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The bulk ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) by various phosphoric acids using phenylmethanol as 
the initiator was conducted. 1,1'-bi-2-Naphthol (BINOL)-based phosphoric acid was found to be an effective organocatalyst for 
ROP leading to polyesters at 90°C. The overall conversion to poly(ε-caprolactone) was more than 96% and 
poly(ε-caprolactone) with Mw of 8400 and polydispersity index of 1.13 was obtained. 1H NMR spectra of oligomers demon-
strated the quantitative incorporation of the protic initiator in the polymer chains and showed that transesterification reactions 
did not occur to a significant extent. The controlled polymerization was indicated by the linear relationships between the num-
ber-average molar mass and monomer conversion or monomer-to-initiator ratio. In addition, the present protocol provided an 
easy-to-handle, inexpensive and environmentally benign entry for the synthesis of biodegradable materials as well as polyes-
ters for biomedical applications. 
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1  Introduction 

Polyesters such as poly(ε-caprolactone) (PCL) and their 
copolymers are an important class of biocompatible materi-
als, which makes them interesting materials for a range of 
biomedical and commodity applications, including con-
trolled drug release, tissue engineering, medical implants or 
environmentally friendly packaging materials [1–5]. The 
ring-opening polymerization (ROP) of ε-caprolactone  
(ε-CL) and other cyclic esters provides an efficient and 
convenient route to the direct synthesis of these macromol-
ecules [610]. The ROP process can be performed with a 
wide range of catalysts such as metal-based complexes [6, 
8], enzymes [10] and organic molecules [7]. Although 
spectacular progress has been made in metal-catalyzed 
ROPs, the catalytic metal contaminant of the polymer 

products must be removed prior to application as biomedi-
cal and pharmaceutical materials. This limitation triggered 
many current research efforts in enzymatic and organocata-
lytic methodologies. Lipase-catalyzed ROPs are highly effi-
cient for less strained cyclic esters, but show relatively low 
catalytic activities for substrates such as lactide [8, 9, 11].  

In this context, organocatalysis represents a highly at-
tractive and elegant alternative to organometallic and en-
zymatic processes. Pioneered in 2001 by Hedrick and 
Waymouth using 4-dimethylaminopyridine (DMAP) as the 
organocatalyst for the ROP of lactide [12], the past decade 
has witnessed extraordinary advances in organo-catalyzed 
ROPs. Various structurally diverse organocatalysts for 
ROPs of cyclic esters and carbonates have been developed 
according to different means of the activation of the rea-
gents: (i) nucleophilic or electrophilic activation of the 
monomer with DMAP derivatives [12], N-heterocyclic car-
benes (NHCs) [13–16], phosphines [17], fluorinated alco-
hols [18], Brønsted acids [19–27] and hydrogen-bonding 



1258 Chen CX, et al.   Sci China Chem   July (2012) Vol.55 No.7 

organocatalysts [28]; (ii) basic activation of the initia-
tor/growing polymer chain ends by phosphazenes [29, 30], 
DBU and MTBD [31–33]; (iii) the dual activation of both 
the monomer and initiating/propagating alcohol using bi-
functional organocatalysts such as thiourea/amines [34, 35], 
TBD [36] and amino-thiazolines [37].  

Among the organocatalysts, Brønsted acids represent a 
very effective class of catalysts for polymerization due to a 
number of intrinsic advantages: controlled molar masses, 
narrow distribution combined with a broader range of po-
tential reaction conditions. Although the acid-catalyzed 
ROP has been reported, in which trifluoromethanesulfonic 
acid (TfOH), methanesulfonic acid, HNTf2, and HCl-Et2O 
complex were utilized as effective acid catalysts for the 
ROP of cyclic esters, it is important to elucidate the scope 
and limit of applicable acid catalysts in connection with 
suitable cyclic monomers for the ROP. Of great interest is 
studying the catalytic activity of weak acids for the ROP of 
cyclic monomers compared to those using strong Brønsted 
acids, such as TfOH and HNTf2. In this context, we herein 
report that phosphoric acids as weak acid can be used as 
organocatalysts for ROP of ε-CL with controlled molar 
masses and narrow dispersities using phenylmethanol as the 
initiator, as shown in Scheme 1 [24]. 

2  Experimental 

2.1  Materials 

BINOL, catechol, cis-2-butene-1,4-diol and trans-1,2-  
cyclohexanediol were purchased from Acros Organics and 
used as received. Phosphorus oxychloride, ethylene glycol, 
1,3-propanediol, 1,4-butanediol, phenylmethanol, pyridine 
and solvents were purified by standard techniques prior to 
use. ε-Caprolactone was distilled over CaH2 under reduced 
pressure. All reactions were carried out in oven-dried 
glassware. 

