Concise Enantioselective Total Syntheses of (+)-Homochelidonine, (+)Chelamidine, (+)-Chelidonine, (+)-Chelamine and (+)-Norchelidonine by a Pd ${ }^{\text {II-Catalyzed Ring-Opening Strategy }}$

Matthew J. Fleming, Helen A. McManus, Alena Rudolph, Walter H. Chan, Jérémy Ruiz, Chris Dockendorff, and Mark Lautens**a]

Abstract

New enantioselective syntheses of the B / C hexahydrobenzo[c]phenanthridine alkaloids (+)-homochelidonine, $(+)$-chelamidine, $(+)$-chelidonine, $(+)$-chelamine, and (+)-norchelidonine are described. Our rapid and convergent route to this class of natural products involved the development and application of a $\mathrm{Pd}^{\mathrm{II}}$-catalyzed asymmetric ring-opening reaction of a mesoazabicyclic alkene with an aryl boronic acid as the key step. By screening a variety of functionalized ortho-substituted aryl boronic acids, chiral ligands and

reaction conditions we were able to prepare the requisite cis-1-amino-2-aryldihydronaphthalenes in high yield and in up to $90 \% e e$. Early attempts to complete the synthesis of $(+)$-homochelidonine using an N-Boc azabicyclic alkene are described in full. The successful route required a protecting group alteration followed by B ring for-

Keywords: alkaloids

asymmetric catalysis • polycycles • ring-opening • total synthesis

Abstract

mation and then stereoselective installation of the C-11 syn-hydroxy group by regioselective epoxide ring-opening using a hydride source. Ring-opening of the same epoxide intermediate with water ultimately led to the synthesis of $(+)$-chelamidine. The same strategy was then used to synthesize the other structurally similar B / C hexahydrobenzo[$c]$ phenanthridine alkaloids, $(+)$-chelidonine, $(+)$-chelamidine, and (+)norchelidonine.

Introduction

The B/C hexahydrobenzo[c]phenanthridine alkaloids ${ }^{[1]}$ are a group of isoquinoline alkaloids that occur naturally in papaveraceous plants. They are characterized by the same basic skeleton 1, which contains partially hydrogenated cis-fused B and C rings, fully aromatic A and D rings, a hydroxy group at C-11, and three contiguous syn stereogenic centers (Figure 1). Out of this family of alkaloids, chelidonine ${ }^{[2]}$ (4) has received the most attention. Isolated from Chelidonium majus L. as early as $1839,{ }^{[3]}$ chelidonine has a range of proposed pharmacological activities including tubulin interac-

[^0]tion within target cells causing mitotic arrest. ${ }^{[4]}$ Chelidonine is also a major component of the drug Ukrain, a semisynthetic antitumor preparation derived from C. majus alkaloids. ${ }^{[5]} \mathrm{O}$-Acyl and O -alkyl derivatives of chelidonine have also shown antinociceptive and antiserotoninergic effects, not reported for the parent alkaloid. ${ }^{[6]}$ It has been isolated from different plant sources in both enantiomeric forms ${ }^{[7]}$ and also as a racemic mixture ${ }^{[8]}$ (for which a separate name"Diphylline" was coined). The absolute stereochemistry has been unequivocally assigned by X-ray diffraction techniques. ${ }^{[9]}$ Other structurally similar, naturally occurring B/C hexahydrobenzo $[c]$ phenanthridine alkaloids include homochelidonine $^{[8 \mathrm{a}, 10]} \quad$ (2), chelamidine ${ }^{[8 \mathrm{aa}, 10 \mathrm{c}]} \quad$ (3), chelami$n e^{[8 a, 10 c, d, 11]}(5)$ and norchelidonine ${ }^{[10 \mathrm{~d}, 12]}$ (6) (Figure 1). These compounds contain the same basic skeleton 1 but differ in either the oxidation state at $\mathrm{C}-12$, the functionality on the aromatic A ring and/or the degree of substitution on the nitrogen atom.

Limited efforts towards the syntheses of B / C hexahydrobenzo[c]phenanthridine alkaloids have been reported. These include racemic syntheses of homochelidonine, ${ }^{[13]}$ chelamidine, ${ }^{[13 \mathrm{c}]}$ chelidonine, ${ }^{[14]}$ chelamine ${ }^{[14 \mathrm{e}]}$ and norchelidonine. ${ }^{[14 \mathrm{a}, \mathrm{d}]}$

Figure 1. Structures of some B/C hexahydrobenzo $[c]$ phenanthridine alkaloids.

An asymmetric synthesis of the B / C hexahydrobenzo $[c]$ phenanthridine basic skeleton has also been described. ${ }^{[15]}$
We were attracted to this class of natural products since it appeared the core structure could be prepared using our recently developed $\mathrm{Pd}^{\mathrm{II}}$-catalyzed ring-opening reaction of meso-azabicyclic-alkenes with aryl boronic acids. ${ }^{[16]}$ In this paper, we report the evolution of the asymmetric version of this reaction into a strategy for the total synthesis of $(+)$-homochelidonine ${ }^{[17]}$ and subsequently the 4 other hexahydrobenzo $[c]$ phenanthridine alkaloids, $(+)$-chelamidine, $(+)$-chelidonine, (+)-chelamine, and (+)-norchelidonine.

Racemic synthesis of cis-1-amino-2-aryldihydronaphthalenes: We have previously reported the transition metal-catalyzed ring-opening of strained N-Boc azabicyclic alkenes 7 by the addition of aryl boronic acids. ${ }^{[16 a]}$ Using the optimized reaction conditions $\left[\left[\mathrm{Pd}(\mathrm{dppp}) \mathrm{Cl}_{2}\right](1 \mathrm{~mol} \%)\right.$, aq. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1 equiv) in MeOH at $60^{\circ} \mathrm{C}$], various azabicyclic alkenes, including both electron rich and electron deficient, were opened with a range of monosubstituted aryl and heteroaryl boronic acids giving cis-1-amino-2-aryldihydronaphthalenes 8 in good to excellent yields ($71-99 \%$, Scheme 1). The reac-

Scheme 1. $\mathrm{Pd}^{\mathrm{II}}$-catalyzed ring-opening of azabicyclic alkenes with boronic acids. \quad Boc $=$ tert-butyl carbamate. \quad dppp $=$ propane-1,3-diylbis(diphenylphosphane).
tion was highly stereoselective with only the cis-isomer being observed. Catalyst loadings as low as $0.1 \mathrm{~mol} \%$ were possible, giving complete conversion for the reaction of N -Boc-azabenzonorbornadiene with $\mathrm{PhB}(\mathrm{OH})_{2}$ within 24 h . These reactions also proceeded in the absence of base but reaction times were longer.
The proposed catalytic cycle begins with the transmetallation of the aryl group from the boronic acid to give aryl $\mathrm{Pd}^{\mathrm{II}}$ species \mathbf{A} (Scheme 2). Association of \mathbf{A} to the least hindered exo-face of the azabicyclic alkene gives cationic com-

Scheme 2. Proposed catalytic cycle for $\mathrm{Pd}^{\mathrm{II}}$-catalyzed ring-opening of azabicyclic alkenes with aryl boronic acids.
plex \mathbf{B}, which undergoes syn-carbopalladation to give \mathbf{C} followed by β-heteroatom elimination and dissociation to furnish the ring-opened product and regenerate the active $\mathrm{Pd}^{\mathrm{II}}$ catalyst. It is important to note that in this proposed catalytic cycle Pd remains in the +2 oxidation state throughout.

Retrosynthetic analysis: Comparison between the basic B/C hexahydrobenzo $[c]$ phenanthridine alkaloid skeleton 1 and generic compound $\mathbf{8}$ reveals that $\mathbf{8}$ contains the requisite tetralin core with syn-stereochemistry of the aryl and amino substituents at $\mathrm{C}-13$ and $\mathrm{C}-14$.

We envisaged that the key step in our retrosynthetic plan would be the enantioselective metal-catalyzed addition of a trisubstituted aryl boronic acid $\mathbf{1 2}$ to azabicyclic alkene $\mathbf{1 3}$ with concomitant ring opening to yield cis-1-amino-2-aryl dihydronaphthalene intermediate $\mathbf{1 1}$ (Scheme 3). A suitably functionalized ortho-substituent (R^{4}) on the boronic acid would allow for cyclization to the B ring to give 10. Stereoselective epoxidization of the double bond in $\mathbf{1 0}$, followed by regioselective ring-opening of the corresponding epoxide

Scheme 3. Retrosynthetic analysis for B/C hexahydrobenzo $[c]$ phenanthridine alkaloids.

9 with a suitable nucleophile would add the desired functionality on the C ring with the correct orientation to ultimately lead to any of the B / C hexahydrobenzo $[c]$ phenanthridine alkaloids 2-6.

Results and Discussion

Assessing the feasibility of an enantioselective ring-opening reaction: At the outset of this project, the main challenge was to develop a highly enantioselective Pd^{H}-catalyzed ringopening of the meso-azabicyclic alkene $\mathbf{1 3}$ with aryl boronic acid 12. The related oxabicyclic alkene substrate reacted in high yield and $e e^{[16 a]}$ but the aza analogue proved to be a more challenging substrate perhaps due to the orientation of the Boc group or reduced activity in the ring-opening. Initial model-study reactions were carried out using readily available azabicyclic alkene ${ }^{[16 e]} \mathbf{1 4}$ and $\mathrm{PhB}(\mathrm{OH})_{2}$. Screening a variety of ligands and reaction conditions (solvent, temperature, base, boron source, $\mathrm{Pd}^{\mathrm{II}}$ precursor and additives) revealed that $\mathbf{1 5}$ could be obtained in quantitative yield and up to $60 \% e e$ when employing (S)-tol-binap as the chiral ligand (Scheme 4). ${ }^{[18]}$ Maximum enantiodiscrimination was

Scheme 4. Asymmetric ring-opening of azabicyclic alkene $\mathbf{1 4}$ with $\mathrm{PhB}(\mathrm{OH})_{2}$. binap $=2,2^{\prime}$ bis(diphenylphosphanyl)-1, 1^{\prime}-binaphthyl.
achieved by lowering the temperature to RT, while increasing the catalyst loading to $5 \mathrm{~mol} \%$ to improve the rate of the reaction at this temperature.

Finding a suitable boronic acid: Though we observed moderate stereoinduction using the unsubstituted azabicycle $\mathbf{1 4}$ and $\mathrm{PhB}(\mathrm{OH})_{2}$, we decided to test the real system with a nucleophile bearing an ortho group, since subtle steric and electronic effects often influence ee. Our attention turned towards azabicycle 13, which could be used to prepare the five B / C hexahydrobenzo $[c]$ phenanthridine alkaloids 2-6. Azabicycle $\mathbf{1 3}$ was readily prepared in three steps from catechol $\mathbf{1 6}$ (Scheme 5). Treatment of $\mathbf{1 6}$ with Br_{2} gave dibromide $\mathbf{1 7}$ in 85% yield, ${ }^{[19]}$ which was subsequently dialkylated with $\mathrm{ClCH}_{2} \mathrm{Br}$ to give $\mathbf{1 8}$ in 75% yield. Slow addition of $n \mathrm{BuLi}$ to dibromide $\mathbf{1 8}$ generated an aryne intermediate, which underwent an in situ Diels-Alder reaction with N Boc pyrrole to furnish N-Boc azabicycle $\mathbf{1 3}$ in 71% yield.
We initially focused on the total synthesis of $(+)$-homochelidonine (2) and (+)-chelamidine ($\mathbf{3}$), which would require the aryl boronic acid $\mathbf{1 2}$ to contain meta and paraOMe substituents and a viable ortho-substituent that could

Scheme 5. Synthesis of N-Boc azabicycle $\mathbf{1 3}$ a) $\mathrm{Br}_{2}, \mathrm{CHCl}_{3}, \mathrm{RT}, 20 \mathrm{~h}$; b) $\mathrm{ClCH}_{2} \mathrm{Br}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 110^{\circ} \mathrm{C}, 3 \mathrm{~h}$; c) N-Boc pyrrole, $n \mathrm{BuLi}, \mathrm{PhMe}$, $-78^{\circ} \mathrm{C}$ to RT, $20 \mathrm{~h} . \mathrm{DMF}=N, N$-dimethylformamide, $\mathrm{RT}=$ room temperature.
be manipulated into the B ring. A variety of boronic acids that fulfilled these criteria were synthesized (Scheme 6). Boronic acid $\mathbf{2 1}$ was prepared in three steps from 2,3-dime-

Scheme 6. Synthesis of boronic acids 21, 25 and 27: a) $\left(\mathrm{COCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cat. DMF, RT, 2 h , then $i \mathrm{Pr}_{2} \mathrm{NH}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}, 17 \mathrm{~h}$; b) $s \mathrm{BuLi}$, TMEDA, THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then $\mathrm{B}(\mathrm{OMe})_{3},-78^{\circ} \mathrm{C}$ to RT, 18 h then $\left.\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) ; \mathrm{c}\right)$ NBS, THF, RT, 30 min ; d) TIPSCl, imidazole, DMF, RT, 17 h ; e) $n \mathrm{BuLi}$, THF, $-78^{\circ} \mathrm{C}, 35 \mathrm{~min}$, then $\mathrm{B}(\mathrm{OiPr})_{3},-78^{\circ} \mathrm{C}$ to $\mathrm{RT}, 18 \mathrm{~h}$, then $\mathrm{NH}_{4} \mathrm{Cl}$ (aq); f) $\mathrm{CH}_{2}(\mathrm{OMe})_{2}, \mathrm{LiBr}, p-\mathrm{TsOH}, \mathrm{RT}, 24 \mathrm{~h} . \mathrm{THF}=$ tetrahydrofuran, TMEDA $=$ tetramethylethylenediamine, \quad NBS $=N$-bromosuccinimide, TIPS $=$ triisopropylsilyl, Ts = toluenesulfonyl, MOM $=$ methoxymethyl.
thoxybenzoic acid 19 by conversion to the corresponding acid chloride with oxalyl chloride. Directly treating the crude product with $i \operatorname{Pr}_{2} \mathrm{NH}$ gave benzamide 20 in 93% yield over two steps. Subsequent directed ortho-metallation of $\mathbf{2 0}$ with $s \mathrm{BuLi}$ and TMEDA, trapping the resulting aryl lithium with $\mathrm{B}(\mathrm{OMe})_{3}$ and acidic hydrolysis provided the diisopro-pylamide-substituted boronic acid $\mathbf{2 1}$ in 99% yield. ${ }^{[20]}$ Boronic acid $\mathbf{2 5}$ was prepared by regioselectively brominating commercially available 2,3-dimethoxybenzyl alcohol 22 with NBS to give aryl bromide $\mathbf{2 3}$ in 83% yield. The benzyl alcohol was then protected with a TIPS group in 94% yield to give 24, which was then converted to the corresponding boronic acid 25 in 40% yield by halogen-lithium exchange using $n \mathrm{BuLi}$ and subsequent quenching with $\mathrm{B}(\mathrm{OiPr})_{3}$ followed by acidic hydrolysis. Boronic acid 27 was prepared by MOM-protection of the benzyl alcohol of aryl bromide 23 in 72% yield by stirring $\mathbf{2 3}$ in dimethoxymethane in the
presence of a catalytic amount of LiBr and $p-\mathrm{TsOH} .{ }^{[21]}$ Aryl bromide 26 was converted to the corresponding boronic acid 27 by halogen-lithium exchange, followed by quenching with $\mathrm{B}(\mathrm{Oi} \mathrm{Pr})_{3}$ and acidic hydrolysis in 63% yield. ${ }^{[22]}$

