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Abstract
A series of novel indazole derivatives has been synthesized and evaluated for anticancer, antiangiogenic, and antioxidant
activities. The capability of the synthesized compounds 11a–x to hinder the viability of three human cancer cells lines,
HEP3BPN 11 (liver), MDA 453 (breast), and HL 60 (leukemia), were assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,
5-diphenyltetrazolium bromide (MTT) reduction assay. Among the compounds 11a–x screened, 11c and 11d showed the
higher inhibitory activity on the viability of HEP3BPN 11 (liver), when compared with the standard methotrexate. These
compounds were further tested to evaluate their potential to inhibit the proangiogenic cytokines associated with tumor
development. Compound 11c was found to be a potent antiangiogenic agent against TNFα, VEGF, and EGF, whereas 11d
showed potent antiangiogenic activity against TNFα, VEGF, IGF1, TGFb, and leptin inhibition. All the compounds 11a–x
were screened for their antioxidant activities using 2,2-diphenyl-1-picryl hydrazine (DPPH), hydroxyl (OH), and superoxide
radical (SOR) scavenging activity. Compounds 11n, 11p, 11q, and 11v have shown significant OH radical scavenging
activities, also compounds 11c, 11h, and 11k were found to have a DPPH radical scavenging activity and compounds 11a and
11m exhibited better SOR scavenging activity when compared with the reference compound ascorbic acid. In silico molecular
docking analysis revealed important structural insights behind observed anti TNFα effect by present indazole compounds.
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Introduction

Cancer is a life-threatening disease and it is one of the major
causes of death in many countries. Cancer has become a
public health burden around the world (Wang et al. 2012). It

is class of diseases in which a group of cells display
uncontrolled growth, invasion, and sometimes metastasis
(Workman and Kaye 2002; Chabner and Roberts 2005).
Current cancer chemotherapy comprises numerous natural
and synthetic drugs while several novel formulations are
undergoing clinical trials (Wang et al. 2017). Still, current
drugs are fails to kill the cancer cells selectively, and also
evoke various side effects. Strategies to block cell division
by affecting the mitotic spindle is one of the major thrust
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areas of research for the advancement of cancer drug dis-
covery (Honore et al. 2005; Pellegrini and Budman 2005).

Angiogenesis is a process of development of new blood
vessels from the preexisting vessels. The growing tumor
requires angiogenesis, which is triggered by chemical sig-
nals from the tumor cells (Gacche and Assaraf 2018).
Various proteins have been reported as angiogenesis acti-
vators and inhibitors. Intensity of expression of angiogenic
activators demonstrates the aggressiveness of solid tumor.
This process is controlled by various pro- and anti-
angiogenic factors, which primarily includes vascular
endothelial growth factor (VEGF), basic fibroblast growth
factor (FGFb), epidermal growth factor (EGF), and trans-
forming growth factor-beta (TGFb). The mechanism of
action of each of these factors is different, as are their origin
and the stimuli for their production (Gacche and Meshram
2014). The angiogenic switch refers to the balance among
pro- and anti-angiogenic factors. Accordingly, profiling of
these factors is crucial to understand the angiogenesis. The
growth of tumors is dependent on their capability to induce
angiogenesis as the blood vessels are required to supply the
oxygen and nutrients to the growing tumor and it fails to
grow beyond the 2 mm3 size without the vascular support.
There has been huge attention taken in the targeting of
tumor vasculature and many efforts have been directed
towards the development of potential antiangiogenic agents
that could interrupt the tumor angiogenesis. SFilization of
tumor vasculature by antiangiogenic drugs is a promising
model for improving the efficiency of cytotoxic che-
motherapy (Jain 2008; Gacche 2015).

Free radicals are hyper reactive molecules or chemical
species possessing unpaired electrons and are implicated in
causation of oxidative stress: a culprit in variety of human
ailments. Oxidative stress refers to an imbalance between
the oxidants and antioxidants, leading to cellular damage
and dysfunction (Lobo et al. 2010). Oxidative stress can
damage lipids, proteins, enzymes, carbohydrates, and DNA
in cells and tissues which ultimately results into the mem-
brane damage, and even lead to cell death induced by DNA
fragmentation and lipid peroxidation (Birben et al. 2012).
These adverse effects of oxidative stress are associated with
several human diseases including cancer. Therefore cancer
chemotherapy agents possessing antioxidant potential are
more appreciated in the mainstream of pharmaceutical
research.

Among heterocycles, the condensed heterocyclic systems
are of biological and pharmaceutical importance and
therefore, design and strategy for their synthesis is impor-
tant. Indazole derivatives constitute a key structural moiety
in pharmaceutically relevant structures that have found
applications in the treatment of antitumor (Baraldi et al.
2001), anti-HIV (Rodgers et al. 1996), anti-inflammatory
(Picciola et al. 1981), antidepressant (Ikeda et al. 1979),

antimicrobial (Li et al. 2003), and contraceptive activities
(Corsi et al. 1976). The 2H-indazoles have been shown to
possess potent levels of affinity for 5-HT1A receptors
(Andronati et al. 1999), estrogen receptor (De Angelis et al.
2005), and the imidazoline I2 receptor (Saczewski et al.
2003). Apart from this they have potential as herbicides
(Natchev 1988), insecticides (Emsley and Hall 1976), fun-
gicides (Maier and Spoerri 1991), and antiviral agents
(Huang and Chen 2000) as well as their role for antibody
generation (Hirschmann et al. 1994).

From the battery of proangiogenic cytokines tested in this
report, TNFα is a major player that participates by exhilar-
ating cell proliferation, migration, and promoting cell dif-
ferentiation in the process of angiogenesis (Friedmann et al.
2006). TNFα performs its proangiogenic function after
attaining trimeric form by activating its two definite receptors
viz75 kDa protein (p75) and/or 55 kDa protein (p55) (Gacche
and Meshram 2013). Various therapeutic agents have been
proposed that target this protein protein interaction namely
adalimumab, infliximab, and etanercept (Ma et al. 2014).
These agents are essentially antibodies or chimeric proteins
which prevents binding of TNFα to their corresponding
receptors. However, there are only a handful of reports that
focused on identification of small molecule TNFα inhibitors
(Ma et al. 2014; He et al. 2005; Blevitt et al. 2017). In light of
this current state-of-the-art, we initiated separate molecular
docking analysis and in vitro screening set up to evaluate
TNFα inhibitory potential of proposed indazole compounds.

Material and methods

Chemistry

Synthesis of 5-bromo-2-methylbenzoic acid 2

To a mixture of 2-methylbenzoic acid 1 (15 g, 110.29 mmol)
in conc. H2SO4 (60ml), 1,3-dibromo-5, 5-dimethyl-2,
4-imidazolidinedione (18.19 g, 60.66 mmol) was added and
reaction mixture was stirred at room temperature for 5 h.
After completion of reaction, reaction mixture was slowly
poured onto ice-cold water (400 ml). Solid was precipitated
out, filtered and dried under vacuum to afford compound 2.
Yield: 88.00%. 1HNMR (DMSO-d6, 400MHz): δ 13.16 (s,
1H), 7.91 (s, 1H), 7.63 (d, J= 8.0 Hz, 1H), 7.27 (d, J=
8.4 Hz, 1H), 2.50 (s, 3H). LCMS: m/e 215/217 (M+ 1).

Synthesis of 5-bromo-2-methyl-3-nitrobenzoic acid 3

To a stirred mixture 2 (20 g, 93.023 mmol) was added to
cooled conc. H2SO4 (100 ml) at −10 °C lot wise. After
10 min nitrating mixture (prepared as mixing KNO3 (9.39 g,
93.023 mmol) with conc. H2SO4 (100 ml) was added drop
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wise at −10 °C. Resulting reaction mass was stirred at
−10 °C for 1 h. On completion, reaction mixture was
poured on ice-cold water; Solid was precipitated out, fil-
tered and dried under vacuum to afford compound 3.

Yield: 82.50%. 1HNMR (DMSO-d6, 400MHz) δ 13.85
(bs, 1H); 8.37 (s, 1H); 8.18 (s, 1H); 2.50 (s, 3H). LCMS:
m/e 260/262 (M+ 1).

Synthesis of methyl 5-bromo-2-methyl-3-nitrobenzoate 4

To a stirred solution of 5-bromo-2-methyl-3-nitrobenzoic
acid 3 (15 g, 57.69 mmol) in methanol (150 ml), was added
catalytic conc. H2SO4. Resulting reaction mass was stirred
at 65 °C for 15 h. On completion, methanol was evaporated
till dryness. The residue was re-dissolved in ethyl acetate
and washed with sodium bicarbonate solution; organic layer
was finally washed with brine, dried over sodium sulfate
and concentrated to afford desired compound 4. Yield:
68.50%. 1HNMR (DMSO-d6, 400MHz) δ 8.37 (s, 1H);
8.19 (s, 1H); 3.88 (s, 3H); 2.41 (s, 3H). LCMS: m/e 274/276
(M+ 1).

