Articles

Potential Antitumor Agents. 54. Chromophore Requirements for in Vivo Antitumor Activity among the General Class of Linear Tricyclic Carboxamides

Brian D. Palmer, Gordon W. Rewcastle, Graham J. Atwell, Bruce C. Baguley, and William A. Denny*
Cancer Research Laboratory, University of Auckland School of Medicine, Private Bag, Auckland, New Zealand. Received July 6, 1987

Abstract

Structure-antitumor activity relationships are reported for a number of different examples (acridine, phenazine, anthracene, acridone, xanthenone, thioxanthenone, anthraquinone, pyridoquinazoline, dibenzodioxin, thianthrene, phenothiazine, phenoxazine, dibenzofuran, carbazole, and pyridoindole) of the general class of N -[2-(dimethylamino)ethyl] linear tricyclic carboxamides. Only the compounds containing coplanar chromophores intercalated DNA. There is an absolute requirement for an oxygen or aromatic nitrogen (possibly as hydrogen-bond acceptors) peri to the carboxamide, together with a planar ring geometry for biological activity. In addition to further delineating the nature of the pharmacophore for this class of compounds, the work has also identified dibenzo[1,4]dioxin as a novel DNA-intercalating chromophore with in vivo antitumor activity.

The majority of DNA monointercalating antitumor drugs have a common general structure, comprising a trior tetracyclic chromophore to which is attached one or two flexible side chains bearing cationic charges. ${ }^{1,2}$ We recently described ${ }^{3}$ further examples of this broad class, based on the compound N-[2-(dimethylamino)ethyl]-9-aminoacridine-4-carboxamide (2a). These derivatives

2aR $=\mathrm{NH}_{3}$
2bR=H

1

I
show good in vivo activity against leukemia models, but are not effective against remotely implanted solid tumors, which impose transport barriers and thus model the clinical problem more realistically. However, drastic reduction in the $\mathrm{p} K_{\mathrm{a}}$ of the acridine chromophore, either by the attachment of electron-withdrawing groups ${ }^{4}$ or by removal of the 9 -amino function, ${ }^{5}$ provides compounds (e.g. $2 \mathbf{b}$) with a broad-spectrum in vivo activity against both leukemia and solid tumor models.

In both the acridine and 9 -aminoacridine series (exemplified by 2 a and $\mathbf{2 b}$), the nature and positioning of the side chain was found to be critical, with only a N, N-(dialkylamino)ethylcarboxamide linked peri to the acridine nitrogen, proving acceptable. The excellent solid tumor activity shown by members of these series and the clearly defined structure-activity relationships for the side chain prompted a more general study of the nature of the
(1) Wakelin, L. P. G.; Atwell, G. J.; Rewcastle, G. W.; Denny, W. A. J. Med. Chem. 1987, 30, 855.
(2) Waring, M. J. Annu. Rev. Biochem. 1981, 50, 159.
(3) Atwell, G. J.; Cain, B. F.; Baguley, B. C.; Finlay, G. F.; Denny, W. A. J. Med. Chem. 1984, 27, 1481.
(4) Denny, W. A.; Atwell, G. J.; Rewcastle, G. W.; Baguley, B. C. J. Med. Chem. 1987, 30, 652.
(5) Atwell, G. J.; Rewcastle, G. W.; Baguley, B. C.; Denny, W. A. J. Med. Chem. 1987, 30, 664.
chromophore. One fundamental constraint is the requirement for it to bind efficiently to DNA by intercalation. Thus, the two-ring quinolinecarboxamide (1) binds strongly to DNA ($\log K$ value for binding to poly[d(A-T)] of 5.12), but does not intercalate, and is completely inactive both in vitro and in vivo. These results together with other work ${ }^{6}$ indicate that a linear tricyclic chromophore is the minimum required for efficient intercalative binding. We therefore report in this paper structure-activity relationships for the chromophore within the class of linear tricyclic carboxamides of general formula I. A total of 22 compounds ($\mathbf{1 - 9 b}$), encompassing a wide variety of different tricyclic structures were synthesized, and relationships between their molecular structure, DNA binding properties, and antitumor activities were examined.

2a $\mathrm{R}=\mathrm{NH}_{2}$
2b R=H
2c $\mathrm{R}=\mathrm{CH}_{3}$
2d $\mathrm{R}=\mathrm{Ph}$

3a $\mathrm{N} \quad \mathrm{CH}$
3b \mathbf{N} N
3c CH CH

4a $X=N H$
$4 b x=C O$
$4 c X=S$
$4 d X=0$

5

$\begin{array}{lll} & & \\ & X & Y \\ 6 a & O & O \\ 6 b & S & S \\ 6 c & S & O \\ 6 d & \mathrm{NH} & S \\ 6 e & \mathrm{NH} & \end{array}$

7

8

9a $X=C H$
$9 b X=N$

Chemistry

Since efficient and general methods are available ${ }^{5,7}$ for attachment of the N, N-dimethylethylenediamine side

[^0]Table I. Physiochemical and Biological Data for Tricyclic Carboxamides

no.	θ^{a}	$R_{\text {m }}{ }^{\text {b }}$	$\mathrm{p} K_{\mathrm{a}}{ }^{\text {c }}$	$\log K^{d}$		ϕ^{e}	$\mathrm{IC}_{50}{ }^{\text {d }}$	P388		LL	
				AT	GC			$\overline{\mathrm{OD}^{g}}$	$\mathrm{ILS}_{\max }{ }^{\text {n }}$	$\overline{O D}$	$\mathrm{ILS}_{\text {max }}$
1		-0.38	3.07	5.12	5.35	0	>25000	150	NA		
2a	$179{ }^{i}$	-1.11	8.30	6.65	6.95	17	15	4.5	$98(1)^{j}$	5	NA^{k}
2b	$179{ }^{\text {l }}$	-0.20	3.54	5.41	5.90	21	98	66	91	100	(6) ${ }^{m}$
2c	$(180)^{n}$	-0.33	4.34	6.48	5.97	16	150	45	NA		
2d	(180)	0.26	3.49	5.84	5.98	17	1370	65	NA		
3a	$179{ }^{l}$	-0.57	4.24	6.04	6.43	12	17000	150	NA	150	NA
3b	180°	-0.29	0.84	5.74	6.04	18	1715	150	88	150	57
3c	180^{p}	-0.02		5.78	5.25	8	5300	150	NA	150	NA
4 a	ca. $180^{\text {g }}$	-0.28		5.04	5.40	14	1700	150	NA		
4b	180^{r}	-0.35		5.28	5.34	8	4200	100	NA		
4c	$179{ }^{\text {s }}$	-0.16		5.51	5.18	12	6300	225	NA		
4d	$175{ }^{t}$	-0.26		5.29	5.05	16	6500	150	NA		
5	(180)	-0.55		6.14	6.23	18	1600	45	NA		
6a	180^{u}	0.01		5.83	6.10	20	14	150	76	150	NA
6 b	131°	0.01		4.97	4.81	0	>22000	225	NA		
6 c	$138{ }^{\text {w }}$	0.02		4.85	4.50	0	>22000	100	NA		
6d	$158{ }^{\text {x }}$	0.13		5.78	5.83	0	4400	45	37	45	NA
6 e	180^{y}	0.07		5.20	5.39	10	4000	100	NA		
7	$138{ }^{\text {w }}$	0.00		5.09	4.93	0	4500	100	NA		
8	179^{z}	-0.06		5.67	5.37	12	72	100	NA		
9 a	$178{ }^{a}$	-0.20		5.46	5.39	0	5100	65	NA		
9b	$(178)^{a b}$	-0.29		5.34	5.26	19	6600	225	NA		

