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ABSTRACT: Hybrid catalyst systems to achieve acceptorless de-

hydrogenation of N-heterocycles and tetrahydronaphthalenes—

model substrates for liquid organic hydrogen carriers were de-

veloped. A binary hybrid catalysis comprising an acridinium pho-

to-redox catalyst and a palladium metal catalyst was effective for 

the dehydrogenation of N-heterocycles, whereas a ternary hy-

brid catalysis comprising an acridinium photo-redox catalyst, a 

palladium metal catalyst, and a thiophosphoric imide organo-

catalyst achieved dehydrogenation of tetrahydronaphthalenes. 

These hybrid catalyst systems allowed for two-molar equivalent 

hydrogen gas release from six-membered N-heterocycles and 

tetrahydronaphthalenes under mild conditions, i.e., visible light 

irradiation at room temperature. The combined use of two or 

three different catalyst types was essential for the catalytic activ-

ity. 

Catalytic acceptorless dehydrogenation (CAD) from saturated 

organic compounds, such as N-heterocycles and hydrocarbons, 

to produce unsaturated molecules and hydrogen gas is a funda-

mentally important chemical process with numerous applications 

in organic synthesis
1
 as well as for a potential future “hydrogen 

society”.
2
 This process is generally very difficult, however, be-

cause desaturation of organic compounds is generally unfavora-

ble in terms of the enthalpy factor. Iridium complexes are preva-

lent catalysts for dehydrogenation of N-heterocycles.
3
 Crabtree 

and Jones independently reported base metal (nickel,
4a

 iron,
4b

 

and cobalt
4c

)-catalyzed dehydrogenation of N-heterocycles.
4
 

Further, Grimme and Paradies
5a

 and our group
5b

 recently 

achieved organocatalyzed dehydrogenation of N-heterocycles by 

a Lewis acidic borane.
5
 Despite the significant progress, forcing 

conditions with a reaction temperature higher than 100 °C are 

often required, except for Crabtree’s electrocatalytic example.
4a

 

For CAD from hydrocarbons, iridium–pincer complexes provide a 

privileged catalyst platform.
6
 Beller recently reported that Vaska-

type rhodium complexes [Rh(PR3)2(CO)Cl] exhibit improved reac-

tivity.
7
 Nevertheless, CAD from hydrocarbons generally requires 

even harsher conditions than N-heterocycles, such as high tem-

perature (up to 200 °C) or UV light irradiation. This is partly due 

to the great energy barrier for initiating the catalytic cycle, i.e., 

C(sp
3
)–H metalation through oxidative addition to iridium or 

rhodium complexes. Sorensen reported the first example of 

room-temperature CAD from alkanes by combining two sequen-

tial hydrogen atom-transfer steps mediated by tetrabutylammo-

nium decatungstate and cobaloxime pyridine chloride catalysts, 

respectively, under near-UV irradiation conditions.
8
 This pioneer-

ing base metal CAD from hydrocarbons has room for improve-

ment, however, especially with regard to its efficiency (up to 19% 

yield based on substrates). Here we developed binary and ter-

nary hybrid catalyst systems, enabling CAD from N-heterocycles 

and tetrahydronaphthalenes, respectively, at room temperature 

under visible light irradiation conditions.  

Our approach for realizing room-temperature CAD is based on 

facilitating the initiation step in the overall catalytic cycle, i.e., 

formation of metal amide or organometallic species from N-

heterocycles or hydrocarbons. This is possible through one-

electron oxidation of the substrates directly or indirectly mediat-

ed by a photo-redox catalyst,
9
 followed by capture of the result-

ing radical with a metal catalyst.
10,11

 Based on this idea, we first 

studied CAD from N-heterocycles using 1-

phenyltetrahydroisoquinoline (1a) as a model substrate.  

 

Figure 1. Working hypothesis for CAD of 1-

phenyltetrahydroisoqinoline (1a) by binary hybrid catalysis. 

Our working hypothesis to achieve CAD from 1a is illustrated 

in Figure 1. First, single electron transfer (SET) from 1a to an ex-
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cited photo-redox catalyst (*PC
+
) would produce aminyl radical 3. 