Synthesis of methyl 3-amino-5-bromo-2-methylbenzoate 5

A mixture of 5-bromo-2-methyl-3-nitrobenzoate 4 (5 g,
18.2 mmol) in methanol (50 ml), NH4Cl solution (1.9 g in
10 ml water, 36.4 mmol) and Zn powder (3.5 g, 54.7 mmol)
was stirred at room temperature for 1.5 h. On completion of
reaction (TLC), reaction mass was filtered and filtrate was
concentrated till dry. The resulting solid was dissolved in
saturated sodium bicarbonate solution and extracted in
ethyl acetate (3 × 70 ml). The combined organic layers
were dried over, MgSO4, filtered and concentrated to
afford compound 5.

Yield: 96.2%. 1HNMR (DMSO-d6, 400MHz): δ 6.96 (s,
2H), 5.44 (bs, 2H), 3.78 (s, 3H), 2.11 (s, 3H). LCMS: m/e
244/246 (M+ 1).

Synthesis of methyl 6-bromo-1H-indazole-4-carboxylate 6

A mixture of methyl 3-amino-5-bromo-2-methylbenzoate 5
(3 g, 12.2 mmol) in acetic acid (120 ml) was added a solu-
tion of potassium nitrite (4.2 g, 61.4 mmol) in water (3 ml)
at room temperature and reaction mixture stirred at room
temperature for 4 h. On completion of reaction (TLC), the
resulting gummy mass was dissolved in saturated sodium
bicarbonate solution and extracted in ethyl acetate (3 ×
50 ml), the organic layers was washed with brine. The
combined organic layers were dried over MgSO4, filtered
and concentrated under vacuum before being stirred in
petroleum ether for 10 min, filtered and dried to afford
compound 6.

Yield: 31%. 1HNMR (DMSO-d6, 400MHz): δ 13.57 (bs,
1H), 8.41 (s, 1H), 8.11 (s, 1H), 7.84 (s, 1H), 3.95 (s, 3H).
LCMS: m/e 255/257 (M+ 1).

Synthesis of methyl 6-bromo-1-cyclopentyl-1H-indazole-4-
carboxylate 8N1 and 8N2

A mixture of methyl 6-bromo-1H-indazole-4-carboxylate 6
(1 g, 3.9 mmol) and cyclopentylboronic acid 7 (0.894 g,
7.8 mmol) in 1,2-dichloroethane (15 ml) was added sodium
carbonate (0.831 g, 7.8 mmol) and purged with oxygen for
15 min, followed by addition of hot suspension of copper
(ll) acetate (0.711 g, 3.9 mmol) and pyridine (0.310 g,
3.9 mmol) in 1,2-dichloroethane. The reaction mixture
stirred at 70 °C for 18 h. On completion of reaction (TLC),
reaction mixture was quenched with saturated ammonium
chloride solution, diluted with dichloromethane and filtered
through celite. The layers were separated and aqueous layer
was extracted in dichloromethane (3 × 50 ml). The combine
organic layers were washed with brine dried over MgSO4,
filtered and concentrated in vacuum. The crude product was
purified by silica gel chromatography (2–25% gradient
ethyl acetate in hexane) wherein less polar product was
observed to be the desired isomer 8N1 and undesired
isomer 8N2.

8N1. Yield: 30%. 1HNMR (DMSO-d6, 400MHz): δ 8.40
(s, 1H), 8.37 (s, 1H), 7.81 (d, J= 1.52 Hz,1H), 5.26 (q, J=
7.07 Hz, 1H), 3.95 (s, 3H), 2.17–2.08 (m, 2H), 2.01–1.93
(m, 2H), 1.92–1.82 (m, 2H), 1.73–1.64 (m, 2H). LCMS:
m/e 323.3/325.3 (M+ 1).

8N2. Yield: 15%. 1HNMR (DMSO-d6, 400MHz): δ 8.70
(s, 1H), 8.22 (s, 1H), 7.79 (d, J= 1.2 Hz,1H), 5.23 (q, J=
7.05 Hz, 1H), 3.93 (s, 3H), 2.22–2.19 (m, 2H), 2.09–2.06
(m, 2H), 1.89–1.88 (m, 2H), 1.71–1.69 (m, 2H). LCMS:
m/e 323.3/325.3 (M+ 1).

Synthesis of 6-bromo-1-cyclopentyl-1H-indazole-4-
carboxylic acid 9N1

A mixture of methyl 6-bromo-1-cyclopentyl-1H-indazole-4-
carboxylate 8N1 (5 g, 15.4 mmol) in methanol (50 ml) was
added a solution of lithium hydroxide (1.1 g, 46.4 mmol) in
water (4 ml) at room temperature and reaction mixture
stirred at 65 °C for 3 h. On completion of reaction (TLC),
methanol was removed under reduced pressure and acid-
ified using dilute HCl up to pH 5 Solid precipitate was
filtered and dried under vacuum to afford compound 9N1.

Yield: 87%. 1HNMR (DMSO-d6, 400MHz): δ 8.38 (s,
1H), 8.33 (s, 1H), 7.80 (d, J= 0.76 Hz, 1H), 5.24 (quin,
J= 6.6 Hz, 1H), 2.11–2.13 (m, 2H), 1.95–1.99 (m, 2H),
1.86–1.88 (m, 2H), 1.67–1.68 (m, 2H). LCMS: m/e 309.02/
311.02 (M+ 1).
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Synthesis of 6-bromo-1-cyclopentyl-1H-indazole-4-
carboxylic acid-substituted amide derivatives 11a–x

A mixture of 6-bromo-1-cyclopentyl-1H-indazole-4-car-
boxylic acid 9N1 (500 mg, 1.0 eq) in DMF (5 ml) was
added N, N-disopropyl ethyl amine (3.0 eq), HATU (1.5 eq)
and the reaction mixture was stirred at room temperature for
15 min. To the resulting mixture substituted amine 10 (1.2
eq) was added and stirred at room temperature for 6–12 h.
On completion of reaction (TLC), reaction mass was poured
into ice-cold water and extracted in ethyl acetate (3 ×
50 ml). The combine organic layers were washed with
brine, dried over MgSO4, filtered and concentrated in
vacuum. The crude product was purified by silica gel
chromatography (5–70% gradient ethyl acetate in hexanes)
to afford compound 11a–x.

Analytical spectral data

6-bromo-1-cyclopentyl–N-(4-bromophenyl)-1H-indazole-4-
carboxamide (11a)

Off white solid, MP: 168–169 °C, 1HNMR (DMSO-d6,
400MHz): δ 10.58 (bs, 1H), 8.36 (s, 1H), 8.32 (s, 1H), 7.89
(s, 1H), 7.79 (d, J= 8.0 Hz, 2H), 7.56 (d, J= 8.4 Hz, 2H),
5.28–5.25 (m, 1H), 2.14–2.10 (m, 2H), 1.98–1.87 (m, 4H),
1.70–1.68 (m, 2H). 13C NMR (CDCl3, 400MHz): δ 164.07,
140.26, 136.58, 132.51, 132.00, 128.91, 123.03, 121.88,
120.60, 119.17, 117.52, 115.44, 59.75, 32.34, 24.54.
LCMS: m/e 462/464 (M+ 1).

6-bromo-N,1-dicyclopentyl-1H-indazole-4-carboxamide
(11b)

Off white solid, MP: 141–142 °C, 1HNMR (DMSO-d6,
400MHz): δ 8.52 (d, J= 6.4 Hz, 1H), 8.32 (s, 1H), 8.20 (s,
1H), 7.71 (s, 1H), 5.23–5.20 (m, 1H), 4.29–4.26 (m, 1H),
2.11–2.09 (m, 2H), 1.98–1.86 (m, 6H), 1.70–1.68 (m, 4H),
1.55–1.53 (m, 4H). 13C NMR (CDCl3, 400MHz): δ 165.46,
140.57, 132.66, 128.69, 122.84, 120.77, 118.33, 114.74,
58.68, 51.85, 33.24, 32.35, 24.69, 23.82. LCMS: m/e 376/
378 (M+ 1).