${ }^{a} \theta$: Angle (in degrees) between the planes of the A and C rings of the parent chromophores, as measured by X-ray crystallography. An angle of 180° implies a coplanar system. ${ }^{b} R_{\mathrm{m}}$ values were determined as in ref 3 , with 4^{\prime}-(9-acridinylamino)methanesulfonanilide as a standard. ${ }^{\mathrm{c}} \mathrm{p} K_{\mathrm{a}}$ values for those compounds with ionizable chromophores were determined spectrophotometrically in aqueous solution as detailed in ref $45 .{ }^{d} \log K$: binding constant to poly[d(A-T)] and poly[d(G-C)], determined by ethidium displacement, see ref 46 . ${ }^{\varepsilon} \phi: D N A$ unwinding angle (degrees) measured using closed E. coli plasmid pNZ 116 , relative to ethidium as 26°, determined as in ref 3 . $f \mathrm{IC}_{50}$: concentration of drug in nanomolar to inhibit growth of murine leukemia (L1210) cells in culture by 50%, following a 40 h exposure. See ref 54. ${ }^{8}$ OD: optimal dose of drug in $\mathrm{mg} / \mathrm{kg}$ per day, administered intraperitoneally as a solution in 0.1 mL of $30 \% \mathrm{v} / \mathrm{v}$ ethanol/water on days 1,5 , and 9 after intraperitoneal inoculation of 10^{6} P388 leukemia cells or on days 5, 9, and 13 after intravenous inoculation of 10^{6} Lewis lung carcinoma cells. See ref $55 .{ }^{h}$ ILS $_{\max }$: the percentage increase in lifespan of drug-treated tumor-bearing animals compared to nontreated tumor-bearing controls when treated at the optimal dose; values above 20% for P 388 and above 40% for Lewis lung are considered statistically significant. ${ }^{i}$ Reference 29. ${ }^{j}$ Numbers in parentheses indicate the number of animals in a group of six that were long-term survivors (50 days for P388, 60 days for Lewis lung); such animals are normally considered cured. ${ }^{k}$ Compound inactive at all dose levels up to toxic ones. ${ }^{\text {l }}$ Reference $30 .{ }^{m}$ All animals long-term survivors. ${ }^{n} \theta$ values in parentheses are assumed; no crystallographic data available. ${ }^{o}$ Reference 28. ${ }^{p}$ Reference 31. ${ }^{q}$ Reference 32. ${ }^{r}$ Reference 33. ${ }^{s}$ Reference 34. ${ }^{t}$ Reference 35. ${ }^{u}$ Reference 36. ${ }^{v}$ Reference 37. ${ }^{w}$ Reference 38. ${ }^{x}$ Reference 39. ${ }^{y}$ Reference 40. ${ }^{z}$ Reference 42. ${ }^{a a}$ Reference 43. ${ }^{a b}$ Reference 44.
chain to an aromatic carboxylic acid to give the desired carboxamides ($1-9 b$) recorded in Tables I and II, the chemistry was concerned with the preparation of the corresponding linear tricyclic carboxylic acids. Compounds 2a-c of Table I have been described previously. ${ }^{3,5}$

9-Phenylacridine-4-carboxylic acid for compound 2 d was obtained from reaction of 2 -aminobenzophenone and di-phenyliodonium-2-carboxylate, ${ }^{8}$ followed by selective cyclization of the resulting N-(2-benzoylphenyl)anthranilic acid in mild acid.
Acridine-1-carboxylic acid was most efficiently prepared via the mixture of 9 -oxoacridancarboxylic acids obtained in quantitative yield by $\mathrm{H}_{2} \mathrm{SO}_{4}$-induced cyclization of N-(3-carboxyphenyl)anthranilic acid. This mixture (74% 1 -acid and $26 \% 3$-acid) proved difficult to separate, but reduction with $\mathrm{Al} / \mathrm{Hg}$ amalgam ${ }^{5}$ followed by fractional crystallization gave pure acridine-1-carboxylic acid.

Carboxylic acids for the preparation of compounds ($\mathbf{3 b}$, 3c, 4a, and 4b) have been reported and were prepared by the published methods. Reductive $\left(\mathrm{NaBH}_{4}\right)$ ring closure ${ }^{9}$ of 3 -nitro- N-phenylanthranilic acid gave phenazine-1carboxylic acid. Oxidation ${ }^{10}$ of benzanthrone ($\mathrm{CrO}_{3} /$ $\mathrm{H}_{2} \mathrm{SO}_{4}$) gave 9,10-dioxoanthracene-1-carboxylic acid, and Cu -catalyzed reduction ${ }^{11}$ of this with $\mathrm{Zn} / \mathrm{NH}_{4} \mathrm{OH}$ gave
(8) Rewcastle, G. W.; Denny, W. A. Synthesis 1985, 220.
(9) Challand, S. R.; Herbert, R. B.; Holliman, F. G. J. Chem. Soc., D 1970, 1423.
(10) DeBarry Barnett, E.; Cook, J. W.; Grainger, H. H. Ber. Dtsch. Chem. Ges. 1924, 57, 1775.