Then, 3 would be intercepted by a metal catalyst (M
n
) to gener-

ate oxidized metal amide 4 bearing a metal with an n+1 oxidation 

state (M
n+1

), which in turn would be reduced by a photo-redox 

catalyst acting as a reductant (PC), affording metal amide 5.
12,13

 

β-Hydride elimination from 5 would produce unsaturated 1-

phenyldihydroisoquinoline (6) and metal hydride species M
n
–H, 

which would evolve hydrogen gas through reacting with the pro-

ton
14

 generated in the photo-oxidation step of 1a. Further dehy-

drogenation from 6 would produce 2a with a net generation of 

two-molar equivalents of hydrogen gas from 1a.  

Table 1. Optimization for CAD from 1a 

entry 2a (%)a

1

2

3

4

5

6

7

8

9

10

11

12

metal cat.

FeCl2
NiCl2
NiCl2
CuCl

Pd(OAc)2

PdCl2�2MeCN

Pd(BF4)2�4MeCN

Pd(BF4)2�4MeCN

Pd(BF4)2�4MeCN

-

Pd(BF4)2�4MeCN

Pd(BF4)2�4MeCN

7 (5 mol %)

metal cat. (2.5 mol %)

additive

CH2Cl2 (0.125 M), rt

430 nm LED, 21 h

<1

6

<1

<1

18

19

37

60

96

11

<1

5

NH

1a

N

N

Me ClO47

Me Me

Me

6 (%)a

6

20

4

4

20

19

7

<1

<1

<1

9

<1

additive (mol %)

-

-

-

-

-

-

-

KSbF6 (5)

KSbF6 (25)

KSbF6 (25)

KSbF6 (25)

KSbF6 (25)

Ph Ph

2a

b

b

(96)c

e

d

 
a
NMR yield using 1,1,2,2-tetrachloroethane as an internal stand-

ard. 
b
In the presence of 1,10-phenanthroline as a ligand for the 

metal catalyst. 
c
Isolated yield in the parenthesis. 

d
The reaction 

was run without 7. 
e
The reaction was run without photoirradia-

tion. 

Based on this scenario, we optimized CAD from 1a using com-

binations of photo-redox catalysts (5 mol %) and metal catalysts 

(2.5 mol %) under 430 nm visible light irradiation at room tem-

perature (Table 1).
13

 Although first-row transition metal catalysts 

were ineffective (entries 1–4), palladium catalysts afforded 

promising results (entries 5–7); specifically, combining acridinium 

photo-redox catalyst 7
15

 and Pd(BF4)2•4MeCN catalyst produced 

moderate yield of isoquinoline 2a (37%; entry 7). A survey of 

several photo-redox catalysts revealed that 7 produced the high-

est yield.
13

 To further improve the reactivity, we studied the ef-

fects of additives.
13

 The addition of 5 mol % KSbF6 significantly 

accelerated the reaction, affording 2a in 60% yield (entry 8). Fi-

nally, in the presence of 5 mol % 7, 2.5 mol % Pd(BF4)2•4MeCN, 

and 25 mol % KSbF6, 2a was obtained in 96% yield (entry 9).
16

 

The binary hybrid catalyst system was essential for the CAD pro-

cess (entries 10–12). The yield of 2a decreased dramatically 

when either of the two catalyst components was absent (11% 

without the palladium catalyst; entry 10, and <1% without the 

photo-redox catalyst; entry 11), or without photoirradiation (5%; 

entry 12).  

We examined the substrate scope of the binary catalysis for 

CAD from N-heterocycles under the optimized conditions 

(Scheme 1). Various tetrahydroisoquinolines 1a–1e containing an 

electron-donating or -withdrawing group were converted to the 

corresponding isoquinolines 2a‒2e in generally high yield 

(Scheme 1-(1)). 1-Methyltetrahydroisoquinoline (1d) bearing 

higher hydrogen density was also a good substrate, giving 2d in 

41% yield. In addition, indolines 8, either NH-free (8a–8b) or N-

methylated (8c‒8e), were competent substrates for the binary 

catalysis, affording indoles 9 in moderate to high yield (Scheme 

1-(2)). 

Scheme 1. Substrate Scope of CAD from N-Heterocycles Us-

ing Binary Hybrid Catalysis 

 
a
Isolated yield. 

b
The reaction was run for 70 h. 

c
The reaction was 

run for 21 h. 