6-bromo-1-cyclopentyl–N-(4-chlorophenyl)-1H-indazole-4-
carboxamide (11c)

Off white solid, MP: 143–144 °C, Ircm−1 (KBr): 3324,
2967, 1658, 1590, 1509, 1396. 1HNMR (DMSO-d6,
400MHz): δ 10.59 (bs, 1H), 8.36 (s, 1H), 8.31 (s, 1H), 7.89
(s, 1H), 7.84 (d, J= 8.8 Hz, 2H), 7.43 (d, J= 8.4 Hz, 2H),
5.28–5.24 (m, 1H), 2.14–2.11 (m, 2H), 2.00–1.96 (m, 2H),
1.88–1.86 (m, 2H), 1.69–1.68 (m, 2H). 13C NMR (CDCl3,
400MHz): δ 140.35, 136.14, 132.58, 130.05, 128.14,

128.08, 123.06, 121.66, 120.79, 119.21, 115.59, 59.89,
32.40, 24.69. LCMS: m/e 418/420 (M+ 1).

6-bromo-1-cyclopentyl-N-phenyl-1H-indazole-4-
carboxamide (11d)

Light brown solid, MP: 152–153 °C, Ircm−1 (KBr): 2957,
2870, 2363, 1655, 1597, 1535, 1443. 1HNMR (DMSO-d6,
400MHz): δ 10.49 (s, 1H), 8.36 (s, 1H), 8.30 (s, 1H), 7.89
(s, 1H), 7.80 (d, J= 8.0 Hz, 2H), 7.37 (t, J= 7.6 Hz, 2H),
7.13 (t, J= 7.2 Hz, 1H), 5.28–5.25 (m, 1H), 2.14–2.12 (m,
2H), 2.00–1.88 (m, 4H), 1.70–1.68 (m, 2H). 13C NMR
(CDCl3, 400MHz): δ 164.10, 140.11, 133.75, 133.06,
128.86, 127.86, 122.27, 125.78, 123.48, 121.15, 120.88,
118.65, 116.41, 115.18, 58.75, 32.39, 24.18. LCMS: m/e
384/386 (M+ 1).

6-bromo-1-cyclopentyl-N-(4-fluorophenyl)-1H-indazole-4-
carboxamide (11e)

Off white solid, MP: 154–155 °C, Ircm−1 (KBr): 3264,
3061, 2953, 1649, 1590, 1551. 1HNMR (DMSO-d6,
400MHz): δ 10.52 (bs, 1H), 8.36 (s, 1H), 8.31 (s, 1H), 7.87
(s, 1H), 7.83–7.80 (m, 2H), 7.21 (t, J= 8.8 Hz, 2H),
5.28–5.23 (m, 1H), 2.14–2.11 (m, 2H), 2.00–1.96 (m, 2H),
1.88–1.86 (m, 2H), 1.70–1.68 (m, 2H). 13C NMR (CDCl3,
400MHz): δ 164.29, 160.94, 158.51, 140.36, 133.55,
132.69, 128.19, 122.88, 122.28, 129.75, 118.18, 115.85,
115.58, 58.78, 32.38, 24.69. LCMS: m/e 402/404 (M+ 1).

6-bromo-1-cyclopentyl-N-(3,4-dichlorophenyl)-1H-indazole-
4-carboxamide (11f)

White solid, MP: 235–236 °C, 1HNMR (DMSO-d6,
400MHz): δ 10.71 (bs, 1H), 8.45 (s, 1H), 8.25 (s, 1H), 8.19
(d, J= 2.4 Hz, 1H), 7.90 (s, 1H), 7.69 (d, J= 8.4 Hz, 1H),
7.56 (d, J= 8.8 Hz, 1H), 5.26–5.21 (m, 1H), 2.15–2.09 (m,
2H), 2.02–1.94 (m, 2H), 1.92–1.87 (m, 2H), 1.72–1.67 (m,
2H). 13C NMR (CDCl3, 400MHz): δ 164.46, 140.46,
133.70, 132.64, 131.16, 128.99, 126.23, 124.25, 121.82,
120.84, 119.35, 117.12, 115.47, 113.25, 59.80, 32.39,
24.61. LCMS: m/e 452/454 (M+ 1).

6-bromo-1-cyclopentyl-N-(aphthalene-1-yl)-1H-indazole-4-
carboxamide (11g)

Light gray solid, MP: 183–184 °C, 1HNMR (DMSO-d6,
400MHz): δ 10.64 (bs, 1H), 8.38 (s, 1H), 8.34 (s 1H), 8.09
(s, 1H), 8.09–8.01 (m, 1H), 8.00–7.98 (m, 1H), 7.89 (d, J=
7.6 Hz, 1H). 7.66 (d, J= 7.2 Hz, 1H), 7.59 (s, 1H), 7.59 (q,
2H), 5.32–5.25 (m, 1H), 2.17–2.13 (m, 2H), 2.04–1.97 (m,
2H), 1.92–1.86 (m, 2H), 1.72–1.69 (m, 2H). 13C NMR
(CDCl3, 400MHz): δ 140.11, 133.75, 133.32, 133.06,
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128.86, 128.64, 127.86, 122.27, 125.78, 125.21, 123.48,
123.10, 121.15, 120.88, 118.65, 118.41, 116.41, 115.18,
58.75, 38.61, 51.86, 24.18. LCMS: m/e 434/436 (M+ 1).

6-bromo-1-cyclopentyl–N-(4-chloro-3-nitrophenyl)-1H-
indazole-4-carboxamide (11h)

Light yellow solid, MP: 203–204 °C, 1HNMR (DMSO-d6,
400MHz): δ 10.95 (bs, 1H), 8.62 (s, 1H), 8.38 (d, J=
14.4 Hz, 1H), 8.08 (d, J= 8.4 Hz, 1H), 7.98 (s, 1H), 7.80
(d, J= 8.8 Hz, 1H), 7.72 (d, J= 8.0 Hz, 1H), 5.29–5.26 (m,
1H), 2.33–2.31 (m, 2H), 2.00–1.98 (m, 2H), 1.88–1.86 (m,
2H), 1.70–1.68 (m, 2H). 13C NMR (CDCl3, 400MHz): δ
164.22, 140.35, 136.14, 130.12, 128.14, 128.18, 123.06,
121.66, 120.79, 119.21, 115.59, 59.89, 32.41, 24.69.
LCMS: m/e 463/465 (M+ 1).

6-bromo-1-cyclopentyl-N-(4-acetylphenyl)-1H-indazole-4-
carboxamide (11i)

Off white solid, MP: 168–169 °C, 1HNMR (DMSO-d6,
400MHz): δ 10.76 (bs, 1H), 8.38 (s, 1H), 8.34 (s, 1H), 7.98
(d, J= 5.2 Hz, 4H), 7.93 (s, 1H), 5.29–5.26 (m, 1H), 2.56
(s, 3H), 2.16–2.12 (m, 2H), 2.01–1.98 (m, 2H), 1.89–1.86
(m, 2H), 1.71–1.68 (m, 2H). 13C NMR (CDCl3, 400MHz):
δ 198.11, 164.06, 156.82, 140.38, 132.75, 130.67, 129.50,
122.96, 122.32, 120.83, 119.26, 115.13, 114.25, 59.75,
32.37, 29.73, 24.61. LCMS: m/e 426/428 (M+ 1).

6-bromo-1-cyclopentyl-N-(1-phenylethyl)-1H-indazole-4-
carboxamide (11j)

Off white solid, MP: 148–149 °C, Ircm−1 KBr): 3308,
2978, 2363, 1638, 1597, 1545, 1443. 1HNMR (DMSO-d6,
400MHz): δ 9.04 (s, 1H), 8.30 (s, 1H), 8.23 (s, 1H), 7.83 (s,
1H), 7.41 (d, J= 6.8 Hz, 1H), 7.34 (t, J= 6.8 Hz, 2H),
7.24–7.23 (m, 1H), 5.22–5.20 (m, 1H), 2.11–2.09 (m, 4H),
1.96–1.94 (m, 2H), 1.87–1.85 (m, 2H), 1.68–1.66 (m, 2H),
1.50 (d, J= 6.4 Hz, 3H). 13C NMR (CDCl3, 400MHz): δ
164.93, 142.69, 140.17, 132.54, 129.01, 128.68, 127.42,
126.13, 122.89, 120.59, 119.20, 114.79, 59.52, 49.38,
32.60, 32.23, 24.48, 21.64. LCMS: m/e 412.09/414.09
(M+ 1).