With the required azabicycle $\mathbf{1 3}$ and a variety of orthosubstituted boronic acids in hand, we set about further evaluating the enantioselective ring-opening reaction. Each boronic acid was reacted with azabicycle $\mathbf{1 3}$ using the racemic conditions and then the previously optimized enantioselective conditions (Table 1). In each case an excess (1.5 equiv)

Table 1. Evaluating boronic acids in the enantioselective ring-opening reaction.
(1.5 equiv)
[a] $1 \mathrm{~mol} \%\left[\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}\right], 1 \mathrm{~mol} \%$ ligand, reaction carried out at $60^{\circ} \mathrm{C}$. [b] $5 \mathrm{~mol} \%\left[\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}\right], 5.5 \mathrm{~mol} \%$ ligand, reaction carried out at RT. [c] Isolated yield unless otherwise stated. [d] Determined by chiral HPLC. [e] ${ }^{1} \mathrm{H}$ NMR yield using mesitylene as internal standard.
of boronic acid was used as a significant amount of deboronated product was typically observed. Employing diisopro-pylamide-substituted boronic acid 21 and achiral ligand dppp gave the desired 1,2-dihydronaphthalene 28 in 81% yield (entry 1). This compound co-eluted with the deboronated product (20) thus NMR yields were reported. Using (S)-tol-binap as ligand gave 28 in 43% yield and 88% ee (entry 2). Boronic acid 25 and achiral ligand dppp gave dihydronaphthalene 29 in 55% yield (entry 3) while (S)-tolbinap gave 29 in only 29 \% yield and 42 \% ee (entry 4). Employing boronic acid 27 and dppp as ligand gave $\mathbf{3 0}$ in 82% yield (entry 5), while (S)-tol-binap gave 30 in 90% yield and 91% ee (entry 6). As boronic acid 27 provided the best reaction efficiency and enantioselectivities, it was used for the synthesis of (+)-homochelidonine (2) and (+)-chelamidine (3). Further screening of ligands and reaction conditions using boronic acid 27 were performed, however no improvement in ee was observed. ${ }^{[23]}$ Additional studies were also performed on 1,2-dihydronaphthalene $\mathbf{2 8}$ but difficulties
were noted with manipulating the diisopropyl amide unit so this route was abandoned.

Attempted selective deprotection of the MOM group: With high enantioselectivity and reactivity for the $\mathrm{Pd}^{\mathrm{II}}$-catalyzed ring-opening reaction between azabicycle $\mathbf{1 3}$ and boronic acid 27, our attention turned to cyclization of the dihydronaphthalene product $\mathbf{3 0}$ and the formation of the B ring of $(+)$-homochelidonine (2) and (+)-chelamidine (3).
Following literature precedent for selective MOM deprotection in the presence of an N-Boc group, dihydronaphthalene $\mathbf{3 0}$ was reacted with TMSCl and $\mathrm{Bu}_{4} \mathrm{NBr}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{[24]}$ and HCl in $i \mathrm{PrOH} / \mathrm{THF} .{ }^{[25]}$ However, in both instances the expected product was observed in low yield in addition to a mixture of products, including aromatic compounds 32 and 33 formed via concomitant Boc removal and elimination of ammonia (Scheme 7). Other methods commonly used for MOM deprotection were also unsuccessful $\left(\mathrm{LiBF}_{4}{ }^{[26]} B\right.$-bromocatecholborane, ${ }^{[27]} \mathrm{CBr}_{4} / \mathrm{PrOH},{ }^{[28]}$ PPTS $/ \mathrm{tBuOH},{ }^{[29]} 20 \%$ aq. $\mathrm{AcOH}^{[30]}$ and $\left.p-\mathrm{TsOH} / \mathrm{MeOH}^{[31]}\right)$.

Scheme 7. Attempted selective removal of the MOM group.

Elaboration of the alkene: To overcome the problems encountered in the attempted selective MOM deprotection of dihydronaphthalene 30, we proposed to first elaborate the alkene and introduce the required hydroxy group at the C 11 position. The resulting product alcohol 37 would not be as susceptible to aromatization.

We reasoned that the syn-hydroxy group could be introduced by means of a three-step synthetic route involving regio- and stereoselective bromohydrin formation, cyclization to the syn-epoxide $\mathbf{3 6}$ followed by regioselective ringopening using a hydride nucleophile for (+)-homochelidonine and a water nucleophile for $(+)$-chelamidine.

Dihydronaphthalene 30 was therefore reacted with NBS in THF/ $\mathrm{H}_{2} \mathrm{O}$ to give a mixture of bromohydrin regioisomers 34 and 35 (ratio 34/35 77:23) in 77% yield (Scheme 8). Reaction of the mixture of regioisomers 34 and 35 with a hindered base yielded syn-epoxide $\mathbf{3 6}$ in 75% yield. Reacting epoxide $\mathbf{3 6}$ with LiAlH_{4} in $\mathrm{Et}_{2} \mathrm{O}$ resulted in selective hydride attack at the benzylic position providing alcohol 37 in 44% yield. The syn-relationship between the three contiguous

Scheme 8. Installation of the syn-hydroxy group: a) NBS, $\mathrm{H}_{2} \mathrm{O}$, THF, RT, 90 min ; b) $\mathrm{KO} t \mathrm{Bu}, \mathrm{THF},-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$; c) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{RT}, 6 \mathrm{~h}$.
stereogenic centers was confirmed by a $2 \mathrm{D}{ }^{1} \mathrm{H}$ NMRROESY experiment.

Experiments were carried out in an effort to form the B ring of 37. Unfortunately, attempts to selectively deprotect the MOM group of alcohol $\mathbf{3 7}$ using a variety of methods resulted in significant deprotection of the Boc group as well. As the resulting amino alcohol proved difficult to cyclize we subsequently abandoned this route.

Completion of the synthesis of $(+)$-homochelidonine and $(+)$-chelamidine: Boronic acid 27 was found to be necessary for high enantioselectivities and reaction efficiency for the ring-opening of $\mathbf{1 3}$. However, selective removal of the MOM group in the presence of the Boc group proved to be problematic so it was decided to switch activating groups on the azabicyclic alkene and to attempt the asymmetric ringopening reaction on N - Cbz azabicyclic alkene 38. The resulting product, dihydronaphthalene $\mathbf{3 9}$, should be less susceptible to carbamate deprotection under the acidic conditions required to remove the MOM group. An additional advantage of the Cbz group is that we envisaged it as a direct precursor to the N-Me targets as well as norchelidonine (6).
N-Boc azabicycle $\mathbf{1 3}$ was converted to N-Cbz azabicyclic alkene $\mathbf{3 8}$ in 80% yield, in a one pot reaction, using first TMSI for Boc removal ${ }^{[32]}$ then carbamate protection of the resulting secondary amine by addition of CbzCl (Scheme 9). It was necessary to interconvert protecting groups as the aryne Diels-Alder reaction between N -Cbz pyrrole and dibromide $\mathbf{1 8}$ gave a poor yield of azabicyclic alkene $\mathbf{3 8}$

Scheme 9. Synthesis of dihydronaphthalene 39: a) TMSI, $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 15 min , then $\mathrm{CbzCl}, \mathrm{RT}, 3 \mathrm{~h}$; b) $\left[\mathrm{Pd}\left(\mathrm{MeCN}_{2}\right) \mathrm{Cl}_{2}\right](5 \mathrm{~mol} \%)$, (S) -tol-binap ($5.5 \mathrm{~mol} \%$), 27, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{RT}, 6 \mathrm{~h} . \mathrm{TMS}=$ trimethylsilyl, $\mathrm{Cbz}=$ benzyloxycarbonyl.
($<25 \%$). Pleasingly, the previously developed asymmetric ring-opening reaction conditions with boronic acid 27 gave dihydronaphthalene $\mathbf{3 9}$ in 89% yield and $90 \% e e$. One recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ gave dihydronaphthalene 39 in 80% yield with $99 \% e e$. This reaction has been carried out on a multigram scale without any loss of enantiodiscrimination.

It was now possible to selectively remove the MOM group by stirring dihydronaphthalene 39 in conc. HCl and $\mathrm{THF} / \mathrm{iPrOH}$ to give benzyl alcohol 40 in 75% yield (Scheme 10). We were unable to cyclize the B ring using

Scheme 10. Completion of the synthesis of (+)-homochelidonine (2) and (+)-chelamidine (3): a) $\mathrm{HCl}, i \mathrm{PrOH} / \mathrm{THF}, \mathrm{RT}, 8 \mathrm{~h}$; b) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then NaH , DMF, $0^{\circ} \mathrm{C}, 3 \mathrm{~h}$; c) NBS, $\mathrm{H}_{2} \mathrm{O}$, THF, RT, 90 min ; d) $\mathrm{KO} t \mathrm{Bu}, \mathrm{THF},-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$; e) $\mathrm{LiAlH}_{4}, 1,4$-dioxane, reflux, 18 h ; f) $\mathrm{H}_{2} \mathrm{O}$, cat. $\mathrm{BiCl}_{3}, \mathrm{MeCN}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$.

Mitsunobu conditions ${ }^{[33]}$ but it was possible to convert the benzyl alcohol group to a benzyl bromide with CBr_{4} and PPh_{3} and carry out a 6-exo-tet cyclization by addition of NaH to the crude reaction mixture. Formation of the B ring was achieved, giving dihydronaphthalene 41 in 90% yield. Our attention now turned to introducing the syn C-11 hydroxy group. A single bromohydrin regio- and stereoisomer 42 was obtained in 75% by reaction of $\mathbf{4 1}$ with NBS in $\mathrm{H}_{2} \mathrm{O}$ / THF. This reaction can be rationalized by the intermediate bromonium ion being formed on the least hindered face of the alkene followed by attack of water at the benzylic position. Reaction of bromohydrin $\mathbf{4 2}$ with $\mathrm{KO} t \mathrm{Bu}$ in THF yielded syn-epoxide $\mathbf{4 3}$ in quantitative yield. Having installed the hydroxyl functionality on the correct side of the C ring it was now necessary to carry out a regioselective hydride re-
duction of the epoxide followed by Cbz reduction to the methylamine. This was achieved as a one pot reaction by heating epoxide $\mathbf{4 3}$ with LiAlH_{4} in 1,4-dioxane to give (+)homochelidonine in 87% yield. The spectroscopic properties of the synthetic material were in agreement with those of the natural product. ${ }^{[10 c]}$ The optical rotation $\left([\alpha]_{\mathrm{D}}^{25}=+120\right.$ ($c=1.0$ in EtOH$)$) confirmed the absolute stereochemistry. ${ }^{[10 \mathrm{c}]}$ Chiral HPLC analysis of this compound gave an enantiomeric excess of 99% indicating that the enantiopurity of dihydronaphthalene 39 was maintained throughout the final sequence.
Regioselectively ring-opening epoxide intermediate 43 with $\mathrm{H}_{2} \mathrm{O}$ in the presence of a catalytic amount of $\mathrm{BiCl}_{3}{ }^{[34]}$ gave diol $\mathbf{4 4}$ in 85% yield. Heating diol $\mathbf{4 4}$ with LiAlH_{4} reduced the Cbz group to the methylamine to give $(+)$-chelamidine in 90% yield. The compound matched previously published spectroscopic data. ${ }^{[10 \mathrm{c}, 13 \mathrm{c}]}$

Syntheses of $(+)$-chelidonine, $(+)$-chelamine and (+)-norch-

 elidonine: We now had a straightforward strategy to complete the synthesis of the other $3 B / C$ hexahydrobenzo $[c]$ phenanthridine alkaloids using boronic acid 47. Three steps were required from commercially available aldehyde 45 (Scheme 11). Aldehyde 45 was reduced using NaBH_{4} and the corresponding benzylic alcohol protected as the MOM ether in 73% over two steps. The aryl bromide $\mathbf{4 6}$ was then converted to boronic acid 47 by halogen-lithium exchange and trapping out the aryl lithium with $\mathrm{B}(\mathrm{OiPr})_{3}$, followed by acidic hydrolysis. ${ }^{[35]}$

Scheme 11. Synthesis of boronic acid 47: a) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, \mathrm{RT}, 1 \mathrm{~h}$ then $\mathrm{CH}_{2}(\mathrm{OMe})_{2}, \mathrm{LiBr}, p-\mathrm{TsOH}, \mathrm{RT}, 15 \mathrm{~h}$; b) $n \mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C} 45 \mathrm{~min}$, then $\mathrm{B}(\mathrm{OiPr})_{3},-78^{\circ} \mathrm{C}$ to $\mathrm{RT}, 18 \mathrm{~h}$, then $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$.

Carrying out the asymmetric ring-opening reaction using azabicyclic alkene $\mathbf{3 8}$ and boronic acid $\mathbf{4 7}$ under the developed conditions gave 1,2-dihydronaphthalene 48 in 89% yield and 90% ee (Scheme 12). One recrystallization gave 48 in 75% yield and $99 \% e e$. Using the same four-step synthetic sequence on 1,2-dihydronaphthalene 48 (MOM removal, B ring cyclization, bromohydrin formation and intramolecular $\mathrm{S}_{\mathrm{N}} 2$ substitution) gave the key epoxide intermediate 52.
Heating epoxide 52 with LiAlH_{4} in 1,4-dioxane gave (+)chelidonine (4) in 88% yield (Scheme 13). The spectroscopic properties of the synthetic material were in agreement with those of the natural product. ${ }^{[2 \mathrm{~g}, 14 \mathrm{~d}]}$ Regioselectively ring-opening epoxide intermediate $\mathbf{5 2}$ with $\mathrm{H}_{2} \mathrm{O}$ in the presence of a catalytic amount of BiCl_{3} gave diol $\mathbf{5 3}$ in 86% yield. Heating diol 53 with LiAlH_{4} reduced the carbamate group to the methylamine to give (+)-chelamine (5) in 93%

38

Scheme 12. Synthesis of key epoxide intermediate 52: a) $\mathrm{Pd}\left(\mathrm{MeCN}_{2}\right) \mathrm{Cl}_{2}$ ($5 \mathrm{~mol} \%$), (S)-tol-BINAP ($5.5 \mathrm{~mol} \%$), 47, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{RT}, 6 \mathrm{~h} ; \mathrm{b}$) $\mathrm{HCl}, i \mathrm{PrOH} / \mathrm{THF}, \mathrm{RT}, 8 \mathrm{~h}$; c) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then NaH , DMF, $0^{\circ} \mathrm{C}, 3 \mathrm{~h}$; d) NBS, THF/ $\mathrm{H}_{2} \mathrm{O}, \mathrm{RT}, 90 \mathrm{~min}$; e) $\mathrm{KOtBu}, \mathrm{THF},-78^{\circ} \mathrm{C}$, 30 min .

