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Abstract: A three-component reaction of 3-(tri-n-
butylstannyl)allyl acetates, aldehydes, and triorga-
noboranes in the presence of a palladium-Xantphos
catalyst system predominately gave (E)-anti-homo-
allylic alcohols with high diastereoselectivity and
good to high levels of alkene stereocontrol. An effi-
cient chirality transfer was observed when an enan-
tioenriched substrate was employed. The reaction
was initiated by the formation of an allylic gem-pal-
ladium/stannyl intermediate, which subsequently
underwent allylation of the aldehyde by an allyltri-
butyltin followed by a coupling reaction of the in-
situ-generated (E)-vinylpalladium acetate with the
triorganoborane.

Keywords: allylation; allylic tin compounds; homo-
allylic alcohols; palladium; three-component reac-
tion

The stereoselective synthesis of homoallylic alcohols
is of great synthetic interest because they are found in
natural compounds as a ubiquitous structure.!"’ In ad-
dition, they are considered versatile building blocks
for the synthesis of natural products®?’ and useful in-
termediates for the synthesis of complex molecules.”
The diastereoselective allylation of aldehydes with vy-
alkyl-substituted allylic tin(TV) reagents is one of the
most reliable and important methods for this pur-
pose. This reaction is usually performed in the pres-
ence of a Lewis acid or a Brgnsted acid because allyl-
ic tin(IV) reagents are not sufficiently reactive toward
aldehydes under mild conditions. As a result, the cor-
responding syn-homoallylic alcohols are usually ob-
tained. Interestingly, Baba and Yasuda reported that
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the allyl tin(II) species generated in situ from allylic
tin(IV) species and SnCl, react with both ketones and
aldehydes in acetonitrile as a solvent, without any ex-
ternal activation.’! This reaction has been proposed
to proceed via a cyclic transition state because of the
strong affinity between the tin(II) atom and the car-
bonyl oxygen atom. Thus, anti-homoallylic alcohols
are obtained as the major product with good to high
stereoselectivity. Furthermore, Oestreich and co-
workers have contributed a substantial advance in
this area. They developed a method for the facile syn-
thesis of a-chiral y-substituted allylic tin(IV) reagents
and applied it to enantiospecific and diastereoselec-
tive thermal- and Lewis acid-promoted carbonyl ally-
lations.!®! Despite these advances, the synthesis of (E)-
anti-homoallylic alcohols using allylic tin reagents and
aldehydes remains a formidable challenge.

We recently reported the palladium-catalyzed
three-component reaction of 3-(pinacolatoboryl)allyl
acetates, aldehydes, and triorganoboranes; this reac-
tion provides access to and extensive alkene stereo-
control of a wide variety of functionalized (Z)-anti-
homoallylic alcohols (Scheme 1)."! The reaction is
proposed to proceed through a putative cis-decalin-
like transition state B, wherein the palladium atom
behaves as a Lewis acid and an acetoxy group on the
palladium atom acts as a Lewis base to intramolecu-
larly activate allylboronates.

We envisioned that if the acetoxy group on the pal-
ladium atom can intramolecularly activate a tributyltin
group instead of a pinacolatoboryl group in inter-
mediate A, the in-situ-formed allyltributyltin would
react with an aldehyde to form an E-vinylpalladium
intermediate. Because the tributyltin group is signifi-
cantly more bulky than a pinacolatoboryl group, it
would prefer to be at the equatorial position rather
than the axial position. Furthermore, its coupling with
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Scheme 1. Palladium-catalyzed three component reactions
via allylic gem-palladium/boryl and stannyl intermediates.

triorganoboranes would provide a useful alternative
approach to the synthesis of (E)-anti-homoallylic al-
cohols that cannot be accessed by allylation of alde-
hydes with allylic tributyltins. Herein we report the
three-component reaction of 3-(tri-n-butylstannyl)all-
yl acetates, aldehydes, and triorganoboranes by a pal-
ladium-Xantphos!® catalyst system that predominantly
furnishes (E)-anti-homoallylic alcohols.

Initially, we chose the reaction of 1a, benzaldehyde
(2a), and triethylborane (3a) as a model and began
optimization studies by evaluating various ligands in
conjunction with Pd,(dba);CHCI; (Table 1). Mono-
dentate phosphines such as PPh; and P(n-Bu); gave
4a in 26% and 53% isolated yields, respectively, with
moderate to good E/Z ratios (entries 1 and 2). How-
ever, a substantial amount of 5a was obtained.
Among the bisphosphines tested, Xantphos exhibited
the best results in terms of both alkene stereocontrol
and chemical yield of 4a (entries 3-7). Eventually, we
observed that lowering the catalyst loading led to 4a
with a high level of alkene stereocontrol (entry 8).
However, further reducing the catalyst loading did
not give comparable results in terms of the E/Z ratio
of the product (entry 9). Furthermore, use of THF as
a solvent reduced the chemical yield of 4a (entry 10).
In all cases, excellent diastereoselectivity was ob-
served.