2.2  Characterizations 

1H NMR measurements were used to determine the number- 
average molecular weight (Mn) of the polymers and the 
chain end groups. 1H NMR spectra were recorded on a 
Bruker-400 MHz spectrometer. Chemical shifts (δ) are giv- 

en in parts per million (ppm) downfield relative to CDCl3. 
Coupling constants are given in hertz (Hz). Unless other-
wise stated, deuterochloroform (CDCl3) was used as the 
solvent. The weight-average molecular weight (Mw) and 
polydispersity (Mw/Mn) of the polymers were determined by 
gel-permeation chromatography (GPC). Weighed samples 
(5–10 mg) were diluted in tetrahydrofuran to a concentra-
tion of 10 mg/mL and filtered through a 0.45 μm PTFE 
membrane prior to injection into the GPC system (Rheo-
dyne 7125 injector, 20 μL sample loop, a Waters HPLC 
pump 510, and a Waters 410 differential refractometer). The 
separation was accomplished at 25 °C in three columns 
connected in series (50, 100, and 500 Å, bead size 5μm, 
Ultrastyragel, Waters). Tetrahydrofuran was used as the 
eluent at a flow rate of 1 mL/min. The GPC system was 
calibrated using polystyrene standards, 266-34500 Da (Ma-
chery Nagel).  

2.3  General procedure for the synthesis of phosphoric 
acid 1 

A diol (1.75 mmol) was dissolved into 5 mL of pyridine. To 
the resulting solution was added phosphorus oxychloride 
(0.326 mL) at room temperature and the reaction mixture 
was stirred for three hours. Water (5 mL) was then added 
and the resulting suspension was stirred for over 30 min. 
Dichloromethane was added and pyridine was removed by 
extraction with 1 N HCl. Organic phase was dried over 
Na2SO4 and purified by column chromatography (ethyl  
acetate : methanol : dichloromethane = 10:1:1). The title 
compound was isolated as white solid.  

1a was prepared in 95 % yield [38]. 1H NMR (400 MHz, 
DMSO-d6) δ 8.078.02 (m, 4H), 7.477.43 (m, 4H), 7.31 (t, 
J = 8.0 Hz, 2H), 7.247.22 (m, 2H). 13C NMR (100 MHz, 
DMSO-d6) δ 147.2, 131.9, 130.3, 129.7, 128.3, 126.0, 125.9, 
124.4, 122.6, 121.6.  

1b was prepared in 55 % yield [39]. 1H NMR (400 MHz, 
CDCl3) δ 6.886.86 (m, 2H), 6.746.72 (m, 2H), 2.85 (s, 
1H). 13C NMR (100 MHz, CDCl3) δ 145.6, 122.9, 118.6. 

1c was prepared in 62 % yield [40]. 1H NMR (400 MHz, 
CDCl3) δ 7.72 (br, 1H), 5.825.78 (m, 2H), 4.714.66 (m, 
4H). 13C NMR (100 MHz, CDCl3) δ 132.6, 75.4. 

1d was prepared in 52 % yield [41]. 1H NMR (400 MHz, 
CDCl3) δ 4.86 (br, 1H), 4.12 (s, 4H),. 13C NMR (100 MHz, 
CDCl3) δ 66.4. 

 

 

Scheme 1  Ring-opening polymerization of ε-caprolactone (ε-CL) organocatalyzed by different organic phosphoric acids. 
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1e was prepared in 57 % yield [41]. 1H NMR (400 MHz, 
CDCl3) δ 4.86 (br, 1H), 4.12 (s, 4H),. 13C NMR (100 MHz, 
CDCl3) δ 69.7, 27.1. 

1f was prepared in 63 % yield [41]. 1H NMR (400 MHz, 
CDCl3) δ 5.15 (br, 1H), 4.17 (t, J = 8.0 Hz, 4H), 1.91 (t, J = 
8.0 Hz, 4H). 13C NMR (100 MHz, CDCl3) δ 68.1, 29.8. 

1g was prepared in 68 % yield [42]. 1H NMR (400 MHz, 
CDCl3) δ 5.28 (br, 1H), 3.563.50 (m, 2H), 2.342.30 (m, 
2H), 1.931.86 (m, 2H), 1.58-1.40 (m, 4H). 13C NMR (100 
MHz, CDCl3) δ 85.2, 27.6, 21.8. 