Scheme 13. Completion of the synthesis of (+)-chelidonine (4), (+)-chelamine (5) and (+)-norchelidonine (6): a) LiAlH_{4}, 1,4-dioxane, reflux 18 h ; b) $\mathrm{H}_{2} \mathrm{O}$, cat. $\mathrm{BiCl}_{3}, \mathrm{MeCN}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; c) $1 \mathrm{~atm} \mathrm{H}_{2}$, cat. Pd / C, EtOH, RT, 2 h.
yield. The compound matched previously published spectroscopic data. ${ }^{[10 c]}$ Stirring epoxide 52 and catalytic Pd / C under an H_{2} atmosphere regioselectively ring-opened the epoxide and removed the Cbz protecting group to give (+)-norchelidonine (6) in 74% yield. The compound matched previously published spectroscopic data. ${ }^{[10 \mathrm{~d}, 14 \mathrm{~d}]}$

Conclusion

In summary, we have developed a new and general strategy for the synthesis of the hexahydrobenzo[c]phenanthridine alkaloids with a novel and highly enantioselective $\mathrm{Pd}^{\mathrm{II}}$-catalyzed ring-opening reaction of a meso-azabicyclic alkene with an aryl boronic acid as the key step. In this way, we have demonstrated the power of this methodology for the first time in natural product synthesis and completed the first enantioselective total syntheses of (+)-homochelidonine, $(+)$-chelamidine, $(+)$-chelidonine, $(+)$-chelamine and $(+)$-norchelidonine. Due to the convergent nature of the synthesis it is now possible to prepare structural analogues of the hexahydrobenzo $[c]$ phenanthridine alkaloids with potentially improved pharmacological properties.

Experimental Section

General: All reactions were carried out under an argon atmosphere, in flame-dried round bottom flasks fitted with rubber septa, with magnetic stirring. Air- or water-sensitive liquids and solutions were transferred via syringe. Organic solutions were concentrated by rotary evaporation at $23-40^{\circ} \mathrm{C}$ at 40 Torr unless otherwise stated. Solvents and reagents: Tetrahydrofuran, 1,4-dioxane and toluene were purified by distillation under N_{2} from Na /benzophenone immediately prior to use. Triethylamine was purified by distillation under N_{2} from NaOH immediately prior to use. Diethyl ether and dichloromethane were purified by the method of Pangborn et al. ${ }^{[36]}$ All other solvents were used as received. N-Bromosuccinimide was recrystallized from $\mathrm{H}_{2} \mathrm{O}$ prior to use. Analytical thin-layer chromatography: Performed with Silicycle normal phase glass plates ($0.25 \mathrm{~mm}, 60$ A pore size, 230-400 mesh). Visualization was accomplished with 254 nm UV light and/or by immersion in potassium permanganate or phosphomolybdic acid solution, followed by brief heating using a heat gun. Chromatography: Flash and gradient column chromatography was carried out using Silicycle Ultra-Pure 230-400 mesh silica gel. Melting points were taken on a Fisher-Johns melting point apparatus and are uncorrected. Optical rotations were measured in a 5.0 or 10.0 cm cell with a Rudolph Autopol IV polarimeter digital polarimeter equipped with a sodium lamp source (589 nm), and are reported as follows: $[\alpha]_{\mathrm{D}}^{T / c}=(c=$ g $100 \mathrm{~mL}^{-1}$, solvent). IR Spectroscopy: IR spectra were obtained using a Perkin-Elmer Spectrum 1000 FT-IR spectrometer as neat films or as solutions $\left(\mathrm{CHCl}_{3}\right.$ or $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ on a NaCl plate. Data is presented as follows: frequency of absorption $\left(\mathrm{cm}^{-1}\right)$ and intensity of absorption ($\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{br}=$ broad). NMR spectroscopy: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $23^{\circ} \mathrm{C}$ in CDCl_{3} with a Varian 400 ($400 \mathrm{MHz} / 100 \mathrm{MHz}$) NMR spectrometer equipped with ATB8123-400 probe, or a Varian Mercury $400(400 \mathrm{MHz} / 100 \mathrm{MHz})$ NMR spectrometer equipped with a Nalorac4N-400 probe. Recorded shifts for protons are reported in parts per million (δ scale) downfield from tetramethylsilane and are referenced to residual proton in the NMR solvent $\left(\mathrm{CHCl}_{3}: \delta\right.$ 7.26). Chemical shifts for carbon resonances are reported in parts per million (δ scale) downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent $\left(\mathrm{CDCl}_{3}: \delta 77.0\right)$. Data are represented as follows: chemical shift, multiplicity ($s=$ singlet, $d=$ doublet, $t=$ triplet, $\mathrm{q}=$ quartet, sept $=$ septet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad , coupling constant $(J, \mathrm{~Hz})$ and integration. Mass spectrometry: High resolution mass spectra were obtained from a SI2 Micromass 70S-250 mass spectrometer (EI) or an ABI/Sciex Qstar mass spectrometer (ESI).
Dibromocatechol 17: A solution of $\mathrm{Br}_{2}(13.9 \mathrm{~mL}, 272 \mathrm{mmol})$ in CHCl_{3} $(20 \mathrm{~mL})$ was added dropwise over 1 h to a suspension of catechol 16 $(15.0 \mathrm{~g}, 136 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(150 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at RT for 20 h dibromocatechol $17(31.0 \mathrm{~g}, 85 \%)$ was isolated by filtration as an off-white solid. M.p. $97-98^{\circ} \mathrm{C}$ (lit. ${ }^{[19]}$ m.p. $119^{\circ} \mathrm{C}$); $R_{\mathrm{f}}=0.46(50 \%$ EtOAc in hexane) $;{ }^{1} \mathrm{H}$ NMR: $\delta=7.14(\mathrm{~s}, 2 \mathrm{H}), 5.29 \mathrm{ppm}(\mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=$
143.5, 119.9, 114.9 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=3582 \mathrm{~m}, 3354 \mathrm{~s}, 1589 \mathrm{~m}, 1495 \mathrm{~s}$, $1415 \mathrm{~s}, 1267 \mathrm{~m}, 1173 \mathrm{~m}, 860 \mathrm{~cm}^{-1} \mathrm{~m}$; MS (EI): m/z: 268 (100) [M^{+}], 159 (17), 77 (14); HRMS: m/z: calcd for $\mathrm{C}_{6} \mathrm{H}_{4}{ }^{79} \mathrm{Br}_{2} \mathrm{O}_{2}: 265.8578$, found $265.8580\left[M^{+}\right]$.
Dibromide 18: Bromochloromethane ($4.36 \mathrm{~mL}, 65.3 \mathrm{mmol}$) was added to a stirred solution of dibromocatechol $17(8.76 \mathrm{~g}, 32.7 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($16.0 \mathrm{~g}, 49.0 \mathrm{mmol}$) in anhydrous DMF (50 mL). The resulting purple/ brown suspension was then heated to $110^{\circ} \mathrm{C}$ for 3 h . After cooling to RT, the reaction mixture was filtered through a pad of celite which was then washed with EtOAc. Water $(100 \mathrm{~mL})$ was added to the filtrate, the organic layer was separated and the aqueous layer was extracted with EtOAc $(2 \times 100 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed under reduced pressure to give a brown solid. Purification by column chromatography ($10 \% \mathrm{EtOAc}$ in hexane) gave dibromide $18(6.86 \mathrm{~g}, 75 \%)$ as a white solid. M.p. $82-83{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.50(10 \%$ EtOAc in hexane) $;{ }^{1} \mathrm{H}$ NMR: $\delta=7.07(\mathrm{~s}, 2 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=$ 147.9, 115.4, 113.2, 102.3; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=3111 \mathrm{~s}, 1700 \mathrm{~m}, 1469 \mathrm{~m}, 1378 \mathrm{~s}$, 1322m, 1138m, $930 \mathrm{~cm}^{-1} \mathrm{~m}$; MS (EI): m/z: 280 (100) [$\left.M^{+}\right], 143$ (29), 62 (37); HRMS: m / z : calcd for $\mathrm{C}_{7} \mathrm{H}_{4}{ }^{79} \mathrm{Br}_{2} \mathrm{O}_{2}: 277.8578$, found $277.8580\left[M^{+}\right]$.
\boldsymbol{N}-Boc azabicyclic alkene 13: A mixture of dibromide $\mathbf{1 8}(5.99 \mathrm{~g}$, 21.4 mmol) and freshly distilled N-Boc-pyrrole ($5.35 \mathrm{~mL}, 32.0 \mathrm{mmol}$) in toluene (100 mL) was cooled to $-78^{\circ} \mathrm{C} . n \mathrm{BuLi}(1.6 \mathrm{~m}$ in hexane; 29.4 mL , 47.0 mmol) was added dropwise over a period of 2.5 h . The resulting bright orange solution was allowed to warm up to RT over 3 h and then left for a further 17 h at RT. The reaction mixture was then quenched with water (70 mL) and the phases were separated. The aqueous layer was extracted with EtOAc $(3 \times 80 \mathrm{~mL})$ and the organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed under reduced pressure to give a brown oil. Purification by column chromatography (10% EtOAc in hexane) gave azabicycle $\mathbf{1 3}$ ($4.37 \mathrm{~g}, 71 \%$) as an off-white solid. M.p. $91-93^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.10(10 \%$ EtOAc in hexane $) ;{ }^{1} \mathrm{H}$ NMR: $\delta=6.97$ (brs, 2H), 6.84, (s, 2H), 5.91 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.87 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.40 (brs, 2 H), $1.38 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=154.8,144.3,142.5$, [104.7, 104.2], 101.4, 80.6, [66.9, 66.3], 28.1 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=$ $3441 \mathrm{w}, 2975 \mathrm{~m}, 2930 \mathrm{~m}, ~ 1705 \mathrm{~m}, 1461 \mathrm{~s}, 1345 \mathrm{~m}, 1367 \mathrm{~m}, 1321 \mathrm{~s}, 1293 \mathrm{~m}$, 1252m, 1166m, $1037 \mathrm{~cm}^{-1} \mathrm{~m}$; MS (EI): m/z: 287 (17) $\left[M^{+}\right], 231$ (24), 205 (52), 187 (21), 161 (41); HRMS: $m / z:$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}:$ 287.1157, found $287.1155\left[M^{+}\right]$.
Diisopropylarylamide 20: DMF ($0.40 \mathrm{~mL}, 5.17 \mathrm{mmol}$) was added dropwise to a solution of 2,3-dimethoxybenzoic acid (19) ($5.00 \mathrm{~g}, 27.4 \mathrm{mmol}$) and oxalyl chloride $(6.05 \mathrm{~mL}, 70.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at RT for 2 h the reaction mixture was concentrated under reduced pressure to give a yellow solid. The solid was dissolved in THF $(10 \mathrm{~mL})$ and the resulting solution added to $\mathrm{NEt}_{3}(3.82 \mathrm{~mL}, 27.4 \mathrm{mmol})$ and $i \operatorname{Pr}_{2} \mathrm{NH}(3.87 \mathrm{~mL}, 27.4 \mathrm{mmol})$ in THF $(70 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at RT for 17 h the resulting suspension was filtered and washed with THF. Recrystallization $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$ gave benzamide $20(6.76 \mathrm{~g}, 93 \%)$ as a yellow solid. M.p. $108-109^{\circ} \mathrm{C}$ (lit. ${ }^{[37]}$ m.p. $113-114^{\circ} \mathrm{C}$); $R_{\mathrm{f}}=0.30$ (50% EtOAc in hexane) ; ${ }^{1} \mathrm{H}$ NMR: $\delta=7.05(\mathrm{dd}, J=8,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.88 (dd, $J=8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ (dd, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (s, 3H), $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{sept}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ (sept, $J=7 \mathrm{~Hz}, 1 \mathrm{H}), 1.54$ (d, $J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.04 \mathrm{ppm}(\mathrm{d}$, $J=7 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR: $\delta=167.9,152.6,144.6,134.1,124.6,118.3$, 111.9, 61.5, 55.7, 51.0, 45.5, 20.8, 20.7, 20.5, 20.2 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=$ 3651m, 2964m, 1626s, 1439m, $1341 \mathrm{~cm}^{-1} \mathrm{~s}$; MS (ESI): m/z: 266 (100) $\left[M+\mathrm{H}^{+}\right], 165$ (50); HRMS: m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{3}: 266.1750$, found $266.1748\left[M+\mathrm{H}^{+}\right]$.
Boronic acid 21: A solution of benzamide $20(2.00 \mathrm{~g}, 7.54 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was added dropwise to a solution of $s \operatorname{BuLi}(1.0 \mathrm{~m} ; 8.29 \mathrm{~mL}$, 8.29 mmol) and TMEDA ($1.24 \mathrm{~mL}, 8.29 \mathrm{mmol}$) in THF (23 mL) at $-78^{\circ} \mathrm{C}$. After 1 h of stirring, $\mathrm{B}(\mathrm{OMe})_{3}(2.52 \mathrm{~mL}, 22.6 \mathrm{mmol})$ was added in one portion and the reaction was allowed to warm to RT and then left stirring for a further 18 h . The solution was acidified with aq. 1 m HCl $(20 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent removed under reduced pressure to leave a yellow solid. Recrystallization $\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right)$ gave boronic acid $21(2.31 \mathrm{~g}, 99 \%)$ as a white solid. M.p. $93-95^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.20(100 \% \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR: $\delta=$
$7.63(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{brs}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$, 3.83 (s, 3 H), 3.64 (sept, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.53 (sept, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.58 (d, $J=8 \mathrm{~Hz}, 6 \mathrm{H}), 1.09 \mathrm{ppm}(\mathrm{d}, J=8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=170.9,154.4$, 143.9, 137.6, 132.6, 111.7, 104.8, 61.5, 55.7, 51.8, 46.1, 20.4, 20.2 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=3386 \mathrm{~s}, 3162 \mathrm{~s}, 2978 \mathrm{~s}, 1610 \mathrm{~s}, 1443 \mathrm{~m}, 1357 \mathrm{~m}, 1298 \mathrm{~m}$, $1266 \mathrm{~cm}^{-1} \mathrm{~m}$, MS (ESI): m/z: 310 (55) [$\left.M+\mathrm{H}^{+}\right]$, 292 (100); HRMS: m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{BNO}_{5}: 310.1820$, found $310.1829\left[M+\mathrm{H}^{+}\right]$.
Aryl bromide 23: NBS ($12.7 \mathrm{~g}, 71.4 \mathrm{mmol}$) was added to a solution of 2,3-dimethoxybenzyl alcohol $22(10.0 \mathrm{~g}, 59.5 \mathrm{mmol})$ in THF (45 mL) and stirred at RT until all the NBS had dissolved (approx. 30 min .). The THF was removed under reduced pressure and the residue was taken up in $\mathrm{Et}_{2} \mathrm{O}(110 \mathrm{~mL})$. The resulting suspension was filtered to remove the insoluble succinimide and the filtrate was washed with aq. $2 \mathrm{~m} \mathrm{NaOH}(2 \times$ $100 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give a pale yellow oil. Purification by column chromatography (20% EtOAc in hexane) gave benzyl alcohol 23 (12.2 g , 83%) as a white solid. M.p. $66-68^{\circ} \mathrm{C}$ (lit. $\left.{ }^{[22]} 76^{\circ} \mathrm{C}\right) ; R_{\mathrm{f}}=0.10(20 \%$ EtOAc in hexane) ; ${ }^{1} \mathrm{H}$ NMR: $\delta=7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (d, $J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.31 \mathrm{ppm}$ (t, $J=7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=152.3,148.8,133.9,127.9,114.8,113.4$, $61.7,60.4,56.0 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=3426 \mathrm{w}, 2938 \mathrm{~m}, 1576 \mathrm{~s}, 1474 \mathrm{~m}$, 1413s, 1271s, 1229m, 1171m, 1079m, $1009 \mathrm{~cm}^{-1} \mathrm{~m}$; MS (ESI): m/z: 269 (100) $\left[M+\mathrm{Na}^{+}\right], 127$ (35), 79 (40); HRMS: m / z : calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrNaO}_{3}$: 268.9789 , found $268.9780\left[M+\mathrm{Na}^{+}\right]$.

