

Tetrahedron Letters, Vol. 35, No. 21, pp. 3551-3554, 1994 Elsevier Science Ltd Printed in Great Britain 0040-4039/94 \$7.00+0.00

0040-4039(94)E0584-K

Formation of Unsaturated Esters in the Single Electron Transfer Reaction of Cyclopropanone Acetals with Quinones under Non-irradiated Conditions

Manabu Abe and Akira Oku*

Department of Chemistry and Materials Technology Kyoto Institute of Technology Matsugasaki, Sakyo-ku, Kyoto 606, JAPAN

Abstract: Unsaturated esters were formed from cyclopropanone acetals in the reaction with DDQ or chloranil, where ring-opened C-C and C-O bonded adducts were the intermediates formed via a SET mechanism resulting in the ester formation.

While a number of cyclopropane derivatives, which have been regarded to have higher oxidation potentials than alkane homologues, have been investigated in search of their electron transfer profile,¹⁻⁵⁾ the reactions were examined mainly under photolysis conditions. Among them, scarcely investigated cyclopropanone acetals 1 and hemiacetals 2^{6} seem to us as promising donors in combination with appropriate acceptors at their ground states because of two oxygenic substituents.⁷⁾ In this respect, we report here the intervention of a single electron transfer (SET) reaction mechanism in the non-irradiated reactions of acetals 1 and 2 with 2,3-dichloro-5,6-dicyano-*p*-benzoquinone (DDQ) or 2,3,5,6-tetrachloro-*p*-benzoquinone (chloranil), where the intervention of C-O and C-C bonded adducts were clearly demonstrated. Also found was that structural variations in both donor and acceptor determine the overall reaction pathway.

The reactions of 1 or 2 with one equivalent of DDQ or chloranil⁸) in refluxing solvent without photoirradiation were found to give unsaturated ester 3 or its mixture with 4 in moderate yields together with hydroquinone 5 or 6 (eq 1 and Table 1).⁹)

A SET process (Scheme 1) is occurring exclusively as verified by trapping the intervening radical ion species with $oxygen^{10}$ in the reaction of 1b or 1c with chloranil: peroxypropiolactone (50-70%) was formed predominantly but not in the absence of the quinone.

entry	quinonea		cyclopropanone acetal			time / h	product and yield / % ^b			
•	-		R ¹	R ²	R ³			-		
1	D		Ph	Н	TMS	0.2	3a(74) ^d	·····		6(65)
2	D	1b	Ph	CH ₃	TMS	2.0	3b(23) ^e	4b(41)		6(56)
3	D	1c	Ph	C ₂ H ₅	TMS	6.0	3c(34) ^f	4c(48) ^h		6(82)
4	D	1 d	Ph	ipr	TMS	15.0	3d(62)8	4d(14)		6(77)
5	D	1 e	ⁿ C ₅	н	TMS	20.0	3e(27) ^d	4e (3) ⁱ		6(28)
6 ^c	D	1 e	nC5	Н	TMS	20.0	3e(76) ^d	4e (15) ⁱ		6 (86)
7	D	2a	Ph	Н	Н	0.2	3a(61) ^d			6(55)
8	С	1 a	Ph	Н	TMS	1.0	3a(84) ^d		7 a (4)	5(81)
9	С	1b	Ph	CH ₃	TMS	30.0	3d (43) ^d	4d(16)	7b(28)	5(58)
10	С	1 c	Ph	C ₂ H ₅	TMS	89.0	3e(26)j	4e(8) ^h	7c(16)	5(33)
11	С	1 d	Ph	iPr	TMS	120.0	_ k			
12	С	2a	Ph	н	Н	1.0	3a(72) ^d			5(68)

Table 1. Reaction of Cyclopropanone Acetals 1 and 2 with Ouinones.

^a D: DDQ, C: chloranil. ^b Isolated Yield. ^c The reaction was performed in dry CH₃CN at 60 °C. ^d Only E isomer was formed. ^e E /Z = 8/1. ^f E /Z = 3/1. ^g E /Z = 1/4. ^h E, Z mixture. ⁱ E /Z = 2.5/1. ^j E /Z = 5/1. ^k 89% of 1d was recovered.

First observation of note is that while C-O bonded chloranil-adduct 7 was formed and remained intact under the reaction conditions, similar adduct 8 with DDQ was formed only as a transient intermediate, together with 3 and 4, within minutes at 21 °C (identified by the time-split ¹H and ¹³C NMR in the reaction of 1b or 1c with DDQ in CD₃CN) ¹¹). On heating to 60 °C, 8 completely transformed to a mixture of 3 and 4. Thus, C-O bonded DDQ-adduct 8, being formed after a SET reaction, undergoes elimination reaction leading to the unsaturated esters, ¹²) whereas 7 does not. The clear difference in reactivity between 7 and 8 bases on the difference of the hydroquinone part, its elimination being easier in 8 than 7.