6-bromo-1-cyclopentyl-N-(4-nitrophenyl)-1H-indazole-4-
carboxamide (11k)

Light yellow solid, MP: 192–193 °C, 1HNMR (DMSO-d6,
400MHz): δ 11.00 (bs, 1H), 8.38 (d, J= 8.0 Hz, 2H), 8.31
(s, 1H), 8.28 (s, 1H), 8.09 (d, J= 9.2 Hz, 2H), 7.96 (s, 1H),
5.30–5.26 (m, 1H), 2.16–2.10 (m, 2H), 2.01–1.96 (m, 2H),
1.90–1.86 (m, 2H), 1.71–1.69 (m, 2H). 13C NMR (CDCl3,
400MHz): δ 164.32, 160.94, 158.51, 140.36, 133.55,

132.69, 128.19, 122.88, 122.28, 129.75, 118.18, 115.85,
115.58, 59.70, 32.40, 24.69. LCMS: m/e 430.05/432.05 (M
+ 1).

6-bromo-1-cyclopentyl-N-(3,4-difluorophenyl)-1H-indazole-
4-carboxamide (11l)

Light yellow solid, MP: 125–127 °C, 1HNMR (DMSO-d6,
400MHz): δ 10.65 (bs, 1H), 8.36 (s, 1H), 8.32 (s, 1H), 7.97
(s, 1H), 7.87 (s, 1H), 7.57–7.55 (m, 1H), 7.45 (d, J=
9.6 Hz, 1H), 5.28–5.24 (m, 1H), 2.14–2.10 (m, 2H),
1.99–1.96 (m, 2H), 1.90–1.86 (m, 2H), 1.71–1.68 (m, 2H).
13C NMR (CDCl3, 400MHz): δ 164.53, 140.46, 133.70,
132.64, 131.16, 128.99, 126.23, 124.25, 121.82, 120.84,
119.35, 117.12, 115.47, 113.25, 59.75, 32.39, 24.60.
LCMS: m/e 420.04/422.04 (M+ 1).

6-bromo-1-cyclopentyl-N-(4-methoxyphenyl)-1H-indazole-
4-carboxamide (11m)

Off white solid, MP: 164–166 °C, 1HNMR (DMSO-d6,
400MHz): δ 10.34 (bs, 1H), 8.35 (s, 1H), 8.28 (s, 1H), 7.86
(s, 1H), 7.70 (d, J= 8.8 Hz, 2H), 6.94 (d, J= 9.2 Hz, 2H),
5.28–5.24 (m, 1H), 3.75 (s, 1H), 2.15–2.09 (m, 2H),
2.00–1.95 (m, 2H), 1.89–1.85 (m, 2H), 1.71–1.67 (m, 2H).
13C NMR (CDCl3, 400MHz): δ 164.06, 156.82, 140.37,
132.75, 130.65, 129.51, 122.96, 122.32, 120.83, 119.25,
115.13, 114.25, 59.75, 55.52, 32.37, 24.61. LCMS: m/e
414.07/416.07 (M+ 1).

6-bromo-1-cyclopentyl-N-(3-methoxyphenyl)-1H-indazole-
4-carboxamide (11n)

Off white solid, MP: 126–128 °C, 1HNMR (DMSO-d6,
400MHz): δ 10.43 (bs, 1H), 8.36 (s, 1H), 8.30 (s, 1H), 7.87
(s, 1H), 7.48 (s, Hz, 1H), 7.40 (d, J= 8.4 Hz, 1H), 7.27 (t,
J= 8.4 Hz, 1H), 6.71 (s, J= 8.0 Hz, 1H), 5.28–5.25 (m,
1H), 3.76 (s, 1H), 2.16–2.10 (m, 2H), 2.01–1.94 (m, 2H),
1.89–1.86 (m, 2H), 1.71–1.67 (m, 2H). 13C NMR (CDCl3,
400MHz): δ 164.18, 160.19, 140.35, 138.89, 132.65,
129.78, 129.40, 123.09, 120.77, 119.24, 115.26, 112.59,
110.76, 106.09, 59.76, 55.36, 32.37, 24.60. LCMS: m/e
414.07/416.07 (M+ 1).

6-bromo-1-cyclopentyl-N-p-tolyl-1H-indazole-4-
carboxamide (11o)

Off white solid, MP: 168–170 °C, 1HNMR (DMSO-d6,
400MHz): δ 10.38 (bs, 1H), 8.35 (s, 1H), 8.29 (s, 1H), 7.87
(s, 1H), 7.68 (d, J= 8.0 Hz, 2H), 7.17 (d, J= 8.4 Hz, 2H),
5.28–5.25 (m, 1H), 2.29 (s, 3H), 2.14–2.11 (m, 2H),
2.00–1.97 (m, 2H), 1.88–1.86 (m, 2H), 1.71–1.68 (m, 2H).
13C NMR (CDCl3, 400MHz): δ164.03, 140.38, 135.02,
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134.62, 132.71, 129.62, 129.55, 122.99, 120.82, 120.49,
119.26, 115.19, 59.76, 32.38, 24.62, 20.96. LCMS: m/e
398.08/400.08 (M+ 1).

6-bromo-1-cyclopentyl-N-m-tolyl-1H-indazole-4-
carboxamide (11p)

Off white solid, MP: 140–142 °C, 1HNMR (DMSO-d6,
400MHz): δ 10.38 (bs, 1H), 8.36 (s, 1H), 8.30 (s, 1H), 7.88
(s, 1H), 7.67 (s, 1H), 7.58 (d, J= 8.4 Hz, 1H), 7.25 (t,
J= 7.6 Hz, 1H), 6.95 (d, J= 8.0 Hz, 1H), 5.28–5.24 (m,
1H), 2.32 (s, 3H), 2.16–2.10 (m, 2H), 1.94–1.91 (m, 2H),
1.89–1.86 (m, 2H), 1.71–1.68 (m, 2H). 13C NMR (CDCl3,
400MHz): δ 164.16, 140.35, 139.05, 137.56, 132.70,
129.49, 128.91, 125.70, 123.02, 121.05, 120.81, 119.22,
117.52, 115.19, 59.74, 32.38, 24.62, 21.52. LCMS: m/e
398.08/400.08 (M+ 1).

6-bromo-1-cyclopentyl-N-(3-(trifluoromethyl)phenyl)-1H-
indazole-4-carboxamide (11q)

Off white solid, MP: 144–146 °C, 1HNMR (DMSO-d6,
400MHz): δ 10.76 (bs, 1H), 8.40 (s, 1H), 8.34 (s, 1H), 8.28
(s, 1H), 8.07 (d, J= 7.2 Hz, 1H), 7.94 (s, 1H), 7.62 (t, J=
7.6 Hz, 1H), 7.49 (d, J= 7.6 Hz, 1H), 5.29–5.26 (m, 1H),
2.16–2.12 (m, 2H), 2.01–1.94 (m, 2H), 1.89–1.86 (m, 2H),
1.71–1.68 (m, 2H). 13C NMR (CDCl3, 400MHz): δ 164.27,
140.39, 138.15, 132.55, 131.72, 129.72, 128.72, 125.15,
123.39, 122.44, 121.46, 120.73, 119.14, 117.08, 115.68,
59.81, 32.41, 24.60. LCMS: m/e 452.05/452.05 (M+ 1).

6-bromo-N-cyclohexyl-1-cyclopentyl-1H-indazole-4-
carboxamide (11r)

Off white solid, MP: 145–147 °C, 1HNMR (DMSO-d6,
400MHz): δ 8.44 (bs, 1H), 8.31 (s, 1H), 8.20 (s, 1H), 7.69
(s, 1H), 8.07 (d, J= 7.2 Hz, 1H), 7.94 (s, 1H), 7.62 (t, J=
7.6 Hz, 1H), 7.49 (d, J= 7.6 Hz, 1H), 5.22–5.20 (m, 1H),
3.79–3.77 (m, 1H), 2.10–2.08 (m, 2H), 1.96–1.94 (m, 2H),
1.87–1.83 (m, 4H), 1.74–1.72 (m, 2H), 1.67–1.59 (m, 4H),
1.33–1.30 (m, 4H). 13C NMR (CDCl3, 400MHz): δ 164.92,
140.40, 132.69, 129.78, 122.81, 120.81, 119.36, 114.74,
59.71, 48.91, 33.19, 32.35, 25.53, 24.89, 24.60. LCMS: m/e
390.11/392.11 (M+ 1).

6-bromo-1-cyclopentyl-N-(thiophen-3-yl)-1H-indazole-4-
carboxamide (11s)

Off white solid, MP: 167–169 °C, 1HNMR (DMSO-d6,
400MHz): δ 10.90 (bs, 1H), 8.40 (s, 1H), 8.30 (s, 1H), 7.89
(s, 1H), 7.79 (s, 1H), 7.51 (d, J= 5.2 Hz, 1H), 7.33 (d, J=
5.2 Hz, 1H), 5.29–5.22 (m, 1H), 2.17–2.10 (m, 2H),
2.03–1.98 (m, 2H), 1.93–1.83 (m, 2H), 1.74–1.67 (m, 2H).