Silyl ether 24: A solution of benzyl alcohol 23 ($1.00 \mathrm{~g}, 4.05 \mathrm{mmol}$), imidazole ($551 \mathrm{mg}, 8.09 \mathrm{mmol}$) and TIPSCl ($1.04 \mathrm{~mL}, 4.86 \mathrm{mmol}$) in DMF $(2 \mathrm{~mL})$ were stirred at RT for 17 h . The reaction was diluted with EtOAc $(10 \mathrm{~mL})$ and aq. 1 м $\mathrm{HCl}(10 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{EtOAc}(2 \times 20 \mathrm{~mL})$. The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give a yellow oil. Purification by column chromatography (10% EtOAc in hexane) gave silyl ether $24(1.54 \mathrm{~g}, 94 \%)$ as a colorless oil. $R_{\mathrm{f}}=0.50\left(20 \%\right.$ EtOAc in hexane) ${ }^{1}{ }^{1} \mathrm{H}$ NMR: $\delta=7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $1.20-1.06 \mathrm{ppm}(\mathrm{m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=152.6,149.3,134.4,128.1,116.2$, $113.3,62.0,60.7,56.1,18.3,12.4 \mathrm{ppm}$; IR (neat): $\tilde{v}=2941 \mathrm{~s}, 2864 \mathrm{~s}, 1577 \mathrm{w}$, $1474 \mathrm{~s}, 1414 \mathrm{~m}, 1278 \mathrm{~s}, 1232 \mathrm{~s}, 1060 \mathrm{~cm}^{-1} \mathrm{~s} ; \mathrm{MS}$ (ESI): m/z: 425 (50) $\left[M+\mathrm{Na}^{+}\right], 231$ (30), 216 (95), 214 (100); HRMS: m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{31}{ }^{79} \mathrm{BrNaO}_{3} \mathrm{Si}: 425.1118$, found $425.1117\left[M+\mathrm{Na}^{+}\right]$.
Boronic acid 25: Aryl bromide $24(750 \mathrm{mg}, 1.86 \mathrm{mmol})$ was dissolved in THF (5 mL) and cooled to $-78^{\circ} \mathrm{C} . n \mathrm{BuLi}(1.6 \mathrm{~m}$ in hexanes; 1.28 mL , 2.05 mmol) was added dropwise over a 20 min period and the reaction mixture was stirred at this temperature for a further $15 \mathrm{~min} . \mathrm{B}(\mathrm{OiPr})_{3}$ $(1.28 \mathrm{~mL}, 5.58 \mathrm{mmol})$ was added in a single portion and the reaction mixture was allowed to warm up to RT over 6 h and then stirred at this temperature for 12 h . The resulting orange suspension was cooled to $0^{\circ} \mathrm{C}$ and acidified to $\mathrm{pH} 5-6$ with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The solvent was removed under reduced pressure to leave an aqueous residue which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give a yellow oil. Purification by column chromatography (20% EtOAc in hexane) gave an off-white solid which was recrystallized $\left(\mathrm{H}_{2} \mathrm{O}\right)$ to give boronic acid 25 $(274 \mathrm{mg}, 40 \%)$ as a white solid. $R_{\mathrm{f}}=0.25(25 \%$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR: $\delta=7.66(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 2 \mathrm{H})$, $5.00(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.14(\mathrm{~m}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$, $1.04 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=154.4,146.4,137.3,132.7,132.7,111.2$, $61.4,59.2,55.6,17.8,11.9 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=3375 \mathrm{w}, 2948 \mathrm{~s}, 1580 \mathrm{~m}$, $1458 \mathrm{~m}, 1261 \mathrm{~s}, 1144 \mathrm{~m}, 1095 \mathrm{~cm}^{-1} \mathrm{~m}, \mathrm{MS}$ (ESI): $m / z: 391(22)\left[M+\mathrm{Na}^{+}\right]$, 195 (50), 180 (100), 165 (48); HRMS: m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{BNaO}_{5} \mathrm{Si}$: 391.2082 , found $391.2084\left[M+\mathrm{Na}^{+}\right]$.

MOM-protected benzyl alcohol 26: $\mathrm{LiBr}(695 \mathrm{mg}, 8.09 \mathrm{mmol})$ and p $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(770 \mathrm{mg}, 4.05 \mathrm{mmol})$ was added to a solution of the benzyl alcohol $23(10.0 \mathrm{~g}, 40.5 \mathrm{mmol})$ in dimethoxymethane (80 mL). The resulting mixture was then stirred at RT for 24 h . Brine (100 mL) was added to the resulting white suspension and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($2 \times$ $100 \mathrm{~mL})$. The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give a yellow oil. Purification by column chromatography (20% EtOAc in hexane) gave bromide 26
$(8.49 \mathrm{~g}, 72 \%)$ as a colorless oil. $R_{\mathrm{f}}=0.35(20 \% \mathrm{EtOAc}$ in hexane $)$; ${ }^{1} \mathrm{H}$ NMR: $\delta=7.29(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H})$, $4.74(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.46 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=$ $152.3,149.4,131.2,127.9,116.2,113.6,96.4,64.0,61.7,55.9,55.4 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=2940 \mathrm{w}, 1577 \mathrm{w}, 1475 \mathrm{~m}, 1418 \mathrm{~m}, 1378 \mathrm{~m}, 1276 \mathrm{~s}, 1232 \mathrm{~m}$, 1150m, 1101m, $1041 \mathrm{~cm}^{-1} \mathrm{~m}$; MS (ESI): m/z: 313 (100) [$\left.M+\mathrm{Na}^{+}\right], 244$ (25), 64 (20); HRMS: m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrNaO}_{4}: 313.0051$, found $313.0048\left[M+\mathrm{Na}^{+}\right]$.

Boronic acid 27: Following the procedure to prepare boronic acid 25, the addition of $n \mathrm{BuLi}(1.6 \mathrm{~m}$ in hexanes; $9.0 \mathrm{~mL}, 14.4 \mathrm{mmol})$ to aryl bromide $26(3.81 \mathrm{~g}, 13.1 \mathrm{mmol})$ in THF (14 mL) followed by the addition of B$(\mathrm{OiPr})_{3}(9.05 \mathrm{~mL}, 39.2 \mathrm{mmol})$, then aq. $\mathrm{NH}_{4} \mathrm{Cl}$ work-up, column chromatography $\left(50 \%\right.$ EtOAc in hexane) and recrystallization $\left(\mathrm{H}_{2} \mathrm{O}\right)$ gave boronic acid $27(2.11 \mathrm{~g}, 63 \%)$ as a white solid. M.p. $63-65^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.20(50 \%$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR: $\delta=7.62(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 1 \mathrm{H}), 6.40$ (brs, 2H), 4.87 (s, 2H), 4.72 (s, 2H), 3.89 (s, 3H), 3.83 (s, $3 \mathrm{H}), 3.41 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=154.4,147.6,134.1,132.2,126.8$, $111.7,95.3,62.8,61.3,55.9,55.6 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=3380 \mathrm{w}, 2949 \mathrm{~s}$, $1589 \mathrm{~m}, 1452 \mathrm{~m}, 1419 \mathrm{~m}, 1355 \mathrm{~m}, 1279 \mathrm{~s}, 1154 \mathrm{~m}, 1098 \mathrm{~m}, 1072 \mathrm{~cm}^{-1} \mathrm{~m}$; MS (ESI): $m / z: 279$ (100) $\left[M+\mathrm{Na}^{+}\right]$; HRMS: $m / z:$ calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{BNaO}_{6}$: 279.1010, found $279.1007\left[M+\mathrm{Na}^{+}\right]$.

