$\mathrm{X}=\mathrm{Y}-\mathrm{ZH}$ compounds as potential 1,3-dipoles. Part 65: atom economic cascade synthesis of highly functionalized pyrimidinylpyrrolidines ${ }^{\text {T}}$

Elghareeb E. Elboray ${ }^{\text {a,b }}$, Ronald Grigg ${ }^{\text {a,* }}$, Colin W.G. Fishwick ${ }^{\text {a }}$, Colin Kilner ${ }^{\text {a }}$, Mohammed A.B. Sarker ${ }^{\text {a }}$, Moustafa F. Aly ${ }^{\text {b }}$, Hussien H. Abbas-Temirek ${ }^{\text {b }}$
${ }^{\text {a }}$ Molecular Innovation, Diversity and Automated Synthesis (MIDAS) Centre, School of Chemistry, Leeds University, Leeds LS2 9jT, UK
${ }^{\mathrm{b}}$ Department of Chemistry, Faculty of Science at Qena, South Valley University, Qena, Egypt

A R T I C L E I N F O

Article history:

Received 12 April 2011
Received in revised form 5 May 2011
Accepted 16 May 2011
Available online 25 May 2011

Keywords:

Azomethine ylides
Iminium ion
Cycloaddition
Pyrimidinylpyrrolidines
Cascade reactions

Abstract

The results of the reaction of aminomethyl heterocycles and 4,6-dimethyl-2-formylpyrimidine and of activated secondary amines with different aryl/heteroaryl or aliphatic aldehydes and N-methylmaleimide or maleimide are described. In the former case the reactions gave single diastereomers via endo-transition states whilst the latter gave a mixture of diastereomers, which are believed to arise from antidipoles via endo/exo transition states. The stereochemistry of the cycloadducts was determined by ${ }^{1} \mathrm{H}$ NMR and confirmed by X-ray crystallography.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The pyrimidinyl nucleus occurs widely in both aromatic (e.g., thiamine pyrophosphate) and non-aromatic form (e.g., cytosine, thymine, uracil and barbiturates) and as part of a wide variety of purine derivatives (e.g., adenine and guanine). The nucleus features in an extraordinary, and growing, array of pharmaceuticals and agrochemicals (Fig. 1). ${ }^{2-6}$ In the field of crop protection, pyrimidine derivatives span pesticidal nucleosides with a pyrimidine or purine nucleobase, ${ }^{7}$ herbicides and fungicides. ${ }^{8}$ Although a variety of methods for the synthesis of pyrimidinylpyrrolidines have been developed, the use of azomethine ylide cycloaddition reactions has attracted little attention. ${ }^{9}$ These processes are attractive because a variety of strategies and catalysts are available. Furthermore there are a substantial number of bioactive synthetic and natural products containing pyrrolidine motifs. ${ }^{10}$ The cycloaddition reactions may be carried out as two component processes with preformed imines, or as three-component cascade processes with an aldehyde, a primary or secondary amine and a dipolarophile. The latter strategy is highly atom economic (water is the only by-product), and high density functionality occupying all five positions of the pyrrolidine ring can be easily introduced.

[^0]

CDK inhibitor ${ }^{4}$

Herbicide ${ }^{5}$

Fig. 1. Bioactive pyrimidines.
The reactions are catalyzed by a wide variety of Bronsted and Lewis acids including main group and transition metal salts and display excellent endo-selectivity. ${ }^{11}$ This paper is concerned with the three component strategy.

2. Three-component cascade processes of primary amines

The concept of a thermal formal 1,2-prototropy in $\mathrm{X}=\mathrm{Y}-\mathrm{ZH}$ substrates generating 1,3 -dipoles (Scheme 1) was introduced by us

Scheme 1.
and subsequently shown to be viable for generating azomethine ylides, nitrones and azomethine imines. ${ }^{12}$

In the current investigation we initially employed the pyrimidine aldehyde 1 and the dipolarophiles maleimide 2a or N-methylmaleimide $\mathbf{2 b}$ with acyclic $\mathbf{3}$ and cyclic $\mathbf{4}$ amino esters (Scheme 2). In all cases the reaction occurred smoothly (toluene, $100^{\circ} \mathrm{C}$, oil bath) and in good yield via endo-transition states with precipitation of the cycloadduct from the hot toluene solution (Table 1) in the case of $\mathbf{5 a - d}$ (Table 1, entries 1-4). Formation of spirocyclic cycloadducts 6a,b (Table 1, entries 5 and 6) required more forcing conditions (xylene, $130^{\circ} \mathrm{C}$).

(a) Toluene with $\mathrm{Et}_{3} \mathrm{~N}\left(1\right.$ equiv.) at $100^{\circ} \mathrm{C}$ for 1 h .
(b) Xylene at $130{ }^{\circ} \mathrm{C}$ for 16 h .