13C NMR (CDCl3, 400MHz): δ 163.35, 140.40, 135.27,
132.64, 128.92, 124.89, 122.91, 121.26, 120.78, 119.22,
115.32, 111.24, 59.80, 32.38, 24.61. LCMS: m/e 390.02/
392.02 (M+ 1).

6-bromo-1-cyclopentyl-N-(3,4,5-trifluorophenyl)-1H-
indazole-4-carboxamide (11t)

Off white solid, MP: 127–129 °C, 1HNMR (DMSO-d6,
400MHz): δ 10.75 (bs, 1H), 8.35 (s, 1H), 8.33 (s, 1H), 7.86
(s, 1H), 7.76–7.71 (m, 2H), 5.29–5.22 (m, 1H), 2.14–2.08 (m,
2H), 1.99–1.92 (m, 2H), 1.91–1.86 (m, 2H), 1.69–1.66 (m,
2H). 13C NMR (CDCl3, 400MHz): δ 164.03, 140.05, 134.98,
132.77, 128.19, 123.14, 120.58, 118.34, 115.71, 104.39,
58.70, 31.98, 24.17. LCMS: m/e 438.04/440.04 (M+ 1).

6-bromo-1-cyclopentyl-N-(4-iodophenyl)-1H-indazole-4-
carboxamide (11u)

White solid, MP: 209–211 °C, 1HNMR (DMSO-d6,
400MHz): δ 10.54 (bs, 1H), 8.35 (s, 1H), 8.31 (s, 1H), 7.89
(s, 1H), 7.72 (d, J= 8.8 Hz, 2H), 7.65 (d, J= 8.8 Hz, 2H),
5.28–5.24 (m, 1H), 2.16–2.11 (m, 2H), 2.00–1.95 (m, 2H),
1.88–1.86 (m, 2H), 1.71–1.68 (m, 2H). 13C NMR (CDCl3,
400MHz): δ 163.82, 140.05, 138.68, 137.03, 132.88,
128.80, 123.11, 122.37, 120.68, 118.43, 115.34, 58.67,
31.98, 24.19. LCMS: m/e 510.04/512.04 (M+ 1).

6-bromo-1-cyclopentyl-N-(4-fluoro-2-methylphenyl)-1H-
indazole-4-carboxamide (11v)

Off white solid, MP: 179–181 °C, 1HNMR (DMSO-d6,
400MHz): δ 10.09 (bs, 1H), 8.35 (s, 1H), 8.30 (s, 1H), 7.89
(s, 1H), 7.36 (d, J= 8.0 Hz, 1H), 7.15 (d, J= 7.2 Hz, 1H),
7.06 (d, J= 8.8 Hz, 1H), 5.28–5.24 (m, 1H), 2.26 (s, 3H),
2.14–2.11 (m, 2H), 2.00–1.94 (m, 2H), 1.89–1.86 (m, 2H),
1.70–1.68 (m, 2H). 13C NMR (CDCl3, 400MHz): δ 164.46,
140.46, 133.70, 132.64, 131.16, 128.99, 126.23, 124.25,
121.82, 120.84, 119.35, 117.12, 115.47, 113.25, 59.80,
53.98, 32.39, 24.61, 18.21. LCMS: m/e 416.07/418.07
(M+ 1).

6-bromo-1-cyclopentyl-N-(thiophen-2-yl)-1H-indazole-4-
carboxamide (11w)

Light yellow solid, MP: 153–155 °C, 1HNMR (DMSO-d6,
400MHz): δ 11.74 (bs, 1H), 8.43 (s, 1H), 8.33 (s, 1H), 7.96
(s, 1H), 7.05 (d, J= 4.8 Hz, 1H), 6.94 (t, J= 8.8 Hz, 2H),
5.28–5.25 (m, 1H), 2.16–2.11 (m, 2H), 2.01–1.96 (m, 2H),
1.89–1.86 (m, 2H), 1.71–1.68 (m, 2H). 13C NMR (CDCl3,
400MHz): δ 164.08, 140.43, 135.27, 132.64, 128.92,
124.89, 122.91, 121.26, 120.78, 119.22, 115.32, 111.24,
59.80, 32.38, 24.61. LCMS: m/e 390.02/392.02 (M+ 1).

Medicinal Chemistry Research



N-(benzo[d]thiazol-5-yl)-6-bromo-1-cyclopentyl-1H-
indazole-4-carboxamide (11x)

Light yellow solid, MP: 98–100 °C, 1HNMR (DMSO-d6,
400MHz): δ 10.68 (bs, 1H), 9.39 (s, 1H), 8.63 (s, 1H), 8.39
(s, 1H), 8.31 (s, 1H), 8.13 (d, J= 8.0 Hz, 1H), 7.92 (s, 1H),
7.86 (d, J= 7.2 Hz, 1H), 5.29–5.22 (m, 1H), 2.15–2.11 (m,
2H), 2.00–1.97 (m, 2H), 1.89–1.86 (m, 2H), 1.70–1.67 (m,
2H). 13C NMR (CDCl3, 400MHz): δ 164.35, 155.38,
153.71, 140.38, 136.39, 132.71, 129.86, 129.13, 123.14,
122.15, 120.83, 119.45, 119.20, 115.44, 115.00, 59.78,
32.39, 29.70, 24.60. LCMS: m/e 441.03/443.03 (M+ 1).

Biological evaluation

Human cell lines were requested from National Centre for
Cell Science (a National Cell Line Facility) Pune (Mahar-
ashtra), India. The Human Angiogenesis I ELISA Strip Kit
was purchased from Signosis, Inc (Santa Clara, CA, USA).
DPPH (1,1-diphenyl-2-picryl hydrazyl), MTT (3-(4,5-dime-
thylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) were
procured from Sigma-Aldrich Co. (St. Louis MO, USA).
Other chemicals ascorbic acid, solvents, reagents used were of
AR grade and were obtained from commercial sources.

Cytotoxicity assay

The cytotoxic potential of the selected compounds against
selected cancer cell lines was determined by using the
MTT assay (Wang et al. 2006, 2010; Kong et al. 2011). In
brief, cells were harvested and seeded into sterile 96-well
plates in 100 μl of medium and permitted to adhere over-
night. Afterwards 20 μl of the individual compound
(0.01 mM) added. Cells were incubated along with the
compound for 48 h. After the incubation period, 10 μl of
MTT was added to each well and the plates were again
incubated at 37 °C with humid atmosphere along with 5%
CO2 and 95% air for 4 h. The media were then smoothly
aspirated and 100 μl DMSO was added to dissolve the
formazan crystals. The quantity of formazan product
produced was measured spectrophotometrically at 570 nm.
Methotrexate (0.001 mM) was used as positive control.

Antiangiogenic activity: inhibition of proangiogenic
cytokines

The evaluation of the inhibition of cytokines promoting
tumor growth, such as TNFα, IGF1, VEGF, IL6, FGFb,
TGFβ, EGF, and Leptin, was carried out as per the pre-
viously described method (Kamble et al. 2016). The Human
Angiogenesis I ELISA Strip Kit was used for the experi-
ment. In brief, the HEP3BPN 11 cells were treated with test
compounds (11c and 11d) up to 48 h. After treatment, cell

medium was removed and cells were rinsed once with ice-
cold PBS buffer (1×). Afterwards, the cells were thawed on
ice and 100 µl of 1× cell lysis buffer was added and incu-
bated for 10 min with gentle shaking. The mixture was
centrifuged at 3000 RPM for 5 min and 90 µl of supernatant
was transferred to wells of ELISA plate. Initially, 100 μl of
standard (Suramin 0.001 mM) and sample (100 μl) was
added in each well and incubated for 1 h at room tem-
perature with gentle shaking. After that, the contents were
aspirated from each well followed by washing the well by
adding 200 μl of 1× assay wash buffer. The washing process
was repeated for three times. After the final wash, the
residual liquid was evacuated by inverting the plate. One
hundred microliters of diluted biotin-labeled antibody
mixture was added to every well and incubated for 1 h at
room temperature. The contents were again washed as
depicted above. To every well a 100 μl of diluted
streptavidin-HRP conjugate was added and incubated for
45 min at room temperature. Again the contents were
washed as described above. A 100 μl of substrate was added
to each well and again incubated for 25 min followed by
addition of 50 μl stop solution. The change in the color of
the mixture from blue to yellow signifies the incidence of
reaction. The optical density of each well was recorded by
using microplate reader at 450 nm within 30 min.