1,2-Dihydronaphthalene 29 (Table 1, entry 4 conditions): $\left[\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}\right]$ $(1.6 \mathrm{mg}, 6.1 \mu \mathrm{~mol})$ and (S)-tol-binap ($4.5 \mathrm{mg}, 6.7 \mu \mathrm{~mol}$) were added to $\mathrm{MeOH}(0.5 \mathrm{~mL})$ and the resulting catalyst mixture was stirred at RT for 1 h giving an orange solution. To this was added a solution of azabicycle 13 ($35 \mathrm{mg}, 0.12 \mathrm{mmol}$) and boronic acid 25 ($67 \mathrm{mg}, 0.18 \mathrm{mmol}$) in MeOH $(0.5 \mathrm{~mL})$ followed by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(39 \mathrm{mg}, 0.12 \mathrm{mmol})$ in one portion. The reaction mixture was allowed to stir for 22 h at RT and then dry loaded onto silica. Purification by column chromatography $(15 \rightarrow 25 \%$ EtOAc in hexane) gave dihydronaphthalene $29(22 \mathrm{mg}, 29 \%)$ as a white solid with an $e e$ of 42% as determined by chiral HPLC analysis (Chiralpak AD, hexane/2-propanol 90:10, flow rate $1 \mathrm{~mL} \min ^{-1} ; t_{\mathrm{R}}=5.4$ (minor), 6.2 min (major)); m.p. $107-110^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.20$ (15% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR: $\delta=6.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ $(\mathrm{s}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.91(\mathrm{~m}, 3 \mathrm{H}), 5.21(\mathrm{t}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.09(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.42(\mathrm{~m}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.19-0.97 \mathrm{ppm}(\mathrm{m}, 21 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR: $\delta=155.1,151.5,147.1,146.7,133.6,131.0,130.0,129.3,127.2$, $127.1,124.5,111.5,107.2,106.9,100.9,79.2,61.5,56.6,55.6,51.7,39.2$, 28.3, 18.0, 12.1 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=3432 \mathrm{w}, 2941 \mathrm{~s}, 2892 \mathrm{~s}, 2866 \mathrm{~s}, 1714 \mathrm{~s}$, 1485s, 1366m, 1276m, 1166m, $1044 \mathrm{~cm}^{-1} \mathrm{~m}$; MS (ESI): m/z: 634 (45) $\left[M+\mathrm{Na}^{+}\right], 321$ (100); HRMS: m / z : calcd for $\mathrm{C}_{34} \mathrm{H}_{49} \mathrm{NO}_{7} \mathrm{NaSi}$: 634.3170, found $634.3162\left[M+\mathrm{Na}^{+}\right]$.
1,2-Dihydronaphthalene 30 (Table 1, entry 6 conditions): Following the procedure to prepare 1,2-dihydronaphthalene 29, the addition of the azabicycle $\mathbf{1 3}(1.00 \mathrm{~g}, 3.48 \mathrm{mmol})$ and boronic acid $27(1.34 \mathrm{~g}, 5.22 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ followed by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.13 \mathrm{~g}, 3.48 \mathrm{mmol})$ to [Pd$\left.(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}\right](45 \mathrm{mg}, 0.17 \mathrm{mmol})$ and (S)-tol-binap $(129 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ gave after column chromatography (10% EtOAc in hexane) dihydronaphthalene $\mathbf{3 0}(1.56 \mathrm{~g}, 90 \%)$ as a white solid with an ee of 91% as determined by chiral HPLC analysis (Chiralpak AD, hexane/ 2-propanol 90:10, flow rate $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$): $t_{\mathrm{R}}=15.2$ (minor), 27.5 min (major); m.p. $53-55^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+90\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.23$ (20% EtOAc in hexane) ; ${ }^{1} \mathrm{H}$ NMR: $\delta=6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}$, $1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99-5.91(\mathrm{~m}, 4 \mathrm{H}), 5.17(\mathrm{t}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.62(\mathrm{~m}, 4 \mathrm{H}), 4.20(\mathrm{ddd}, J=7$, $4.5 \mathrm{~Hz}, 2,1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 1.35 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR : $\delta=155.1,151.6,148.0,147.1,146.8,130.9,130.4,129.7,129.2$, 127.4, 127.2, 124.7, 112.3, 107.3, 106.9, 101.0, 96.1, 79.3, 61.4, 60.4, 55.7, $55.5,52.0,39.6,28.3 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=3407 \mathrm{w}, 2923 \mathrm{~s}, 1700 \mathrm{~s}, 1507 \mathrm{~s}$, 1482s, 1364m, 1279s, 1244m, 1165m, $1037 \mathrm{~cm}^{-1} \mathrm{~m}$; MS (ESI): m/z: 522 (100) $\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m / z : calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NNaO}_{8}$: 522.2098, found $522.2116\left[M+\mathrm{Na}^{+}\right]$.
Bromohydrin regioisomers 34 and 35: NBS ($623 \mathrm{mg}, 3.50 \mathrm{mmol}$) was added to a solution of dihydronaphthalene $\mathbf{3 0}(1.44 \mathrm{~g}, 2.89 \mathrm{mmol})$ in THF $(27 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and the resulting orange solution was allowed to stir at RT for 90 min . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ $(50 \mathrm{~mL})$ and EtOAc $(50 \mathrm{~mL})$ and the layers separated. The aqueous layer
was extracted with $\mathrm{EtOAc}(2 \times 50 \mathrm{~mL})$, the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give a yellow oil. Purification by column chromatography $(10 \rightarrow 50 \%$ EtOAc in hexane) gave pure regioisomer 34 ($420 \mathrm{mg}, 23 \%$) and a mixture of bromohydrins $\mathbf{3 4}$ and $\mathbf{3 5}(925 \mathrm{mg}, 54 \%, \mathbf{3 4} / \mathbf{3 5} 66: 34)$ as pale brown solids. $R_{\mathrm{f}}=0.44$ (34), 0.42 (35) (50% EtOAc in hexane); regioisomer 34: m.p. $98-102{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR: $\delta=7.11(\mathrm{~s}, 1 \mathrm{H}), 6.83($ brd, 1 H$), 6.65(\mathrm{brs}, 2 \mathrm{H})$, 5.97 (s, 2H), 5.06 (brs, 1H), 4.99 (dd, $J=8.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.73$ (m, $2 \mathrm{H}), 4.68(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{brs}, 2 \mathrm{H})$, 4.08 (brs, 1H), 3.86 (s, 3H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.02$ (brs, 1H), $1.26 \mathrm{ppm}(\mathrm{brs}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 154.6,151.5,147.9,147.7,132.0,130.4$, 129.4 (x3), 124.4, 111.8, 107.7, 106.4, 101.3, 95.6, 79.5, 75.2, 61.5, 60.9, 55.7, 55.6, 54.8, 52.1, 46.1, 28.2 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=3343 \mathrm{~m}, 2936 \mathrm{~m}$, $1682 \mathrm{w}, 1582 \mathrm{w}, 1504 \mathrm{w}, 1366 \mathrm{~s}, 1278 \mathrm{~s}, 1237 \mathrm{~s}, 1168 \mathrm{~cm}^{-1} \mathrm{~s}$; MS (ESI): m / z : 620 (100) $\left[M+\mathrm{Na}^{+}\right], 618$ (100) $\left[M+\mathrm{Na}^{+}\right], 401$ (25), 399 (25), 320 (55); HRMS: m / z : calcd for $\mathrm{C}_{27} \mathrm{H}_{34}{ }^{79} \mathrm{BrNNaO}_{9}$: 618.1309, found $618.1314[\mathrm{M}+$ Na^{+}]; ${ }^{1} \mathrm{H}$ NMR (regioisomer mixture $\mathbf{3 4 / 3 5} 2: 1$): $\delta=7.11$ (s, 1H (major)), 7.00 (brs, 1 H , (minor)), 6.83 (brd, 1 H (major), 1 H (minor)), 6.74-6.72 (brm, 2H (minor)), 6.65 (brs, 2 H (major)), 5.99 (d, $J=1.5 \mathrm{~Hz}$, 1 H (minor)), 5.97 (s, 2 H (major), 1 H (minor)), 5.63-5.60 (brm, 1 H (minor)), 5.07 (brs, 1 H (major)), 5.02 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$ (minor)), 4.99 (dd, $J=9,4 \mathrm{~Hz}, 1 \mathrm{H}$ (major)), 4.86-4.41 (m, 6H (minor)), 4.80-4.72 (m, 2 H (major)), 4.68 (d, $J=7 \mathrm{~Hz}, 1 \mathrm{H}$ (major)), 4.65 (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$ (major)), 4.41 (brs, 2 H (major)), 4.33 ($\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}$ (minor)), 4.08-4.00 (brm, 1 H (major)), 3.86 ($\mathrm{s}, 3 \mathrm{H}$ (major), 3 H (minor)), 3.84 ($\mathrm{s}, 3 \mathrm{H}$ (major)), 3.83 (s, 3 H (minor)), 3.44 (s, 3 H (minor)), 3.35 ($\mathrm{s}, 3 \mathrm{H}$ (major)), 3.07 (brs, 1 H (major)), 2.4 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$ (minor)), 1.36 (s, 9 H (minor)), 1.26 ppm (s, 9H (major)).
Epoxide 36: A solution of bromohydrins $\mathbf{3 4}$ and $\mathbf{3 5}(870 \mathrm{mg}, 1.46 \mathrm{mmol})$ in THF (250 mL) was cooled to $-78^{\circ} \mathrm{C}$. A solution of $\mathrm{KOtBu}(1 \mathrm{~m}$ in THF; $1.46 \mathrm{~mL}, 1.46 \mathrm{mmol}$) was added dropwise via a syringe and the resulting solution was stirred at this temperature for 30 min . The reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and washed with cold water $(100 \mathrm{~mL})$. The layers were separated and the organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give epoxide $\mathbf{3 6}(565 \mathrm{mg}, 75 \%)$ as a pale yellow solid. M.p. $77-78^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.38(50 \% \mathrm{EtOAc}$ in hexane) ; ${ }^{1} \mathrm{H}$ NMR (4:1 mixture of rotamers): $\delta=7.38$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$ (minor)), 7.32 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$ (major)), 6.99 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$ (minor)), 6.94 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$ (major)), 6.94 ($\mathrm{s}, 1 \mathrm{H}$ (minor)), 6.93 (s, 1 H (major)), 6.88 ($\mathrm{s}, 1 \mathrm{H}$ (major)), 6.73 ($\mathrm{s}, 1 \mathrm{H}$ (minor)), 6.01 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$ (minor)), 5.99 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$ (major)), 5.98 (d, $J=1.5 \mathrm{~Hz}$ (minor)), 5.96 (d, $J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}$ (major)), 5.14 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$ (major)), 5.00 (ddd, $J=10.5$, $5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$ (major)), 4.95 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$ (minor)), 4.88 (d, $J=$ $11 \mathrm{~Hz}, 1 \mathrm{H}$ (major)), 4.88-4.84 (m, 1H (minor)), 4.79 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}$ (minor)), 4.73 (d, $J=11 \mathrm{~Hz}, 1 \mathrm{H}$ (major), 1 H (minor)), $4.69(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, 1 H (major)), 4.68 (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$ (minor)), 4.64 (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$ (major), 1H (minor)), 3.94 (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$ (major)), 3.91 (d, $J=4 \mathrm{~Hz}$, 1 H (minor)), 3.89 (s, 3 H (minor)), 3.87 ($\mathrm{s}, 3 \mathrm{H}$ (major)), 3.85 (s, 3 H (major), 3.83 (m, 2H (major), 3 H (minor)), 3.79 (dd, $J=4,1.5 \mathrm{~Hz}, 1 \mathrm{H}$ (minor)), $3.69(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$ (minor)), 3.33 (s, 3 H (minor)), 3.32 (s, 3 H (major)), 1.17 (s, 9H (major)), 1.14 ppm (s, 9 H (minor)); ${ }^{13} \mathrm{C}$ NMR (mixture of conformers): $\delta=$ [154.8 (major), 154.1 (minor)], [151.8 (minor), 151.7 (major)], 148.3 (minor + major), [148.2 (major), 147.9 (minor)], 147.2 (major + minor), [132.5 (major), 132.2 (minor)], [131.1 (minor), 130.0 (major)], [130.2 (major), 129.6 (minor)], [125.8 (minor), 125.3 (major)], 125.2 (major + minor), [112.5 (minor), 112.1 (major)], [110.3 (major), 109.9 (minor)], [109.8 (minor), 109.6 (major)], [101.43 (minor), 101.40 (major)], [96.4 (minor), 95.9 (major)], [79.01 (minor), 78.6 (major)], [61.5 (minor), 61.4 (major)], [60.8 (minor), 60.5 (major)], [59.6 (major), 59.3 (minor)], [55.8 (major), 55.6 (minor)], 55.5 (major + minor), [53.85 (minor), 53.76 (major)], [53.5 (minor), 51.7 (major)], [39.3 (minor), 39.2 (major)], [28.3 (major), 28.0 ppm (minor)]; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}$ $=3434 \mathrm{~m}, 2936 \mathrm{~m}, 2250 \mathrm{~m}, 1703 \mathrm{~s}, 1488 \mathrm{~m}, 1423 \mathrm{~m}, 1366 \mathrm{~m}, 1282 \mathrm{~m}, 1246 \mathrm{~s}$, $1168 \mathrm{~cm}^{-1} \mathrm{~s}$; MS (ESI): m/z: 538 (100) [$\left.M+\mathrm{Na}^{+}\right]$; HRMS: m / z : calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NNaO}_{9}$: 538.2047, found 538.2053 [$\left.M+\mathrm{Na}^{+}\right]$.
Alcohol 37: A solution of epoxide $36(515 \mathrm{mg}, 1.00 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ $(5 \mathrm{~mL})$ was added dropwise to a suspension of $\mathrm{LiAlH}_{4}(57 \mathrm{mg}$, $1.50 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at this temperature for 1 h and then at RT for 5 h . The reaction was
quenched by the sequential addition of acetone $(6 \mathrm{~mL}), \mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ and water $(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The organic layer was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give a pink solid. Purification by column chromatography ($50 \% \mathrm{EtOAc}$ in hexane) gave alcohol 37 ($228 \mathrm{mg}, 44 \%$) as an off-white solid. M.p. $74-76^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.33$ (50% EtOAc in hexane) ; ${ }^{1} \mathrm{H}$ NMR: $\delta=6.92(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}$, $1 \mathrm{H}) .6 .78$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 4.89$ (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.40(\mathrm{~m}$, $1 \mathrm{H}), 4.03-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{brs}, 1 \mathrm{H}), 3.42(\mathrm{~s}$, $3 \mathrm{H}), 2.99$ (dd, $J=16.5,5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ (dd, $J=16.5,9 \mathrm{~Hz}, 1 \mathrm{H}), 1.34 \mathrm{ppm}$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR: $\delta=155.8,151.6,148.2,147.0,146.8,131.7,120.3$, $130.2,127.3,124.1,112.4,108.8,107.1,101.0,96.2,79.4,68.1,61.5,60.3$, 55.9, 55.7, 51.7, 43.5, 35.5, 28.3 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=3421 \mathrm{w}, 2932 \mathrm{~m}$, 1684w, 1484m, 1366m, 1279s, 1228s, 1166s, $1088 \mathrm{~cm}^{-1} \mathrm{~s}$; MS (ESI): m / z : 540 (100) $\left[M+\mathrm{Na}^{+}\right]$; HRMS: m / z : calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NNaO}_{9}: 540.2204$, found $540.2208\left[M+\mathrm{Na}^{+}\right]$.
\boldsymbol{N}-Cbz azabicyclic alkene 38: $\mathrm{Me}_{3} \mathrm{SiI}(0.93 \mathrm{~mL}, 6.51 \mathrm{mmol})$ was added dropwise to a refluxing mixture of azabicycle $\mathbf{1 3}(1.70 \mathrm{~g}, 5.92 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(0.99 \mathrm{~mL}, 7.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$. After 15 min , the reaction was cooled to $0^{\circ} \mathrm{C}$ and anhydrous $\mathrm{MeOH}(0.31 \mathrm{~mL}, 7.70 \mathrm{mmol})$ added. After 10 min freshly distilled benzyl chloroformate ($1.10 \mathrm{~mL}, 7.70 \mathrm{mmol}$) was added and the reaction was left to stir for 3 h at RT. The reaction mixture was diluted with water (50 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted with EtOAc ($2 \times$ $50 \mathrm{~mL})$, the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent evaporated under reduced pressure to give a brown oil. Purification by column chromatography (10% EtOAc in hexane) gave azabicycle 38 $(1.52 \mathrm{~g}, 80 \%)$ as a pale brown solid. M.p. $101^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.33(30 \% \mathrm{EtOAc}$ in hexane); ${ }^{1} \mathrm{H}$ NMR: $\delta=7.35-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.98$ (brs, 2H), 6.84 (brs, $2 \mathrm{H}), 5.89(\mathrm{dd}, J=16,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 2 \mathrm{H}), 5.06 \mathrm{ppm}(\mathrm{s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR: $\delta=155.0,144.4,[143.7,142.8], 142.3,136.2,128.4,128.0$, 127.8, [104.7, 104.6], 101.1, 67.2, 66.4 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=3053 \mathrm{w}$, 2986w, 1711m, 1462m, 1265s, $1092 \mathrm{~cm}^{-1}$ w; MS (EI) m/z 321 (25) [$\left.M^{+}\right]$, 251 (12), 91 (100); HRMS: m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{4}: 321.1001$, found $321.1000\left[M^{+}\right]$.
1,2-Dihydronaphthalene 39: Following the procedure to prepare 1,2-dihydronaphthalene 29 (except the reaction was stirred for 6 h), the addition of the azabicycle $38(1.88 \mathrm{~g}, 5.86 \mathrm{mmol})$ and boronic acid $27(2.25 \mathrm{~g}$, $8.79 \mathrm{mmol})$ in $\mathrm{MeOH}(16 \mathrm{~mL})$ followed by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.91 \mathrm{~g}, 5.86 \mathrm{mmol})$ to $\left[\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}\right] \quad(75 \mathrm{mg}, \quad 0.29 \mathrm{mmol})$ and (S)-tol-binap $(217 \mathrm{mg}$, $0.32 \mathrm{mmol})$ in $\mathrm{MeOH}(16 \mathrm{~mL})$ gave after column chromatography (10% EtOAc in hexane) dihydronaphthalene $39(2.78 \mathrm{~g}, 89 \%)$ as a pale brown foam with an $e e$ of 90% as determined by chiral HPLC analysis (Chiralpak AD, hexane/2-propanol $85: 15$, flow rate $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$); $t_{\mathrm{R}}=18.0$ (minor), 59.4 min (major); recrystallization ($2 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$) gave dihydronaphthalene $39(2.50 \mathrm{~g}, 80 \%)$ as a white solid with an ee of 99% as determined by chiral HPLC analysis. M.p. $106^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}=+97(c=$ 1.0 in $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.10(20 \% \mathrm{EtOAc}$ in hexane $) ;{ }^{1} \mathrm{H}$ NMR: $\delta=7.33-$ $7.24(\mathrm{~m}, 5 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=9.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.91(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{t}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.73-4.61(\mathrm{~m}, 4 \mathrm{H}), 4.23-4.20(\mathrm{~m}, 1 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.40 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=155.7,151.5$, 148.0, 147.1, 146.8, 136.4, 130.8, 130.2, 129.4, 128.9, 128.9, 128.3, 127.9, $127.4,126.9,124.5,112.2,107.3,106.9,100.9,95.9,66.5,61.3,60.2,55.5$, $55.3,52.6,39.6 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=3430 \mathrm{w}, 2919 \mathrm{w}, 2253 \mathrm{~m}, 1711 \mathrm{~m}$, 1651w, 1484m, 1379w, 1277m, $1040 \mathrm{~cm}^{-1} \mathrm{~m}$; MS (ESI): m/z: 556 (52) $\left[M+\mathrm{Na}^{+}\right], 322$ (20), 321 (100), 290 (19); HRMS: m/z: calcd for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NNaO}_{8}$: 556.1942 , found $556.1941\left[M+\mathrm{Na}^{+}\right]$.
Benzyl alcohol 40: HCl (conc., 17 mL) was added to a solution of dihydronaphthalene $39(1.50 \mathrm{~g}, 2.81 \mathrm{mmol})$ in $i \mathrm{PrOH}(70 \mathrm{~mL})$ and THF $(70 \mathrm{~mL})$ and the resulting mixture stirred at RT for 8 h . After careful quenching with sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ the layers were separated. The aqueous layer was extracted with EtOAc $(2 \times 100 \mathrm{~mL})$, the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent evaporated under reduced pressure. Purification by column chromatography $(20 \rightarrow 40 \%$