Scheme 2.
The proton NMR spectra (DMSO- d_{6}) of $\mathbf{5 a}-\mathbf{c}$ showed a singlet for the maleimide NH proton at $\delta 11.14-11.16 \mathrm{ppm}$ and doublet for the pyrrolidine NH proton at $\delta 3.68-3.38 \mathrm{ppm}$. The corresponding signals for $5 \mathbf{d}$ in CDCl_{3} occurred at $\delta 8.29$ and 4.14 ppm . The stereochemistry of $\mathbf{6 a}, \mathbf{b}$, which was determined by NOE studies (see Experimental section), implicates the 1,3-dipoles 7.

The reaction of $\mathbf{1}$ and $\mathbf{2 c}$ with prolinamide $\mathbf{8}$ under analogous conditions afforded the tricyclic cycloadduct 10 in 89% yield via azomethine ylide $\mathbf{9}$ (Scheme 3). The stereochemistry of $\mathbf{1 0}$ was established by an X-ray crystal structure (Fig. 2). The high yield of 10 suggests that a series of prolinamide peptides would react similarly. The proton NMR spectrum of $\mathbf{1 0}\left(\right.$ DMSO- d_{6}) clearly shows restricted rotation about the amide bond showing two signals for the NH_{2} at $\delta 7.63(J=2.3 \mathrm{~Hz})$ and $7.32(J=2.3 \mathrm{~Hz})$.

A further small series of three-component cascades were studied in which the amino ester component of Scheme 2 was replaced by 2-aminomethyl heteroaromatic compounds 11a,b and 12.

$11_{\text {(a) } R=X}=H$

12

Table 1
Three-component cycloaddition cascades of $\mathbf{1}$ and $\mathbf{2}$ with $\mathbf{3}$ and $\mathbf{4}^{\text {a }}$

Entry	Amine ester HCl	Cycloadduct	Yield $^{\text {b }}$ (\%)

1
Alanine

2
Phenylalanine

3 Tryptophan

4
Methionine

$64^{\text {c }}$

$62^{\text {d }}$
5
$4 a$

$75^{\text {d }}$
6
4b

${ }^{\text {a }}$ Conditions: 1 (1 mmol), amine ester hydrochloride (1 mmol), maleimide $(1 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{mmol})$ in toluene $(7 \mathrm{~mL})$ at $100^{\circ} \mathrm{C}$ (oil bath) for 1 h .
${ }^{\mathrm{b}}$ Isolated yield.
${ }^{\text {c }}$ Reaction (2 h)
${ }^{\text {d }}$ Xylene $16 \mathrm{~h}, 130^{\circ} \mathrm{C}$ (oil bath), no $\mathrm{Et}_{3} \mathrm{~N}$ added.

Scheme 3.

Fig. 2. X-ray crystal structure of 10.
The reaction was carried out under the same conditions as those used in Scheme $2\left[\mathrm{Et}_{3} \mathrm{~N}\right.$, toluene, $100^{\circ} \mathrm{C}$ (oil bath)] and afforded the corresponding endo-cycloadducts 13a,b and 14 in $58-84 \%$ yield (Table 2).

The use of symmetrical maleimide dipolarophiles, required for further catalytic cascade chemistry, does not allow the regioselectivity of the cycloaddition in Tables 1 and 2 to be determined. This aspect was therefore probed using phenyl vinylsulfone $\mathbf{1 6}$ as the dipolarophile (Scheme 4). The reaction of 1 with alanine methyl ester and $\mathbf{1 6}$ occurred regioselectively to give $\mathbf{1 7 a}-\mathbf{c}(54 \%)$ as a 2.5:1.3:1 mixture whilst the reaction of $\mathbf{1}$ with 2-aminomethylpyridine and 16

Table 2
Three-component cycloaddition cascades of $\mathbf{1}$ with $\mathbf{1 1}$ and $\mathbf{1 2}^{\text {a }}$

[^1]

Scheme 4.
afforded 18 (72%) stereo and regioselectively. The regio and stereoselectivity of $\mathbf{1 7 a} \mathbf{- c}$ was assigned by ${ }^{1} \mathrm{H}$ NMR and in the case of $\mathbf{1 7 a}$ confirmed by an X-ray structure (Fig. 3). The stereo and regiochemistry of $\mathbf{1 8}$ was also established by X-ray crystallography (Fig. 4). The regiochemistry reflects the ability of the 1 - and 3 -substituents to stabilize the negative charge in the 1,3 -dipole. In the case of two heterocycles, e.g., 18, this can be predicted by the protonation $\mathrm{p} K_{\mathrm{a}} \mathrm{s}$ of the N-heterocycles (pyrimidine $\mathrm{p} K_{\mathrm{aH}}=1.3$ and pyridine $\mathrm{p} K_{\mathrm{aH}}=5.5$). ${ }^{13}$ The switch from the 'normal' endo-transition state product to an exo-transition state product in the formation of $\mathbf{1 8}$ reflects steric destabilization of the former by the bulky pyridyl/ $\mathrm{SO}_{2} \mathrm{Ph}$ interaction. We have noted a similar effect when a 2-pyridyl group is coordinated to $\mathrm{Ag}(\mathrm{I})$ and others have noted the ability of the $\mathrm{SO}_{2} \mathrm{Ph}$ group to cause an endo \rightarrow exo transition state switch. ${ }^{14}$

Fig. 3. X-ray crystal structure of 17a.