Antioxidant activity

Imbalance between oxidant and antioxidant compounds
generates the free radicals and reactive oxygen species,
which lead to the oxidative stress process. Oxidative stress
causes the biomolecules oxidation in humans which results
into series of disorders including cancer. Therefore there is
increasing interest in the synthesis of novel compounds
against the oxidative damage caused by free radicals
(Uttara et al. 2009). In the present study, we have examined
the antioxidant potential of novel indazole derivatives
(11a–x) by using DPPH (Hossain et al. 2009), hydroxyl
(OH) (Aksoy et al. 2013), and superoxide radical (SOR)
radical scavenging action (Liang et al. 2014) by a
spectrometric assay.

DPPH radical scavenging activity

In brief, the reaction mixture comprises equal volume of
10−4 M ethanol solution of DPPH with individual con-
centrations of indazole derivatives (0.5–1 mM). After
20 min incubation time the absorbance was read at 517 nm.

OH radical scavenging activity

OH radicals were generated by using the Fenton reaction
system. The reaction cocktail contained 60 μl of 1 mM
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FeCl3, 90 μl of 1,10-phenanthroline, 2.4 ml 0.2 M phosphate
buffer (pH 7.4), 150 μl of 0.17 M H2O2 and 0.5–1 mM
individual indazole derivative solution. Adding H2O2 initi-
ated the reaction. After the 5 min incubation at room tem-
perature, the absorbance of the mixture was observed
spectrophotometrically at 412 nm.

Superoxide anion radical (SOR) scavenging activity

The reaction mixture contained 1 ml of NBT (300 μM),
NADH (936 μM), respectively, and the individual con-
centrations of indazole derivatives (0.5 and 1 mM) in Tris-
HCl buffer (100 mM, pH 7.4). The reaction was started by
adding PMS (120 μM) to the mixture. The reaction cocktail
was incubated at 25 °C for 5 min and the absorbance was
measured at 560 nm.

The percent activity of DPPH, OH, SOR radical
scavenging, cytotoxicity and anti-angiogenesis activity was
calculated using following equation:

Activity %ð Þ ¼ 1� T

C
� 100;

where T=Absorbance of the test sample and C=
Absorbance of the control sample.

Molecular docking

Molecular Docking analysis was conducted as per the
established protocol published elsewhere (Kamble et al.
2016; Jadhav et al. 2013). Briefly, PDB coordinate of
TNFα were downloaded from PDB database (PDB ID
2AZ5). The model was crystallized with a small molecule
inhibitor 6,7-dimethyl-3-[(methyl{2-[methyl({1-[3-(tri-
fluoromethyl)phenyl]-1h-indol-3yl}methyl)amino]ethyl}
amino)methyl]-4h-chromen-4-one. The structure of
compounds 11c and 11d were drawn using chemdraw
ultra software and their 3D coordinates were obtained
using Frog Server (Miteva et al. 2010). Inputs to Auto-
Dock program (Morris et al. 1998) were prepared in tra-
ditional pdbqt format using PyRx interface. AutoGrid
program was utilized to obtain the grid files and Auto-
Dock was employed for molecular docking. The resulting
complexes were visualized in PyMol and 2D representa-
tions of complexes were obtained from program LigPlot+
(Laskowski and Swindells 2011; Wallace et al. 1995).

Result and discussion

Chemistry

The target compounds were synthesized (2–11) according
to reaction sequence as shown in Scheme 1. The

bromination of 2-methylbenzoic acid 1 with brominating
agent dibromomantine and conc. H2SO4 at room tempera-
ture for 3 h was done to obtain 5-bromo 2-methylbenzoic
acid 2. The intermediate 2 was then subjected for nitration
by using conc. H2SO4, KNO3, at (−10 to −0 °C) for 1 h to
yield 5-bromo 3-nitro 2-methylbenzoic acid 3. The ester-
ification of intermediate 3 with catalytic Conc. H2SO4, in
methanol under reflux condition gives 5-bromo-2-methyl-3-
nitrobenzoate 4. The compound 4 was treated with zinc
powder in the presence of saturated ammonium chloride
solution in methanol at room temperature for 1.5 h to obtain
the methyl 3-amino-5-bromo-2-methylbenzoate 5. The
cyclization of methyl 3-amino-5-bromo-2-methylbenzoate 5
with solution of potassium nitrite in acetic acid at room
temperature for 4 h gave methyl 6-bromo-1H-indazole-4-
carboxylate 6. The intermediate 6 was then subjected for
coupling with cyclopentylboronic acid, 7 copper (ll) acetate
and pyridine in 1,2-dichloroethane under reflux condition to
obtain methyl 6-bromo-1-cyclopentyl-1H-indazole-4-car-
boxylate 8. The hydrolysis of intermediate 8 with aqueous
lithium hydroxide in methanol under reflux condition to
gave 6-bromo-1-cyclopentyl-1H-indazole-4-carboxylic acid
9. The acid 9 was then reacted with various substituted
amines (10a-x), N,N-disopropyl ethyl amine, HATU in
DMF at room temperature to yield novel indazole deriva-
tives (Table 1, 11a–x). The earlier reported approach
involved bromination of 2-methylbenzoic acid 1 with liquid
Br2 and Fe at RT (Chapdelaine and Herzog 2005), 12 h.
Nitration of 2-methyl 5-bromo benzoic acid 2 was further
nitrated using nitrating agent with HNO3/H2SO4 (Wayne
et al. 2012), Esterification of intermediate 3 with SOCl2, in
methanol under reflux condition (Traverse et al. 2015),
Followed by the reported (Wayne et al. 2012), and reduc-
tion of 5-bromo-2-methyl-3-nitrobenzoate 4 with iron
powder in the presence of saturated ammonium chloride
solution in ethanol under reflux temperature for 1 h. The
intermediate 6 involved two step processes: (a) cyclization
(b) deprotection, reaction of 5 with acetic anhydride,
potassium acetate, tert-butyl nitrite, and 18-crown-6 in the
presence of chloroform under reflux condition gave cyclised
intermediate, that cyclised intermediate was then subjected
for deprotection with 6N HCl solution in methanol to obtain
intermediate 6. The intermediate 6 was alkylated with
bromocyclopentane and cesium carbonate in acetonitrile
under reflux condition and also alkylated (Celine et al.
2011), with iodocyclopentane and sodium hydride in DMF
under 100 °C to obtain intermediate 8. The hydrolysis of
intermediate 8 with aqueous sodium hydroxide in
methanol under reflux condition gave 6-bromo-1-cyclo-
pentyl-1H-indazole-4-carboxylic acid 9. As compared
with reported method, our approach involves simple route
wherein we have explored simple, cheaply available
reagent and some reaction was carried out at room
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temperature for the synthesis of novel indazole derivatives
(11a–x) and this may be regarded as efficient approach.
All the newly synthesized compounds were characterized
by IR, 1HNMR, 13C NMR and mass spectral data. The
various new indazole derivatives synthesized during the
present investigation are listed in Table 1.

Biological evaluation

Cytotoxicity assay

The synthesized compounds 11a–x were tested for in vitro
biological screening for their cytotoxicity toward cancer cell

lines using the MTT assay. The cytotoxicity studies were
determined against three human cancer cell lines,
HEP3BPN 11 (liver), MDA 453 (breast), and HL 60 (leu-
kemia), and the results are presented in Table 2. This table
indicates the percentage cytotoxic activity of the synthe-
sized compounds at 0.01 mM concentration. All these
compounds possess common 6-bromo-1-cyclopentyl-1H-
indazole-4-carboxylic acid nucleus as A-ring. The sub-
stitutions at C-4 position of the A-ring play an important
role in determining the potency of the compounds 11a–x.
The compounds 11c and 11d indicate the promising cyto-
toxicity against HEP3BPN 11 cell line when compared with
standard methotrexate. Among the series, compound 11f

Br

OO

NH2

a b

f N
N

OO

Br

N
N

OAr,R/N

Br

1 2

5 8N1

Reagent and Reaction conditions:

a) Hydantine, Con.H2SO4, 00C - RT, 3h. 

b) Con.H2SO4, KNO3,  - 100C - 00C, 1h.

c)  Con. H2SO4, MeOH, 70°C, 12 h. 

d) Zn, NH4Cl, MeOH/H2O, RT,  1.5 h.

e) KNO2,  AcOH / water, RT, 4 h. 

f) 7,  Copper acetate,  pyridine,  EDC, 70°C, 12 h.

g) LiOH, Methanol / water, 65oC, 2 h.

h)  Ar/R -amine, DIPEA, HATU, DMF, RT, 6 - 12 h.