Table II. Physiochemical Properties for the New Compounds of Table I

no.	$\mathrm{mp},{ }^{\circ} \mathrm{C}$	formula	analyses
1	66-67	$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O} \cdot 2 \mathrm{HCl}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
2d	205-208	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O} \cdot 2 \mathrm{HCl}$	C, H, N, Cl
3a	214-216	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O} \cdot 2 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$
3c	220-222	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl}$	C, H, N, Cl
4a	284-286	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{HCl}$	C, H, N, $\mathrm{Cl}^{\text {a }}$
4 b	241-243	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
4c	237-239	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} \cdot \mathrm{HCl}$	C, H, N
4d	217-229	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{HCl}$	C, H, N, Cl
5	133-135	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$	C, H, N
6a	178-182	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$	C, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$
6 b	182-183	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O} \cdot \mathrm{HCl}$	C, H, N, S
6c	127-130	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} \cdot \mathrm{HCl} \cdot \mathrm{MeOH}$	HRMS ${ }^{\text {c }}$
6 d	205-208	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{OS} \cdot \mathrm{HCl}$	C, H, N, S
6 e	201-202	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{HCl}$	$\mathrm{C},{ }^{b} \mathrm{H}, \mathrm{N}, \mathrm{Cl}$
7	165-166	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} \cdot \mathrm{HCl} \cdot \mathrm{MeOH}$	C, H, N, Cl
8	184-188	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	C, H, N
9a	236-238	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{HCl}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$
9b	242-244	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O} \cdot 2 \mathrm{HCl}$	$\mathrm{C},{ }^{\text {b }} \mathrm{H}, \mathrm{N}, \mathrm{Cl}$

${ }^{a} \mathrm{Cl}$ out by $0.5 \% .{ }^{b} \mathrm{C}$ out by 0.5%. ${ }^{\text {c }}$ High-resolution mass spectral determination of free base.
anthracene-1-carboxylic acid. 9-Oxoacridan-4-carboxylic acid was prepared in quantitative yield by $\mathrm{H}_{2} \mathrm{SO}_{4}$-induced cyclodehydration of diphenylamine-2, 2^{\prime}-dicarboxylic acid. ${ }^{3}$

Oxothioxanthene-4-carboxylic acid was prepared by $\mathrm{Zn} / \mathrm{Cu} / \mathrm{NaOH}$-induced condensation of 2-iodobenzoic acid

[^1]Table III. Metalation Reactions

substrate	metalation conditions ${ }^{a}$					product	yield, \%	ref
	mole ratio of $n-\mathrm{BuLi}$	solvent	temp, ${ }^{\circ} \mathrm{C}$	time, h	electrophile			
dibenzodioxin	1:1.5	THF	25	1	DMF	10	$64^{\text {c }}$	50
thianthrene	1:1.2	$\mathrm{Et}_{2} \mathrm{O}$	20	18	CO_{2}	11	34	51
phenoxathiin	1:1.05	$\mathrm{Et}_{2} \mathrm{O}$	reflux	1.5	CO_{2}	12	37	16
phenoxathiin 10-oxide	1:3.1	$\mathrm{Et}_{2} \mathrm{O}$	-25	24	CO_{2}	13	32	18
phenothiazine	1:4	DME	20	24	CO_{2}	14	43	52
dibenzofuran	1:1.5	THF	40	1	DMF	16	62^{d}	53

${ }^{a}$ See the Experimental Section for representative procedures. ${ }^{b}$ Commercially available solutions of n-BuLi in hexane (ca. 1.5 N) were used and were standardized by titration using 2,5-dimethoxybenzyl alcohol as an indicator. ${ }^{c}$ Yield of intermediate aldehyde was 83%. ${ }^{d}$ Yield of intermediate aldehyde was 77%.

Scheme I

and thiosalicyclic acid, ${ }^{12}$ followed by cyclization with PPA. Oxoxanthene-4-carboxylic acid was obtained by cyclodehydration of bis(2-carboxyphenyl) ether, ${ }^{13}$ obtained by reaction of diphenyliodonium-2-carboxylate with 2 methylphenol ${ }^{14}$ and oxidation of the resulting 2 -methylphenyl 2-carboxyphenyl ether. The pyrido[2,1-b]quinazoline acid for 5 was made as reported ${ }^{15}$ by Ullmann condensation of 2 -chloronicotinic acid and anthranilic acid.
The acids required for compounds ($6 a-e, 7$, and 8) were obtained by metalation of the parent heterocycles with n-butyllithium by using modifications of published procedures, followed by quenching of the resulting aryllithium compound with solid CO_{2}. In the cases of the dibenzodioxin and dibenzofuran acids (10 and 16), higher yields

$\begin{array}{ll}10 & X=Y=O \\ 11 & X=Y=S \\ 14 & X=S, Y=N H \\ 15 & X=O, Y=N H\end{array}$

$16 \mathrm{X}=0$
$17 \mathrm{X}=\mathrm{NH}$
$17 \mathrm{X}=\mathrm{NH}$

were obtained by treatment of the aryllithium compound with DMF to give the aldehyde, followed by KMnO_{4} oxidation to the required acid. Table III gives the metalation conditions found to give acceptable yields of the carboxylic acids. Controlled metalation of phenoxathiin (Scheme I) gave the 4-carboxylic acid 12. ${ }^{16}$ For preparation of the isomeric 1 -acid 13, it was necessary to metalate phen-

[^2]oxathiin 10 -oxide,,17 which has been shown ${ }^{18}$ to proceed at the 1-position with concomitant reduction of the sulfoxide group. The resulting 1 -acid was the major component of a complex mixture, from which it was separated by chromatography of the methyl esters. Although both carbazole ${ }^{19}$ and phenoxazine ${ }^{20}$ have been metalated with n-butyllithium, the reported yields of carboxylic acids were extremely low and, like others, ${ }^{21}$ we were unable to obtain synthetically useful quantities of material via the metalation route. Phenoxazine-1-carboxylic acid (15) was therefore prepared by the four-step cyclization sequence reported by Blank and Baxter, ${ }^{21}$ while carbazole-1carboxylic acid (17) was obtained by oxidation of the methyl ester of 5,6,7,8-tetrahydro-9H-carbazole-1carboxylic acid ${ }^{22}$ with DDQ. ${ }^{23}$ After completion of this work, improved lithiation procedures were developed for the synthesis of the 1-carboxylic acid derivatives of carbazole, ${ }^{24}$ phenothiazine, ${ }^{25}$ and phenoxazine. ${ }^{26}$
$9 H$-Pyrido[3,4-b]indole-1-carboxylic acid for compound $9 \mathbf{b}$ was conveniently prepared by KMnO_{4} oxidation of the corresponding benzal derivative, which was obtained from the naturally occurring β-carboline harman as reported. ${ }^{27}$

