Tetrahedron Letters 49 (2008) 6569-6572

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A brand-new Pd-mediated generation of benzyne and its [2+2+2] cycloaddition: δ -carbon elimination and concomitant decarboxylation

Hoo Sook Kim, Saravanan Gowrisankar, Eun Sun Kim, Jae Nyoung Kim*

Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Republic of Korea

ARTICLE INFO

Article history: Received 19 August 2008 Revised 3 September 2008 Accepted 5 September 2008 Available online 8 September 2008

Keywords: Arynes Palladium δ-Carbon elimination Decarboxylation Triphenylene

ABSTRACT

We found a brand-new method for the generation of aryne from methyl 2-bromobenzoates via the Pd-mediated concomitant δ -carbon elimination and decarboxylation. The generated arynes underwent Pd-mediated [2+2+2] cycloaddition to give triphenylenes.

© 2008 Elsevier Ltd. All rights reserved.

Recently, we published the synthesis of cyclopropane-fused dihydrobenzofuran derivatives under Pd-mediated Heck type reaction conditions of 2-bromophenol-attached Baylis–Hillman adducts (Scheme 1).¹ In the reaction, Pd-mediated activation of $C(sp^3)$ –H bond occurred, and the resulting cyclopropane-fused compound **2** was produced in moderate yield.¹ 3-Benzylidene-2,3-dihydrobenzofuran (**3**) was also isolated together in the reaction, albeit in low yield.¹ The mechanism for the formation of compound **3** could be thought as δ -carbon elimination and concomitant elimination of CO₂ as in Scheme 1. Palladium-mediated transformations involving β -carbon elimination accom-

panying simultaneous decarboxylation has not been reported, to the best of our knowledge.

Recently, Pd-catalyzed [2+2+2] cycloadditions of arynes for the preparation of polycyclic aromatic hydrocarbons (PAHs) have been developed and studied extensively.^{3,4} The corresponding *o*-trimethylsilylaryl triflates were used as adequate aryne precursors,^{3–5} which generate arynes by the action of CsF (Kobayashi method).⁵ Cyclotrimerization reactions of arynes were carried out directly from the *o*-trimethylsilylaryl triflates, the precursor of arynes, in the presence of CsF/Pd(0) at rt.^{3–5}

During the course of our studies,¹ we imagined the possibility of generation of benzyne from methyl 2-bromobenzoate (**4a**) via

Scheme 1.

^{*} Corresponding author. Tel.: +82 62 530 3381; fax: +82 62 530 3389. *E-mail address*: kimjn@chonnam.ac.kr (J. N. Kim).

^{0040-4039/\$ -} see front matter @ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.09.017

Scheme 2. Postulated reaction mechanism.

Table 1

Optimization of conditions for the conversion of 4a-5a

Entry	Conditions ^a	Time (min)	Yield(%)
1	Pd(OAc) ₂ (10 mol%), K ₂ CO ₃ (2.0 equiv), TBAB (1.0 equiv), DMF, 110°C	90	52
2	Pd(OAc) ₂ (5 moI%), PPh ₃ (0.1 equiv),K ₂ CO ₃ (2.0 equiv), TBAB (1.0 equiv), DMF, 110°C	60	45
3	Pd(OAc) ₂ (5 mol%), PPh ₃ (0.1 equiv),K ₂ CO ₃ (2.0 equiv), D MF, 110 °C	240	23
4	Pd(OAc) ₂ (5 mol%), PPh ₃ (0.1 equiv),K ₂ CO ₃ (2.0 equiv),TBAB (1.0 equiv),KI (2.0 equiv),DMF,110°C	210	19
5	Pd(OAc)₂ (5 moI%), PPh₃ (0.1 equiv),K₂ CO₃ (2.0 equiv),TPAI (1.0 equiv),DMF,110 °C	180	18
6	Pd(OAc) $_2$ (5 moI%), PPh $_3$ (0.1 equiv) ,K $_2$ CO $_3$ (2.0 equiv) ,T BAC (1.0 equiv), DMF, 110 $^{\circ}$ C ⁶	0	57 ^b
7	$Pd(OAc)_2 \; (10 \text{mol}\%) \;, \; PPh_3 \; (0.1 \; equiv), K_2 \; CO_3 \; (2.0 \; equiv), KF(1.0 \; equiv), DMF, 110^\circ C$	180	9

^a Dimerized compound **6a** was isolated in 8%. Compound **6a** was also observed in other entries in variable amounts. ^b TBAB is tetrabutylammonium bromide; TPAI is tetrapropylammonium iodide; TBAC is tetrabutylammonium chloride.

Table 2

Relative reactivity of various 2-halobenzoic acid derivatives

Entry	Substrate	Time(min)	4 (%)	5a (%)	6 (%)
1 ^a	COOMe Br 4a	60	nd	57	6a (8)
2	COOH Br 4b	30	nd	27	nd
3ª	COOMe I 4c	50	nd	44	6a (20)
4	COOMe CI 4d	120	15	nd	nd
5 ^a	COOEt Br 4e	120	nd	21	6b (30)
6	COOallyl Br 4f	30	nd	25	nd

^a Variable amounts of reduction product, methyl benzoate or ethyl benzoate, were observed.