Fig. 4. X-ray crystal structure of 18.

A second series of cycloadditions were explored using the N benzylaminomethylpyrimidines 19 and $\mathbf{2 0}$. These substrates, which were prepared by reductive amination of the corresponding aldehydes, ${ }^{15,16}$ were selected to ascertain the stereoselectivity of the cycloadditions of the corresponding 1,2,3-trisubstituted azomethine ylides. ${ }^{17-24}$

Amines 19 and 20 underwent 3-component cascade reactions with a series of aryl/heteroaryl aldehydes and maleimide or N methylmaleimide (Scheme 5) in boiling toluene (Table 3). In all cases equimolar amounts of amine, aldehyde and dipolarophile were employed. The amines $\mathbf{1 9}$ and $\mathbf{2 0}$ gave rise to mixtures of two cycloadducts except in the case of Table 3, entry 7, which furnished a single cycloadduct 23g although trace amounts of Michael adducts were observed in a number of cases. It was difficult to determine the precise cycloadduct isomer ratio from the ${ }^{1} \mathrm{H}$ NMR of the reaction mixture due to overlapping signals.

Scheme 5.

The stereochemistry of the cycloadducts was determined by comparison of the signals for their $4-\mathrm{H}$ protons in the ${ }^{1} \mathrm{H}$ NMR spectra of 23 and 24 . For example in cycloadduct 23a the $4-\mathrm{H}$ proton appears as a singlet, indicating that the dihedral angle of the vicinal protons ($4-\mathrm{H}$ and $3 \mathrm{a}-\mathrm{H}$) is approximately 90° and consequently they are trans related, whereas the 6-H proton appears as a doublet $(J=9.5 \mathrm{~Hz})$ indicating that $6-\mathrm{H}$ and $6 \mathrm{a}-\mathrm{H}$ are cis related. In cycloadduct 24a, however, the 4-H proton appears as a doublet $(J=9.0 \mathrm{~Hz})$ indicating that $4-\mathrm{H}$ and $3 \mathrm{a}-\mathrm{H}$ protons are cis related. The $6-\mathrm{H}$ proton appears as a doublet with a small coupling constant $(J=4.8 \mathrm{~Hz})$ indicating that $6-\mathrm{H}$ and $6 \mathrm{a}-\mathrm{H}$ are trans related. These conclusions are supported by NOE studies. Irradiation of 4-H effects a 6% enhancement of the signal for $3 \mathrm{a}-\mathrm{H}$ in $\mathbf{2 3 b}$ whilst a 15% enhancement is observed in $\mathbf{2 4 b}$. These data indicate that 4-H and 3aH are trans related in $\mathbf{2 3}$ and cis related in 24. Similarly, irradiation of $6-\mathrm{H}$ in $\mathbf{2 3}$ c effects a 14% enhancement of the signal for $6 \mathrm{a}-\mathrm{H}$ whilst a 3% enhancement is observed in $\mathbf{2 4 c}$. These data suggested that 6-H and 6a-H are cis related in 23c and trans related in 24c. The stereochemistry of the cycloadducts was firmly established by an X-ray crystal structure of 23d (Fig. 5). The stereochemistry of the cycloadducts $23 \mathbf{e}-\mathbf{g}$ and $\mathbf{2 4 e} \mathbf{-} \mathbf{g}$ was assigned by comparison of the ${ }^{1} \mathrm{H}$ NMR spectra with those of the previously described analogues.

Two additional features of Scheme 5 merit further comment. Firstly, the intermediate $\mathbf{2 2}$ undergoes regioselective deprotonation solely at $\left(\mathrm{CH}_{2}\right)_{\mathrm{a}}$ as opposed to $\left(\mathrm{CH}_{2}\right)_{\mathrm{b}}$ reflecting the greater electronegativity of the pyrimidine ring versus that of the benzyl group. Secondly, there are potentially four configurations 25-28 of the intermediate azomethine ylide. Two syn ($\mathbf{2 5}$ and $\mathbf{2 6}$) and two anti (27 and 28) dipoles are possible (with respect to the stereochemistry of the 1,3 -substituens), for the N-substituted azomethine ylides. Their relative stability may be estimated on the grounds of steric and electronic interactions among the substituents. The U-shaped syn-dipole $\mathbf{2 5}$ and syn-dipole $\mathbf{2 6}$ are discarded because they are too sterically congested.

