Addition of diethyl ether to this mixture preci pitated the bis-phosphonate complexes ($\mathrm{N}^{\wedge} \mathrm{N}$)Pd($\left.\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)_{2}$ (bipy (13), 45\% yield; tBuzbipy (14), 54\%yield; eq 7). Although hydrogen phosphonates can

N $\mathrm{N}=$ bipy, ${ }^{\mathrm{t}} \mathrm{Bu}_{2}$ bipy
tautomerize into $\mathrm{P}(\mathrm{OH})(\mathrm{OR})_{2}$ species and coordinate to metals, ${ }^{25}$ no $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ was observed in these reactions. Analogous reactions in CDCl_{3} at higher temperatures $\left(70^{\circ} \mathrm{C}\right)$ yielded a mixture of compounds, with $\mathbf{1 3}$ and 14 being formed in lower yields. Due to the poor solubility of (bipy)PdMe(P(O)(OPh)2) in nonhalogenated sol vents, $\mathbf{1}$ was used as the discrete model complex for reactions carried out in toluene and benzene. Treatment of 1 with 1 equiv of $\mathrm{HP}(\mathrm{O})(\mathrm{OPh})_{2}$ in toluene $\left(25^{\circ} \mathrm{C}, 72\right.$ h) afforded the bis-phosphonate species in high yield

[^5]

Figure 4. ORTEP diagram of one of the independent molecules of $\mathbf{1 3}$ with thermal ellipsoids shown at 50% probability and hydrogen atoms removed for clarity.
Table 7. Selected Bond Distances (\AA) and Angles (deg) for 13

$P d(1)-N(2)$	$2.160(2)$	$P d(2)-N(2 A)$	$2.144(2)$
$P d(1)-N(1)$	$2.165(2)$	$P d(2)-N(1 A)$	$2.151(2)$
$P d(1)-P(1)$	$2.2377(6)$	$P d(2)-P(1 A)$	$2.2369(6)$
$P d(1)-P(2)$	$2.2466(7)$	$P d(2)-P(2 A)$	$2.2509(6)$
$N(2)-P d(1)-N(1)$	$76.70(8)$	$N(2 A)-P d(2)-N(1 A)$	$77.23(8)$
$N(2)-P d(1)-P(1)$	$168.62(6)$	$N(2 A)-P d(2)-P(1 A)$	$166.68(6)$
$N(1)-P d(1)-P(1)$	$92.97(6)$	$N(1 A)-P d(2)-P(1 A)$	$90.88(6)$
$N(2)-P d(1)-P(2)$	$100.05(6)$	$N(2 A)-P d(2)-P(2 A)$	$100.36(6)$
$N(1)-P d(1)-P(2)$	$174.57(6)$	$N(1 A)-P d(2)-P(2 A)$	$176.43(6)$
$P(1)-P d(1)-P(2)$	$90.60(2)$	$P(1 A)-P d(2)-P(2 A)$	$91.78(2)$

(quantified by NMR, 91\% isolated). Heating 1 with 1 equiv of $\mathrm{HP}(\mathrm{O})(\mathrm{OPh})_{2}\left(75^{\circ} \mathrm{C}, 6 \mathrm{~h}\right.$, toluene) also formed 14 in high yield (85\%).

Complex 13 was further characterized by singlecrystal X-ray diffraction. The ORTE P diagram is shown in Figure 4, crystal refinement data are listed in Table 2 , and bond lengths and angles are listed in Table 7. The asymmetric unit contains two independent molecules of $\mathbf{1 3}$ ($\mathbf{1 3 a}, \mathbf{b})$, with the tilt of one of the $\mathrm{P}-\mathrm{OPh}$ rings being the largest difference. The $\mathrm{Pd}-\mathrm{P}$ bond lengths (13a, 2.2377(6) and 2.2466(7) Å; 13b, 2.2369(6) and $2.2509(6) \AA$) are typical of those found in palladium and platinum phosphonate complexes.

Since complexes 5-8 reductively eliminated MeP(O)$(\mathrm{OPh})_{2}$ with rates dependent upon the identity of the diphosphine, these complexes were excellent model systems for comparing el ectrophilic alkyl abstraction vs reductive elimination. The results of a competition experiment would provide valuable information for the circumvention of the protonolysis reaction and give direction to the design of a successful olefin hydrophosphorylation catalyst.

The identity and concentration of the products from the reaction between 5-8 and $\mathrm{HP}(\mathrm{O})(\mathrm{OPh})_{2}$ were dependent upon the solvent, phosphine, and temperature. No reaction was observed between 5, 6, or 7 and HP$(\mathrm{O})(\mathrm{OPh})_{2}$ at room temperature in toluene (12 h); however, heating these solutions gave varying yiel ds of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ and the bis-phosphonate species depending upon the bite angle of the phosphine (Table 8). Addition of ether to reaction mixtures employing 5 and 6 precipitated $L_{2} \mathrm{Pd}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)_{2}\left(\mathrm{~L}_{2}=\right.$ dppe (15), dppp (16)). Increasing the concentration of $\mathrm{HP}(\mathrm{O})(\mathrm{OPh})_{2}$ to

Table 8. Competing Processes: Reductive Elimination vs Protonationa

[Pd] $=\left(\mathrm{R}_{2} \mathrm{P} P \mathrm{R}_{2}\right) \mathrm{Pd}$

	conversn (\%)	
diphosphine	bis-phosphonate	$\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$
dppe	95	0
dppp	45	19
dppb	30	40
dppf	0	95
	0	90^{c}
Xantphos	0	99^{b}
	0	$99^{\mathrm{b}, \mathrm{c}}$

a Reactions were carried out in $\mathrm{C}_{6} \mathrm{D}_{6}$ or toluene/ $\mathrm{C}_{6} \mathrm{D}_{6}(5: 1)$ with 5-7 (0.005 g). The appropriate amount of degassed $\mathrm{HP}(\mathrm{O})(\mathrm{OPh})_{2}$ was added by syringe. ${ }^{\mathrm{b}} \mathbf{1}+2$ equiv of Xantphos was used as the test case due to the rapid reductive elimination of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$. c 10 equiv of $\mathrm{HP}(\mathrm{O})(\mathrm{OPh})_{2}$ was used. Conversion was determined by integration of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ relative to an internal standard: $\mathrm{C}_{6} \mathrm{Me}_{6}(0.001 \mathrm{~g}, 0.012 \mathrm{mmol})$ or $\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{3}(0.003 \mathrm{~g}, 0.01 \mathrm{mmol})$.