EtOAc in hexane) gave benzyl alcohol $40(1.03 \mathrm{~g}, 75 \%)$ as a white solid. M.p. $85^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}=+29\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.30(50 \% \mathrm{EtOAc}$ in hexane) ; ${ }^{1} \mathrm{H}$ NMR: $\delta=7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.53$ (dd, $J=9.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.91(\mathrm{~m}, 3 \mathrm{H}), 5.20(\mathrm{dd}, J=10,7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.95-4.69 (m, 5H), 4.30-4.28 (m, 1H), $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, 3.07 ppm (brs, 1 H); ${ }^{13} \mathrm{C}$ NMR: $\delta=155.7,151.6,147.9,147.3,147.1$, $136.3,133.5,130.4,128.7,128.3,128.1,128.0,127.9,127.8,126.7,125.1$, $111.9,108.4,106.9,101.1,66.6,61.5,56.5,55.7,52.5,40.6 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=3404 \mathrm{br}, 2938 \mathrm{w}, 1700 \mathrm{~s}, 1484 \mathrm{~s}, 1378 \mathrm{~m}, 1276 \mathrm{~s}, 1243 \mathrm{~s}, 1082 \mathrm{~m}$, $1039 \mathrm{~cm}^{-1} \mathrm{~s}$; MS (ESI): m/z: 512 (15) $\left[M+\mathrm{Na}^{+}\right], 321$ (100), 291 (20); HRMS: m / z : calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{NNaO}_{7}: 512.1679$, found $512.1677\left[M+\mathrm{Na}^{+}\right]$.
Dihydronaphthalene 41: A solution of benzyl alcohol $40(670 \mathrm{mg}$, $1.37 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(525 \mathrm{mg}, 2.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C} . \mathrm{CBr}_{4}(663 \mathrm{mg}, 2.00 \mathrm{mmol})$ was added in one portion and the resulting solution was stirred at this temperature for 1 h . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with water ($2 \times$ 20 mL). The solvent was evaporated under reduced pressure to give the crude benzyl bromide. This was dissolved in anhydrous DMF (23 mL) and cooled to $0^{\circ} \mathrm{C}$. $\mathrm{NaH}(60 \%$ in mineral oil; $80 \mathrm{mg}, 2.00 \mathrm{mmol})$ was added in one portion and the suspension stirred at $0^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was quenched by the addition of cold water $(15 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted with EtOAc ($2 \times$ 20 mL), the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent evaporated under reduced pressure. Purification by column chromatography (20% EtOAc in hexane) gave dihydronaphthalene 41 ($581 \mathrm{mg}, 90 \%$) as a white solid. M.p. $169^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{25}=+119\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.46$ (50% EtOAc in hexane) $;{ }^{1} \mathrm{H}$ NMR: $\delta=7.50-7.35(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.44-6.38$ $(\mathrm{m}, 2 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{brs}, 1 \mathrm{H}), 5.28(\mathrm{brs}, 2 \mathrm{H}), 5.11$ (d, $J=18 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (d, $J=18 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, 3.60 ppm (brs, 1 H); ${ }^{13} \mathrm{C}$ NMR: $\delta=156.2,150.4,147.2,146.4,144.3$, $136.5,128.4,128.0,127.9,127.9,127.6,127.6,127.5,127.3,126.2,121.8$, $110.9,107.5,105.7,100.8,67.5,60.0,55.6,52.6,39.1,34.3 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=2985 \mathrm{w}, 1699 \mathrm{~s}, 1558 \mathrm{~m}, 1482 \mathrm{~m}, 1418 \mathrm{~m}, 1278 \mathrm{~m}, 1110 \mathrm{~m}$, $1037 \mathrm{~cm}^{-1} \mathrm{~m}$; MS (EI): $m / z: 494$ (90) [$\left.M+\mathrm{Na}^{+}\right], 363$ (20), 354 (21), 322 (22), 321 (100), 290 (21); HRMS: $m / z:$ calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NNaO}_{6}$: 494.1574, found $494.1579\left[M+\mathrm{Na}^{+}\right]$.
Bromohydrin 42: Following the procedure to prepare bromohydrins 34 and $\mathbf{3 5}$, the addition of NBS $(226 \mathrm{mg}, 1.27 \mathrm{mmol})$ to a solution of dihydronaphthalene $41(547 \mathrm{mg}, 1.16 \mathrm{mmol})$ in THF (10.4 mL) and $\mathrm{H}_{2} \mathrm{O}$ $(1.20 \mathrm{~mL})$ gave after work-up and column chromatography ($20 \% \mathrm{EtOAc}$ in hexane) bromohydrin 42 ($495 \mathrm{mg}, 75 \%$) as a pale brown solid. Mp $75^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+103\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.33(50 \% \mathrm{EtOAc}$ in hexane); ${ }^{1} \mathrm{H}$ NMR: $\delta=7.41-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.92(\mathrm{~s}, 2 \mathrm{H}), 5.30-5.27(\mathrm{~m}, 3 \mathrm{H}), 5.14(\mathrm{~d}, J=18 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=18 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.77$ (s, 3H), $1.37 \mathrm{ppm}(\mathrm{d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=155.9,150.8,148.9$, $147.6,144.9,136.4,128.9,128.5,128.1,128.1,127.7$, 127.6, 125.6, 124.0, $111.1,109.5,105.8,101.3,72.5,67.7,60.1,55.7,53.4,49.8,39.7,38.6 \mathrm{ppm} ;$ IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=3443 \mathrm{br}, 291 \mathrm{~s}, 1682 \mathrm{~s}, 1606 \mathrm{~m}, 1504 \mathrm{~s}, 1242 \mathrm{~s}, 1039 \mathrm{~cm}^{-1} \mathrm{~s}$; MS (ESI) $m / z 590$ (100) $\left[M+\mathrm{Na}^{+}\right], 550$ (45), 470 (26), 343 (20), 320 (25), 241 (35); HRMS: m / z : calcd for $\mathrm{C}_{28} \mathrm{H}_{26}{ }^{79} \mathrm{BrNNaO}_{7}: 590.0784$, found $590.0783\left[M+\mathrm{Na}^{+}\right]$.
Epoxide 43: Following the procedure to prepare epoxide 36, the addition of a solution of $\mathrm{KOt} \mathrm{Bu}(1 \mathrm{~m}$ in THF; $0.87 \mathrm{~mL}, 0.87 \mathrm{mmol})$ to bromohydrin 42 ($495 \mathrm{mg}, 0.87 \mathrm{mmol}$) in THF (175 mL) gave after work-up epoxide 43 (424 mg , quant.) as a pale yellow solid. M.p. $60^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+112$ ($c=1.0$ in CHCl_{3}); $R_{\mathrm{f}}=0.38\left(50 \%\right.$ EtOAc in hexane) $;{ }^{1} \mathrm{H}$ NMR: $\delta=$ $7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.16(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{brs}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H})$, 3.84-3.68 ppm (m, 9H); ${ }^{13} \mathrm{C}$ NMR: $\delta=156.6,150.8,148.6,146.9,144.6$, 136.3, 128.7, 128.7, 128.7, 128.4, 128.0, 127.9, 125.2, 124.2, 111.1, 110.0, 101.2, 67.6, 60.5, 55.7, 52.4, 51.1, 38.1, 36.8 ppm ; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=3441 \mathrm{~s}$, 1694s, 1488s, 1417m, 1236m, 1096m, $1036 \mathrm{~cm}^{-1} \mathrm{~m}$; MS (ESI): m/z: 510
(100) $\left[M+\mathrm{Na}^{+}\right], 488$ (25); HRMS: m/z: calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NNaO}_{7}$ 510.1523 , found $510.1522\left[M+\mathrm{Na}^{+}\right]$.
(+)-Homochelidonine (2): ${ }^{[10 c]} \mathrm{LiAlH}_{4}(36 \mathrm{mg}, 0.96 \mathrm{mmol})$ was added in one portion to a solution of epoxide $\mathbf{4 3}(117 \mathrm{mg}, 0.24 \mathrm{mmol})$ in 1,4-dioxane (5 mL) at RT and stirred at this temperature for 1 h . The reaction mixture was then heated to reflux for 18 h . After cooling to $0^{\circ} \mathrm{C}$ the excess LiAlH_{4} was destroyed by successive addition of acetone (1 mL), $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$; the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent evaporated under reduced pressure. Purification by column chromatography ($30 \% \mathrm{EtOAc}$ in hexane) gave (+)-homochelidonine (2) ($77 \mathrm{mg}, 87 \%$) as a white solid with an $e e$ of 99% as determined by chiral HPLC analysis (Chiralcel OD, hexane/2propanol 85:15, flow rate $1.0 \mathrm{~mL} \mathrm{~min}^{-1} ; t_{\mathrm{R}}=18.4$ (minor), 26.6 min (major)); m.p. $190-193^{\circ} \mathrm{C}$ (lit. $\left.{ }^{[10 \mathrm{c}]} \mathrm{m} . \mathrm{p} .187-188^{\circ} \mathrm{C}\right) ;[\alpha]=+120(c=1.0$ in EtOH) (lit. ${ }^{[10 c]}[\alpha]_{\mathrm{D}}^{25}=+128(c=1.1$ in EtOH$\left.)\right) ; R_{\mathrm{f}}=0.26(50 \%$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR: $\delta=7.75$ (brs, 1 H), 6.98 (d, $J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=$ $16 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{brd}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}$, $J=16 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=17.5,1 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=17.5,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.96(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=150.6$, 147.9, 145.1, 144.6, 130.3, 128.7, 128.7, 125.7, 123.1, 111.9, 111.7, 109.4, $100.9,71.9,62.6,60.1,55.9,55.1,42.5,41.8,39.6 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=$ 2914s, 1486m, 1278s, 1230m, 1081m, 1041m, $937 \mathrm{~cm}^{-1} \mathrm{~m}$; MS (EI): m/z: 369 (56) $\left[M^{+}\right], 351$ (100), 320 (35), 336 (20), 204 (22), 192 (19); HRMS (EI): m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5}: 369.1576$, found 369.1575 [M^{+}].
Diol 44: $\mathrm{BiCl}_{3}(3 \mathrm{mg}, 0.01 \mathrm{mmol})$ was added to a solution of epoxide 43 $(60 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{~mL})$ and $\mathrm{MeCN}(0.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 30 min the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with CHCl_{3} $(2 \times 5 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give a yellow oil. Purification by column chromatography ($50 \% \mathrm{EtOAc}$ in hexane) gave diol 44 (53 mg , $85 \%)$ as a white solid. M.p. $103-104^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{26}=+125(c=1.0$ in $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.21\left(70 \% \mathrm{EtOAc}\right.$ in hexane) ${ }^{1} \mathrm{H}$ NMR: $\delta=7.91(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.52(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H})$, $5.04(\mathrm{~d}, J=18 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=7.5,7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~d}, J=18 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.67(\mathrm{~m}, 7 \mathrm{H}), 2.90 \mathrm{ppm}(\mathrm{brs}, 2 \mathrm{H})$; ${ }^{13}$ C NMR: $\delta=156.3,150.7,148.0,147.7,144.4,136.6,131.3,128.8,128.4$, 128.1, 127.7, 126.7, 126.0, 125.3, 111.2, 107.1, 105.9, 101.4, 76.4, 70.8, 68.0, $60.2,55.8,53.2,40.6,38.7 \mathrm{ppm}$; IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}=3436 \mathrm{br}, 3016 \mathrm{~m}, 1700 \mathrm{~m}$, $1683 \mathrm{~m}, 1496 \mathrm{~m}, 1482 \mathrm{~m}, 1215 \mathrm{~m}, 1040 \mathrm{~cm}^{-1} \mathrm{~m}$; MS (ESI): m/z: 528 (100) $\left[M+\mathrm{Na}^{+}\right], 506(33)\left[\mathrm{M}+\mathrm{H}^{+}\right], 355(38), 337$ (30); HRMS: m/z: calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NO}_{8}$: 506.1809 , found $506.1820\left[M+\mathrm{H}^{+}\right]$.
(+)-Chelamidine (3): ${ }^{[10 \mathrm{c}]} \mathrm{LiAlH}_{4}(17 \mathrm{mg}, 0.44 \mathrm{mmol})$ was added in one portion to a solution of diol $\mathbf{4 4}(55 \mathrm{mg}, 0.11 \mathrm{mmol})$ in 1,4-dioxane (1 mL) at RT. The reaction mixture was then heated to reflux for 18 h . After cooling to $0^{\circ} \mathrm{C}$ the excess LiAlH_{4} was destroyed by successive addition of acetone $(1 \mathrm{~mL}), \mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$; the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent evaporated under reduced pressure. Purification by column chromatography (70% EtOAc in hexane) gave (+)-chelamidine (3) ($38 \mathrm{mg}, 90 \%$) as a white solid. M.p. $230-232{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[10 \mathrm{c}]}$ m.p. $\left.231-232{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}^{24}=+112(c=0.65$ in EtOH) (lit. ${ }^{[10 \mathrm{c}]}[\alpha]_{\mathrm{D}}^{24}=+120(c=0.3$ in EtOH) $) ; R_{\mathrm{f}}=0.15(70 \% \mathrm{EtOAc}$ in hexane) ; ${ }^{1} \mathrm{H}$ NMR: $\delta=7.65(\mathrm{brs}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ $(\mathrm{s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.95 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H})$, 4.12-4.06 (m, 1H), $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (d, $J=16 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{brs}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.05 \mathrm{ppm}(\mathrm{brs}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR: $\delta=150.6,148.4,146.9,144.5,130.9,129.5,128.8,127.0,123.2$, $111.8,110.5,110.5,101.3,73.0,62.2,60.2,56.0,55.0,42.5,42.4,36.9 \mathrm{ppm}$; IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}=3421 \mathrm{br}, 3017 \mathrm{~m}, 1652 \mathrm{w}, 1496 \mathrm{w}, 1487 \mathrm{~cm}^{-1} \mathrm{~m}$; MS (ESI): $m / z: 386$ (100) $\left[M+\mathrm{H}^{+}\right]$; HRMS: $m / z:$ calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{6}: 386.1598$, found $386.1598\left[M+\mathrm{H}^{+}\right]$.

MOM-benzyl ether 46: $\mathrm{NaBH}_{4}(662 \mathrm{mg}, 17.5 \mathrm{mmol})$ was added in one portion to aryl aldehyde $45(4.00 \mathrm{~g}, 17.5 \mathrm{mmol})$ in $\mathrm{MeOH}(80 \mathrm{~mL})$ at RT. After stirring for 1 h , the reaction was carefully diluted with $\mathrm{H}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$ and EtOAc $(200 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc $(2 \times 200 \mathrm{~mL})$; the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and solvent evaporated under reduced pressure to give the crude benzyl alcohol. Following the procedure to prepare benzyl ether 26, the addition of $\mathrm{LiBr}(304 \mathrm{mg}, 3.5 \mathrm{mmol})$ and p TsOH. $\mathrm{H}_{2} \mathrm{O}(333 \mathrm{mg}, 1.75 \mathrm{mmol})$ to the crude benzyl alcohol in dimethoxymethane (40 mL) gave after work-up and column chromatography (20% EtOAc in hexane) aryl bromide $46(3.51 \mathrm{~g}, 73 \%$) as a colorless oil which solidified on standing. M.p. $42-44^{\circ} \mathrm{C}$ (lit. ${ }^{[34]} 43-45^{\circ} \mathrm{C}$); $R_{\mathrm{f}}=0.33$ (25% EtOAc in hexane) ; ${ }^{1} \mathrm{H}$ NMR: $\delta=7.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 3.43 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR: $\delta=148.0,146.9,125.3,119.0,116.2,109.4,101.8,96.1,63.0$, 55.5 ppm ; IR (neat): $\tilde{v}=2884 \mathrm{~m}, 2822 \mathrm{w}, 1499 \mathrm{~m}, 1458 \mathrm{~s}, 1378 \mathrm{~m}, 1259 \mathrm{~s}$, 1238s, 1149s, $1046 \mathrm{~cm}^{-1} \mathrm{~s}$; MS (EI): m/z: 276 (65) $\left[M^{+}\right], 274$ (66) $\left[M^{+}\right]$, 213 (54), 215 (55), 135 (100); HRMS: m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{11}{ }^{79} \mathrm{BrO}_{4}$: 273.9841, found 273.9843 [$\left.M^{+}\right]$.