Second of note is that, in the reaction of 1c ($R^2 = C_2H_5$) with DDQ, the product ratio 3/4 was 1.5 at the initial stage of the reaction (25 °C, mol ratio of (3+4)/8 = 1 / 3.9, determined by ¹H NMR) but it changed to 0.77 at the final stage (60 °C, 8 disappeared). We had a time before we have identified C-C bonded adduct 10e by ¹H and ¹³C NMR as a transient intermediate leading to 3 and 4 in the reaction of 1e ($R^1 = C_5H_{11}$) with DDQ.¹³) Since C-O adducts 7 are not the precursors of unsaturated esters, how are the esters formed in the reactions with chloranil? The following observations deserve attention: (1) Reversal of product ratios 3/4 between the reactions of two quinones was observed (compare entries 2 and 3 with 9 and 10 in Table 1).¹⁴) (2) When 3 and 4 were formed, C-O adduct 7 was always found whereas C-C bonded chloranil-adduct 9 was not detected by ¹H NMR. These support the intervention of 9 as the only, but labile precursor of unsaturated esters, undergoing a rapid sigmatropic reaction (Scheme 1).

To summarize, in the SET reaction with chloranil under non-irradiated conditions, unsaturated esters are exclusively formed from C-C adduct 9, but not C-O adduct 7, yielding preferably 3 to 4. With DDQ, in concurrence with a fast sigmatropic pathway via C-C adduct 10 where formation of 3 predominates over 4, a relatively slower elimination reaction of C-O adduct 8 takes place yielding preferably 4 to 3. In addition, key intermediate C-O adducts 7, 8 as well as C-C adduct 10 were detected and characterized. Detailed mechanistic account of the present reaction will be reported shortly.

REFERENCES AND NOTES

- 1. Dinnocenzo, J. P.; Lieberman, D. R.; Simpson, T. R. J. Am. Chem. Soc., 1993, 115, 366, and references cited therein.
- 2. Miyashi, T.; Takahashi, Y.; Ohaku, H.; Ikeda, H.; and Moroshima, S. Pure & Appl. Chem., 1991, 63 (2), 223.
- 3. Martini, T.; Kampmeier, L. A. Angew. Chem., 1970, 82, 216.
- 4 Nishida, S.; Murakami, M.; Mizuno, T.; and Tsuji, T. J. Org. Chem., 1989, 54, 3868.

- 5. Mazzocchi, P. H.; Somich, C.; Edwards, M.; Morgan, T.; Ammon, H. J. Am. Chem. Soc., 1986, 108, 6828.
- 6. 1 and 2 were prepared by Rousseau's method. Rousseau, G.; Slougui, N. Tetrahedron Lett., 1983, 24, 1251.
- 7. The reason why cyclopropanone acetals 1 and 2 were selected as the donor is that their HOMOs' energies are increased by replacing two ring-hydrogen atoms with two oxygen substituents. Kuwajima and coworkers calculated that the HOMO's energy of 1,1-dihydroxycyclopropane is 1.6 eV or 0.4 eV higher than that of cyclopropane or ethylene, respectively. Aoki, S.; Fujima, T.; Nakamura, E.; Kuwajima, I. J. Am. Chem. Soc., 1981, 103, 7675.
- E_{1/2}(DDQ) = 0.51 V vs SCE, E_{1/2}(chloranil) = 0.01 V vs SCE; see Meites, L.; Zuman, P. Electrochemical Data Part 1, vol. A; John Wiley and Sons, New York, 1974.
- 9. Dimethyl acetal (R¹ = Ph, R² = CH₃, R³ = CH₃ in 2), in the reaction with DDQ, smoothly underwent an analogous SET reaction to give unsaturated esters 3b (53%), 4b (14%), together with 6 (63%). Thus, observation of analogous reactions over three R³ groups (TMS, CH₃, H), which have different redox property, indicates that the essential structural unit of the donor required for the SET process is an oxy-substituted cyclopropane and the variation in R³ substituent does not influence the net reaction profile.
- For O2-trappings as the probe of SET mechanism in cyclopropane systems, see (a) Ichinose, N.; Mizuno, K.; Tamai, T.; Y. Otsuji, Y. J. Org. Chem., 1990, 55, 4079. (b) Miyashi, T.; Kamata, M.; Mukai, T. J. Am. Chem. Soc., 1987, 109, 2780.
- 11. The key ¹³C NMR chemical shifts of 8b are C-1 (89.83) and C-2 (169.47), and those of 8c are C-1 (94.85) and C-2 (169.45). See structure 8 in Scheme 1.
- 12. The reaction of 1 with DDQ in the presence of MeOH afforded MeOH-trapping product 11 (11, 20, and 25% from 1b, 1c, and 1d, respectively) in addition to 3 and 4. The same product was also formed when MeOH was added after the consumption of 1 (10, 18, and 22%, respectively).
- Analogous C-C adduct was hypothetically proposed for a different reaction system. See Bhattacharya, A.; DiMichele, L. M.; Dolling, Ulf-H.; Grabowski, E. J. J.; Grenda, V. J. J. Org. Chem., 1989, 54, 6118. The key ¹³C NMR chemical shifts of 10e are C-1'(171.44, 171.60), C-2'(54.68, 56.27), and C-3'(181.41, 181.62). See structure 10 in Scheme 1.
- 14. In entries 9 and 10, 3 and 4 were undoubtedly formed via C-C adduct 9.

(Received in Japan 2 December 1993; accepted 21 February 1994)