10 equiv per Pd complex resulted in no methylphosphonate from 5-7, even under rigorous conditions (toluene, $\left.120^{\circ} \mathrm{C}, 24 \mathrm{~h}\right)$, showing that the tautomer of diphenylphosphite $\left(\mathrm{P}(\mathrm{OH})(\mathrm{OPh})_{2}\right)$ does not promote this reaction. ${ }^{25}$ These results demonstrated that the protonolysis reaction between $\mathrm{L}_{2} \mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)$ and $\mathrm{HP}(\mathrm{O})(\mathrm{OPh})_{2}$ was competitive with reductive elimination when the methylphosphonate complex contains bipyridine-based or small bite angle phosphines and dominates at high concentrations of the hydrogenphosphonate.

In contrast to reductive elimination from 1-7, complexes containing large bite angle diphosphines underwent the rapid reductive elimination of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ at room temperature. Since the protonolysis reaction between 1-7 and $\mathrm{HP}(\mathrm{O})(\mathrm{OPh})_{2}$ was slow at $25^{\circ} \mathrm{C}$, and the reductive elimination of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ from 8 and solutions of $\mathbf{1}+$ Xantphos was rapid at this temperature, complexes with large bite angle phosphines offered the best chance of circumventing the protonolysis reaction. Treatment of $\mathbf{8}$ with 1 or 10 equiv of $\mathrm{HP}(\mathrm{O})(\mathrm{OPh})_{2}$ did not effect the reductive elimination reaction (Table 8), and no protonolysis product was observed. Similarly, the addition of 1 or 10 equiv of $\mathrm{HP}(\mathrm{O})(\mathrm{OPh})_{2}$ (premixed in toluene) to solid $\mathbf{1}+$ Xantphos afforded high yields of the methyl phosphonate (quantified by NMR) within minutes.

Conclusions

The studies presented here enable several conclusions to be made about the formation of methyl phosphonates from $[\mathrm{Pd}] \mathrm{Me}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right.$ intermediates. The reductive elimination from $[\mathrm{Pd}] R\left(\mathrm{P}(\mathrm{O})(\mathrm{OR})_{2}\right)$ species can be quite facile, depending upon the ligand architecture and solvent. The fastest reductive elimination reactions were observed with large bite angle diphosphines such as Xantphos. These studies have also increased the understanding of the competing protonolysis reaction
between $[\mathrm{Pd}] \mathrm{R}\left(\mathrm{P}(\mathrm{O})(\mathrm{OR})_{2}\right)$ intermediates and free HP$(\mathrm{O})(\mathrm{OR})_{2}$, which is critical to the design of a successful catalyst, since a reaction mixture contains a large excess of hydrogen phosphonate relative to the metal complex. The results presented here demonstrate that the competing protonolysis reactions are only problematic when the rate of reductive elimination is slow. This secondary chemistry can be circumvented through the use of dppf or Xantphos as the supporting ligand. Current studies are focused on using this information to design a general catalytic system for the addition of simple hydrogenphosphonates such as $\mathrm{HP}(\mathrm{O})(\mathrm{OR})_{2}(\mathrm{R}=\mathrm{Ph}, \mathrm{Et})$ to alkenes.

Experimental Section

General Considerations. All reactions were performed under N_{2} or vacuum using standard Schlenk techniques or in an N_{2}-filled drybox. Diethyl ether, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, benzene, and toluene were dried using a Grubbs-type solvent purification system. Toluene- d_{8} and benzene- d_{6} were distilled from sodium/ benzophenone. CDCl_{3} was dried over calcium hydride. Nitrogen was purified by passage through columns containing activated molecular analytical col umns from Chromatography Research Supplies. The bipy, tBuzbipy, dN bipy, and phosphine ligands were obtained from Aldrich and used as received. The complexes $\mathrm{Ag}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}{ }^{26}\right.$ ('B u ${ }_{2}$ bipy)PdMeCl) ${ }^{27}$ (bipy)PdMe$\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right),{ }^{7}$ and $\left(\mathrm{dN} \mathrm{bipy)} \mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)^{7}\right.$ were prepared as described previously. Elemental analyses were performed by Midwest Microlabs.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra were recorded at ambient temperature unless specified otherwise. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are reported relative to SiMe_{4} and were determined by reference to the residual ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ solvent resonances, and all coupling constants are given in hertz. ${ }^{31} \mathrm{P}$ NMR spectra were referenced to external $\mathrm{H}_{3} \mathrm{PO}_{4}$ (0 ppm). Quantitative ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR was obtained using an inverse-gated pulse program with a recycle delay of 30 s .