OHOOHO

NO2Br

OHO

c

Br

OO

Br

6

e

h
10

R / Ar - NH2

(11a -x )

B(OH)2

NO2Br

OO

H
N

N

N
N

OHO

Br

9N1

3 4

7

g

d

N
N

OO

Br

8N2

Scheme 1 Synthesis of 6-
bromo-1-cyclopentyl-1H-
indazole-4-carboxylic acid-
substituted amide derivatives
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Table 1 Synthesis of 6-bromo-1-cyclopentyl-1H-indazole-4-carboxylic acid-substituted amide derivatives (11a–x)

Entry Producta Time
(h)

Yieldb

(%)
Aromatic / aliphatic amine

(10)

1 11a

2 11b

3 11c NH2

4 11d

5 11e

6 11f

7 11g

NH2

8 11h

9

NH2

NH2

NH2

Cl

NH2Br

NH2

Cl

F

Cl

NH2

Cl

O2N

NH2

O

7

9

8

6

10

9

11

12

12

60

55

58

67

42

60

70

65

45

10 11j
10 75

11i

11 11k
10 70

NH2

NH2O2N

12 11l
10 55NH2

F

F
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Entry Producta Time
(h)

Yieldb

(%)
Aromatic / aliphatic amine

(10)

13 11m

14 11n

15 11o NH2

16 11p

17 11q

18 11r

19 11s

NH2

20 11t

21

NH2

NH2

NH2

NH2H3CO

NH2

NH2

F

F

NH2I

12

12

12

12

10

6

12

9

9

42

39

40

38

50

65

37

50

68

22 11v
12 35

11u

23 11w
12 35

NH2F

NH2

24 11x
12 39NH2

H3CO

S

F

S

S

N

F3C

aAll the products were characterized by 1HNMR LCMS, IR, and 13C NMR
bIsolated yields

Table 1 (continued)
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exhibited considerable cytotoxic activity against the MDA
453 cell line. Also, compound 11f has a significant activity
against HL 60 cell line. The SAR study of indazole deri-
vatives 11a–x with respect to HEP3BPN 11 cell line
revealed that compounds containing aniline 11d and para

chloro aniline 11c at C-4 position of A-ring have the highest
cytotoxicity than electron donating, aliphatic, and hetero-
cyclic amine. In case of MDA 453, compound containing
3,4 dichloro aniline 11f at C-4 position of A-ring exhibited
better cytotoxicity than rest of the compounds. As far as HL
60 is concerned, compound containing 3,4 dichloro aniline
11f at C-4 position of A-ring showed higher activity when
compared with remaining compounds.

Antiangiogenic activity: inhibition of proangiogenic
cytokines

Angiogenesis is identified to be a crucial target for the treat-
ment of cancer because of its significant role in cancer growth
and metastasis (Kasiotis et al. 2014). In the past decades, a
plethora of angiogenic factors have been discovered that are
involved in the angiogenesis process. Inhibition of tumor
angiogenesis offers a promising therapeutic approach for the
treatment of variety of cancers (Mirossay et al. 2017). Several
antiangiogenic agents are well recognized for their role in
prevention of growth of tumors thus they can be used in
cancer chemotherapy in combination with various cytotoxic
agents (Deepu et al. 2015). Therefore, searching the novel
antiangiogenic compounds have become the attractive field.
The compounds 11c and 11d showing promising cytotoxicity
against selected cancer cell lines were further evaluated for
inhibition of selected cytokines, such as TNFα, IGF1, VEGF,
IL6, FGFb, TGFβ, EGF, and Leptin in HEP3BPN 11 cell
line. The selected cytokines are described to be involved in
progression of tumor growth especially by recruiting massive
vasculature for the promotion of tumor growth (Gacche and
Meshram 2013). The results are summarized in Table 3.
Compound 11c is found to be potent antiangiogenic agent
against TNFα, VEGF, and EGF, whereas compound 11d has
shown potent TNFα, IGF1,VEGF, TGFβ, and Leptin
inhibition.

Antioxidant activity

We have evaluated an antioxidant activity of novel indazole
derivatives against DPPH stable free radicals. Free radical

Table 2 Cytotoxicity by the MTT assay at 0.01 mM (11a–x)

Entry Compound (%) Cytotoxicity

HEP3BPN 11 MDA 453 HL 60

1 11a 65.71 ± 0.5* 60.11 ± 0.77 66.17 ± 0.03*

2 11b 64.42 ± 0.89* 60.33 ± 0.09 52.16 ± 0.58

3 11c 84.87 ± 0.64* 58.37 ± 0.55 65.96 ± 0.22*

4 11d 88.12 ± 0.6* 60.56 ± 0.8 69.10 ± 0.11*

5 11e 67.89 ± 0.25* 62.04 ± 0.11 62.80 ± 0.03

6 11f 55.12 ± 0.22 72.10 ± 0.15* 77.18 ± 0.33*

7 11g 63.02 ± 0.06* 62.90 ± 0.04 61.18 ± 0.11

8 11h NP 61.49 ± 0.09 59.23 ± 0.23

9 11i 53.29 ± 0.24 61.54 ± 0.6 63.19 ± 0.08*

10 11j 58.12 ± 0.24 55.18 ± 0.85 62.18 ± 0.11

11 11k 55.12 ± 0.33 63.20 ± 0.8* 65.25 ± 0.09*

12 11l 62.81 ± 0.39 53.84 ± 0.9 52.79 ± 0.8

13 11m 62.23 ± 0.77 51.54 ± 0.78 52.39 ± 0.04

14 11n 61.66 ± 0.15 62.49 ± 0.10 57.59 ± 0.77

15 11o 58.98 ± 0.04 52.37 ± 0.13 55.59 ± 0.22

16 11p 55.39 ± 0.07 60.59 ± 0.25 52.79 ± 0.88

17 11q 63.37 ± 0.09* 60.52 ± 0.10 61.47 ± 0.11

18 11r 61.72 ± 0.08 62.71 ± 0.07 51.29 ± 0.23

19 11s 51.97 ± 0.85 58.93 ± 0.35 50.23 ± 0.13

20 11t 53.29 ± 0.33 61.73 ± 0.28 62.90 ± 0.87

21 11u 61.43 ± 0.29 63.33 ± 0.28* 54.22 ± 0.91

22 11v 60.93 ± 0.78 59.28 ± 0.33 53.98 ± 0.11

23 11w 68.54 ± 0.02* 61.29 ± 0.55 59.87 ± 0.29

24 11× 53.72 ± 0.35 55.58 ± 0.32 60.78 ± 0.22

25 Methotrexate
(0.001 mM)

84.64 ± 0.73* 88.73 ± 0.87* 82.77 ± 0.01*

Results are expressed as the mean values from three independent
experiments ± Standard Deviation (SD). NP—% Cytotoxicity was
<10%

*P ≤ 0.05 as compared with control

Table 3 Effect of selected compounds on the tumor growth promoting cytokines (growth factors) at 0.01 mM

Compound code % inhibition of tumor growth promoting cytokines

TNFα IGF1 VEGF IL6 FGFb TGFb EGF Leptin

11c 72.14 ± 0.12* 68.23 ± 0.11 77.45 ± 0.09* 62.90 ± 0.07 65.65 ± 0.10 67.88 ± 0.12 72.87 ± 0.07* 69.56 ± 0.07*

11d 80.32 ± 0.10* 76.23 ± 0.08* 85.87 ± 0.03* 65.56 ± 0.13 67.87 ± 0.12 72.55 ± 0.09* 69.90 ± 0.05* 71.67 ± 0.11*

Suramin (0.001 mM) 89.76 ± 0.04* 87.89 ± 0.13* 93.88 ± 0.02* 89.90 ± 0.11* 90.34 ± 0.03* 91.25 ± 0.10* 86.67 ± 0.06* 85.37 ± 0.03*

The results summarized above are the mean values of n= 3, ±standard deviation (SD)

*P ≤ 0.05 as compared with control
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scavenging activity was measured in terms of DPPH
reduction and the results are presented in Table 4. It is clear
from the results that all compounds were found to interact

with the stable free radical DPPH, which indicate their
potent radical scavenging ability. Compounds 11n, 11p,
11q, and 11v exhibited weaker antioxidant property as

Table 4 % DPPH, OH, SOR activities of the synthesized compounds (11a–x)