We next examined CAD from a more difficult substrate, tetra-

hydronaphthalene (10a). It was previously reported that rhodi-

um
7c,7d

 and iron
4b

 catalysts were applied to the dehydrogenation 

of 10a, but only trace amounts of naphthalene (11a) were pro-

duced. We examined the binary hybrid catalysis conditions opti-

mized for N-heterocycles with 10a, but 11a was not obtained at 

all.
13

 The lack of reactivity using the binary hybrid catalysis was 

likely due to the inability to generate a benzyl radical species (see 

12 in Figure 2) from 10a. Therefore, we attempted to further 

hybridize a third catalysis, an organocatalysis that would abstract 

a hydrogen atom from the benzylic C(sp
3
)–H bond (10a to 12).

17
 

For this purpose, we selected a sulfur-centered radical RS
●
, which 

would be generated from a sulfur-containing organocatalyst 

(RSH) by photo-redox catalyzed one-electron oxidation. RSH 

bears a bond dissociation energy high enough to cleave the ben-

zylic C(sp
3
)–H bond of 10a.

18
 

 

Figure 2. Working hypothesis for CAD of tetrahydronaphthalene 

(10a) by ternary hybrid catalysis. 

Our hypothesis for CAD from a hydrocarbon substrate 10a is 

illustrated in Figure 2. The sulfur-centered radical RS
●
, generated 
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by SET from RSH to an oxidizing excited photo-redox catalyst 

(*PC
+
), would abstract the benzylic hydrogen atom of 10a, pro-

ducing benzyl radical 12. Radical 12 would combine with a metal 

catalyst (M
n
) to generate organometallic species 13 bearing a 

metal with an n+1 oxidation state (M
n+1

), which in turn would be 

reduced by photo-redox catalyst acting as a reductant (PC), af-

fording organometallic species 14.
10

 β-Hydride elimination from 

14 would produce unsaturated dihydronaphthalene (15) and 

metal hydride species M
n
–H, which would evolve hydrogen gas 

through a reaction with the proton
14

 generated in the photo-

oxidation step of the organocatalyst RSH. Repeating this cycle 

from 15 would produce 11a with a net generation of two-molar 

equivalents of hydrogen gas from 10a. 

Based on this hypothesis, we surveyed organocatalysts (5 

mol %) in the presence of 7 (5 mol %) and Pd(BF4)2•4MeCN (2.5 

mol %) upon 430 nm LED irradiation at room temperature 

(Scheme 2).
13,19

 The CAD reaction from 10a did not proceed using 

benzenethiol, thiobenzoic acid, or methyl 2-mercaptoacetate 

(16), whose thiyl radical generated via SET oxidation under pho-

to-redox conditions was previously reported to generate a benzyl 

radical from benzyl ether substrates through C(sp
3
)‒H abstrac-

tion.
18a

 On the contrary, thiophosphoric acid organocatalyst 18 

exhibited moderate reactivity (35% yield). The observed reactivi-

ty of 18 was likely due to the high hydrogen atom abstraction 

ability of the electron-deficient sulfur-centered radical generated 

from 18.
20

 The binaphthyl backbone and SH functionality proved 

to be critical elements for the catalytic activity of 18; almost no 

reaction proceeded using thiophosphoric acid 17 or phosphoric 

acid 19. We studied the effects of substituents at the 2-positions 

of the binaphthyl backbone of 18; reactivity was significantly 

decreased by introducing an electron-withdrawing group (20: 

15%), an electron-donating group (21: 12%), or a sterically-

demanding group (22: 4%). Finally, we found that thiophosphoric 

imide 23 was a better organocatalyst than 18, producing 11a in 

41% yield. After optimizing the catalyst loadings, reaction tem-

perature, time, and concentration, 11a was obtained in 84% 

yield.
16

 

Scheme 2. Effects of Organocatalyst in CAD of 10a
a
 

 
a
Yield was determined by GC analysis because the product is 

volatile. 
b
The yield in parenthesis is for the reaction performed 

using 5 mol % 7, 2.5 mol % 23, and 2.5 mol % Pd(BF4)2•4MeCN for 

60 h under temperature control (ca. 27–29 °C) with a 0.125 M 

concentration of 10a. 

To confirm that the ternary hybrid catalysis manifold is essen-

tial for the CAD process, we also conducted several control ex-

periments.
13

 Almost no reactions occurred when any one of the 

three catalyst components was absent: the photo-redox catalyst, 

the metal catalyst, or the organocatalyst. Furthermore, exciting 

the photo-redox catalyst 7 with visible light was also indispensa-

ble: no reaction proceeded under thermal conditions without 

light irradiation. These results indicate that the three different 

types of catalysis cooperatively played critical roles. Moreover, in 

contrast to the Beller’s result using a rhodium catalyst,
7c

 inter-

mediate dihydronaphthalene (15) was not detected at any point 

during the reaction course, indicating that the initial dehydro-

genation from 10a to 15 is more difficult than the second dehy-

drogenation from 15 to 11a.  