Preparation of ('Bu_ ${ }_{2}$ bipy)PdMe(P(O)(OPh)2) (1). A round-bottom flask was charged with ('Buzbipy)PdMeCl (0.500 $\mathrm{g}, 1.18 \mathrm{mmol}), \mathrm{Ag}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)(0.401 \mathrm{~g}, 1.18 \mathrm{mmol})$, THF (50 $\mathrm{mL})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. After the mixture was stirred for 3 h at $25^{\circ} \mathrm{C}$, the solvent was removed under vacuum and the residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Removal of the volatiles afforded 1 as an off-white solid ($0.61 \mathrm{~g}, 83 \%$). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{3}$ PPd: C, 59.77; H, 5.94. Found: C, 59.76; H, 5.91. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 10.0\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.7, \mathrm{H6}^{\prime}\right)$, 8.43 (dd, 1H, J = 5.7, 3.6, H6), 7.92 (s, 1H, H3 or H3'), 7.86 (s, $1 \mathrm{H}, \mathrm{H} 3$ or $\mathrm{H} 3^{\prime}$), 7.43 (m, 2H, H5 and H^{\prime}), 7.32 (d, $4 \mathrm{H}, \mathrm{J}=$ $\left.8.4, \mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.14\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.8, \mathrm{~m}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 6.91(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $7.3, \mathrm{p}-\mathrm{C}_{6} \mathrm{H}_{5}$), 1.35 (s, $9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$), 1.33 (s, 9H, ${ }^{\mathrm{t} B u}$), 0.80 (s, 3H PdMe). ${ }^{31}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right)$: $\delta 77.3 .{ }^{13} \mathrm{C}-$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 164.0$ (s, quat), 162.8 (s, quat), 156.1 (s, quat), 153.7 (s, quat), 153.3 (s, C6'), 152.8 (d, J = 7.3, ipso-C6 H_{5}), 147.2 ($\mathrm{s}, \mathrm{C} 6$), $128.8\left(\mathrm{~s}, \mathrm{~m}_{\left.-\mathrm{C}_{6} \mathrm{H}_{5}\right), 123.8(\mathrm{~s}, \mathrm{C} 5}\right.$ or C5'), 122.9 (s, C5 or C5'), 122.5 (s, p-C6 H_{5}), 121.5 (d, J = $5.4, \mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{5}$), 118.2 (s, C3 or C3'), 117.7 (s, C3 or C3'), 35.5 (s, - CMe3 $_{3}$, 35.3 (s, -CMe3), 30.3 (s, -CMe3), -0.2 (d, J = 4.9, PdMe). ${ }^{1} \mathrm{H}$ NMR spectrum ($\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 10.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 5.6, H6'), 8.07 (dd, $1 \mathrm{H}, \mathrm{J}=5.6,3.3, \mathrm{H} 6), 7.99(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8.4$ $\mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{5}$), $7.33\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 3\right.$ and $\left.\mathrm{H} 3^{\prime}\right), 7.15\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.3, \mathrm{~m}-\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $6.82\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3, \mathrm{p}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 6.75\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.7, \mathrm{H} 5\right.$ or $\left.\mathrm{H} 5^{\prime}\right)$, 6.45 (d, 1H, J = 6.0, H5 or H5'), 0.90 (s, 18H, CMe3), 0.73 (s, 3H, PdMe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): $\delta 162.6$ (s, quat), 161.6 (s, quat), 156.1 (s, quat), 154.3 (d, J $=9.7$, ipso- $\mathrm{C}_{6} \mathrm{H}_{5}$), 154.3 (s, C6'), 153.7 (s, quat), 147.1 (s, C6), 129.3 (s, m-C6 H_{5}), 123.8

[^6](s, C5 or C5'), $122.8\left(\mathrm{~s}, \mathrm{p}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 122.5\left(\mathrm{~d}, \mathrm{~J}=3.5, \mathrm{C} 5\right.$ or $\left.\mathrm{C} 5^{\prime}\right)$, $122.4\left(\mathrm{~d}, \mathrm{~J}=5.4, \mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 117.7$ (d, J = 3.0, C3 or C3), 117.2 (s, C3 or C3), 34.8 (s,-CMes), 34.7 ($s,-$ CM e3 $_{3}$), 29.9 ($s,-\mathrm{CMe}_{3}$), 29.8 (s, -CMe3), 0.3 (d, J = 4.3, PdMe). ${ }^{31} \mathrm{P}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 2{ }^{\circ} \mathrm{C}\right): \delta 74.5$.

General Method for the Preparation of Phosphine Complexes. A flask was charged with 1, the appropriate amount of the phosphine, and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. After it was stirred at $25{ }^{\circ} \mathrm{C}$ for 1 h , the solution was filtered and the resulting solid washed with diethyl ether and dried under vacuum.
Preparation of ($\left.\mathrm{MePh}_{2} \mathrm{P}\right)_{\mathbf{2}} \mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)(2) .{ }^{7}$ The general method was fol lowed using $1(0.10 \mathrm{~g}, 0.16 \mathrm{mmol})$ and $\mathrm{PM} \mathrm{ePh}_{2}(59.8 \mu \mathrm{~L}, 0.32 \mathrm{mmol})$ to afford the title compound as a colorless solid ($0.11 \mathrm{~g}, 91 \%$). Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{P}_{3} \mathrm{Pd}$: C, 62.04; H, 5.17. Found: C, 62.00; 5.37. See ref 7 for the NMR data of the cis isomer. Data for thetrans isomer are as follows. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta 7.50-6.80\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{PPh}_{2}\right), 2.23$ $(\mathrm{m}, 6 \mathrm{H}, \mathrm{PMe}),-0.55(\mathrm{dt}, 3 \mathrm{H}, \mathrm{J}=10.1,6.6, \mathrm{PdMe}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 99.6\left(\mathrm{t}, 1 \mathrm{P}, \mathrm{J}=58.8,-\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)$, 16.5 ($\mathrm{d}, 2 \mathrm{P}, \mathrm{J}=58.8, \mathrm{PMePh}_{2}$). Alternatively, the title compound can be prepared by treatment of $\mathrm{Pd}(\mathrm{cod}) \mathrm{MeCl}$ with 2 equiv of $\mathrm{MePh}_{2} \mathrm{P}$ and 1 equiv of $\mathrm{AgP}(\mathrm{O})(\mathrm{OPh})_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ THF. After filtration to remove the silver chloride and drying, 2 was isolated in high yield ($0.23 \mathrm{~g}, 85 \%$).
Preparation of ($\left.\mathrm{Me}_{2} \mathrm{PhP}\right)_{2} \mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)(3)$. Due to the difficulty in separating ${ }^{\text {t B }}$ u u_{2} bipy from the title compound, the following preparation was used. A round-bottom flask was charged with $\mathrm{Pd}(\mathrm{cod}) \mathrm{MeCl}(0.10 \mathrm{~g}, 0.38 \mathrm{mmol})$, degassed $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}\left(10 \mathrm{~mL}\right.$), degassed THF (10 mL), $\mathrm{PMe}_{2} \mathrm{Ph}(107 \mu \mathrm{~L}, 0.76$ $\mathrm{mmol})$, and $\mathrm{Ag}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)(0.13 \mathrm{~g}, 0.38 \mathrm{mmol})$. After the mixture was stirred at $25^{\circ} \mathrm{C}$ for 4 h , the volatiles were removed and the residue was extracted with degassed hexane (3×25 mL). The hexane was removed under vacuum to afford an oily col orless solid ($0.180 \mathrm{~g}, 76 \%$). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{P}_{3} \mathrm{Pd}$: C, 55.20; H, 5.55. Found: C, 54.75; H, 5.50. Only the trans isomer was observed in these experiments (see text); data for this isomer are as follows. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right)$: $\delta 7.50-7.30(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar} \mathrm{H}), 7.15\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{~m}-\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $7.04\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 6.98(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}$, $\mathrm{p}-\mathrm{C}_{6} \mathrm{H}_{5}$), $1.80\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz},-\mathrm{PPhMe} \mathrm{e}^{2}\right),-0.27(\mathrm{dt}, 3 \mathrm{H}, \mathrm{J}$ $=9.9,7.0, \mathrm{PdMe}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 99.5(\mathrm{t}, 1 \mathrm{P}$, $\left.\mathrm{J}=35.4,-\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right),-0.15\left(\mathrm{~d}, 2 \mathrm{P}, \mathrm{J}=35.4,-\mathrm{PM} \mathrm{e}_{2} \mathrm{Ph}\right)$.