δ-carbon elimination² and concomitant elimination of CO₂. The in situ generated benzyne intermediate must be converted into triphenylene **5a** via the well-known Pd-mediated [2+2+2] cycloaddition mechanism.³ Our strategy and the proposed mechanism are shown in Scheme 2, with **4a** as an example: (i) oxidative addition of aryl bromide **4a** to Pd(0) generates the intermediate (**I**), (ii) simultaneous δ-carbon elimination and decarboxylation to produce benzyne (**II**), and the final (iii) Pd-mediated [2+2+2] cycloaddition of benzyne to give triphenylene (**5a**).

Initially, we examined the reaction of methyl 2-bromobenzoate (**4a**) in the presence of $Pd(OAc)_2/K_2CO_3/TBAB$ in DMF at 110 °C,¹ and obtained triphenylene (**5a**) in 52% isolated yield to our delight.^{3a,6} Trials for the optimization of reaction conditions are summarized in Table 1. The use of TBAB (entries 1 and 2) or TBAC (entry 6) showed better yields of **5a** than the cases involving the use of TBAB/KI (entry 4), TPAI (entry 5), or KF (entry 7). Among the examined conditions, the combination of $Pd(OAc)_2/PPh_3/K_2CO_3/TBAC$ was found to be the best (entry 6). Under this optimized conditions, compound **5a** was obtained in 57% isolated yield together with aryl–aryl coupling product **6a** (8%, Table 2).⁷

As a next examination, we studied the relative reactivity of various 2-halobenzoic acid derivatives 4b-f, and the results are summarized in Table 2. The reaction of 2-bromobenzoic acid (4b) produced 5a in low yield (27%). In this case, oxapalladacycle intermediate $(IV)^8$ could be the plausible intermediate (vide supra, Scheme 2).⁹ As expected, methyl 2-iodobenzoate (4c) afforded moderate yield of 5a (44%), however, the yield of 6a was increased to 20%. Chloro derivative 4d was almost un-reactive and severe decomposition was observed. Ethyl ester 4e and allvl ester 4f showed lower yields than the corresponding methyl ester **4a**. The smallest methyl group might be eliminated more readily during the δ -carbon elimination stage than the bigger ethyl group (entry 1 vs entry 5). For the allyl ester 4f, the mechanism might be different from the proposed one: formation of π -allyl palladium intermediate and conversion into the palladacyclic intermediate (IV) in Scheme 2 and the generation of CO_2 and benzyne could be regarded as the more plausible mechanism.

The generation of aryne and the following [2+2+2] cycloaddition reaction were examined with related substrates 4g-i as shown in Scheme 3. From the reaction of 4g, triphenylene derivative 5g was obtained in 42% yield together with dimeric compound 6c (18%) and reduction compound 7g (5%). Trace amount of regioisomeric 5g' (<5%) was observed in the ¹H NMR spectrum of 5g as in the previous reports of similar compounds.^{3a,c,10} Naphthalene derivative **4h** produced **5h** in moderate vield (41%) also. Regioisomeric triphenvlene **5h**' was also found (<5%) in the ¹H NMR spectrum of **5h**.^{3c} In the reaction, we could not isolate **6d** in appreciable amount instead reduction compound 7h was isolated in 31% yield. The reaction of dimethyl 2-bromoterephthalate (4i) did not produce triphenylene 5i in appreciable amount, instead we isolated dimer 6e (24%) and reduction compound 7i (30%), unfortunately. From the results, the generation of arynes from 2-halobenzoates seemed general in part, but sometimes substrate-dependent and needed to be studied more.

In summary, we found a brand-new method for the generation of aryne from methyl 2-bromobenzoates via the Pd-mediated concomitant δ -carbon elimination and decarboxylation. Further studies on the reaction mechanism and the synthetic applicability are actively underway.

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, KRF-2007-313-C00417). Spectroscopic data were obtained from the Korea Basic Science Institute, Gwangju branch.

References and notes

- Kim, H. S.; Gowrisankar, S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2008, 49, 3858–3861.
- For the reactions involving β-carbon elimination, see: (a) Nishimura, T.; Nishiguchi, Y.; Maeda, Y.; Uemura, S. J. Org. Chem. 2004, 69, 5342–5347; (b) Matsumura, S.; Maeda, Y.; Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 2003, 125, 8862–8869; (c) Nishimura, T.; Araki, H.; Maeda, Y.; Uemura, S. Org. Lett. 2003,

5, 2997–2999; (d) Nishimura, T.; Matsumura, S.; Maeda, Y.; Uemura, S. *Tetrahedron Lett.* **2002**, *43*, 3037–3039; (e) Nishimura, T.; Ohe, K.; Uemura, S. J. *Am. Chem. Soc.* **1999**, *121*, 2645–2646; (f) Nishimura, T.; Uemura, S. J. *Am. Chem. Soc.* **1999**, *121*, 11010–11011; (g) Terao, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. J. *Am. Chem. Soc.* **2001**, *123*, 10407–10408; (h) Terao, Y.; Wakui, H.; Nomoto, M.; Satoh, T.; Miura, M.; Nomura, M. J. Org. *Chem.* **2003**, *68*, 5236–5243; (i) Wakui, H.; Kawasaki, S.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. **2004**, *126*, 8658–8659; (j) Zhang, Y.; Feng, J.; Li, C.-J. J. Am. Chem. Soc. **2008**, *130*, 2900–2901; (k) Nishimura, T.; Uemura, S. Synlett **2004**, 201–216.