2.4  General procedure for the organic phosphoric  
acid-catalyzed polymerization 

ε-Caprolactone (CL) (422 mg, 3.7 mmol) was mixed with 
benzyl alcohol (5.8 uL, 0.055 mmol) as the initiator and 
phosphoric acid 1 (0.185 mmol) as the catalyst. The mixture 
was then stirred for 712 h at 90 °C. The ROP was 
quenched by decreasing the temperature to room tempera-
ture and the polymer was purified by dilution with THF 
followed by precipitation in cold methanol to give a white 
powder and dried in vacuum at 30 °C for 24 h. Yield, 
80%94%. PCL: 1H NMR (CDCl3): δ 1.341.42 (m, CH2, 
PCL-chain), 1.611.69 (m, CH2, PCL-chain), 2.282.32 (t, 
J = 6.0 Hz, CH2CO, PCL-chain), 3.64 (t, J = 5.0 Hz, 2H, 
CH2OH, PCL-end group), 4.044.07 (t, J = 5.2 Hz, CH2OR), 
5.11 (bs, 2H, ArCH2OR), 7.33 (m, 5H, ArH). 

3  Results and discussion 

To determine the feasibility of the ring-opening polymeriza-
tion process using phosphoric acid as the organocatalyst, 
BINOL-based phosphoric acid 1a was chosen to examine 
the polymerization of ε-caprolactone (ε-CL) with benzyl 
alcohol as the initiator at [ε-CL]0/[BnOH]0/[1a] ratio of 
200/3/10, and the relative conversions were determined by 
1H NMR spectra (Table 1). No polymerization was ob-
served at 30 °C for 48 h, however, the conversion of ε-CL 
increased to 35% at 50 °C for 12 h (Table 1, entries 1 and 2). 
Then a set of experiments were carried out to reveal the 
crucial role of the reaction temperature. Table 1 illustrates 
that the conversion increased with increasing reaction tem-
perature. Polymers with narrow polydispersities (1.081.20) 
can be obtained below 100 °C. When polymerization was 
performed at 100120 °C, the polydispersity index of the 
resulting poly(ε-caprolactone) increased to 1.58 (Table 1, 
entries 79). At higher temperature, phosphoric acid per-
haps behaved as the cationic polymerization catalyst instead 
of a bifunctional catalyst via its acidic hydrogen atom and 
basic oxygen atoms. To obtain poly(ε-caprolactone) with 
high molecular weight and narrow molecular weight distri-
bution, all the following polymerization experiments were 
further conducted at 90 °C.  

Table 1  The bulk ROP of ε-caprolactone (ε-CL) catalyzed by 1a at dif-
ferent temperature a) 

Entry Temperature (°C) t (h) Conv. (%) b) Mn
b) PDI c) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

30 

50 

60 

70 

80 

90 

100 

110 

120 

48 

12 

12 

12 

12 

12 

12 

12 

7 


35 

40 

61 

95 

99 

99 

99 

99 


3246 

3878 

5286 

7672 

8369 

9979 

9893 

8881 


1.19 

1.17 

1.20 

1.08 

1.13 

1.58 

1.58 

1.53 

a) Reaction was performed with 1.5 mol% phenylmethanol as an initi-
ator and 5 mol% 1a as the catalyst. b) Determined by 1H NMR spectros-
copy. c) Determined by gel-permeation chromatography using polystyrene 
standards. 

 
1H NMR analyses revealed the incorporation of the initi-

ator in PCL prepared with the 1a/BnOH combination. Fig-
ure 1 shows 1H NMR spectrum of the resulting PCL ob-
tained at [ε-CL]0/[BnOH]0 ratio of 200/3 at 120 °C. Three 
signals were observed for the chain ends. The multiplet at 
7.33 ppm is typically associated with the aromatic protons 
of the benzyl units. The methylene protons (a) adjacent to 
the phenyl ring and the ester linkage appear at 5.11 ppm. 
The multiplet at 3.65 ppm is attributed to the methylene 
protons (g) adjacent to the chain end of the hydroxyl group. 
These results showed that polymerizations were initiated 
from benzyl alcohol. In addition, the number-average mo-
lecular weight of the polymer determined by 1H NMR spec-
tra agrees with Mn,theo calculated from the molar mass of 
ε-CL (114 g/mol) × [ε-CL]0/[BnOH]0 plus the molar mass 
of the initiator (BnOH). 

The organic phosphoric acid compounds 1a1g were 
then evaluated as organocatalysts for ROP of ε-caprolactone 
(Scheme 1). With 5 mol% of 1 as the catalyst at 90℃, the 
bulk ROP of ε-CL initiated from phenylmethanol (target 
degree of polymerization, DP = 67) was investigated. Some 
results from that study are summarized in Table 2. Catechol- 
based phosphoric acid 1b showed inferior activity to-
wards polymerization than other catalysts (Table 2, 
entry 2). The polymerization catalyzed by phosphoric acid 
1a1f exhibited narrow distribution (Mw/Mn = 1.09–1.14), 
and 1g gave the higher PDI value (1.31). This initial 
screening of the catalyst revealed that diol-based phosphoric 
acids with high steric hindrance resulted in broader molec-
ular weight distribution.  

