Formation of Unsaturated Esters in the Single Electron Transfer Reaction of Cyclopropanone Acetals with Quinones under Non-irradiated Conditions

Manabu Abe and Akira Oku*
Department of Chemistry and Materials Technology
Kyoto Institute of Technology
Malsugasaki, Sakyo-ku, Kyoto 606, JAPAN

Abstract

Unsaturated esters were formed from cyclopropanone acetals in the reaction with DDQ or chloranil, where ring-opened $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonded adducts were the intermediates formed via a SET mechanism resulting in the ester formation.

While a number of cyclopropane derivatives, which have been regarded to have higher oxidation potentials than alkane homologues, have been investigated in search of their electron transfer profile, ${ }^{1-5}$) the reactions were examined mainly under photolysis conditions. Among them, scarcely investigated cyclopropanone acetals 1 and hemiacetals 2^{6}) seem to us as promising donors in combination with appropriate acceptors at their ground states because of two oxygenic substituents.7) In this respect, we report here the intervention of a single electron transfer (SET) reaction mechanism in the non-irradiated reactions of acetals 1 and 2 with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) or 2,3,5,6-tetrachloro-p-benzoquinone (chloranil), where the intervention of $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ bonded adducts were clearly demonstrated. Also found was that structural variations in both donor and acceptor determine the overall reaction pathway.

The reactions of 1 or 2 with one equivalent of DDQ or chlorani18) in refluxing solvent without photoirradiation were found to give unsaturated ester 3 or its mixture with 4 in moderate yields together with hydroquinone 5 or 6 (eq 1 and Table 1).9)

A SET process (Scheme 1) is occurring exclusively as verified by trapping the intervening radical ion species with oxygen ${ }^{10}$) in the reaction of 1 lb or 1c with chloranil: peroxypropiolactone ($50-70 \%$) was formed predominantly but not in the absence of the quinone.

Table 1. Reaction of Cyclopropanone Acetals 1 and 2 with Quinones.

entry	quinone ${ }^{\text {a }}$		$\begin{gathered} \text { cyclopropanone acetal } \\ R^{1} \quad R^{2} \quad R^{3} \end{gathered}$			time/h		product and yield/\%b		
1	D	1 a	Ph	H	TMS	0.2	3a(74) ${ }^{\text {d }}$			6(65)
2	D	1 b	Ph	CH_{3}	TMS	2.0	$3 \mathrm{~b}(23)^{\text {e }}$	4b(41)		6(56)
3	D	1 c	Ph	$\mathrm{C}_{2} \mathrm{H}_{5}$	TMS	6.0	3c(34) ${ }^{\text {f }}$	$4 \mathrm{c}(48)^{\text {h }}$		6(82)
4	D	1 d	Ph	${ }^{1} \mathrm{Pr}$	TMS	15.0	3d(62)g	4d(14)		6(77)
5	D	1 e	${ }^{\mathrm{n}} \mathrm{C}_{5}$	H	TMS	20.0	$3 \mathrm{e}(27)^{\text {d }}$	$4 \mathrm{e}(3){ }^{\text {i }}$		6(28)
6 c	D	1 e	${ }^{\mathrm{n}} \mathrm{C} 5$	H	TMS	20.0	$3 \mathrm{e}(76)^{\text {d }}$	$4 \mathrm{e}(15)^{\text {i }}$		6(86)
7	D	2a	Ph	H	H	0.2	$3 \mathrm{a}(61)^{\text {d }}$			6(55)
8	C	1 a	Ph	H	TMS	1.0	$3 \mathrm{a}(84)^{\text {d }}$		$7 \mathrm{a}(4)$	5(81)
9	C	1 b	Ph	CH_{3}	TMS	30.0	$3 \mathrm{~d}(43){ }^{\text {d }}$	4d(16)	7b(28)	5(58)
10	C	1 c	Ph	$\mathrm{C}_{2} \mathrm{H}_{5}$	TMS	89.0	3e(26) ${ }^{\text {j }}$	$4 \mathrm{e}(8)^{\text {h }}$	7c(16)	5(33)
11	C	1 d	Ph	${ }^{\text {iPr }}$	TMS	120.0	- k			
12	C	2a	Ph	H	H	1.0	3a(72) ${ }^{\text {d }}$			5(68)