Preparation of $\left(E t_{3} \mathrm{P}\right)_{2} \mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)(4)$. Due to difficulty in separating ${ }^{\text {TBu }}{ }_{2}$ bipy from the title compound, the following preparation was used. A round-bottom flask was charged with $\mathrm{Pd}(\mathrm{cod}) \mathrm{MeCl}(0.10 \mathrm{~g}, 0.38 \mathrm{mmol})$, degassed $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(10 \mathrm{~mL})$, degassed THF (10 mL), $\mathrm{PEt}_{3}(112 \mu \mathrm{~L}, 0.76 \mathrm{mmol})$, and $\mathrm{Ag}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)(0.13 \mathrm{~g}, 0.38 \mathrm{mmol})$. After the mixture was stirred at $25^{\circ} \mathrm{C}$ for 4 h , the volatiles were removed and the residue was extracted with degassed hexane ($3 \times 25 \mathrm{~mL}$). The hexane was removed under vacuum to afford an oily colorless solid ($0.190 \mathrm{~g}, 85 \%$). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{O}_{3} \mathrm{P}_{3} \mathrm{Pd}$: C, 50.81; $H, 7.28$. Found: $\mathrm{C}, 51.03 ; \mathrm{H}, 6.80$. Data for the cis isomer are as follows. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$: $\delta 7.09(\mathrm{~m}, 8 \mathrm{H}$, o and $\left.\mathrm{m}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 6.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{J}=4.3, \mathrm{p}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 1.87\left(\mathrm{~m}, 12 \mathrm{H},-\mathrm{CH}_{2}{ }^{-}\right.$ $\left.\mathrm{CH}_{3}\right), 0.99\left(\mathrm{t}, 18 \mathrm{H}, \mathrm{J}=7.9,-\mathrm{CH}_{2} \mathrm{CH}_{3}\right),-0.10(\mathrm{ddd}, 3 \mathrm{H}, \mathrm{J}=$ 9.9, 6.2, 3.1, PdMe). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$): 87.4 (dd, J $\left.=597.3,68.3,-\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right), 12.1,(\mathrm{dd}, \mathrm{J}=597.3,33.4$, trans$\left.P E t_{3}\right), 10.3$ (dd, J = 68.4, 33.8, cis-PEt ${ }_{3}$). Data for the trans isomer are as follows. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 7.09(\mathrm{~m}, 8 \mathrm{H}$, o and $\left.\mathrm{m}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 6.87\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.3, \mathrm{p}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 1.87(\mathrm{~m}, 12 \mathrm{H}$, $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.99\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{J}=7.9,-\mathrm{CH}_{2} \mathrm{CH}_{3}\right),-0.11(\mathrm{dt}, 3 \mathrm{H}$, $\mathrm{J}=9.9,6.2, \mathrm{PdMe}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 99.8(\mathrm{t}, \mathrm{J}$ $\left.=54.0,-\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right), 17.8\left(\mathrm{~d}, \mathrm{~J}=54.0,-\mathrm{PEt}_{3}\right)$.

Preparation of (dppp)PdMe(P(O)(OPh)2) (6). The general method was followed using $\mathbf{1}(0.11 \mathrm{~g}, 0.18 \mathrm{mmol})$ and dppp ($0.073 \mathrm{~g}, 0.18 \mathrm{mmol}$) to afford the title compound as a col orless solid ($0.128 \mathrm{~g}, 94 \%$). Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{P}_{3} \mathrm{Pd}$: C, 62.63; H, 5.09. Found: C, 62.49; $\mathrm{H}, 5.22 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$: δ $7.64\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.50-7.30\left(\mathrm{~m}, 16 \mathrm{H},-\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.07(\mathrm{t}, 4 \mathrm{H}$,
$\left.\mathrm{J}=7.7,-\mathrm{C}_{6} \mathrm{H}_{5}\right), 6.94\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3,-\mathrm{C}_{6} \mathrm{H}_{5}\right), 6.77(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=$ 8.2, $-\mathrm{C}_{6} \mathrm{H}_{5}$), $2.42\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 2.29\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 1.92$ (m, 2H, $-\mathrm{CH}_{2}-$), 0.55 (ddd, $3 \mathrm{H}, \mathrm{J}=8.2,6.0,4.1, \mathrm{PdMe}$). ${ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 89.3(\mathrm{dd}, \mathrm{J}=582.7,47.3,-\mathrm{P}(\mathrm{O})-$ $\left.(\mathrm{OPh})_{2}\right), 11.0(\mathrm{dd}, \mathrm{J}=583.5,47.5$, trans-PPh 2$),-0.8(\mathrm{dd}, \mathrm{J}=$ 46.9, 47.1, cis-PPh ${ }_{2}$).