Results and Discussion

Chromophore Geometry. Table I records physicochemical and biological data for 21 carboxamides representing a number of different tricyclic ring systems, together with the quinoline derivative 1. To provide general information about the chromophore geometry, the dihedral angles (θ) between the A and C rings of the parent chromophores for each system are given, where they are available from published X-ray crystallographic studies. While the fully aromatic ring systems (anthracene, acridine, phenazine) used in compounds 2a-d and 3a-c of Table I are known to be coplanar, ${ }^{28-81}$ less information is
(17) Tomita, M.; Ikeda, T. Yakugaku Zasshi 1938, 58, 780.
(18) Shirley, D. A.; Lehto, E. A. J. Am. Chem. Soc. 1955, 77, 1841.
(19) Gilman, H.; Kirby, R. H. J. Org. Chem. 1936, 1, 146.
(20) Gilman, H.; Moore, L. O. J. Am. Chem. Soc. 1958, 80, 2195.
(21) Blank, B.; Baxter, L. L. J. Med. Chem. 1968, 11, 807.
(22) Collar, W. M.; Plant, S. G. P. J. Chem. Soc. 1936, 808.
(23) Barclay, B. M.; Campbell, N. J. Chem. Soc. 1945, 530.
(24) Katritzky, A. R.; Rewcastle, G. W.; Vazquez de Miguel, L. M. J. Org. Chem., in press.
(25) Katritzky, A. R.; Vazquez de Miguel, L. M.; Rewcastle, G. W. Synthesis, in press.
(26) Katritzky, A. R.; Vazquez de Miguel, L. M.; Rewcastle, G. W. Heterocycles 1987, 26, 3135.
(27) McEvoy, F. J.; Allen, G. R. J. Org. Chem. 1969, 34, 4199.
(28) Herbstein, F. H.; Schmidt, G. M. J. Acta Crystallogr. 1955, 8, 406.
(29) Talacki, R.; Carrel, H. L.; Glusker, J. P. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1974, 30B, 1044.
(30) Phillips, D. C.; Ahmed, F. R.; Barnes, W. H. Acta Crystallogr. 1960, 13, 365.
available on the structures of the parent compounds of compounds $4 a-$ d. However, the existing data suggests that these compounds too will be essentially coplanar. Studies on acridone and N -alkylacridones, ${ }^{32}$ anthraquinone, ${ }^{33}$ and thioxanthenone ${ }^{34}$ show they all have a coplanar conformation with measured dihedral angles of essentially 180°. However, xanthenone, which lacks the ability of thioxanthenone to form delocalized zwitterionic structures, ${ }^{34}$ has been shown ${ }^{35}$ to have a slight butterfly conformation, with a dihedral angle of 175°. The pyridoquinazoline 5 is expected to be coplanar, but no crystallographic information is available.

The ring systems of the parent chromophores of compounds 6a-e and 7 of Table I show more variable geometry. While the dibenzodioxin system of compound $6 \mathbf{6}$ is completely coplanar, ${ }^{36}$ thianthrene (compound $\mathbf{6 b}$) is severely distorted, with a dihedral angle of 131° between the A and C rings, ${ }^{37}$ and phenoxathiin (compounds $6 \mathbf{c}$ and 7) is almost equally bent, ${ }^{38}$ with an angle of 138°. This distortion is due to a combination of the much longer $\mathrm{C}-\mathrm{S}$ bonds ($1.75-1.77 \AA$) compared with the $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ bonds ($1.37-1.40 \AA$) in these compounds and the much more acute C-S-C bond angles ($98-104^{\circ}$) compared with $\mathrm{C}-\mathrm{O} \mathrm{C}\left(116-119^{\circ}\right)$ and $\mathrm{C}-\mathrm{N}-\mathrm{C}\left(123-124^{\circ}\right)$ bond angles. Thus phenothiazine, with one sulfur atom, is also butterfly shaped (angle θ of 158°), ${ }^{39}$ while the limited crystal structure data ${ }^{40}$ for phenoxazine (compound 6e) suggests a planar structure, although a bent conformation has been proposed ${ }^{41}$ on the basis of NMR evidence. The dibenzofuran and carbazole nuclei (compounds $8,9 a$, and $9 b$), with a central five-membered ring, have less conformational flexibility, and all have coplanar structures. ${ }^{42-44}$
Physicochemical Properties. $\mathrm{p} K_{\mathrm{a}}$ values for the ionizable chromophores were determined by spectrophotometry in aqueous solution as before ${ }^{45}$ and are recorded in Table I. Only the 9 -aminoacridine derivative 2 a with a $\mathrm{p} K_{\mathrm{a}}$ of 8.3 is likely to be ionized at physiological pH .

Drug lipophilicity was determined by liquid-liquid chromatography in the presence of 0.3% methanesulfonic acid. ${ }^{45}$ The 9 -aminoacridine derivative 2 a runs as the dication, with the chromophore charged, which accounts
(31) Cruickshank, D. W. J. Acta Crystallogr. 1956, 9, 915.
(32) Zavodnik, V. E.; Chetkina, L. A. Tezisy Dokladou Vsesoyuznoe Soveshchanle po Organicheskoi Kristallolchimii; Struchkov, Yu. T., Bleidelis, Ya. Ya., Eds.; Zinatne; Riga, USSR, 1975; Chem. Abstr. 1977, 87, $61118 n$.
(33) Prakash, A. Acta Crystallogr. 1967, 22, 439.
(34) Chu, S. S. C.; Yang, H. T. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1976, B32, 2248.
(35) Biswas, S. C.; Sen, R. K. Indian J. Pure Appl. Phys. 1969, 7, 408.
(36) Singh, P.; McKinney, J. D. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1978, 34B, 2956.
(37) Gallaher, K. L.; Barnes, S. H. J. Chem. Soc., Faraday Trans. 2, 1975, 71, 1173.
(38) Hosoya, S. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1966, $20 B, 429$.
(39) McDowell, J. J. H. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1976, 32B, 5.
(40) (a) Cullinane, N. M.; Rees, W. T. Trans. Faraday Soc. 1940, 36, 507. (b) Hosoya, S. Acta Crystallogr. 1963, 16, 310.
(41) Angerman, N. S.; Danyluk, S. S. Org. Magn. Res. 1972, 4, 895.
(42) Banerjee, A. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1973, 29B, 2070.
(43) Kurahashi, M.; Fukuyo, M.; Shimada, A.; Furusaki, A.; Nitta, I. Bull. Chem. Soc. Jpn. 1969, 42, 2174.
(44) Roychowdhury, J.; Roychowdhury, P. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1981, 37A, C205.
(45) Cain, B. F.; Atwell, G. J.; Denny, W. A. J. Med. Chem. 1975, 18,1110 .
for its low measured lipophilicity ($R_{\mathrm{m}}-1.11$). The much lower $\mathrm{p} K_{\mathrm{a}} \mathrm{s}$ of the acridine derivatives ($\mathbf{2 b} \mathbf{b}-\mathbf{d}, 3 \mathbf{a}$) makes it probable that they run predominantly with uncharged chromophores. This is certainly the case for the phenazine derivative $3 \mathbf{b}$, with a $\mathrm{p} K_{\mathrm{a}}$ of only 0.84 , which is observed to run as a yellow spot quite unlike the bright red dicationic species observed in strong acid. With the exception of the more lipophilic 9 -phenylacridine ($\mathbf{2 d}$) and the anthracene 3c, the planar chromophores have R_{m} values (-0.2 to -0.5) similar to that of the acridinecarboxamide $\mathbf{2 b}$. In contrast, the predominantly nonplanar compounds ($6 a-\mathbf{e}$, 7) are more lipophilic, with R_{m} values from 0.0 to 0.10 .