25

27

28

Both semi-empirical (AM1) and ab initio (STO-3G) calculations predict small energetic preference for anti-dipole $\mathbf{2 8}$ over the alternative anti-dipole 27 . Additionally the syn-dipoles 25 and 26 are considerably disfavoured (Table 4).

It is reported ${ }^{21}$ that cycloaddition of dibenzylamine with benzaldehyde and N-methylmaleimide (toluene, reflux) gives cycloadducts derived from both syn and anti-dipole. In our case 27 and 28 are close in energy. However, the anti-dipole 27 has an additional potential stabilisation by 1,5 -dipole interaction. No cycloadduct was obtained from syn-dipoles $\mathbf{2 5}$ or 26. It is difficult to decide if both $\mathbf{2 7}$ and $\mathbf{2 8}$ are involved in the cycloaddition reactions because an endo-transition state of $\mathbf{2 7}$ gives the same cycloadduct as an exo-transition state of $\mathbf{2 8}$ and vice versa.

3. Conclusions

4,6-Dimethyl-2-formylpyrimidine participate in 1,3-dipolar cycloaddition with acyclic and cyclic α-amino esters and 2-aminomethyl heterocycles, with in situ dipole formation and capture by maleimides affording cycloadducts in good yields via endo-transition states. When the bulky phenyl vinylsulfone is used as dipolarophile exo-transition states predominate due to steric effects. In contrast reacting N -benzylaminomethylpyridines with a range of aldehydes and maleimides leads to approximately $1: 1$ mixture of N-benzyl cycloadducts via anti-1,3-dipoles.

4. Experimental

4.1. General

Thin layer chromatography (TLC) was carried out on a pre-coated aluminium plates with silica gel $60 \mathrm{~F}_{254}$ (Merck), and was visualised using ultraviolet light and/or aqueous $\mathrm{KMnO}_{4} / \mathrm{I}_{2}$. Flash column chromatography employed silica gel 60 (Merck, 230-400 mesh). Melting points were determined on a Kofler hot-stage apparatus or Reichert hot-stage microscope and are uncorrected. Microanalyses

Table 3
Cycloadducts from amines 19 and 20, aldehydes 21a-d and maleimide ${ }^{\text {a }}$

Entry	Aldehyde	Cycloadduct	endo/exo

1

2

3

4

5

6
21a

21b

21c

2.5:1

1:1.2

1:1

1:1
$74^{\text {c }}$

1:1

24b
68

63

63
$4^{\text {c }}$

]

21a

75

${ }^{\text {a }}$ Conditions: equimolar quantities of amine, aldehyde and maleimide, $100^{\circ} \mathrm{C}$, toluene, $5-10 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Isolated yield.
${ }^{\text {c }}$ Dipolarophile was N -methylmaleimide.
${ }^{\text {d }}$ Single cycloadduct formed.
were performed using Flash EA (1112 series) instrument. Infrared spectra of solids were collected on a Perkin-Elmer Spectrum FT-IR spectrometer by spreading a DCM solution on sodium chloride discs and allowing evaporation. Proton magnetic resonance spectra were recorded on Bruker 300, 400 and 500 MHz instruments. Chemical shifts (δ) are reported in parts per million relative to tetramethylsilane ($\delta=0.00$) and coupling constants are given in Hertz
(Hz). The following abbreviations are used: $s=$ singlet, $b r=b r o a d$, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{m}=$ multiplet, $\mathrm{t}=$ triplet, $\mathrm{td}=$ triplet of doublet. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 75 MHz on a Bruker DPX300 instrument and chemical shift values are reported in parts per million (ppm). Electron impact mass spectra were obtained on a Bruker HCT-ultra (ESI ${ }^{+}$) machine, and accurate masses on a Bruker Daltonics micrOTOF spectrometer.

Fig. 5. X-ray crystal structure of 23d.

Table 4
Energy calculations of 1,3-dipoles 25-28

	Normalised 2 energy $^{\text {a }}$ (Kcal/mol)			
	$\mathbf{2 5}$	$\mathbf{2 6}$	$\mathbf{2 7}$	$\mathbf{2 8}$
Semi-empirical (AM1)	4.65	3.74	1.12	0
ab initio (STO-3G)	4.09	3.70	1.74	0

${ }^{\text {a }}$ Energy calculations were performed using PC Spartan pro software. Semiempirical calculations were run using the AM1 approximation with gradient minimization. Ab initio calculations used the STO-3G basis set with gradient minimization.

All compounds were named according to the IUPAC system using the ACD/ILAB (ACD/IUPAC v. 12.0 programme) web service (http:// www.acdlabs.com).