a^{D} : DDQ, C: chloranil. b Isolated Yield. c The reaction was performed in dry $\mathrm{CH}_{3} \mathrm{CN}$ at $60^{\circ} \mathrm{C}$. d Only E isomer was formed. ${ }^{\mathrm{c}} E / Z=8 / 1$. f $E / Z=3 / 1 . \mathrm{g}_{E / Z}=1 / 4$. $\mathrm{h} E, Z$ mixture. $\mathrm{i} E / Z=2.5 / 1 . j E / Z=5 / 1$. $\mathrm{k} 89 \%$ of $\mathbf{1 d}$ was recovered.

First observation of note is that while $\mathrm{C}-\mathrm{O}$ bonded chloranil-adduct 7 was formed and remained intact under the reaction conditions, similar adduct 8 with DDQ was formed only as a transient intermediate, together with 3 and 4 , within minutes at $21^{\circ} \mathrm{C}$ (identified by the time-split ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR in the reaction of 1 b or 1c with DDQ in $\mathrm{CD}_{3} \mathrm{CN}$) ${ }^{11}$). On heating to $60^{\circ} \mathrm{C}, 8$ completely transformed to a mixture of 3 and 4. Thus, C O bonded DDQ-adduct 8 , being formed after a SET reaction, undergoes elimination reaction leading to the unsaturated esters, ${ }^{12)}$ whereas 7 does not. The clear difference in reactivity between 7 and 8 bases on the difference of the hydroquinone part, its elimination being easier in 8 than 7.

Second of note is that, in the reaction of $1 \mathrm{c}\left(\mathrm{R}^{2}=\mathrm{C}_{2} \mathrm{H} 5\right)$ with DDQ, the product ratio $3 / 4$ was 1.5 at the initial stage of the reaction ($25^{\circ} \mathrm{C}$, mol ratio of $(3+4) / 8=1 / 3.9$, determined by ${ }^{1} \mathrm{H}$ NMR) but it changed to 0.77 at the final stage ($60^{\circ} \mathrm{C}, 8$ disappeared). We had a time before we have identified C - C bonded adduct 10 e by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR as a transient intermediate leading to 3 and 4 in the reaction of $1 \mathrm{e}\left(\mathrm{R}^{1}=\mathrm{C}_{5} \mathrm{H}_{11}\right)$ with DDQ. 13) Since C-O adducts 7 are not the precursors of unsaturated esters, how are the esters formed in the reactions with chloranil? The following observations deserve attention: (1) Reversal of product ratios 3/4 between the reactions of two quinones was observed (compare entries 2 and 3 with 9 and 10 in Table 1). 14) (2) When 3 and 4 were formed, C-O adduct 7 was always found whereas C - C bonded chloranil-adduct 9 was not detected by ${ }^{1} \mathrm{H}$ NMR. These support the intervention of 9 as the only, but labile precursor of unsaturated esters, undergoing a rapid sigmatropic reaction (Scheme 1).

To summarize, in the SET reaction with chloranil under non-irradiated conditions, unsaturated esters are exclusively formed from C-C adduct 9, but not C-O adduct 7, yielding preferably 3 to 4 . With DDQ, in concurrence with a fast sigmatropic pathway via C - C adduct 10 where formation of 3 predominates over 4 , a relatively slower elimination reaction of $\mathrm{C}-\mathrm{O}$ adduct 8 takes place yielding preferably 4 to 3 . In addition, key intermediate C -O adducts 7,8 as well as C -C adduct 10 were detected and characterized. Detailed mechanistic account of the present reaction will be reported shortly.