DNA Binding. Binding of the compounds to DNA was determined as previously described by the ethidium displacement assay, with a correction for any quenching of ethidium fluorescence caused by bound drug. ${ }^{46}$ As noted previously, ${ }^{5}$ loss of the 9 -amino group from $2 \mathbf{a}$ to give $\mathbf{2 b}$ results in 1 order of magnitude decrease in DNA binding, and the isomeric acridine 3 a shows a similar binding level. The phenazine $\mathbf{3 b}$ has a DNA affinity between those of the two acridine isomers as does the anthracene derivative $3 \mathbf{c}$, despite its lack of polar functionality. The fully aromatic compounds generally show a slight preference for binding to GC sites and all intercalate, as shown by unwinding angles of $12-20^{\circ}$.

The carbonyl-containing chromophores ($\mathbf{4} \mathbf{a}-\mathrm{d}$), although planar, bind significantly less tightly, but they all appear to intercalate DNA. However, the binding mode of compounds ($6 a-e$ and 7) shows a dependence on conformation. The planar dibenzodioxin 6a binds by intercalation as tightly as the fully aromatic phenazine but the thianthrene $\mathbf{6 b}$ binds 10 -fold less strongly, with no evidence for chromophore intercalation since the compound fails to unwind and rewind closed circular DNA (Table I). The remainder of the nonplanar compounds ($\mathbf{6 c}, \mathbf{6 d}$, and 7) also bind less strongly and also do not show evidence for intercalation. It is particularly interesting that only compounds 6a and $6 e$, containing the planar dibenzodioxin and phenoxazine chromophores, show evidence of intercalative binding to DNA. The dibenzofuran and carbazole compounds (8,9a, and 9 b) bind as tightly as the acridinecarboxamide $\mathbf{2 b}$, but the failure of the carbazole 9 a to intercalate is puzzling.

In Vitro Cytotoxicity. The compounds show great variation in cytotoxic potency. Among the fully aromatic derivatives, the 9 -aminoacridine (2a) was by far the most potent, with an IC_{50} of 15 nM , while the acridine-1carboxamide (3a) was the least potent. The 200 -fold difference in potencies between these two compounds is striking, given the similarity of their DNA equilibrium binding properties. While the pyridoquinazoline 5 and the acridone 4 a showed potentially interesting levels of cytotoxicity $\left(\mathrm{IC}_{50}=\right.$ ca. 1500 nM$)$, the other carbonyl-containing compounds ($\mathbf{4 b} \mathbf{b} \mathbf{d}$) were much less toxic. The dibenzodioxin 6a proved to be exceptionally toxic, with an IC_{50} of 14 nM , while the nonintercalating thianthrene 6 b was more than 2000 -fold less potent. Although more potent than the thianthrene, the remaining six-membered ring compounds were not exceptional, with IC_{50} values of ca. 4000 nM .

Interesting contrasts were also seen with the five-membered ring compounds; the dibenzofuran 8 proved very cytotoxic, while the carbazole derivatives $9 a$ and $9 b$ were unexceptional.

In Vivo Activity. For DNA-intercalating agents, generally, there is a broad but inexact correlation between high

[^3]cytotoxic potency and in vivo antileukemic activity, and this is true of the present compounds. Of the five compounds of Table I with IC_{50} values below 200 nM , the known ${ }^{3,5}$ acridines 2a and 2b and the dibenzodioxin 6a show good in vivo activity, although the equally potent dibenzofuran (8) and the 9 -methylacridine (2c) do not. Four compounds showed intermediate levels of cytotoxicity (ca. 1500 nM), with one (3b) being active in vivo and three (2b, 4a, and 5) being inactive. However, 11 of the remaining 12 compounds with IC_{50} values above 4000 nM are all inactive in vivo. The exception is the phenothiazine 6d, which does not intercalate DNA and has an IC_{50} of 4400 nM , yet shows low but positive in vivo activity. The related compound chlorpromazine is also reported to have low antitumor activity, possibly via a free radical oxidation mechanism.

Thus, cytotoxic potency broadly relates to in vivo antileukemic activity even among this diverse set of DNAintercalating agents. IC_{50} values below ca. 200 nM denote active chromophores (acridine, dibenzodioxin), while IC_{50} values of ca. $1000-2000 \mathrm{nM}$ are also of interest, since either the parent molecule itself (phenazine) or a substituted compound may be active (in the case of the acridone chromophore, a number of substituted derivatives show in vivo activity ${ }^{47}$). However, parent chromophores that show IC_{50} values greater than ca. 2000 nM seem unlikely to be worth pursuing.