4.2. General procedure A: 1,3-dipolar cycloaddition reactions

An equimolar mixture (1 mmol) of the aldehyde $\mathbf{1}$, amine hydrochloride, maleimide and $\mathrm{Et}_{3} \mathrm{~N}$ in toluene (7 mL) was heated at $100^{\circ} \mathrm{C}$ for 10 min to 3 h with magnetic stirring. The cycloadducts precipitated out of the hot solution and were filtered off and washed with water to dissolve the $\mathrm{Et}_{3} \mathrm{NHCl}$. The resulting solid was crystallized.
4.2.1. Methyl 3-(4,6-dimethylpyrimidin-2-yl)-1-methyl-4,6-dioxooctahydropyrrolo[3,4-c]pyrrole-1-carboxylate (5a). Prepared by general procedure A from $1(0.136 \mathrm{~g}, 1.00 \mathrm{mmol})$, d-alanine methyl ester hydrochloride ($0.139 \mathrm{~g}, 1.00 \mathrm{mmol}$), maleimide $(0.097 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.13 \mathrm{~mL}, 1.00 \mathrm{mmol})$ in toluene $(7 \mathrm{~mL})$ at $100^{\circ} \mathrm{C}$ for 1 h . The product ($0.21 \mathrm{~g}, 66 \%$) crystallized from MeOH as colourless needles, mp $258-260^{\circ} \mathrm{C}$; (Found: C, 56.65 ; H, 5.75; $\mathrm{N}, 17.65 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires: C, 56.60; H, 5.70; $\mathrm{N}, 17.60 \%$); δ_{H} (300 MHz, DMSO-d d_{6}); 11.15 ($1 \mathrm{H}, \mathrm{s}, 5-\mathrm{NH}$), 7.16 ($1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), $4.66(1 \mathrm{H}, \mathrm{dd}, J 12.9$ and $8.7,3-\mathrm{H}), 3.83(1 \mathrm{H}, \mathrm{d}, J 12.9$, 2-NH), 3.73 (3H, s, OMe), 3.70 (1H, t, J 9.2, 3a-H), 3.36 (1H, d, J 9.6, $6 \mathrm{a}-\mathrm{H}), 2.40$ ($6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl-Me), 1.43 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}$); δ_{C} (75 MHz , DMSO-d d_{6}); 177.25, 176.52, 172.38, 165.95, 164.77, 118.75, 68.14, 64.43, 58.56, 52.78, 52.27, 23.87, 23.31; $\nu_{\max } / \mathrm{cm}^{-1}$ (film); 3302, 3148, 2990, 2758, 1772, 1721, 1598, 1539, 1437, 1344, 1270; m/z $\left(\mathrm{ESI}^{+}\right) 341.1\left(100 \%, \mathrm{MNa}^{+}\right)$; found MNa^{+}, 341.1219. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{NaO}_{4}$ requires $\mathrm{MNa}, 341.1220$.
4.2.2. Methyl 1-benzyl-3-(4,6-dimethylpyrimidin-2-yl)-4,6-dioxooctahydropyrrolo[3,4-c]pyrrole-1-carboxylate (5b). Prepared by general procedure A from $1(0.136 \mathrm{~g}, 1.00 \mathrm{mmol})$, l -phenylalanine methyl ester hydrochloride ($0.215 \mathrm{~g}, 1.00 \mathrm{mmol}$), maleimide $(0.097 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.13 \mathrm{~mL}, 1.00 \mathrm{mmol})$ in toluene $(7 \mathrm{~mL})$ at $100^{\circ} \mathrm{C}$ for 1 h . The product ($0.32 \mathrm{~g}, 83 \%$) crystallized from