Having determined the optimal conditions, we sub-
sequently explored the reaction scope of various alde-
hydes using 1a and 3a (Table 2). Electron-neutral and
electron-deficient aromatic aldehydes underwent the
three-component reaction to produce 4b—4d in good
yields with good to high levels of alkene stereocon-
trol. When p-formylbenzonitrile was employed,
3 equivalents of Et;B were required to promote the
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Table 1. Optimization of the reaction conditions."!

OH
Pd,(dba)3CHCl3 Et
(5 mol%) Ph/'\./\r“r
OAc ligand Pn 4a
L +PNCHO + EtB — > Ph
Ph SnBuj ) toluene OH
1a a 3a 50 °C
Ph 5a

Entry Ligand [mol%] Time [h] 4a [%]® E/ZI 5a [%]™

1 P(Cy)Ph, (20) 3 26 451 52
2 P(n-Bu); (20) 5 53 6/1 11
3 BINAP (10) 12 2 1.6/1 0
4 DPPF (10) 12 12 61 0
5 DPPPent (10) 1.5 43 5N 0
6 DPEphos (10) 1.5 61 6/1 0
7 Xantphos (10) 0.5 77 751 0
8 Xantphos (5) 0.5 77 111 0
9l Xantphos (2.5) 0.5 78 81 0
107 Xantphos (5) 0.5 58 6/1 0

2] Conditions: 1a (0.5 mmol), 2a (1.2 mmol), 3a (1.2 mmol),
Pd,(dba);CHCl; (0.025 mmol), and ligand [BINAP=22"-
bis(diphenylphosphino)-1,1’-binaphthyl, DPPF=1,1"-
bis(di-phenylphosphino)ferrocene, DPEphos=bis(2-di-
phenylphosphinophenyl) ether, Xantphos=4,5-bis(diphe-
nylphosphino)-9,9-dimethylxanthene] in toluene (2 mL)
at 50°C.

b1 Yield of the isolated product.

[l Determined by NMR analysis.

4l Pd,(dba);CHCI; (1.25x 107> mmol) was used.

[l Pd,(dba);CHCI, (6.25x 10~° mmol) was used.

1" THF was used as a solvent.

reaction, giving 4e in 53% yield; however, the E/Z
ratio of 4e decreased. The reaction also tolerated me-
thoxy-substituted benzaldehydes to afford 4f—4h in
good yields, but the E/Z ratio of 4¢ was moderate. Al-
though m-hydroxybenzaldehyde afforded 4i in only
30% yield, this reaction was performed without prior
protection of the hydroxy group. Moreover, we inves-
tigated the reaction of heterocyclic aldehydes such as
thienyl and furyl aldehydes and observed that the re-
actions of 3- and 2-thienyl aldehydes proceeded
smoothly to produce 4j and 4k, respectively, in high
yields with moderate to good levels of alkene stereo-
control. The reaction of furfural also afforded 41, but
the E selectivity was moderate. Furthermore, aliphatic
aldehydes participated in the three-component reac-
tion to afford the corresponding products 4m-4p as
mixtures of E- and Z-isomers in 54-82% yields with
E/Z ratios from 5/1 to 6.9/1. Excellent diastereoselec-
tivities were observed for all aldehydes examined.

We then examined the substrate scope (Table 3). 1-
Naphthyl-substituted substrate gave 6a in 73% yield
with an E/Z ratio of 13/1. The present palladium-
Xantphos catalyst system was compatible with elec-
tronically diverse substituents such as methoxy, me-
thoxycarbonyl, and bromo groups on the aromatic
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Table 2. Reaction scope of aldehydes.! Table 3. Substrate scope.[?
Pdy(dba);CHCl3 £t Pdy(dba)sCHCl3
(2.5 mol%) (2.5 mol%) Et
Xantphos (5 mol%)  HQ, ~ Xantphos
1a + R2CHO + 3a o 0C OAc (5 mol%) HO  ~
oluene, 2 Ph + 2a+ 3a ——— > ’
2 R 4 R1)\/\SnBu toluene, 50 °C R
1 3 Ph R 6
Et Et Et Et
HO >_/=9 HQ >_/=’ HQ >_/=?
PH .! PH Q PH :
MeO,C FsC O OMe CO,Me
4b: 68%, E/Z=8.211 4c:71%, E/Z=12/11  4d: 62%, E/Z = 12/1 6a: 73%, E/Z=13/1 6b: 77%, E/Z=7.3/1 6c: 89%, E/Z = 6.5/1
Et Et Et Et