Therefore, further investigations focused on elucidating 
the behavior of the catalyst in the ROP of ε-caprolactone.  

The molecular weight (Mn) values obtained with catalyst 
1a (determined by 1H NMR spectra) varied linearly with the 
conversion, with low polydispersity values being main-
tained throughout the polymerization process (Figure 2). 
The linear dependence of Mn on monomer conversion 
demonstrated the controlled characteristic of the polymeri-
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Figure 1  1H NMR spectrum of the PCL (Table 1, entry 9). 

Table 2  Data for the polymerization of ε-CL catalyzed by phosphoric 
acids a) 

Entry Catalyst Conv. (%) b) Mn (g/mol) b) PDI c) 

1 

2 

3 

4 

5 

6 

7 

1a 

1b 

1c 

1d 

1e 

1f 

1g 

99 

85 

98 

90 

98 

97 

99 

8369 

7448 

7524 

7606 

7841 

8202 

9982 

1.13 

1.09 

1.11 

1.11 

1.12 

1.14 

1.31 

a)  Reaction was performed at 90 °C for 12 h with 1.5 mol% phenyl-
methanol as an initiator and 5 mol% 1 as the catalyst. b) Determined by 1H 
NMR spectroscopy. c) Determined by gel-permeation chromatography 
using polystyrene standards. 

 
zation and indicated that little chain transfer occurred [43]. 
The living nature of organic phosphoric acid-catalyzed ROP 
of ε-CL was obtained by demonstration of a linear depend-
ence of Mn on [ε-CL]0/[BnOH]0 ratio varying from 10 to 
100 (in all cases, the monomer was completely consumed) 
and the polydispersities remained low. (Figure 3). The 
number-average molecular weight of the polymer agrees 
with Mn,theo calculated from the initial ratios of [ε-CL]0/ 
[BnOH]0 and the monomer conversions. To provide further 
support for the controlled/living nature of this polymeriza-
tion, two chain extension experiments were also performed 
from an initial polymerization using ε-CL ([ε-CL]0/ 
[BnOH]/[1a] = 200:3:10) carried out at 90 °C for 12 h to 
give a poly(ε-caprolactone) with Mn = 8674 g/mol (PDI = 
1.13), as determined by 1H NMR spectroscopy. Additional 
ε-CL (1.85 mmol, 0.5 equivalents) was added and the  
mixture was allowed to react for an additional 14 h at  

 

Figure 2  Relationship between Mn or PDI of PCL and monomer conver-
sion for the polymerization of ε-caprolactone catalyzed by 1a (DP 67). 

 

Figure 3  The average number molecular weights (Mn) and PDI of poly-
mers obtained at different [M]/[I] ratios for polymerizations of 
ε-caprolactone catalyzed by 1a. 

90 °C. The Mn of the sample increased to 10766 g/mol (PDI 
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= 1.14). The reaction mixture was charged again with 1.85 
mmol (0.5 equiv) of ε-CL, and the final molecular weight of 
the polymer increased to 14808 g/mol with 1.12 in the pol-
ydispersity after 16 h. These characteristics are typical of a 
living system. 

A proposed mechanism of ring-opening polymerization 
of ε-CL catalyzed by phosphoric acid is shown in Scheme 2. 
The initial nucleophilic addition proceeded via activation of 
both the monomer and the alcohol to give tetrahedral inter-
mediate, and the CO bond in the intermediate was further 
cleaved in the ring-opening step via concomitant proton 
transfer. In these two elementary steps, phosphoric acid 
acted as a bifunctional catalyst via its acidic hydrogen atom 
and basic oxygen atoms [4446]. 

 

 

Scheme 2  A proposed bifunctional activation mechanism for ROP of 
ε-CL catalyzed by phosphoric acids. 

4  Conclusion 

The bulk ring-opening polymerization of ε-caprolactone 
(ε-CL) using various phosphoric acids as weak acid or-
ganocatalysts and phenylmethanol as the initiator was car-
ried out at 90 °C. The living polymerization of ε-caprolac- 
tone has been achieved, and polyesters with desired number- 
average molecular weights and narrow molecular weight 
distributions could be synthesized. This readily accessible 
and easily removed acid catalyst afforded an alternative 
metal-free entry to PCLs of tailored properties as biomateri-
als as well as microelectronics. The mechanism of the 
phosphoric acid-catalyzed ROP and the extension of this 
catalytic system to other cyclic monomers for the synthesis 
of polyesters including block copolymers are currently un-
der investigation. 
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