MeOH as colourless needles, $\mathrm{mp} 263-265{ }^{\circ} \mathrm{C}$; (Found: C, 63.95; H, 5.60; $\mathrm{N}, 14.25 . \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires: $\left.\mathrm{C}, 63.95 ; \mathrm{H}, 5.62 ; \mathrm{N}, 14.20 \%\right) ; \delta_{\mathrm{H}}$ (300 MHz , DMSO-d d_{6}); 11.16 ($1 \mathrm{H}, \mathrm{s}, 5-\mathrm{NH}$), 7.13-7.16 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $4.84(1 \mathrm{H}, \mathrm{dd}, J 12.8$ and $9.22,3-\mathrm{H}), 3.76(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.5,3 \mathrm{a}-\mathrm{H}), 3.71(3 \mathrm{H}$, s , OMe), $3.68(1 \mathrm{H}, \mathrm{d}, J 13.3,2-\mathrm{NH}), 3.54(1 \mathrm{H}, \mathrm{d}, J 7.7,6 \mathrm{a}-\mathrm{H}), 3.21$ and $3.10\left(2 \times 1 \mathrm{H}, 2 \mathrm{~d}, J 13.8, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.39\left(6 \mathrm{H}, \mathrm{s}, 2 \times\right.$ pyrimidinyl-Me); δ_{C} (75 MHz , DMSO- d_{6}); 177.58, 176.97, 171.66, 166.49, 165.25, 137.21, $130.51,128.03,126.67,119.25,73.29,64.49,58.99,53.21,52.40$, 40.74, 23.76; $\nu_{\max } / \mathrm{cm}^{-1}$ (film); 3300, 3248, 2956, 2741, 1776, 1745, 1718, 1598, 1435, 1374, 1348, 1263, 1231; m/z (ESI ${ }^{+}$) 417.2 (100%, MNa^{+}); found MNa^{+}, 417.1534. $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{NaO}_{4}$ requires MNa , 417.1533.
4.2.3. Methyl 3-(4,6-dimethylpyrimidin-2-yl)-1-(1H-indol-3-ylmethyl)-4,6-dioxooctahydropyrrolo[3,4-c]pyrrole-1-carboxylate (5 c). Prepared by general procedure A from $1(0.136 \mathrm{~g}, 1 \mathrm{mmol}$), l-tryptophan methyl ester hydrochloride ($0.254 \mathrm{~g}, 1.00 \mathrm{mmol}$), maleimide ($0.097 \mathrm{~g}, 1.00 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.13 \mathrm{~mL}, 1.00 \mathrm{mmol})$ in toluene (7 mL) at $100^{\circ} \mathrm{C}$ for 1 h . The product ($0.32 \mathrm{~g}, 74 \%$) crystallized from EtOH as colourless needles, mp 257-259 ${ }^{\circ} \mathrm{C}$; (Found: C, 63.70; $\mathrm{H}, 5.40 ; \mathrm{N}, 16.20 . \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires: C, 63.73; $\mathrm{H}, 5.35$; N , $16.16 \%)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6}); 11.14 ($1 \mathrm{H}, \mathrm{s}, 5-\mathrm{NH}$), 10.80 ($1 \mathrm{H}, \mathrm{d}, J$ 2.05, indolyl-NH), 7.53 ($1 \mathrm{H}, \mathrm{d}, J 7.5$, indolyl-H), $7.29(1 \mathrm{H}, \mathrm{d}, J 7.8$, indolyl-H), $7.15(1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), $7.07(1 \mathrm{H}, \mathrm{d}, J 2.1$, indolyl-H), $7.00(1 \mathrm{H}, \mathrm{t}, J 7.5$, indolyl-H), $6.92(1 \mathrm{H}, \mathrm{t}, J 7.4$, indolyl-H), $4.86(1 \mathrm{H}, \mathrm{dd}, J 12.6$ and $9.0,3-\mathrm{H}), 3.79(1 \mathrm{H}, \mathrm{t}, J 8.6,3 \mathrm{a}-\mathrm{H})$, 3.74 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.8,2-\mathrm{NH}$), 3.66 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.58 ($1 \mathrm{H}, \mathrm{d}, J 7.8,6 \mathrm{a}-\mathrm{H}$), 3.35 and $3.20\left(2 \times 1 \mathrm{H}, 2 \mathrm{~d}, J 14.9, \mathrm{CH}_{2}-\right.$ indolyl $)$, $2.39(6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl-Me); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}\right.$, DMSO- d_{6}); 177.31, 176.59, 171.81, 165.96, 164.93, 135.38, 128.04, 124.03, 120.42, 118.74, 118.47, 118.06, 111.02, 109.43, 73.19, 64.25, 58.20, 52.84, 51.85, 31.07, 23.30; $\nu_{\max } /$ cm^{-1} (film); 3390, 3054, 2890, 2763, 1772, 1716, 1594, 1544, 1434, 1348, 1205; $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 434.2$ ($100 \%, \mathrm{MH}^{+}$); found $\mathrm{MH}^{+}, 434.1827$. $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires $\mathrm{MH}, 434.1823$.
4.2.4. Methyl 3-(4,6-dimethylpyrimidin-2-yl)-1-[2-(methylthio) ethyl]-4,6-dioxooctahydropyrrolo[3,4-c]pyrrole-1-carboxylate (5d). Prepared by general procedure A from $1(0.136 \mathrm{~g}, 1.00 \mathrm{mmol})$, dL-methionine methyl ester hydrochloride ($0.199 \mathrm{~g}, 1.00 \mathrm{mmol}$), maleimide ($0.097 \mathrm{~g}, 1.00 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.13 \mathrm{~mL}, 1.00 \mathrm{mmol})$ in toluene (7 mL) at $100{ }^{\circ} \mathrm{C}$ for 2 h . The product $(0.24 \mathrm{~g}, 64 \%)$ crystallized from MeOH as colourless needles, $\mathrm{mp} 213-215^{\circ} \mathrm{C}$; (Found: C, 54.10 ; $\mathrm{H}, 5.90$; $\mathrm{N}, 14.50$; S, 8.35. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ requires: $\mathrm{C}, 53.95$; $\mathrm{H}, 5.86 ; \mathrm{N}, 14.80 ; \mathrm{S}, 8.47 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 8.29(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{NH})$, $6.94(1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), $4.72(1 \mathrm{H}, \mathrm{dd}, J 12.9$ and $8.7,3-\mathrm{H}), 4.13$ ($1 \mathrm{H}, \mathrm{d}, J 12.9,2-\mathrm{NH}$), 3.89 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.73 ($1 \mathrm{H}, \mathrm{t}, J 8.3,3 \mathrm{a}-\mathrm{H}$), 3.35 ($1 \mathrm{H}, \mathrm{d}, J 7.8,6 \mathrm{a}-\mathrm{H}$), 2.71-2.63 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.50-2.36(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{~S}$), 2.47 ($6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl-Me), 2.10 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}$), 1.96-1.88 $\left(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 175.41,174.94,171.10$, $166.91,164.08,119.41,72.57,65.21,58.68,52.98,52.72,36.07,28.83$, 23.88, 15.64; $\nu_{\max } / \mathrm{cm}^{-1}$ (film); 3296, 3159, 2954, 2763, 1775, 1722, 1597, 1545, 1442, 1347, 1267, 1226; m/z (ESI ${ }^{+}$) 379.1 (100\%, MH^{+}); found MH^{+}, 379.1446. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{32} \mathrm{~S}$ requires MH , 279.1435.