Et

MeO
OMe

4e: 53%, £/Z = 6.5/1°] 4f: 72%, E/Z = 9.6/1
Et

49: 74%, E/Z = 5.5/1

MeO

4h: 70%, E/Z=7.2/1  4i: 30%, E/Z = 7.1/1] 4j: 82%, E/Z =7.3/1

Et Et
HO —

— Ph
Ph

4k: 82%, E/Z=5.3/1 4l: 60%, E/Z=4.3/1 4m: 54%, E/Z =6.9/1

Et Et Et
HO —
Ph 4

Ph

4n: 55%, E/Z=5.3/1 40:55%, E/Z=6.3/1 4p: 82%, E/Z=5/1

[} Conditions: 1a (0.5 mmol), 2 (1.2 mmol), 3a (1.2 mmol),
Pd,(dba);CHCl,4 (0.0125 mmol), and Xantphos
(0.025 mmol) in toluene (2 mL) at 50°C.

] 3 equivalents of Et;B were used.

ring, giving 6b—6e in 73-89% yields with E/Z ratios
ranging from 6.4/1 to 7.7/1. Notably, the m-bromo-
phenyl-substituted substrate was compatible with the
reaction conditions, whereas the C—Br bond remained
intact, providing an opportunity for further function-
alization. The heteroaryl-substituted substrates were
also amenable to reaction, giving 6f—6h in 55-76%
yields as mixtures of E- and Z-isomers in ratios rang-
ing from 4/1 to 5.2/1.

To further probe the scope of this process, diverse
tri-n-alkylboranes prepared from the corresponding
alkenes with BH;-SMe, were surveyed (Table 4). The
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HO >_/=f'
Ph %
2

6f: 55%, E/Z =5.2/1

Et

HO >f

PH %
O

6d: 87%, E/Z=6.4/1 6e:73%, E/Z=T7.711
Et Et

HO >_/=r‘ HO,
PH % PH
3

6g: 66%, E/Z=4/1 6h: 76%, E/Z=4.6/1

o j\\w- |

[} Conditions: 1 (0.5 mmol), 2a (1.2 mmol), 3a (1.2 mmol),
Pd,(dba);CHCl, (0.0125 mmol), and Xantphos
(0.025 mmol) in toluene (2 mL) at 50°C.

scope with respect to the tri-n-alkylboranes was broad
to produce 7a-7c¢ in good yields with high levels of
E/Z stereo- and diastereoselectivity. In addition, a cy-
clohexyl group was introduced into the alkene of the
homoallylic alcohol product, albeit in moderate yield,

Table 4. Reaction scope of triorganoboranes.[?!

Pd,(dba)3CHCI3
(2.5 mol%) OH

Xantphos (5 mol%)
1a + 2a + (R)B — > F,h/'\/\,wR3
3

toluene, 50 °C H
Ph 7

OH OH Ph OH Ph

Ph XX Ph NN Ph NN

Ph Ph Ph
7a: 74%, E/Z =121 Tb:73%, E/Z=14/1  Tc: 65%, E/Z = 14/1

w v
Ph
PR NN Ph)\é/\w”
Ph Ph

7d: 18% 7e: 680/0, E/Z = 13/1[b]

41 Conditions: 1a (0.5 mmol), 2a (1.2 mmol), 3 (1.5 mmol),

Pd,(dba);CHCl,4 (0.0125 mmol), and Xantphos
(0.025 mmol) in toluene (2 mL) at 50°C.
] 2 4 equivalents of Ph;B were used.
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through the use of tricyclohexylborane. Furthermore,
a commercially available triphenylborane fruitfully
underwent a cross-coupling reaction to afford 7e in
68% yield with an E/Z ratio of 13/1 and excellent dia-
stereoselectivity. In another attempt to use B-alkyl-9-
BBN and alkyl boronate esters, no conversion was ob-
served.