Conclusions

The aim of this study was to examine chromophore structure-activity relationships for the broad class of linear, tricyclic carboxamides, in order to further delineate the nature of the allowed pharmacophore, initially formulated as I. Among the fully conjugated compounds, the inactivity of the acridine-1-carboxamide 3 a and the anthracene 3c showed the necessity for a nitrogen atom peri to the carboxamide side chain. This is not a simple requirement for a positive charge, since the active phenazine (3b) is unlikely to be protonated at physiological pH . The planar acridone 4 a and phenoxazine ($6 \mathbf{e}$), where the peri NH is a H-bond donor, are also inactive. It seems more likely that the peri nitrogen is required to act as an H -bond acceptor, given the activity of the dibenzodioxin 6a, where the peri oxygen can act equally well. None of the compounds containing a bent chromophore intercalated DNA. The inactivity of all these compounds, including the phenoxathiin-4-carboxamide (6c), which has the correctly placed peri oxygen, suggests that chromophore planarity (thus allowing intercalation) is an additional requirement. These results imply that the "essential pharmacophore" can be further restricted to formula I, where the ring system is planar (but not necessarily fully conjugated), and Y is an H -bond acceptor.

In addition to these general conclusions, which may allow the design of further DNA-intercalating agents of this general class, the present work has also identified dibenzodioxin as a novel chromophore, with in vivo activity. Despite the fact that $\mathbf{6 a}$ is inactive against the LL solid tumor, the high cytotoxicity and good antileukemic activity of the compound make it worthy of further development.

Experimental Section

Analyses were carried out in the Microchemical Laboratory, University of Otago, and were within $\pm 0.4 \%$ of the theoretical value unless indicated. Melting points were determined on an Electrothermal apparatus using the supplied stem-corrected
thermometer and are reported as read. $\mathrm{Et}_{2} \mathrm{O}, \mathrm{THF}$, and DME were distilled under nitrogen from sodium benzophenone ketyl and used immediately. All metalation reactions were performed in an oven-dried flask and maintained under a positive pressure of nitrogen (balloon). Column chromatography was performed by the method of Still et al. ${ }^{48}$ with Merck silica gel 60 (230-400 mesh). Petroleum ether refers to the fraction with bp $40-60^{\circ} \mathrm{C}$.
9-Phenylacridine-4-carboxylic Acid. A mixture of 2aminobenzophenone ($5.92 \mathrm{~g}, 0.03 \mathrm{~mol}$), diphenyliodonium-2carboxylate ($10.7 \mathrm{~g}, 0.033 \mathrm{~mol}$), and cupric acetate (0.5 g) in DMF $(20 \mathrm{~mL})$ was heated with stirring at $100^{\circ} \mathrm{C}$ for 2 h and concentrated under reduced pressure, and the residue was shaken with water. The resulting solid was extracted with hot 2 N aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and the solution was treated with charcoal, extracted with benzene, and then acidified. The precipitate was crystallized from benzene/petroleum ether and then aqueous EtOH to give N-(2-benzoylphenyl)anthranilic acid as yellow prisms (2.47 g , $26 \%), m p 183-184^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
The above acid (1.75 g) was dissolved in $\mathrm{AcOH}(16 \mathrm{~mL})$ and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(4 \mathrm{~mL})$, and the mixture was stirred at 95 ${ }^{\circ} \mathrm{C}$ for 30 min , cooled, and diluted with water. The solution was just neutralized with $\mathrm{NH}_{4} \mathrm{OH}$, and the precipitate was extracted with hot $1 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$. This solution was clarified and acidified (AcOH), and the resulting precipitate was crystallized from aqueous EtOH , giving pure 9 -phenylacridine-4-carboxylic acid as yellow needles (83% yield), mp $229-230^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{NO}_{2}\right)$ C, H, N.
Acridine-1-carboxylic Acid. N-(3-Carboxyphenyl)anthranilic acid (58 g) was dissolved in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(100 \mathrm{~mL})$ and kept at $100^{\circ} \mathrm{C}$ for 1 h . The hot mixture was poured slowly into water, and the resulting solid was collected, dissolved in dilute $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{EtOH}$, and precipitated with AcOH to give a granular mixture of 9-oxoacridan-1-carboxylic acid and 9-oxoacridan-3carboxylic acid in a $74: 26$ ratio (determined by HPLC, using pure 3 -acid as a standard). A solution of the above mixture ($5 \mathrm{~g}, 21$ $\mathrm{mmol})$ and $\mathrm{NaOH}(1 \mathrm{~g}, 25 \mathrm{mmol})$ in water was treated at the boil with $\mathrm{Al} / \mathrm{Hg}$ amalgam ${ }^{5}$ (3 g) over 90 min . After filtration, the filtrate was acidified with HCl and treated with a solution of FeCl_{3} $(5 \mathrm{~g})$ in water $(150 \mathrm{~mL})$. The initial precipitate redissolved after 10 min at reflux, and NaOH was then added to precipitate iron species. The filtrate was acidified to pH 5 , and the resulting crude solid (two spots on TLC) was recrystallized from EtOH to give pure acridine-1-carboxylic acid ($1.5 \mathrm{~g}, 32 \%$) , $\mathrm{mp}>325^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
Oxoxanthene-4-carboxylic Acid. 2-Methylphenol ($33 \mathrm{~g}, 0.30$ mol) was added to a solution of $\mathrm{Na}(2.1 \mathrm{~g}, 90 \mathrm{mmol})$ in MeOH (100 mL), and the MeOH was then removed under vacuum. Diphenyliodonium-2-carboxylate ($19.6 \mathrm{~g}, 60 \mathrm{mmol}$) and cupric acetate (0.5 g) were added, and the mixture was heated at 100 ${ }^{\circ} \mathrm{C}$ for 5 h before being diluted with 2 N NaOH solution and filtered through Celite. The clear solution was acidified with concentrated HCl , and $\mathrm{NH}_{4} \mathrm{OH}$ was then added slowly until the cloudy white precipitate just redissolved (pH ca. 8). Excess 2 -methylphenol was removed by two extractions with EtOAc, and the aqueous solution was poured slowly into 2 N HCl to give 2-(2-methylphenoxy)benzoic acid as a white solid ($8.85 \mathrm{~g}, 64 \%$), mp (benzene) $138-139^{\circ} \mathrm{C}$ (lit..$^{49} \mathrm{mp} 133.5^{\circ} \mathrm{C}$). Oxidation of the above compound with $\mathrm{KMnO}_{4}{ }^{13}$ gave bis(2 -carboxyphenyl) ether in 89% yield, $\mathrm{mp} 230^{\circ} \mathrm{C}$ (lit. ${ }^{13} \mathrm{mp} 230^{\circ} \mathrm{C}$). Ring closure of this diacid with polyphosphate ester gave oxoxanthene-4-carboxylic acid in 84% yield, $\mathrm{mp} 289^{\circ} \mathrm{C}$ (lit. ${ }^{13} \mathrm{mp} 289^{\circ} \mathrm{C}$).