Preparation of (dppb)PdMe(P(O)(OPh)2) (7). The general method was followed with 1 ($0.11 \mathrm{~g}, 0.18 \mathrm{mmol}$) and dppb ($0.075 \mathrm{~g}, 0.18 \mathrm{mmol}$) to afford the title compound as a colorless solid (0.13 g, 94\%). Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{P}_{3} \mathrm{Pd}$: C, 63.04; $\mathrm{H}, 5.25$. F ound: $\mathrm{C}, 62.44 ; \mathrm{H}, 5.55 .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta$ 7.65-7.20 (m, 2OH , $-\mathrm{C}_{6} \mathrm{H}_{5}$), $6.95\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{m}-, \mathrm{p}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 6.59(\mathrm{~d}$, $\left.4 \mathrm{H}, \mathrm{J}=7.9, \mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 2.53\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 2.23(\mathrm{~m}, 2 \mathrm{H}$, $\left.-\mathrm{CH}_{2}-\right), 2.07\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 1.51\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 0.43$ (ddd, $3 \mathrm{H}, \mathrm{J}=8.9,6.2,3.1, \mathrm{PdMe}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25\right.$ $\left.{ }^{\circ} \mathrm{C}\right): \delta 88.4\left(\mathrm{dd}, 1 \mathrm{P}, \mathrm{J}=573.3,51.7,-\mathrm{P}(\mathrm{O})\left(\mathrm{OPh}_{2}\right), 30.6(\mathrm{dd}\right.$, $1 \mathrm{P}, \mathrm{J}=573.3,35.6$, trans $-\mathrm{CH}_{2} \mathrm{PPh}_{2}$), $7.6(\mathrm{dd}, 1 \mathrm{P}, \mathrm{J}=51.7$, 35.7, cis- $\mathrm{CH}_{2} \mathrm{PPh}_{2}$).

Preparation of (dppf)PdMe(P(O)(OPh)2) (8). A roundbottom flask was charged with 1 ($0.11 \mathrm{~g}, 0.18 \mathrm{mmol})$, dppf ($0.098 \mathrm{~g}, 0.18 \mathrm{mmol}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. After the mixture was stirred at $-43^{\circ} \mathrm{C}$ for $24 \mathrm{~h}, \mathrm{Et}_{2} \mathrm{O}$ (20 mL ; precooled to -43 ${ }^{\circ} \mathrm{C}$) was added. After standing at $-43^{\circ} \mathrm{C}$ for 24 h , a col orless solid formed and was separated by filtration. The residue was washed with chilled $\left(-45{ }^{\circ} \mathrm{C}\right)$ ether and hexane and dried under vacuum ($0.01 \mathrm{~g}, 63 \%$). Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{P}_{3} \mathrm{Pd}$: C, 62.10; $\mathrm{H}, 4.51$. Found: $\mathrm{C}, 61.91 ; \mathrm{H}, 4.84$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}\right): \delta 7.60-7.20\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{C}_{6} \mathrm{H}_{5}\right), 6.92\left(\mathrm{t}, 4 \mathrm{H},{ }^{3} \mathrm{~J} \mathrm{Hн}=7.9\right.$, $\left.\mathrm{m}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 6.84\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\text {нн }}=7.0, \mathrm{p}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 6.73\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{нн}}=\right.$ 8.0, o- $\mathrm{C}_{6} \mathrm{H}_{5}$), 4.35-4.0 (m, 6H, $\left.-\mathrm{C}_{5} \mathrm{H}_{4}\right), 3.64\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{C}_{5} \mathrm{H}_{4}\right)$, 0.69 (m, 3H, PdMe). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 85.4$ (dd, $\left.1 \mathrm{P}, \mathrm{J}=602.8,58.8,-\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right), 25.8(\mathrm{dd}, 1 \mathrm{P}, \mathrm{J}=602.8$, 32.6, trans-PPh 2), 14.9 (dd, $1 P, J=58.9,32.8, ~ c i s-P P h_{2}$).

Preparation of (bipy)Pd(P(O)(OPh) $\mathbf{2}_{\mathbf{2}} \mathbf{(1 3) . ~ A ~ r o u n d - ~}$ bottom flask was charged with (bipy)PdMe(P(O)(OPh)2) 0.050 $\mathrm{g}, 0.098 \mathrm{mmol}), \mathrm{HP}(\mathrm{O})(\mathrm{OPh})_{2}(18.8 \mu \mathrm{~L}, 0.098 \mathrm{mmol})$, and $\mathrm{CH}_{2^{-}}$ $\mathrm{Cl}_{2}(5 \mathrm{~mL})$. After the mixture was stirred for 48 h at $75^{\circ} \mathrm{C}$, the solvent was evaporated and the solid washed with diethyl ether (10 mL) to afford the title compound as a white solid ($0.057 \mathrm{~g}, 45 \%$). Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{Pd}: \mathrm{C}, 56.01 ; \mathrm{H}$, 3.87. Found: C, 55.65; $\mathrm{H}, 3.87 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta$ $9.68\left(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=3.0, \mathrm{~J}=5.5, \mathrm{H} 6, \mathrm{H}^{\prime}\right), 7.93(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.8$, H3, H3'), 7.86 (t, 2H, J $=7.9, \mathrm{H} 4, \mathrm{H}^{\prime}$), 7.27 (m, 2H, H5, H5'), $7.25\left(\mathrm{~d}, 8 \mathrm{H}, \mathrm{J}=8.2, \mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.11\left(\mathrm{t}, 8 \mathrm{H}, \mathrm{J}=8.2, \mathrm{~m}-\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $6.94\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.3, \mathrm{p}-\mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 154.5$ (s, quat), 154.0 (s, C6, C6'), 151.8 ($\mathrm{t}, \mathrm{J}=4.8$, ipso- $\mathrm{C}_{6} \mathrm{H}_{5}$), 139.9 ($\mathrm{s}, \mathrm{C} 4$ and $\mathrm{C} 4^{\prime}$), $129.2\left(\mathrm{~s}, \mathrm{~m}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 126.1\left(\mathrm{t}, \mathrm{J}=2.5, \mathrm{C} 5, \mathrm{C}^{\prime}\right)$, 123.7 ($\mathrm{s}, \mathrm{p}-\mathrm{C}_{6} \mathrm{H}_{5}$), 122.2 ($\mathrm{s}, \mathrm{C} 3, \mathrm{C}^{\prime}$), 121.7 ($\mathrm{t}, \mathrm{J}=2.4, \mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{5}$). ${ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$: δ 53.1.