Boronic acid 47: Following the procedure to prepare boronic acid 25, the addition of $n \mathrm{BuLi}(1.6 \mathrm{~m}$ in hexanes; $7.50 \mathrm{~mL}, 12.0 \mathrm{mmol})$ to aryl bromide $46(3.00 \mathrm{~g}, 10.9 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ followed by $\mathrm{B}(\mathrm{OiPr})_{3}(7.55 \mathrm{~mL}$, 32.7 mmol), acidic work-up, column chromatography ($50 \% \mathrm{EtOAc}$ in hexane) and recrystallization $\left(\mathrm{H}_{2} \mathrm{O}\right)$ gave boronic acid $47(1.91 \mathrm{~g}, 73 \%)$ as a white solid. M.p. $148-150^{\circ} \mathrm{C} ; R_{\mathrm{f}}=0.20(50 \%$ EtOAc in hexane $)$; ${ }^{1} \mathrm{H}$ NMR: $\delta=7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}$, $2 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 3.41 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=149.0,146.7,130.6,127.1,121.1,108.2,100.9,95.1,62.1,55.9 \mathrm{ppm}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \tilde{v}=3380 \mathrm{br}, 2949 \mathrm{~s}, 1588 \mathrm{~m}, 1451 \mathrm{~m}, 1420 \mathrm{~m}, 1355 \mathrm{~s}, 1279 \mathrm{~cm}^{-1} \mathrm{~s}$; MS (EI) $m / z 240$ (10) $\left[M^{+}\right], 239$ (98), 179 (86), 178 (100), 148 (36), 135 (75), 76 (48); HRMS: m/z: calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BO}_{6}$: 240.0800, found 240.0808 [M^{+}].

1,2-Dihydronaphthalene 48: Following the procedure to prepare 1,2-dihydronaphthalene 29 (except the reaction was stirred for 6 h), the addition of the azabicycle $38(1.39 \mathrm{~g}, 4.33 \mathrm{mmol})$ and boronic acid $47(1.56 \mathrm{~g}$, $6.50 \mathrm{mmol})$ in $\mathrm{MeOH}(12 \mathrm{~mL})$ followed by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.41 \mathrm{~g}, 4.33 \mathrm{mmol})$ to $\left[\mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}\right] \quad(57 \mathrm{mg}, \quad 0.22 \mathrm{mmol})$ and (S)-tol-binap $(161 \mathrm{mg}$, 0.24 mmol) in $\mathrm{MeOH}(12 \mathrm{~mL})$ gave after column chromatography (15% EtOAc in hexane) dihydronaphthalene $48(1.90 \mathrm{~g}, 85 \%)$ as a colorless oil (which solidified on drying under high vacuum), with an ee of 90% as determined by chiral HPLC analysis (Chiralpak AD, hexane/2-propanol 85:15, flow rate $1 \mathrm{~mL} \mathrm{~min}^{-1} ; t_{\mathrm{R}}=22.6$ (minor), 40.2 min (major)); recrystallization (hexane) gave dihydronaphthalene $39(1.68 \mathrm{~g}, 75 \%)$ as a white solid with an ee of 99% as determined by chiral HPLC analysis. M.p. 55$57^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{26}=+6.1\left(c=1.2\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.35(50 \%$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR: $\delta=7.24-7.37(\mathrm{~m}, 5 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.64-6.58(\mathrm{~m}$, $3 \mathrm{H}), 6.50(\mathrm{dd}, J=9.5,2 \mathrm{~Hz}, 1 \mathrm{H}), 5.96-5.91(\mathrm{~m}, 5 \mathrm{H}), 5.18-5.14(\mathrm{~m}, 1 \mathrm{H})$, $5.02-4.92(\mathrm{~m}, 3 \mathrm{H}), 4.67-4.56(\mathrm{~m}, 4 \mathrm{H}), 4.21$ (brs, 1 H$), 3.36 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$; ${ }^{13}$ C NMR: $\delta=155.6,147.2,147.1,146.1,136.4,131.9,129.6,128.8,128.5$, 128.1, 127.8, 127.8, 127.8, 126.8, 122.2, 117.9, 108.2, 107.7, 107.0, 101.1, 101.1, 95.7, 66.6, 59.8, 55.5, 52.7, 40.0 ppm ; IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}=3393 \mathrm{~m}$, 2891s, 1714s, 1603w, 1505s, 1380s, $1233 \mathrm{~cm}^{-1}$ s; MS (ESI): m/z: 540 (100) $\left[M+\mathrm{Na}^{+}\right], 413$ (15), 395 (15), 305 (80), 275 (20); HRMS (ESI): m/z: calcd for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NNaO}_{8}$: 540.1628 , found $540.1615\left[M+\mathrm{Na}^{+}\right]$.
Benzyl alcohol 49: Following the procedure to prepare benzyl alcohol 40, the addition of conc. $\mathrm{HCl}(14 \mathrm{~mL})$ to dihydronaphthalene $48(1.00 \mathrm{~g}$, $1.93 \mathrm{mmol})$ in $i \operatorname{PrOH}(50 \mathrm{~mL})$ and THF $(50 \mathrm{~mL})$ gave after work-up and column chromatography (20% EtOAc in hexane) benzyl alcohol 49 $(667 \mathrm{mg}, 75 \%)$ as a oil which solidified as a white foam on drying under high vacuum. M.p. $80-83^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{26}=-69\left(c=2.7\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.40$ (50% EtOAc in hexane) ; ${ }^{1} \mathrm{H}$ NMR: $\delta=7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.15$ $(\mathrm{m}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.52$ (dd, $J=10,3 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 5.95$ (s, $2 \mathrm{H}), 5.90(\mathrm{dd}, J=10,3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (dd, $J=10,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.91$ (m, 2H), 4.83-4.78 (m, 2H), 4.72 (dd, $J=12,4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.27$ (m, 1 H), $3.02 \mathrm{ppm}(\mathrm{dd}, J=6,4.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=155.7,147.5,147.2$, $146.6,146.3,136.2,131.6,128.6,128.4,128.1,128.0,127.9,127.8,127.7$, $126.6,122.5,121.2,108.8,107.8,106.9,101.1,66.7,56.2,52.4,40.8 \mathrm{ppm}$;

IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}=3429 \mathrm{br}, 3018 \mathrm{~m}, 1703 \mathrm{~s}, 1505 \mathrm{~s}, 1484 \mathrm{~s}, 1455 \mathrm{~s}, 1215 \mathrm{~s}$, $1040 \mathrm{~cm}^{-1} \mathrm{~s}$; MS (EI): $m / z: 473$ (3) [$\left.M^{+}\right], 323$ (22), 322 (100), 91 (55); HRMS: m / z : calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{7}: 473.1475$, found $473.1483\left[M^{+}\right]$.
1,2-Dihydronaphthalene 50: Following the procedure to prepare dihydronaphthalene 41, the addition of $\mathrm{CBr}_{4}(501 \mathrm{mg}, 1.51 \mathrm{mmol})$ to a solution of benzyl alcohol 49 ($478 \mathrm{mg}, 1.01 \mathrm{mmol}$) and PPh_{3} ($396 \mathrm{mg}, 1.51 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ gave after work-up the crude benzyl bromide. The addition of NaH (60% in mineral oil; $60 \mathrm{mg}, 1.51 \mathrm{mmol}$) to the crude benzyl bromide in DMF (17 mL) gave after work-up and column chromatography ($20 \% \mathrm{EtOAc}$ in hexane) dihydronaphthalene $50(414 \mathrm{mg}$, $90 \%)$ as a white foam. M.p. $87-90^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+31\left(c=1.5\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $R_{\mathrm{f}}=0.20\left(20 \%\right.$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR: $\delta=7.52-7.28(\mathrm{~m}, 5 \mathrm{H})$, $6.70(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.63-6.61(\mathrm{~m}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.76$ (brs, 1 H$), 5.30(\mathrm{~s}, 2 \mathrm{H}), 5.04(\mathrm{brs}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=$ $13 \mathrm{~Hz}, 1 \mathrm{H}$), 3.58 ppm (brs, 1 H); ${ }^{13} \mathrm{C}$ NMR: $\delta=156.1,147.3$, 146.5, $145.3,142.8,136.4,128.5,128.1,128.0,128.0,127.9,127.7,127.5,127.4$, $119.2,114.4,107.6,106.7,105.6,101.2,100.9,67.6,53.1,38.4,34.7 \mathrm{ppm} ;$ IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}=2896 \mathrm{~s}, 1698 \mathrm{~s}, 1600 \mathrm{~m}, 1455 \mathrm{~m}, 1312 \mathrm{~s}, 1257 \mathrm{~s}, 1105 \mathrm{~s}$, $1050 \mathrm{~cm}^{-1} \mathrm{~m}$; MS (ESI): $m / z: 478$ (90) [$\left.M+\mathrm{Na}^{+}\right], 395$ (100), 305 (100), 304 (100); HRMS: m / z : calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NNaO}_{6}$: 478.1261, found $478.1271\left[M+\mathrm{Na}^{+}\right]$.
Bromohydrin 51: Following the procedure to prepare bromohydrins 34 and $\mathbf{3 5}$, the addition of NBS ($98 \mathrm{mg}, 0.55 \mathrm{mmol}$) to a solution of dihydronaphthalene $50(228 \mathrm{mg}, 0.50 \mathrm{mmol})$ in THF $(4.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ gave after work-up and column chromatography (20% EtOAc in hexane) bromohydrin $51(207 \mathrm{mg}, 75 \%)$ as a pale brown solid. M.p. $146^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+73\left(c=2.8\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.20(40 \%$ EtOAc in hexane) ; ${ }^{1} \mathrm{H}$ NMR: $\delta=7.42-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.01(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (s, 1H), $6.71(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ (s, 3 H$), 5.87(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ (d, $J=17 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (brs, 1 H), 1.73 (brs, 1 H), $1.62 \mathrm{ppm}(\mathrm{d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=$ $155.8,148.9,147.6,145.8,143.8,136.3,129.0,128.5,128.1,127.8,126.2$, $125.4,121.5,115.5,109.6,107.1,105.7,101.6,101.3,72.5,67.8,53.4,49.9$, $39.9,37.8 \mathrm{ppm}$; IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}=3445 \mathrm{br}, 3013 \mathrm{w}, 2893 \mathrm{w}, 1699 \mathrm{~s}, 1484 \mathrm{~m}$, $1261 \mathrm{~cm}^{-1} \mathrm{~m}$; MS (ESI): m/z: 574 (50) [$\left.M+\mathrm{Na}^{+}\right], 552$ (5), 536 (60), 454 (65), 304 (30), 244 (100); HRMS: m / z : calcd for $\mathrm{C}_{27} \mathrm{H}_{23}{ }^{79} \mathrm{BrNO}_{7}$: 552.0655 , found $552.0658\left[M+\mathrm{H}^{+}\right]$.

Epoxide 52: Following the procedure to prepare epoxide 36, the addition of a solution of $\mathrm{KO} t \mathrm{Bu}(1 \mathrm{~m}$ in THF; $0.36 \mathrm{~mL}, 0.36 \mathrm{mmol}$) to bromohydrin $51(200 \mathrm{mg}, 0.36 \mathrm{mmol})$ in THF $(70 \mathrm{~mL})$ gave after work-up epoxide $52(162 \mathrm{mg}, 95 \%)$ as a pale yellow solid. M.p. $85^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+101(c=$ 1.03 in $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.30\left(50 \%\right.$ EtOAc in hexane) ; ${ }^{1} \mathrm{H}$ NMR: $\delta=7.33-$ $7.29(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{brs}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}$, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.93-5.91(\mathrm{~m}, 3 \mathrm{H}), 5.76(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\operatorname{app~q}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ (d, $J=16 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.77 \mathrm{ppm}(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=152.0,148.7$, $147.0,145.8,143.1,136.4,128.6,128.6,128.4,128.3,128.1,128.0,127.6$, $125.2,121.5,117.4,110.0,107.1,101.2,67.5,58.2,52.5,51.4,37.8$, $37.0 \mathrm{ppm} ;$ IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}=2897 \mathrm{w}, 1699 \mathrm{~s}, 1557 \mathrm{w}, 1504 \mathrm{~m}, 1464 \mathrm{~s}, 1317 \mathrm{~m}$, 1250s, 1111m, $1040 \mathrm{~cm}^{-1} \mathrm{~s}$; MS (ESI): $m / z: 472$ (20) $\left[M+\mathrm{H}^{+}\right], 428$ (50), 411 (100), 321 (95), 320 (90), 293 (40); HRMS: m / z : calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{7}$: 472.1390, found $472.1378\left[M+\mathrm{H}^{+}\right]$.

Diol 53: Following the procedure to prepare diol 44, the addition of $\mathrm{BiCl}_{3}(3 \mathrm{mg}, 8 \mu \mathrm{~mol})$ to a solution of epoxide $52(40 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ and $\mathrm{MeCN}(0.4 \mathrm{~mL})$ gave after work-up and column chromatography (50% EtOAc in hexane) diol 53 ($36 \mathrm{mg}, 86 \%$) as a white solid. M.p. $120-122^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+93\left(c=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}=0.21(70 \%$ EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR: $\delta=7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}$, $5 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.89-5.88(\mathrm{~m}$, $2 \mathrm{H}), 5.86(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 5.69$ (brs, 1 H$), 5.26$ $(\mathrm{s}, 2 \mathrm{H}), 4.95-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 3.15(\mathrm{brs}, 1 \mathrm{H}), 2.43 \mathrm{ppm}(\mathrm{brs}$, 1H); ${ }^{13} \mathrm{C}$ NMR: $\delta=155.5,147.9,147.6,145.3,142.9,136.2,130.9,128.6$, 128.6, 128.2, 128.0, 128.0, 126.5, 122.3, 115.5, 106.9, 105.7, 101.2, 101.1, $76.4,70.6,67.9,53.3,40.7,37.7 \mathrm{pppm}$; IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}=3419 \mathrm{br}, 2897 \mathrm{w}$, 1684s, $1499 \mathrm{~m}, 1481 \mathrm{~s}, 1458 \mathrm{~m}, 1321 \mathrm{~m}, 1240 \mathrm{~m}, 1042 \mathrm{~cm}^{-1} \mathrm{~s}$; MS (ESI): m / z :