11-Oxo-11H-pyrido[2,1-b]quinazoline-6-carboxylic Acid. 2-Chloronicotinic acid ($7.3 \mathrm{~g}, 46 \mathrm{mmol}$) and anthranilic acid (6.5 $\mathrm{g}, 47 \mathrm{mmol}$) were suspended in dry N-methylpyrrolidone (20 mL) in an open beaker. $\mathrm{K}_{2} \mathrm{CO}_{3}(9.8 \mathrm{~g}, 70 \mathrm{mmol})$ was added, and the mixture was stirred until gas evolution ceased. After addition of $\mathrm{Cu} / \mathrm{CuO}(1: 1 ; 0.2 \mathrm{~g})$, the mixture was heated with stirring at $150^{\circ} \mathrm{C}$ until it solidified (15 min), and the cooled solid was dissolved in water (300 mL). The solution was just neutralized with AcOH , filtered to remove a small amount of black solid, and then acidified with AcOH to recover the acid as a yellow solid

[^4]$(6.25 \mathrm{~g}, 57 \%)$. A sample was recrystallized from water as a yellow powder, mp $233-235^{\circ} \mathrm{C}$ (lit. ${ }^{15} \mathrm{mp} 221^{\circ} \mathrm{C}$). Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

Dibenzo[1,4]dioxin-1-carboxylic Acid (10). n-Butyllithium (5.43 mL of a 1.50 N solution in hexane, $8.14 \mathrm{mmol}, 1.5$ equiv) was added dropwise at $25^{\circ} \mathrm{C}$ under N_{2} to a stirred solution of dibenzo[1,4]dioxin (1.00 g , 5.43 mmol) in THF (15 mL). After 1 h, DMF ($0.63 \mathrm{~mL}, 8.14 \mathrm{mmol}$) was added in one portion, and after a further 10 min , the mixture was poured into brine, extracted with EtOAc, and worked up to give crude dibenzo[1,4]-dioxin-1-carboxaldehyde as an oily yellow solid ($0.96 \mathrm{~g}, 83 \%$). This was dissolved in a mixture of $\mathrm{Me}_{2} \mathrm{CO}(20 \mathrm{~mL})$ and $1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}(10$ mL), and powdered $\mathrm{KMnO}_{4}(2 \mathrm{~g}, 13 \mathrm{mmol})$ was added in portions with vigorous stirring. After 1 h , the mixture was poured into brine and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with 10% aqueous sodium bisulfite until colorless and then extracted with 2 N KOH solution. Acidification of this basic extract followed by extraction with EtOAc gave dibenzo[1,4]dioxin-1-carboxylic acid $(0.80 \mathrm{~g}, 64 \%$ overall), which crystallized from glacial AcOH as cubes, $\mathrm{mp} 205-207^{\circ} \mathrm{C}$ (lit. ${ }^{50} \mathrm{mp} 210^{\circ} \mathrm{C}$).

Phenoxathiin-1-carboxylic Acid (13). Concentrated HNO_{3} (d 1.42) (143 mL) was added dropwise to a stirred solution of phenoxathiin ($14.3 \mathrm{~g}, 0.07 \mathrm{~mol}$) in $\mathrm{AcOH}(290 \mathrm{~mL})$, and the solution was warmed at $35-40^{\circ} \mathrm{C}$ for 30 min and then poured into brine (1 L). The mixture was extracted with EtOAc and worked up to give phenoxathiin 10 -oxide, which was crystallized from CHCl_{3} /petroleum ether as needles $(8.36 \mathrm{~g}, 54 \%), \mathrm{mp} 157-158^{\circ} \mathrm{C}$ (lit. ${ }^{17} \mathrm{mp} 151-154^{\circ} \mathrm{C}$).

A suspension of phenoxathiin 10 -oxide ($24.6 \mathrm{~g}, 0.114 \mathrm{~mol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{~mL})$ was cooled to $-25^{\circ} \mathrm{C}$ under an atmosphere of dry N_{2} and treated dropwise over 1 h with a solution of n butylithium in hexane (233.4 mL of a 1.51 N solution, 0.352 mol 3.1 equiv). The solution was stirred for a further 6 h at $-25^{\circ} \mathrm{C}$, kept at $-25^{\circ} \mathrm{C}$ overnight, and then poured in a steady stream onto solid CO_{2}. The product was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and water, and the organic layer was washed once with 2 N NaOH . The combined aqueous solutions were washed with $\mathrm{Et}_{2} \mathrm{O}$, acidified with HCl , and extracted with EtOAc to give a mixture of acids as a yellow oil. This was dissolved in dry MeOH (250 mL) with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(5 \mathrm{~mL})$, and the solution was heated under reflux for 5 h and poured into saturated NaHCO_{3} solution. Extraction with EtOAc afforded a mixture of methyl esters (30.1 g), which was chromatographed on SiO_{2}. Elution with petroleum ether gave methyl pentanoate, while petroleum ether/EtOAc (95:5) gave methyl phenoxathiin-1-carboxylate, which was distilled at
(50) Gilman, H.; Stuckwisch, C. G. J. Am. Chem. Soc. 1943, 65 1461
(51) Gilman, H.; Swayampati, D. R. J. Am. Chem. Soc. 1957, 79 208.
(52) Gilman, H.; Shirley, D. A.; Van Ess, P. R. J. Am. Chem. Soc. 1944, 66, 625.
(53) Gilman, H.; Gorsich, R. D. J. Org. Chem. 1957, 22, 687.
(54) Baguley, B. C.; Nash, R. Eur. J. Cancer 1981, 17, 671.
(55) Baguley, B. C.; Kernohan, A. R.; Wilson, W. R. Eur. J. Cancer Clin. Oncol. 1983, 19, 1607.
$90-94^{\circ} \mathrm{C}(0.35 \mathrm{mmHg})$ to give a colorless oil $(9.46 \mathrm{~g}, 32 \%)$.
Hydrolysis of this ester with 5 N aqueous $\mathrm{NaOH}(20 \mathrm{~mL})$ in $\mathrm{MeOH}(100 \mathrm{~mL})$ at reflux for 2 h gave a quantitative yield of phenoxathiin-1-carboxylic acid, which crystallized from EtOAc as a cream-colored powder, mp $220-221^{\circ} \mathrm{C}$ (lit. $.^{18} \mathrm{mp} 221-222^{\circ} \mathrm{C}$).