Preparation of ($\left.{ }^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{bipy}\right) \mathrm{Pd}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right)_{2}(14)$. A roundbottom flask was charged with (${ }^{\text {Bu }} \mathrm{H}_{2}$ bipy) $\mathrm{PdMe}\left(\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right.$) ($0.05 \mathrm{~g}, 0.08 \mathrm{mmol}), \mathrm{HP}(\mathrm{O})(\mathrm{OPh})_{2}(15.4 \mu \mathrm{~L}, 0.08 \mathrm{mmol})$, and benzene (5 mL). After the mixture was stirred for 12 h at 75 ${ }^{\circ} \mathrm{C}$, the sol vent was evaporated and the solid washed with 10 mL of diethyl ether to afford the title compound as a white solid ($0.062 \mathrm{~g}, 91 \%$). Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P} 2 \mathrm{Pd}$: C, 59.97; $\mathrm{H}, 5.23$. Found: $\mathrm{C}, 59.58 ; \mathrm{H}, 5.29 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta$ 9.80 (dt, 2H, J $\left.=3.0,5.9, \mathrm{H} 6, \mathrm{H}^{\prime}\right), 7.90$ (s, 2H, H3, H3'), 7.41 $\left(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=5.9, \mathrm{H} 5, \mathrm{H}^{\prime}\right), 7.33\left(\mathrm{~d}, 8 \mathrm{H}, \mathrm{J}=8.1, \mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.19(\mathrm{t}$, $\left.8 \mathrm{H}, \mathrm{J}=7.9, \mathrm{~m}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.01\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.4, \mathrm{p}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 1.39(\mathrm{~s}$, $\left.18 \mathrm{H},-\mathrm{CMe}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 164.2$ (s, quat), 155.0 (s, quat), 153.9 (s, C6, C6'), 152.1 ($\mathrm{t}, \mathrm{J}=4.8, \mathrm{ipso}-\mathrm{C}_{6} \mathrm{H}_{5}$), 129.1 (s, m-C6. ${ }_{5}$), 123.5 (s, p-C6. ${ }_{5}$), 123.4 (s, C5, C5'), 121.8 $\left(\mathrm{t}, \mathrm{J}=2.4, \mathrm{o}-\mathrm{C}_{6} \mathrm{H}_{5}\right.$), 118.1, ($\mathrm{s}, \mathrm{C} 3, \mathrm{C}^{\prime}$), $35.5\left(\mathrm{~s},-\mathrm{CM} \mathrm{e}_{3}\right), 30.3$ (s, - CMe_{3}). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta 54.0$.

Preparation of (dppe)Pd($\left.\mathbf{P}(\mathbf{O})(\mathrm{OPh})_{2}\right)_{\mathbf{2}}(15)$. A roundbottom flask was charged with (dppe)PdMe(P(O)(OPh) $\left.)_{2}\right)(0.05$ $\mathrm{g}, 0.066 \mathrm{mmol}), \mathrm{HP}(\mathrm{O})(\mathrm{OPh})_{2}(12.7 \mu \mathrm{~L}, 0.066 \mathrm{mmol})$, and benzene (3 mL). After the mixture was stirred for 12 h at 120 ${ }^{\circ} \mathrm{C}$, the sol vent was evaporated and the solid washed with 10 mL of diethyl ether to afford the title compound as an off-white
solid ($0.052 \mathrm{~g}, 81 \%$). Anal. Calcd for $\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{P}_{4} \mathrm{Pd}: \mathrm{C}, 61.83$; $\mathrm{H}, 4.53$. Found: C, 61.56; $\mathrm{H}, 4.88 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta$ 7.60-6.88 (m, 40H, $\left.-\mathrm{C}_{6} \mathrm{H}_{5}\right), 2.19-2.12\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}, \mathrm{AA}^{\prime} \mathrm{XX} X^{\prime}\right.$ pattern): $\delta 66.5(-\mathrm{P}(\mathrm{O})-$ $\left.(\mathrm{OPh})_{2}\right), 43.37\left(-\mathrm{PPh}_{2}\right) ;{\mathrm{J} A A^{\prime}}= \pm 29.0, \mathrm{~J} \mathrm{Jx}=555, \mathrm{~J}_{\mathrm{Ax}}=-29.0$, $\mathrm{J} \mathrm{xx}^{\prime}= \pm 51.0 .^{28}$

Preparation of (dppp)Pd(P(O)(OPh)2)2 (16). A roundbottom flask was charged with (dppp)PdMe(P(O)(OPh)2) (0.05 $\mathrm{g}, 0.065 \mathrm{mmol}), \mathrm{HP}(\mathrm{O})(\mathrm{OPh})_{2}(12.5 \mu \mathrm{~L}, 0.065 \mathrm{mmol})$, and benzene (5 mL). After the mixture was stirred for 12 h at 80 ${ }^{\circ} \mathrm{C}$, the solvent was evaporated and the solid washed with 10 mL of diethyl ether to afford the title compound as a white solid (0.029 g, 45\%). Anal. Calcd for $\mathrm{C}_{51} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{P} 4 \mathrm{Pd}$: C, 62.17; $\mathrm{H}, 4.67$. Found: $\mathrm{C}, 62.13 ; \mathrm{H}, 4.74 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta$ 7.55-6.80 (m, $\left.40 \mathrm{H},-\mathrm{C}_{6} \mathrm{H}_{5}\right), 2.19\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 1.86-1.70$ (m, 4H, $\left.-\mathrm{CH}_{2}-\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \mathrm{AA}^{\prime} X X^{\prime}\right.$ pattern): $\delta 63.2\left(-\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right),-0.8\left(-\mathrm{PPh}_{2}\right) ; \mathrm{J}_{\mathrm{AA}^{\prime}}= \pm 76, \mathrm{~J}_{\mathrm{Ax}}=$ 563, $\mathrm{JAx}^{\prime}=-31.0, \mathrm{~J} \mathrm{xx}= \pm 54.0 .{ }^{28}$

Reaction of Triarylphosphines with 1. An NMR tube was charged with 1, an appropriate amount of triarylphosphine, solvent $(0.5 \mathrm{~mL})$, and $\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{3}(0.003 \mathrm{~g}, 0.011 \mathrm{mmol}$, internal standard for reactions carried out in protonated toluene) or $\mathrm{C}_{6} \mathrm{Me}_{6}$ ($0.001 \mathrm{~g}, 0.012 \mathrm{mmol}$). Two drops of $\mathrm{C}_{6} \mathrm{D}_{6}$ were added to reaction mixtures when protonated toluene was used as the solvent. A comparison of the integrals for the metal complex, internal standard, and $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ before and after stirring at the desired temperature gave the percent conversion of the reaction.