512 (40) $\left[M+\mathrm{Na}^{+}\right], 509$ (50) $\left[M^{+}\right], 490$ (38), 428 (35), 411 (90), 321 (100), 320 (95); HRMS: m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NNaO}_{8}: 512.1321$, found $512.1320\left[M+\mathrm{Na}^{+}\right]$.
(+)-Chelidonine (4): ${ }^{[14 \mathrm{~d}]}$ Following the procedure to prepare (+)-homochelidonine (2), the addition of $\mathrm{LiAlH}_{4}(9 \mathrm{mg}, 0.24 \mathrm{mmol})$ to epoxide $\mathbf{5 2}$ ($30 \mathrm{mg}, 0.06 \mathrm{mmol}$) in 1,4-dioxane (1.5 mL) gave after work-up and column chromatography (50% EtOAc in hexane) (+)-chelidonine (4) $(18 \mathrm{mg}, 88 \%)$ as a white solid. M.p. $212-213^{\circ} \mathrm{C}$ (lit. ${ }^{[14 \mathrm{a}]}$ m.p. $217-218^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}^{25}=+109(c=0.9$ in EtOH $) ; R_{\mathrm{f}}=0.20(70 \% \mathrm{EtOAc}$ in hexane $) ;$ ${ }^{1} \mathrm{H}$ NMR: $\delta=7.62(\mathrm{brs}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.23$ $(\mathrm{m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=15 \mathrm{~Hz}$, 1 H), 3.23 (dd, $J=17.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.10 (dd, J = 17.5, $4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99 $(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=148.0,145.5,145.2$, $142.9,131.2,128.7,125.5,120.4,117.0,111.9,109.5,107.4,101.2,101.0$, $72.3,62.8,53.9,42.4,42.0,39.6 \mathrm{ppm}$; IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}=3430 \mathrm{br}, 2878 \mathrm{~m}$, $2770 \mathrm{~m}, 1494 \mathrm{~m}, 1460 \mathrm{~s}, 1372 \mathrm{~s}, 1305 \mathrm{~cm}^{-1} \mathrm{~s}, 1245$; MS (ESI): m/z: 354 (100) $\left[M+\mathrm{H}^{+}\right]$; HRMS: $m / z:$ calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{5}: 354.1335$, found 354.1348 $\left[M+\mathrm{H}^{+}\right]$.
(+)-Chelamine (5): ${ }^{[10 \mathrm{c}]}$ Following the procedure to prepare $(+)$-chelamidine (3), the addition of $\mathrm{LiAlH}_{4}(9 \mathrm{mg}, 0.24 \mathrm{mmol})$ to diol $53(30 \mathrm{mg}$, 0.06 mmol) in 1,4 -dioxane (0.6 mL) gave after work-up and column chromatography ($60 \% \mathrm{EtOAc}$ in hexane) (+)-chelamine (5) $(21 \mathrm{mg}, 93 \%)$ as a white solid. M.p. $195^{\circ} \mathrm{C}\left(\right.$ lit. $\left..^{[10 c]} \mathrm{m} . p .201-202{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}^{25}=+102(c=0.8$ in EtOH) (lit. ${ }^{[10 \mathrm{c}]}[\alpha]_{\mathrm{D}}^{21}=+111(c=0.3$ in EtOH$\left.)\right) ; R_{\mathrm{f}}=0.20(70 \%$ EtOAc in hexane) ; ${ }^{1} \mathrm{H}$ NMR: $\delta=7.59$ (brs, 1 H), 6.96 (s, 1H), 6.81 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.99(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.98$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=$ $3 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$, $1.88 \mathrm{ppm}($ brs, 1 H$) ;{ }^{13} \mathrm{C}$ NMR: $\delta=148.5,147.0,145.5,142.9,130.9$, $130.5,126.9,120.5,117.0,111.7,110.5,107.6,101.4,101.3,77.8,73.0,62.4$, $53.8,42.4,37.1 \mathrm{ppm} ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): \tilde{v}=3387 \mathrm{br}, 3017 \mathrm{~m}, 2915 \mathrm{w}, 1502 \mathrm{~m}$, $1487 \mathrm{~m}, 1465 \mathrm{~m}, 1263 \mathrm{~m}, 1215 \mathrm{~cm}^{-1} \mathrm{~s}$; MS (ESI): $\mathrm{m} / \mathrm{z}: 370(100)\left[M+\mathrm{H}^{+}\right]$; HRMS: m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{6}: 370.1285$, found $370.1298\left[M+\mathrm{H}^{+}\right]$.
(+)-Norchelidonine (6): ${ }^{[14 \mathrm{~d}]}$ Epoxide $52(30 \mathrm{mg}, 0.06 \mathrm{mmol})$ and $10 \% \mathrm{Pd} /$ C $(6 \mathrm{mg}, 6 \mu \mathrm{~mol})$ were stirred in $\mathrm{EtOH}(0.6 \mathrm{~mL})$ under an H_{2} atmosphere (balloon) for 2 h . The reaction mixture was filtered through a pad of celite and the solvent evaporated under reduced pressure to give a yellow solid. Purification by column chromatography (25% hexane in $\mathrm{EtOAc})$ gave $(+)$-norchelidonine (6) $(16 \mathrm{mg}, 75 \%)$ as a white solid. M.p. $197^{\circ} \mathrm{C}$ (lit. $\left.{ }^{[10 \mathrm{~d}]} \mathrm{m} . \mathrm{p} .198-199^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}^{24}=+103\left(c=0.8\right.$ in EtOH) (lit. ${ }^{[10 \mathrm{~d}]}$ $[\alpha]_{\mathrm{D}}^{22}=+112(c=0.4$ in EtOH $\left.)\right) ; R_{\mathrm{f}}=0.20(100 \% \mathrm{EtOAc}) ;{ }^{1} \mathrm{H}$ NMR: δ $=6.81(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}$, $1 \mathrm{H}), 6.00(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.94(\mathrm{~m}, 3 \mathrm{H}), 4.34-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.20$ $(\mathrm{d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ (dd, $J=17,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (dd, $J=17,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.94 \mathrm{ppm}(\mathrm{t}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H})\left(\mathrm{OH}\right.$ and NH signals not visible) $;{ }^{13} \mathrm{C}$ NMR: $\delta=147.7$, $146.5,145.4,143.4,130.7,128.9,127.4,121.3,117.3,109.8,108.4,107.5$, $101.2,101.0,72.3,55.9,43.8,40.2,39.1 \mathrm{ppm}$; IR $\left(\mathrm{CHCl}_{3}\right): \tilde{v}=3321 \mathrm{br}$, $2891 \mathrm{~m}, 1501 \mathrm{~m}, 1483 \mathrm{~s}, 1457 \mathrm{~m}, 1354 \mathrm{~m}, 1262 \mathrm{~s}, 1231 \mathrm{~s}, 1075 \mathrm{~cm}^{-1} \mathrm{~m} ; \mathrm{MS}$ (ESI): $m / z: 340(100)\left[M+\mathrm{H}^{+}\right]$; HRMS: m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{5}$: 340.1179, found $340.1179\left[M+\mathrm{H}^{+}\right]$.

Acknowledgement

We thank the NSERC, Merck Frosst Canada, and the University of Toronto for support of our programs.

[^1]demic Press, New York, 1983, p. 185; d) T. Ishikawa, H. Ishii, Heterocycles 1999, 50, 627.
[2] a) F. von Bruchhausen, H. W. Bersch, Chem. Ber. 1930, 63, 2520; b) E. Späth, F. Kuffner, Chem. Ber. 1931, 64, 370; c) H. W. Bersch, Arch. Pharm. 1958, 291, 491; d) E. Seoane, An. R. Soc. Esp. Fis. Quim. Ser. B 1965, 61, 755; e) C.-Y. Chen, D. B. MacLean, Can. J. Chem. 1967, 45, 3001; f) S. Naruto, S. Arakawa, H. Kaneko, Tetrahedron Lett. 1968, 9, 1705; g) P. Krajewski, L. Kozerski, G. Grykiewicz, E. Bednarek, J. Sitowski, Magn. Reson. Chem. 2000, 38, 757.
[3] J. M. Probst, Ann. Pharm. 1839, 29, 113.
[4] a) J. Wolff, L. Knipling, Biochemistry 1993, 32, 13334; b) A. Panzer, A. M. Joubert, P. C. Bianchi, E. Hamel, J. C. Seegers, Eur. J. Cell Biol. 2001, 80, 111.
[5] J. W. Nowicky, G. Manolakis, D. Meijer, V. Vatanasapt, W. J. Brzosko, Drugs Exp. Clin. Res. 1992, 1.
[6] G. Grynkiewicz, E. Chojecka-Koryn, M. Gadzikowska, A. Chodkowska, E. Jagiello-Wójtowicz, Eur. J. Med. Chem. 2001, 36, 951.
[7] a) J. Slavik, L. Slaviková, Collect. Czech. Chem. Commun. 1957, 22, 279; b) J. Slavik, L. Slaviková, Collect. Czech. Chem. Commun. 1959, 24, 3141.
[8] a) J. Slavik, L. Slaviková, J. Brabenek, Collect. Czech. Chem. Commun. 1965, 30, 3697; b) L. Slaviková, Collect. Czech. Chem. Commun. 1968, 33, 635.
[9] N. Takao, N. Bessho, M. Kamigauchi, K. Iwasa, K. Tomita, T. Fujiwara, S. Fujii, Tetrahedron Lett. 1979, 20, 495.
[10] a) R. H. F. Manske, Can. J. Res. 1943, 21b, 140; b) N. Takao, M. Kamiguchi, K. Iwasa, N. Morita, Arch. Pharm. 1984, 317, 223; c) J. Slavik, E. Taborska, H. Bochorakova, Collect. Czech. Chem. Commun. 1994, 59, 429; d) M. Neèas, J. Dostál, I. Kejnovská, M. Vorlíèková, J. Slavík, J. Mol. Struct. 2005, 734, 1.
[11] J. Slavik, L. Slavíková, Collect. Czech. Chem. Commun. 1977, 42, 2686.
[12] J. Slavik, Collect. Czech. Chem. Commun. 1959, 24, 3601.
[13] a) I. Ninomiya, O. Yamamoto, T. Naito, Heterocycles 1977, 7, 137; b) I. Ninomiya, O. Yamamoto, T. Naito, J. Chem. Soc. Perkin Trans. 1 1983, 2171; c) M. Hanaoka, S. Yoshida, C. Mukai, Tetrahedron Lett. 1985, 26, 5163; d) M. Yoshida, T. Watanabe, T. Ishikawa, Tetrahedron Lett. 2002, 43, 6751.
[14] a) W. Oppolzer, K. Keller, J. Am. Chem. Soc. 1971, 93, 3836; b) M. Cushman, T.-C. Choong, J. T. Valko, M. P. Kolek, Tetrahedron Lett. 1980, 21, 3845 ; c) M. Cushman, T.-C. Choong, J. T. Valko, M. P. Kolek, J. Org. Chem. 1980, 45, 5067; d) W. Oppolzer, C. Robbiani, Helv. Chim. Acta 1983, 66, 1119; e) M. Hanaoka, S. Yoshida, M. Annen, C. Mukai, Chem. Lett. 1986, 739.
[15] a) J. L. Vicario, D. Badia, E. Dominguez, A. Crespo, L. Carrillo, Tetrahedron: Asymmetry 1999, 10, 1947; b) J. L. Vicario, D. Badia, E. Dominguez, L. Carrillo, Tetrahedron: Asymmetry 2000, 11, 1227.
[16] a) M. Lautens, C. Dockendorff, Org. Lett. 2003, 5, 3695; for examples of ring-opening reactions from our group prior to 2003, see: b) M. Lautens, K. Fagnou, S. Hiebert, Acc. Chem. Res. 2003, 36, 48 ; for ring-opening reactions after 2003, see: c) M. Lautens, S. Hiebert, J. Am. Chem. Soc. 2004, 126, 1437; d) P. Leong, M. Lautens, J. Org. Chem. 2004, 69, 2194; e) Y.-h. Cho, V. Zunic, H. Senboku, M. Olsen, M. Lautens, J. Am. Chem. Soc. 2006, 128, 6837; f) Y.-h. Cho, A. Fayol, M. Lautens, Tetrahedron: Asymmetry 2006, 17, 416; for arylative ring-openings of azabicyclic alkenes reported by others, see: g) D. K. Rayabarapu, C.-H. Cheng, Acc. Chem. Res. 2007, 40, 971; h) R. G. Arrayás, S. Cabrera, J. C. Carretero, Synthesis 2006, 1205.
[17] H. A. McManus, M. J. Fleming, M. Lautens, Angew. Chem. 2007, 119, 437; Angew. Chem. Int. Ed. 2007, 46, 433.
[18] A. Rudolph, M. Lautens, unpublished results.
[19] C. F. van Nostrum, S. J. Picken, A.-J. Schouten, R. J. M. Nolte, J. Am. Chem. Soc. 1995, 117, 9957.
[20] B. I. Alo, A. Kandil, P. A. Patil, M. J. Sharp, M. A. Siddiqui, V. Snieckus, P. D. Josephy, J. Org. Chem. 1991, 56, 3763.
[21] J.-L. Gras, Y.-Y. K. W. Chang, A. Guerin, Synthesis 1985, 74.
[22] A. M. Qandil, D. Ghosh, D. E. Nichols, J. Org. Chem. 1999, 64, 1407.
[23] See Supporting Information.
[24] C. Hermann, G. C. G. Pais, A. Geyer, S. M. Kühnert, M. E. Maier, Tetrahedron 2000, 56, 8461.
[25] D. L. Boger, S. R. Brunette, R. M. Garbaccio, J. Org. Chem. 2001, 66, 5163.
[26] R. E. Ireland, M. D. Varney, J. Org. Chem. 1986, 51, 635.
[27] B. Cao, H. Park, M. M. Joullié, J. Am. Chem. Soc. 2002, 124, 520.
[28] A. S.-Y. Lee, Y.-J. Hu, S.-F. Chu, Tetrahedron 2001, 57, 2121.
[29] H. Monti, G. Léandri, M. Klos-Ringuet, C. Corriol, Synth. Commun. 1983, 13, 1021.
[30] K.-F. Chan, Y. Zhao, L. M. C. Chow, T. H. Chan, Tetrahedron 2005, 61, 4149.
[31] N. Kumagai, S. Matsunaga, T. Kinoshita, S. Harada, S. Okeda, S. Sakamoto, K. Yamaguchi, M. Shibasaki, J. Am. Chem. Soc. 2003, 123, 2169.
[32] R. S. Lott, V. S. Chauhan, C. H. Stammer, J. Chem. Soc. Chem. Commun. 1979, 495
[33] D. L. Hughes, Org. React. 1992, 42, 335.
[34] I. Mohammadpoor-Baltork, S. Tangestaninejad, H. Aliyan, V. Mirkhani, Synth. Commun. 2000, 30, 2365.
[35] A. Morin Deveau, T. L. Macdonald, Tetrahedron Lett. 2004, 45, 803.
[36] A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
[37] T. J. Brenstrum, M. A. Brimble, R. J. Stevenson, Tetrahedron 1994, 50, 4897.

Received: November 11, 2007
Published online: January 17, 2008

[^0]: [a] Dr. M. J. Fleming, Dr. H. A. McManus, A. Rudolph, W. H. Chan, J. Ruiz, Dr. C. Dockendorff, Prof. M. Lautens

 Department of Chemistry
 Davenport Chemical Laboratories, University of Toronto 80 St. George St., Toronto, ON M5S 3H6 (Canada) Fax: (+1) 416-946-8185
 E-mail: mlautens@chem.utoronto.ca
 Supporting information for this article is available on the WWW under http://www.chemeurj.org/ or from the author.

[^1]: [1] a) M. Shamma, The Isoquinoline Alkaloids, Academic Press, New York, 1972, p. 315; b) M. Shamma, J. L. Moniot, The Isoquinoline Alkaloids Research, 1972-1977, Plenum Press, New York, 1978, p. 271; c) V. Simanek in The Alkaloids, Vol. 26 (Ed.: A. Brossi), Aca-