4.3. General procedure B: spirocyclic cycloaddition

As for general procedure A except that the dipolarophiles was N methylmaleimide (NMM), the solvent was xylene and the temperature was $130^{\circ} \mathrm{C}$.
4.3.1. 3'-(4,6-Dimethylpyrimidin-2-yl)-5'-methyltetrahydro-2'H-spiro[furan-3,1'-pyrrolo[3,4-c]pyrrole]-2,4', $6^{\prime}\left(3^{\prime} H, 5^{\prime} H\right)$-trione ($\mathbf{6 a}$). A mixture of α-amino- γ-butyrolactone hydrobromide (0.3 g , 1.6 mmol), triethylamine ($0.25 \mathrm{~mL}, 1.8 \mathrm{mmol}$), aldehyde $\mathbf{1}(0.22 \mathrm{~g}$,
1.6 mmol) and N-methylmaleimide ($0.18 \mathrm{~g}, 1.6 \mathrm{mmol}$) in xylene $(10 \mathrm{~mL})$ was heated at $130{ }^{\circ} \mathrm{C}$ for 16 h . Flash chromatography eluting with $9: 1 \mathrm{v} / \mathrm{v}$ ethyl acetate/methanol afforded the product ($0.34 \mathrm{~g}, 62 \%$), which crystallized from dichloromethane/hexane as colourless rods, mp 210-212 ${ }^{\circ} \mathrm{C}$; (Found: C, 57.90; H, 5.40; N, 17.00. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires: C, $58.20 ; \mathrm{H}, 5.50 ; \mathrm{N}, 16.95 \%$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ; 6.96\left(1 \mathrm{H}, \mathrm{s}\right.$, pyrimidinyl-H), $4.68\left(1 \mathrm{H}, \mathrm{dd}, J 7.9\right.$ and $13.2,3^{\prime}-$ $\mathrm{H}), 4.59\left(1 \mathrm{H}\right.$, ddd, $J .2,5.5$ and $\left.9.5, \mathrm{CH}_{2} \mathrm{O}\right), 4.48(1 \mathrm{H}, \mathrm{dt}, J 7.7$ and 9.3 , $\mathrm{CH}_{2} \mathrm{O}$), $3.92\left(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{NH}\right.$), 3.82 ($1 \mathrm{H}, \mathrm{t}, J 7.9,3^{\prime} \mathrm{a}-\mathrm{H}$), $3.40(1 \mathrm{H}, \mathrm{d}, J$ 7.6, $6^{\prime} \mathrm{a}-\mathrm{H}$), 2.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 2.47 ($6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl -Me), 2.46-2.43 (2H, m, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$); $\nu_{\max } / \mathrm{cm}^{-1}$ (film); 1772, 1701, 1595, 1435, 1375, 1286.