Entry Compound Concentration (mM) % DPPH activity % OH activity % SOR activity

1 11a 0.5 5.38 ± 0.62 NR 59.11 ± 0.44

0.1 18.36 ± 0.24 NR 89.37 ± 0.83*

2 11b 0.5 21.51 ± 0.21 NR NR

0.1 34.36 ± 0.22 NR NR

3 11c 0.5 26.06 ± 0.09 49.03 ± 0.57 NR

0.1 37.41 ± 0.38 81.95 ± 0.71* NR

4 11d 0.5 NR NR 36.99 ± 0.22

0.1 NR NR 48.93 ± 0.30

5 11e 0.5 NR NR 28.20 ± 0.55

0.1 NR NR 34.92 ± 0.56

6 11f 0.5 NR NR NR

0.1 NR NR NR

7 11g 0.5 21.51 ± 0.11 NR NR

0.1 43.73 ± 0.22 NR NR

8 11h 0.5 13.23 ± 0.06 54.17 ± 0.25 16.39 ± 0.88

0.1 32.34 ± 0.52 77.50 ± 0.76* 53.62 ± 0.33

9 11i 0.5 13.65 ± 1.11 39.89 ± 0.81 44.87 ± 0.55

0.1 29.88 ± 0.09 67.37 ± 0.26* 64.39 ± 0.33*

10 11j 0.5 18.04 ± 0.25 15.28 ± 0.28 36.92 ± 1.11

0.1 27.33 ± 0.55 29.24 ± 0.88 31.39 ± 0.12

11 11k 0.5 20.50 ± 0.89 53.59 ± 0.33 25.23 ± 0.52

0.1 49.67 ± 0.32 75.50 ± 0.22* 60.35 ± 1.31*

12 11l 0.5 58.79 ± 0.50 51.53 ± 0.32 47.76 ± 0.35

0.1 71.56 ± 0.65* 62.36 ± 0.25* 59.69 ± 0.88

13 11m 0.5 58.28 ± 0.12 57.28 ± 0.27 53.32 ± 0.48

0.1 72.48 ± 0.23* 61.32 ± 0.55* 73.59 ± 0.03*

14 11n 0.5 65.23 ± 0.09* 53.72 ± 0.61 48.73 ± 0.45

0.1 77.78 ± 0.76* 61.56 ± 1.30* 52.12 ± 0.89

15 11o 0.5 62.39 ± 1.52* 54.29 ± 0.36 55.23 ± 0.42

0.1 64.36 ± 0.48* 65.85 ± 0.66* 60.52 ± 0.49*

16 11p 0.5 50.52 ± 0.38 57.59 ± 0.63 49.56 ± 0.81

0.1 76.47 ± 0.62* 60.32 ± 0.45* 59.34 ± 0.70

17 11q 0.5 61.48 ± 0.51* 52.78 ± 0.48 58.36 ± 0.71

0.1 78.58 ± 0.50* 61.69 ± 0.47* 63.21 ± 0.62*

18 11r 0.5 65.29 ± 0.66* 61.29 ± 0.32* 52.38 ± 0.47

0.1 74.23 ± 0.59* 68.96 ± 0.63* 63.50 ± 0.38*

19 11s 0.5 68.59 ± 0.20* 51.73 ± 0.68 45.73 ± 0.08

0.1 71.85 ± 0.54* 58.69 ± 0.59 56.98 ± 0.32

20 11t 0.5 58.39 ± 0.69 48.73 ± 0.50 49.73 ± 0.75

0.1 69.86 ± 0.06* 59.18 ± 0.69 58.65 ± 0.67

21 11u 0.5 58.63 ± 0.54 56.82 ± 0.08 52.36 ± 0.76

0.1 68.32 ± 0.80* 60.56 ± 0.68* 58.36 ± 0.79

22 11v 0.5 61.59 ± 0.07* 52.73 ± 0.48 50.72 ± 0.55

0.1 77.63 ± 0.22* 60.63 ± 0.55* 52.32 ± 1.11

23 11w 0.5 61.79 ± 0.09* 41.79 ± 0.10 48.79 ± 0.58

0.1 70.89 ± 0.22* 52.69 ± 0.55 61.25 ± 0.77*

24 11x 0.5 61.79 ± 0.58* 57.25 ± 0.01 60.52 ± 0.08*

0.1 65.12 ± 0.22* 61.24 ± 0.94* 66.52 ± 0.01*

25 AA 0.1 86.45 ± 0.75* 79.37 ± 0.47* 72.58 ± 0.77*

NR no results, AA ascorbic acid

*P ≤ 0.05 as compared with control
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compared with ascorbic acid (86.45%), while some of the
compounds did not show any DPPH radical scavenging
activity. The OH radicals are most hyper reactive among the
relative oxygen species and that affect every type of
molecule found in living system. Physiologically important
biomolecules, such as sugar, amino acids, phospholipids,
DNA bases, and organic acids may undergo reaction with
OH radicals and may change normal physiological function
of cells (Lobo et al. 2010. The results revealed that, com-
pounds 11c, 11k, and 11h displayed potent OH radical
scavenging activities as compared with standard ascorbic
acid (79.37%). Compound 11c showed the most prominent
OH radical scavenging action (81.95%). The profile of SOR
scavenging activities indicates that compounds 11a
(89.37%) and 11m (73.59%) are higher SOR scavenging
agent as compared with the standard ascorbic acid
(72.58%), while other test compounds showed moderate
SOR scavenging activity (31.39–89.37%).

The SAR study revealed that compounds 11n, 11p, 11q,
and 11v containing electron-withdrawing amine at C-4
position have maximum DPPH scavenging activity than
compounds containing heterocyclic amine, electron donat-
ing aniline, and aliphatic amine at C-4 position except
compounds 11p and 11v. It is noteworthy to mention that
compounds 11c, 11h, and 11k containing electron

withdrawing amine at C-4 position exhibited significant OH
radical scavenging activity as compared with the standard
compound ascorbic acid. Surprisingly, compounds 11a and
11m containing electron withdrawing amine at C-4 position
exhibited better SOR scavenging activity when compared
with remaining compounds. Overall, electron-withdrawing
amine at C-4 position increases antioxidant activity.

Molecular docking analysis

In view of the biological assays carried out in this analysis, it
is evident that compounds 11c and 11d possess good anti-
angiogenic profile against proangiogenic cytokine TNFα.
Structural analysis of docking poses reveals involvement of
various conserved residues (Fig. 1). For example, residues
Tyr-151 and Ser-60 from TNFα are observed to actively
participate by contributing hydrogen bonds with compound
11c. Interestingly, Tyr-151 and Ser-60 are crystal-
lographically validated to stabilize the TNFα-inhibitor
complex (He et al. 2005). Similarly promising compound
11d is found to be in hydrogen bonding with residues like
Leu-120 along with Ser-60. Recent crystallographic model
of TNFα in complex with small molecule inhibitor JNJ525
highlighted the key role played by residues Leu-120 and Ser-
60 in direct TNFα inhibition (Blevitt et al. 2017).

Fig. 1 Molecular docking results: 2D schematic representation of
interaction of compounds 11c and 11d in complex with TNFα alpha
using Ligplot and the 3D orientation of compounds 11c and 11d

(yellow sticks) that interferes with functional trimerization of TNFα
(green and orange cartoon)
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Considering the observed in silico results that are in line with
experimental crystallographic reports supports the possibility
of involvement of residues like Tyr-151, Leu-120, and Ser-
60 in present indazole mediated TNFα inhibition.

Conclusion

A variety of novel 6-bromo-1-cyclopentyl-1H-indazole-4-
carboxylic acid-substituted amide derivatives 11a–x was
prepared adopting simple and efficient methodologies. The
structures of the compounds 11a–x were confirmed by their
IR, 1HNMR, 13C NMR, and mass spectral data. All the
compounds were screened for their anticancer, anti-
angiogenic, and antioxidant activities. In case of cytotoxic
study against three human cancer cell lines by the MTT
assay, the results revealed that, the compounds 11c and 11d
had excellent in vitro anticancer activity and can be used as
lead compounds for developing new anticancer agents.
These compounds were further evaluated for inhibition of
selected cytokines, compound 11c was found to be a potent
antiangiogenic agent against TNFα, VEGF, and EGF,
whereas 11d showed potent antiangiogenic activity by
inhibiting the proangiogenic cytokines like, TNFα, VEGF,
IGF1, TGFb, and Leptin. Furthermore, compounds 11n,
11p, 11q, and 11v have demonstrated considerable OH
radical scavenging activities, also compounds 11c, 11h, and
11k were found to have a DPPH radical scavenging activity
and compounds 11a and 11m exhibited SOR scavenging
activity. So, some of these compounds can emerge as a
promising tool for further research work.
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