REFERENCES AND NOTES

1. Dinnocenzo, J. P.; Lieberman, D. R.; Simpson, T. R. J. Am. Chem. Soc., 1993, 115, 366, and references cited therein.
2. Miyashi, T.; Takahashi, Y.; Ohaku, H.; Ikeda, H.; and Moroshima, S. Pure \& Appl. Chem., 1991, 63 (2), 223.
3. Martini, Г.; Kampmeier, L. A. Angew. Chem., 1970, 82, 216.

4 Nishida, S.; Murakami, M.; Mizuno, T.; and Tsuji, T. J. Org. Chem., 1989, 54, 3868.
5. Mazzocchi, P. H.; Somich, C.; Edwards, M.; Morgan, T.; Ammon, H. J. Am. Chem. Soc., 1986, 108, 6828.
6. 1 and 2 were prepared by Rousseau's method. Rousseau, G.; Slougui, N. Tetrahedron Lett., 1983, 24, 1251.
7. The reason why cyclopropanone acetals 1 and 2 were selected as the donor is that their HOMOs' energies are increased by replacing two ring-hydrogen atoms with two oxygen substituents. Kuwajima and coworkers calculated that the HOMO's energy of 1,1-dihydroxycyclopropane is 1.6 eV or 0.4 eV higher than that of cyclopropane or ethylene, respectively. Aoki, S.; Fujima, T.; Nakamura, E.; Kuwajima, I. J. Am. Chem. Soc., 1981, 103, 7675.
8. $E_{1 / 2}(\mathrm{DDQ})=0.51 \mathrm{~V}$ vs $\mathrm{SCE}, \mathrm{E}_{1 / 2}$ (chloranil) $=0.01 \mathrm{~V}$ vs SCE; see Meites, L.; Zuman, P . Electrochemical Data Part I, vol. A; John Wiley and Sons, New York, 1974.
9. Dimethyl acetal ($\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{CH}_{3}, \mathrm{R}^{3}=\mathrm{CH}_{3}$ in 2), in the reaction with DDQ , smoothly underwent an analogous SET reaction to give unsaturated esters 3b (53\%), 4b (14\%), together with 6 (63%). Thus, observation of analogous reactions over three R^{3} groups (TMS, CH3, H), which have different redox property, indicates that the essential structural unit of the donor required for the SET process is an oxy-substituted cyclopropane and the variation in $\mathbf{R}^{\mathbf{3}}$ substituent does not influence the net reaction profile.
10. For O_{2}-trappings as the probe of SET mechanism in cyclopropane systems, see (a) Ichinose, N .; Mizuno, K.; Tamai, T.; Y. Otsuji, Y. J. Org. Chem., 1990, 55, 4079. (b) Miyashi, T.; Kamata, M.; Mukai, T. J. Am. Chem. Soc., 1987, 109, 2780.
11. The key ${ }^{13} \mathrm{C}$ NMR chemical shifts of 8 b are $\mathrm{C}-1$ (89.83) and $\mathrm{C}-2$ (169.47), and those of 8 c are $\mathrm{C}-1$ (94.85) and C-2 (169.45). See structure 8 in Scheme 1.
12. The reaction of 1 with DDQ in the presence of MeOH afforded MeOH -trapping product $11(11,20$, and $\mathbf{2 5 \%}$ from 16, 1c, and 1d, respectively) in addition to 3 and 4 . The same product was also formed when MeOH was added after the consumption of $1(10,18$, and 22%, respectively).
13. Analogous C-C adduct was hypothetically proposed for a different reaction system. See Bhattacharya, A.; DiMichele, L. M.; Dolling, Ulf-H.; Grabowski, E. J. J.; Grenda, V. J. J. Org. Chem., 1989, 54, 6118. The key ${ }^{13} \mathrm{C}$ NMR chemical shifts of 10 e are $\mathrm{C}-1^{\prime}(171.44,171.60), \mathrm{C}-2^{\prime}(54.68,56.27)$, and C-3'(181.41, 181.62). See structure 10 in Scheme 1.
14. In entries 9 and 10,3 and 4 were undoubtedly formed via C-C adduct 9.
(Received in Japan 2 December 1993; accepted 21 February 1994)