To expand the scope of the reaction from a synthetic
viewpoint, we conducted a chirality transfer experi-
ment using (R)-1a under the optimized reaction con-
ditions. As observed in our previous work,"” a similar
efficient chirality transfer was achieved, resulting in
4a in 72% yield and 85% ee [Eq. (1)]. The incomplete

Pd,(dba);CHCI5
(2.5 mol%) OH
Xantphos (5 mol%) R Et
(RF1a+ 2 +3 — » ppj X 1
(>99% ee) toluene /\‘;\HJ (1)
50°C,0.5h

(1R, 2S)-4a: 72% yield
85% ee, E/Z =10/1

chirality transfer may be explained by a redox trans-
metalation process.”) Importantly, the absolute config-
uration of 4a differed from that of the product in our
previous work. The absolute stereochemical assign-
ment of 4a was determined to be (1R, 2S) by transfor-
mation into known diols,'” and the relative stereo-
chemistry of 4a was reconfirmed as the anti-isomer by
single-crystal X-ray diffraction analysis (Figure 1).'"!
To better understand the racemization process, we
treated (R)-la with a catalytic amount of
Pd,(dba);CHCI; (2.5 mol%) and Xantphos (5 mol%)
in toluene at 50°C for 1 h [Eq. (2)]. However, decom-
position of (R)-la was observed and 1,6-diphenyl-
1,3,5-hexatriene was instead produced in 29% yield
by the dimerization of the palladium-complexed 3-
phenyl-2-propenylcarbene.'!?!

same as above

toluene, 50 °C, 1 h

(R)-1a
(>99% ee)

decomposition of (R)-1a  (2)

A catalytic mechanism based on the aforemen-
tioned results is proposed in Scheme 2. The palladi-
um-Xantphos complex reacts with 1 to initially form
a m-allylpalladium intermediate C.' The oxygen
atom of an acetoxy group in C coordinates intramo-
lecularly to the tributyltin group, leading to o-allylpal-
ladium intermediate C".'” Accordingly, the palladium
atom in the o-allylpalladium instead of the tin atom
in the tributyltin group functions as a Lewis acid to
form a putative trans-decalin-like cyclic transition
state D. The nucleophilic allylation of an aldehyde by
an allyltributyltin then generates (E)-vinylpalladium
acetate intermediate E. Subsequent transmetalation
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Figure 1. X-ray crystallographic structure of 4a.
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Scheme 2. Proposed reaction mechanism.

of E with a triorganoborane followed by the reductive
elimination of a vinylpalladium intermediate F gives
(E)-anti-homoallylic alcohols. This mechanism reason-
ably explains the stereochemistry observed in the
chiral transfer reaction [Eq. (1)]. On the other hand,
B-hydride elimination from F followed by reductive
elimination of the resulting palladium hydride inter-
mediate leads to product 5a. Another reaction mecha-
nism is plausible, where a tin-substituted o-al-
lyl(R?)palladium intermediate is formed via transme-
talation of C’ with (R?);B, which then undergoes nu-
cleophilic allylation of an aldehyde by an allyltributyl-
tin through a cyclic transition state to produce F.
However, the Lewis acidity of the palladium atom in
the formation of a o-allyl(R*)palladium intermediate
would become weaker. Moreover, the allylation of an
aldehyde may proceed from a o-allyl(R*)palladium
rather than an allyltributyltin,!'*157]

In summary, we have developed a three-component
reaction of 3-(tri-n-butylstannyl)allyl acetates, alde-
hydes, and triorganoboranes by a palladium-Xantphos
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catalyst system, which provides facile access into (E)-
anti-homoallylic alcohols. The present method not
only allows the introduction of n-alkyl, sec-alkyl, and
aryl groups into the alkene of the homoallylic alco-
hols but also gives access to effective control of the
(E)-geometry at the double bond. Interestingly, the
present reaction proceeds through a o-allylpalladium-
controlled cyclic transition state. Further investiga-
tions along these lines are currently underway in our
laboratories.

Experimental Section

Typical Procedure for Palladium-Catalyzed Three-
Component Reaction; Synthesis of 4a

A 10-mL two-neck round-bottom flask was charged with
Pd,(dba);CHCl; (12.9 mg, 0.0125 mmol), Xantphos (14.5 mg,
0.025 mmol), and toluene (1 mL). The mixture was stirred at
room temperature for 0.5h. A solution of la (232.6 mg,
0.5 mmol) and benzaldehyde (2a) (123 pL, 1.2 mmol) in tol-
uene (1 mL) and Et;B (3a) (1.2 mmol, 1.0M hexane solu-
tion) were then successively added. The reaction mixture
was stirred at 50°C for 0.5 h. Upon completion of the reac-
tion, the reaction mixture was diluted with EtOAc (20 mL)
and washed with saturated NH,CI (2x20 mL) and brine (2 x
20 mL). The combined organic layers were dried over
MgSO, and concentrated. The residue was purified by silica
gel chromatography (R; 0.45, EtOAc/hexane =1/4) to give
4a as a yellow oil; yield: 97.2 mg (77%).
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