Under the optimized conditions, we investigated the substrate 

scope of this ternary hybrid catalysis (Scheme 3).
21

 Various sub-

stituents on the phenyl ring of tetrahydronaphthalenes were 

tolerated, including a methyl group (10b), an aryl group (10c), a 

halogen atom (10d), a keto group (10e), an ester group (10f), and 

an amide group (10g). The reactions of tetrahydronaphthalenes 

10h and 10i bearing a methyl group at a saturated carbon also 

proceeded in high yield. Dihydronaphthalene 15 was a suitable 

substrate, giving 11a in 86% yield in a shorter reaction time (19 

h) than starting from 10a. The results support our hypothesis 

that the two-molar hydrogen evolution proceeds in a stepwise 

manner through an intermediary of 15 (Figure 2). Dehydrogena-

tion of 3-methylcyclohexene (24), albeit in moderate yield (17%), 

is a current limitation of this method. The result is still notewor-

thy, however, and demonstrates the potential of this ternary 

hybrid catalyst system for application in room-temperature CAD 

from aliphatic liquid organic hydrogen carriers containing higher 

hydrogen-per-molecular weight ratios. 

Scheme 3. Substrate Scope of CAD from Tetrahydronaphtha-

lene Derivatives and 3-Methylcyclohexene Using Ternary 

Hybrid Catalysis 

7 (5 mol %)

23 (2.5 mol %)

Pd(BF4)2•4MeCN

(2.5 mol %)

10 11

R1

R2

R3

CH2Cl2 (0.125 M), rt

430 nm LED, 47 h

R1

R2

R3

+ 2 H2

10a: R1 = R2 = R3 = H

10b: R1 = Me, R2 = R3 = H

10c: R1 = Ph, R2 = R3 = H

10d: R1 = Cl, R2 = R3 = H

10e: R1 = COMe, R2 = R3 = H

10f: R1 = CO2Me, R2 = R3 = H

10g: R1 = CONHtBu, R2 = R3 = H

10h: R1 = H, R2 = Me, R3 = H

10i: R1 = R2 = H, R3 = Me

substrates products: yielda

11a: 56% (84%)b,c

11b: 82% (>99%)b

11c: 59%

11d: 70%

11e: 46%d,e

11f: 59%d,e

11g: 64%e

11h: 55% (76%)b

11i: 52% (75%)b

7 (5 mol %), 23 (2.5 mol %)

Pd(BF4)2•4MeCN (2.5 mol %)

15 11a: 86%f

CH2Cl2 (0.125 M), rt

430 nm LED, 19 h

+ H2

Me Me

24 25: 17%f

7 (5 mol %), 23 (2.5 mol %)

Pd(BF4)2•4MeCN (2.5 mol %)

CH2Cl2 (0.125 M), rt

430 nm LED, 47 h

+ 2 H2

(1)

(2)

(3)

 
a
Isolated yield is shown unless otherwise noted. 

b
GC yield in the 

parenthesis. 
c
The reaction was run for 60 h. 

d
5 mol % 23 was 

used. 
e
The reaction was run for 72 h. 

f
GC yield. 

In summary, we developed a binary hybrid catalyst system 

comprising an acridinium photo-redox catalyst and a palladium 

metal catalyst for CAD from N-heterocycles. Moreover, we 

achieved CAD from tetrahydronaphthalenes, devising a ternary 

hybrid catalyst system by combined use of an acridinium photo-

redox catalyst, a palladium metal catalyst, and a thiophosphoric 
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imide organocatalyst. These are the first molecular catalysts for 

acceptorless dehydrogenation of N-heterocycles and hydrocar-

bons at room temperature and under visible light irradiation 

conditions. The complete release of two-molar equivalents of 

hydrogen gas from tetrahydroisoquinolines and tetrahydronaph-

thalenes is also unique in these processes. This study demon-

strates that proper hybridization of different catalyst types ena-

bles CAD from N-heterocycles and hydrocarbons under mild con-

ditions. Detailed studies to elucidate the reaction mechanism are 

ongoing in our laboratories.  
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