- For the Pd-mediated cyclotrimerization reactions of arynes, see: (a) Pena, D.; Escudero, S.; Perez, D.; Guitian, E.; Castedo, L. Angew. Chem., Int. Ed. **1998**, *37*, 2659–2661; (b) Iglesias, B.; Cobas, A.; Perez, D.; Guitian, E.; Vollhardt, K. P. C. Org. Lett. **2004**, 6, 3557–3560; (c) Pena, D.; Perez, D.; Guitian, E.; Castedo, L. Org. Lett. **1999**, *1*, 1555–1557; (d) Pena, D.; Cobas, A.; Perez, D.; Guitian, E.; Castedo, L. Org. Lett. **2000**, *2*, 1629–1632; (e) Pena, D.; Perez, D.; Guitian, E. Chem. Rec. **2007**, *7*, 326–333; (f) Romero, C.; Pena, D.; Perez, D.; Guitian, E. Chem. Eur. J. **2006**, *12*, 5677–5684.
- For the other Pd-catalyzed reactions of arynes, see: (a) Zhang, X.; Larock, R. C. Org. Lett. 2005, 7, 3973–3976; (b) Liu, Z.; Larock, R. C. J. Org. Chem. 2007, 72, 223–232; (c) Radhakrishnan, K. V.; Yoshikawa, E.; Yamamoto, Y. Tetrahedron Lett. 1999, 40, 7533–7535; (d) Yoshikawa, E.; Yamamoto, Y. Angew. Chem., Int. Ed 2000, 39, 173–175; (e) Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 7280–7286.
- 5. Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 1211-1214.
- Typical procedure for the synthesis of compound 5a: A stirred mixture of 4a (108 mg, 0.5 mmol), Pd(OAc)₂ (6 mg, 5 mol %), PPh₃ (13 mg, 10 mol %), K₂CO₃

(138 mg, 1.0 mmol), and TBAC (139 mg, 0.5 mmol) in DMF (2.0 mL) was heated to 110 °C for 60 min. After the usual aqueous workup and column chromatographic purification process (hexanes/ether, 10:1), triphenylene **5a** (22 mg, 57%) and dimer **6a** (5 mg, 8%) were isolated. All the spectroscopic data of **5a** and **6a** were identical with that reported.^{3a,C7}

- 7. Wang, L.; Zhang, Y.; Liu, L.; Wang, Y. J. Org. Chem. 2006, 71, 1284–1287 and further references cited therein.
- For the synthesis of oxapalladacycles and their structures, see: (a) Fernandez-Rivas, C.; Cardenas, D. J.; Martin-Matute, B.; Monge, A.; Gutierrez-Puebla, E.; Echavarren, A. M. Organometallics 2001, 20, 2998–3006; (b) Lee, S. H.; Lee, K. H.; Lee, J. S.; Jung, J. D.; Shim, J. S. J. Mol. Catal. A 1997, 115, 241–246; (c) Maehara, A.; Tsurugi, H.; Satoh, T.; Miura, M. Org. Lett. 2008, 10, 1159–1162; (d) Mei, T.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 5215– 5219.
- The formation of (IV) from (I) by direct elimination of CH₃Br (Scheme 2) would also be possible. For this type of reductive cleavage process involving decarboxylation, see: Harayama, H.; Kuroki, T.; Kimura, M.; Tanaka, S.; Tamaru, Y. Angew. Chem., Int. Ed. 1997, 36, 2352–2354.
- 10. Compound **5g**: Yellow solid, mp 126–128 °C; IR (film) 1614, 1495, 1217 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 3.988 (s, 3H), 3.990 (s, 3H), 4.00 (s, 3H), 7.17 (dd, *J* = 8.5 Hz and 2.5 Hz, 1H), 7.22–7.25 (m, 2H), 7.89–7.92 (m, 3H), 8.38–8.45 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 55.41, 55.45, 55.47, 105.28, 106.11, 106.12, 114.85, 115.41, 115.61, 122.92, 123.89, 124.28, 124.35, 124.39, 125.00, 129.74, 130.22, 131.32, 158.01, 158.23, 158.78; ESIMS *m*/*z* 319 (M⁺+1). Anal. Calcd for C₂₁H₁₈O₃: C, 79.22; H, 5.70. Found: C, 79.03; H, 5.87.