Thermolysis Reactions of 2-8. An NMR tube was charged with the palladium complex (0.005 g), P(O)Ph ${ }_{3}(0.003$ $\mathrm{g}, 0.011 \mathrm{mmol}$, internal standard for reactions carried out in protonated toluene) or $\mathrm{C}_{6} \mathrm{Me} \mathrm{e}_{6}(0.001 \mathrm{~g}, 0.012 \mathrm{mmol})$, and the appropriate solvent $(0.5 \mathrm{~mL})$. Two drops of $\mathrm{C}_{6} \mathrm{D}_{6}$ were added to reaction mixtures when protonated toluene was used as the solvent. After heating in an oil bath for the desired amount of time, the amount of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ formed in the reaction was determined by a comparison of the integrals for the metal complex, internal standard, and $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ before and after stirring at the desired temperature.

Kinetic Analysis of the Reductive Elimination from 8. Since compound 8 readily eliminates $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ at room temperature in solution, it was generated in situ from the reaction of $\mathbf{1}$ with dppf. Monitoring the reaction by NMR revealed that the displacement reaction was complete within a few minutes at $25{ }^{\circ} \mathrm{C}$, and control reactions demonstrated that free ${ }^{\text {tB }} u_{2}$ bipy does not affect the rate of the reaction. An NMR tube was charged with $1(0.005 \mathrm{~g}, 8.0 \mu \mathrm{~mol})$, appropriate amount of dppf ($2-6$ equiv), $\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{3}(0.003 \mathrm{~g}, 0.011 \mathrm{mmol}$, internal standard when reactions were carried out in protonated toluene) or $\mathrm{C}_{6} \mathrm{Me}_{6}(0.001 \mathrm{~g}, 0.012 \mathrm{mmol})$, and the appropriate solvent (0.5 mL). Two drops of $\mathrm{C}_{6} \mathrm{D}_{6}$ were added to reaction mixtures for a spectrometer lock when reactions were carried out in protonated toluene. NMR data were collected at regular intervals over 3 half-lives. The concentrations of 8, excess dppf, $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$, and $\mathrm{Pd}(\mathrm{dppf})_{2}$ were determined by comparison of the integrals of the species relative to the internal standard. The rate of $\mathrm{MeP}(\mathrm{O})(\mathrm{OPh})_{2}$ formation varied by less than 5\% between reactions with 2-6 equiv of dppf. Similar results were obtained using PPh_{3} as the trapping agent.

Reductive Elimination vs Protonolysis Reactions. An NMR tube was charged with the appropriate metal complex, $\mathrm{HP}(\mathrm{O})(\mathrm{OPh})_{2}$ (1 equiv), solvent, $\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{3}(0.003 \mathrm{~g}, 0.011 \mathrm{mmol}$, internal standard when reactions were carried out in protonated toluene) or $\mathrm{C}_{6} \mathrm{Me}_{6}(0.001 \mathrm{~g}, 0.012 \mathrm{mmol})$, and the

[^7]appropriate solvent (0.5 mL). Two drops of $\mathrm{C}_{6} \mathrm{D}_{6}$ were added to reactions for a spectrometer lock when reactions were carried out in protonated toluene. A comparison of the integrals before and after stirring at the desired temperature afforded amounts of the bis-phosphonate complex and MeP(O)(OPh$)_{2}$.

Acknowledgment. We thank the Camille and Henry Dreyfus foundation for a New Faculty Award (Grant No. SU-00-020), Pfizer (SURF grant to M.T.G.), and the Bucknell Undergraduate Research Program (A.M.L.).

We thank the NSF (Grant No. CHE-9709005) and the University of Wisconsin for the funds to purchase the X-ray diffractometer.

Supporting Information Available: Tables of crystallographic data, atomic coordinates, anisotropic displacement parameters, hydrogen atom coordinates, and all bond lengths and angles for $\mathbf{5 , 9}$, and $\mathbf{1 3}$; these data are also available as CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0342309

[^0]: * To whom correspondence should be addressed. E-mail: rstockla@ bucknell.edu
 † Bucknell University.
 \ddagger University of Wisconsin at Madison.
 (1) A Guideto Organophosphorus Chemistry; Quin, L. D., Ed.; WileyInterscience: New York, 2000.
 (2) The radical addition process is also known: Stiles, A. R.; Vaughan, W. E.; Rust, F. F. J. Am. Chem. Soc. 1958, 80, 714.

[^1]: (8) Abbreviations: dppe = bis(diphenylphosphino)ethane, dppp = bis(diphenylphosphino)propane, dppb = bis(diphenylphosphino)butane, dppf $=$ bis(diphenyl phosphino)ferrocene.