Preparation of the Carboxamides of Table I. A Typical Example: \boldsymbol{N}-[2-(Dimethylamino)ethyl]phenoxathiin-1carboxamide (6 c). 1, 1^{\prime}-Carbonyldiimidazole ($6.05 \mathrm{~g}, 0.037 \mathrm{~mol}$) was added to a solution of phenoxathiin-1-carboxylic acid (13, $4.56 \mathrm{~g}, 0.019 \mathrm{~mol}$) in dry DMF (30 mL), and the solution was warmed at $40^{\circ} \mathrm{C}$ for 20 min . N, N-Dimethylethylenediamine (3.07 $\mathrm{g}, 0.028 \mathrm{~mol}$) was then added, and after a further 30 min , the solution was concentrated at reduced pressure. The residue was dissolved in EtOAc, washed with water, and extracted with 3 N HCl . This extract was basified with $\mathrm{NH}_{4} \mathrm{OH}$, extracted with EtOAc, and worked up to give an oil, which was chromatographed on a short SiO_{2} column. Elution with $\mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}$ (94:5:1) gave the carboxamide 6 c as an oil ($3.64 \mathrm{~g}, 62 \%$). This was dissolved in MeOH and treated with a solution of dry HCl gas in $\mathrm{Et}_{2} \mathrm{O}$ to give the hydrochloride salt, which was crystallized from $\mathrm{Me}_{2} \mathrm{CO} / \mathrm{Et}_{2} \mathrm{O}$ as white rosettes, mp $127-130^{\circ} \mathrm{C}$. Anal. (Table II).

Acknowledgment. This work was supported by the Auckland Division of the Cancer Society of New Zealand and by the Medical Research Council of New Zealand. We thank Susan O'Rourke, Margaret Smith, and Kym Crowe for animal testing, Claudia Bos for physicochemical measurements, and Margaret Snow for preparing the manuscript.

Registry No. 1, 112022-03-4; 1.2HCl, 112022-18-1; 2a, 89459-43-8; 2b, 89459-25-6; 2c, 89459-33-6; 2d, 112022-04-5; $2 \mathrm{~d} \cdot 2 \mathrm{HCl}, 112022-19-2 ; 3 \mathbf{a} \cdot 2 \mathrm{HCl}, 89458-99-1 ; 3 \mathbf{b}, 103942-97-8 ; \mathbf{3 c}$, 112022-05-6; 3c.HCl, 112022-20-5; 4a, 103554-58-1; 4a.HCl, 112022-21-6; 4b, 112022-06-7; 4b•HCl, 112022-22-7; 4c, 112022-07-8; $4 \mathbf{c} \cdot \mathrm{HCl}, 112041-58-4 ; 4 \mathrm{~d}, 112022-08-9 ; 4 \mathrm{~d} \cdot \mathrm{HCl}, 112022-23-8$; 5, 112022-09-0; 6a, 112022-10-3; $\mathbf{6 a} \cdot \mathrm{HCl}, 112022-24-9 ; 6 \mathbf{b}, 112022-11-4 ;$ $\mathbf{6 b} \cdot \mathrm{HCl}, 112022-25-0 ; 6 \mathbf{c}, 112041-57-3 ; \mathbf{6 c} \cdot \mathrm{HCl}, 112022-26-1$; $\mathbf{6 d}$, 112022-12-5; 6d•HCl, 112022-27-2; 6e, 112022-13-6; $6 \mathbf{e} \cdot \mathrm{HCl}$, 112022-28-3; 7, 112022-14-7; 8, 112022-15-8; 8•HCl, 112022-29-4; 9a, 112022-16-9; 9a•HCl, 112041-59-5; 9b, 112022-17-0; 9b-2HCl, 112022-30-7; 10, 51689-36-2; 9-phenylacridine-4-carboxylic acid, 112022-31-8; 2-aminobenzophenone, 2835-77-0; diphenyl-iodonium-2-carboxylate, 1488-42-2; N-(2-benzoylphenyl)anthranilic acid, 18964-23-3; acridine-1-carboxylic acid, 106626 85-1; N-(3-carboxyphenyl)anthranilic acid, 27693-67-0; oxo-xanthene-4-carboxylic acid, 42073-77-8; 2-methylphenol, 95-48-7; 2 -(2-methylphenoxy)benzoic acid, 6325-68-4; 11-oxo-11H. pyrido[2,1-b] quinazoline-6-carboxylic acid, 4393-98-0; 2-chloronicotinic acid, 2942-59-8; anthranilic acid, 118-92-3; dibenzo[1,4]dioxin, 262-12-4; bis(2-carboxyphenyl) ether, 37424-29-6; dibenzo[1,4]dioxin-1-carboxaldehyde, 51689-41-9; phenoxthiin-1-carboxylic acid, 99420-27-6; phenoxathiin, 262-20-4; phenoxathiin 10-oxide, 948-44-7; methyl phenoxathiin-1-carboxylate, 112022 -32-9; N, N-dimethylenediamine, 108-00-9; trianthrene, 92-85-3; phenothiazine, 92-84-2; dibenzofuran, 132-64-9.

[^0]: (6) Wilson, W. D.; Jones, R. L. In Pharmacology and Chemotherapy; Garattini, S., Ed.; Academic: New York, 1981; p 177. (7) Murata, S. Chem. Lett. 1983, 1819.

[^1]: (11) Graebe, C.; Blumenfeld, S. Ber. Dtsch. Chem. Ges. 1897, 30 , 1115.

[^2]: (12) Colon, J.; Ramirez, J. L.; Castrillon, J. Rev. Latinoam. Quim. 1977, 8, 144; Chem. Abstr. 1978, 88, 50601j.
 (13) Anschutz, R.; Claasen, W. Ber. Dtsch. Chem. Ges. 1922, 55, 680.
 (14) Scherrer, R. A.; Beatty, H. R. J. Org. Chem. 1980, 45, 2127.
 (15) Neth. Patent Application 6414717 ; Chem. Abstr. 1966, 64, $712 h$.
 (16) Gilman, H., Eidt, S. J. Am. Chem. Soc. 1956, 78, 2633.

[^3]: (46) Baguley, B. C.; Denny, W. A.; Atwell, G. J.; Cain, B. F. J. Med. Chem. 1981, 24, 170.

[^4]: (48) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
 (49) Ullmann, F.; Zlokasoff, M. Ber. Dtsch. Chem. Ges. 1905, 38, 2111.