[^2]: (10) Other examples of structurally characterized organometallic complexes (non-Cp) include: (a) Boone, B. J.; J ablonski, C. R.; J ones, P. G.; Newlands, M. J.; Yu, Y. Organometallics 1993, 12, 3042. (b) Stockland, R. A., J r.; Maher, D. L.; Anderson, G. K.; Rath, N. P. Polyhedron 1999, 18, 1067. (c) Lin, I. J. B.; Kao, L. T. C.; Wu, F. J.; Lee, G. H.; Wang, Y. J . Organomet. Chem. 1986, 309, 225. Ruthenium carbene complexes: (d) Leung, W. H.; Chan, E. E. Y.; Williams, I. D.; Wong, W. T. Organometallics 1997, 16, 3234. (e) Leung, W. H.; Chan, E. E. Y.; Wong, W. T. Organometallics 1998, 17, 1245.' (f) Chang, C. W.; Lin, Y. C.; Lee, G. H.; Huang, S. L.; Wang, Y. Organometallics 1998, 17, 2534. (g) Chang, C. W.; Lin, Y. C.; Lee, G. H.; Wang, Y. J . Chem. Soc., Dalton Trans. 1999, 4223. η^{2}-Bound olefins: (h) Leung, W. H.; Chan, E. Y. Y.; Wong, W. T. Inorg. Chem. 1999, 38, 136. (i) Kläui, W.; Lenders, B.; Irmier, M.; Meyer, G. J. Chem. Soc., Dalton Trans. 1990, 2069. (j) Arena, C. G.; Nicolò, F.; Drommi, D.; Bruno, G.; Faraone, F. J. Chem. Soc., Dalton Trans. 1996, 4357. Acyl complexes: ref 12. Fluorinated alkyl substituents: (k) Zhou, Z.; J ablonski, C. R.; Bridson, J. Organometallics 1994, 13, 781. (I) Jablonski, C. R.; Huaizhu, M.; Hynes, R. Organometallics 1992, 11, 2796.
 (11) (a) Fanizzi, F. P.; Intini, F. P.; Maresca, L.; Natile, G.; Lanfranchi, M.;Tiripicchio, A.J. Chem. Soc., Dalton Trans. 1991, 1007. (b) Albano, V. G.; Castellari, C.; Monari, M.; De Felice, V.; Panunzi, A.; Ruffo, F. Organometallics 1996, 15, 4012. (c) Stockland, R. A., J r.; Anderson, G. K. Organometallics 1998, 17, 4694. (d) Romeo, R. Fenech, L.; Scolaro, L. M.; Albinati, A.; Macchioni, A.; Zuccaccia, C. Inorg. Chem. 2001, 40, 3293. (e) Macchioni, A.; Bellachioma, G.; Cardaci, G.; Travaglia, M.; Zuccaccia, C.; Milani, B.; Corso, G.; Zangrando, E.; Mestroni, G.; Carfagna, C.; Formica, M. Organometallics 1999, 18, 3061. (f) Cesares, J. A.; Espinet, P. Inorg. Chem. 1997, 36, 5428. (g) Albano, V. G.; Castellari, C.; M orelli, G.; Vitagliano, A. Gazz. Chim. Ital. 1989, 119, 235-239. (h) Anderson, G. K.; Cross, R. J. Chem. Soc. Rev. 1980, 9, 185. (i) Ugi, I.; Marquarding, D.; Klusacek, H.; Fillespie, P. Acc. Chem. Res. 1971, 4, 288. (j) For a review of five-coordinate palladium complexes see: Albano, V. G.; Natile, G.; Panunzi, A. Coord. Chem. Rev. 1994, 133, 67-114.
 (12) M al atesta, L.; Angoletta, M. J . Chem. Soc. 1957, 1186.

[^3]: (13) (a) Stone, J. J.; Stockland, R. A., J r.; Rath, N. P. Inorg. Chim. Acta 2003, 342, 236. (b) Pramick, M. R.; Rosemeier, S. M.; Beranek, M. T.; Nickse, S. B.; Stone, J . J .; Stockland, R. A., J r.; Baldwin, S. M.; K astner, M. E. Organometallics 2003, 22, 523.
 (14) For recent reports and reviews see: Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Acc. Chem. Res. 2001, 34, 895. (b) van Leeuwen, P. W. N. M.; K amer, P. C. J.; Reek, J. N. H.; Dierkes, P. Chem. Rev. 2000, 100, 2741. (c) van der Veen, L. A.; Keeven, P. H.; Schoemaker, G. C.; Reek, J . N. H.; K amer, P. C. J.; van Leeuwen, P. W. N. M.; Lutz, M.; Spek, A. L. Organometallics 2000, 19, 872.
 (15) Dierkes, P.; van Leeuwen, P. W. N. M. J . Chem. Soc., Dalton Trans. 1999, 1519.
 (16) (a) Hamann, B. C.; H artwig, J . F. J . Am. Chem. Soc. 1998, 120, 7369. (b) Sadighi, J. P.; Harris, M. C.; Buchwald, S. L. Tetrahedron Lett. 1998, 39, 5327
 (17) (a) van Leeuwen, P. W. N. M., Claver, C., Eds. Rhodium Catalyzed Hydroformylation; Kluwer: Dordrecht, The Netherlands, 2000. (b) Messen, P.; Vogt, D.; Keim, W. J. Organomet. Chem. 1998, 551, 165. (c) Kranenburg, M.; Kramer, P. C. J.; van Leeuwen, P. W. N. M. Eur. J. Inorg. Chem. 1998, 25. (d) Harris, M. C.; Geis, O.; Buchwald, S. L. J . Org. Chem. 1999, 64, 6019.

[^4]: (18) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 6043.
 (19) (a) Mann, G.; Shelby, Q.; Roy, A. H.; Hartwig, J. F. Organometallics 2003, 22, 2775. (b) Driver, M. S.; Hartwig, J . F. J. Am. Chem. Soc. 1997, 119, 8232.
 (20) For similar studies of $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{O}$ bond-forming reactions see: H ooper, M. W.; Utsunomiya, M.; Hartwig, J. F. J. Org. Chem. 2003, 68, 2861.

[^5]: (21) (a) Carpentier, J. F.; Maryin, V. P.; Luci, J.; J ordan, R. F. J . Am. Chem. Soc. 2001, 123, 898. (b) Ittel, S. D.; J ohnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169.
 (22) Gerbier, P.; Guerin, C.; Henner, B.; Unal, J . R. J . Mater. Chem. 1999, 9, 2559.
 (23) (a) Han, L.-B.; Tanaka, M. J. Chem. Soc., Chem. Commun. 1999, 395. (b) Han, L.-B.; Hua, R.; Tanaka, M. Angew. Chem., Int. Ed. Engl. 1998, 37, 94. (c) Han, L.-B.; Tanaka, M. J . Am. Chem. Soc. 1996, 118, 1571.
 (24) (a) Hollatz, C.; Schier, A.; Schmidbaur, H. Inorg. Chim. Acta 2000, 300-302, 191. (b) Hollatz, C.; Schier, A.; Schmidbaur, H. Chem. Ber./ Red. 1997, 130, 1333.
 (25) Roundhill, D. M.; Sperline, R. P.; Beaulieu, W. B. Coord. Chem. Rev. 1978, 26, 263.

[^6]: (26) Pidcock, A.; Waterhouse, C. R. J. Chem. Soc. A 1970, 2080.
 (27) Owen, G. R.; Vilar, R.; White, A. J. P.; Williams, D. J Organometallics 2003, 22, 3025.

[^7]: (28) To simulate the spectrum, the cis couplings between the phosphonate groups and between the phosphorus atoms of the diphosphine ($\left(x x^{\prime}\right.$ and $J_{\text {AA }}$) must have opposite signs. For further explanation and discussion of $\mathrm{AA}^{\prime} X X^{\prime}$ NMR spectral patterns see: Becker, E. D. High-Resolution NMR: Theory and Chemical Applications, 3rd ed.; Academic Press: San Diego, CA, 2000; pp 176-177.