NOE data for $\mathbf{6 b}$:

	\% Enhancement			
Irradiated proton	$3^{\prime}-\mathrm{H}$	$3^{\prime} \mathrm{a}-\mathrm{H}+\mathrm{NH}$	$6^{\prime} \mathrm{a}-\mathrm{H}$	$4-\mathrm{H}$
$3^{\prime}-\mathrm{H}$	10.5	-	4.0	
$3^{\prime} \mathrm{a}-\mathrm{H}$	10.0		8.1	-

4.3.2. 3'-(4,6-Dimethylpyrimidin-2-yl)-5'-methyldihydro-2H,2'H-spiro [azepane-3,1'-pyrrolo[3,4-clpyrrole]-2, $4^{\prime} 6^{\prime}\left(3^{\prime} H, 5^{\prime} H\right)$-trione ($\mathbf{6 b}$). A mixture of 3-amino- ε-caprolactam ($0.2 \mathrm{~g}, 1.5 \mathrm{mmol}$), aldehyde $\mathbf{1}$ ($0.21 \mathrm{~g}, 1.5 \mathrm{mmol}$) and N-methylmaleimide ($0.17 \mathrm{~g}, 1.5 \mathrm{mmol}$) in xylene (10 mL) was heated at $130^{\circ} \mathrm{C}$ for 16 h . Flash chromatography eluting with $9: 1 \mathrm{v} / \mathrm{v}$ ethyl acetate/methanol afforded the product ($0.4 \mathrm{~g}, 75 \%$), which crystallized from dichloromethane/hexane as colourless rods, $\mathrm{mp} 235-237^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 6.93(1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), 6.19 ($1 \mathrm{H}, \mathrm{dd}, J 2.9$ and $7.6, \mathrm{CONH}$), $4.78-4.70(2 \mathrm{H}, \mathrm{m}$, $3^{\prime}-\mathrm{H}$ and pyrrolidine-NH), $3.76\left(1 \mathrm{H}, \mathrm{d}, J 7.6,6^{\prime} \mathrm{a}-\mathrm{H}\right), 3.71$ ($1 \mathrm{H}, \mathrm{t}, J 7.6$, $\left.3^{\prime} \mathrm{a}-\mathrm{H}\right), 3.64$ and $3.29\left(2 \mathrm{H}, 2 \mathrm{~m}, \mathrm{NHCH}_{2}\right), 2.83$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), $2.45(6 \mathrm{H}, \mathrm{s}$, $2 \times$ pyrimidinyl-Me), $1.97-1.69\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ; 176.00,175.50,175.20,166.50,164.80,118.00,72.70,64.20$, 52.80, 50.80, 42.1, 34.70, 28.4, 25.40, 24.80, 23.80; $\nu_{\max } / \mathrm{cm}^{-1}$ (film); $1698,1654,1595,1435,1361,1332,1286,1132 ; \mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) 358.2$ (100%, MH^{+}); found MH^{+}, 358.1874. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{3}$ requires $\mathrm{MH}, 358.1879$.

NOE data for $\mathbf{6 b}$:

	\% Enhancement		
Irradiated proton	$3^{\prime}-\mathrm{H}$	$3^{\prime} \mathrm{a}-\mathrm{H}$	$4-\mathrm{H}$
$3^{\prime}-\mathrm{H}$	10.0	4.0	
$3^{\prime} \mathrm{a}-\mathrm{H}$	10.0		-

4.3.3. 4-(4,6-Dimethylpyrimidin-2-yl)-1,3-dioxo-2-phenyloctahydropy rrolo[3,4-a]pyrrolizine-8a(6H)-carboxamide (10). A mixture of 1 ($0.136 \mathrm{~g}, 1 \mathrm{mmol}$), l -prolinamide ($0.114 \mathrm{~g}, 1 \mathrm{mmol}$), N -phenylmaleimide ($0.173 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.13 \mathrm{~mL}, 1 \mathrm{mmol})$ was heated at $100{ }^{\circ} \mathrm{C}$ in toluene (5 mL) for 1 h . The solvent was removed under vacuum and the crude product was purified by gradient elution flash chromatography with EtOAc to $5: 1 \mathrm{v} / \mathrm{v}$ EtOAc/EtOH to afford adduct. Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave colourless needles ($0.36,89 \%$), mp $219-220^{\circ} \mathrm{C}$; (Found: C, 64.90; H, 5.70; N, 17.35. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{3}$ requires: C, 65.17; H, 5.72; N, 17.27\%); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6}); 7.63 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 2.3, CONH_{2}), $7.47(2 \mathrm{H}, \mathrm{t}, J 7.5$, phenyl-H), $7.38(1 \mathrm{H}, \mathrm{t}, J 7.5$, phenyl-H), $7.32\left(1 \mathrm{H}, \mathrm{d}, J .2 .3, \mathrm{CONH}_{2}\right), 7.16(1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), $7.09(2 \mathrm{H}, \mathrm{d}, J$ 7.7, phenyl-H), $4.81(1 \mathrm{H}, \mathrm{d}, J 9.1,4-\mathrm{H}), 4.06(1 \mathrm{H}, \mathrm{t}, J 9.1,3 \mathrm{a}-\mathrm{H}), 3.97$ $(1 \mathrm{H}, \mathrm{d}, J 9.1,8 \mathrm{~b}-\mathrm{H}), 3.08-3.01\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}\right), 2.64-2.55\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{B}}\right.$ and $\left.8-\mathrm{H}_{\mathrm{A}}\right), 2.34(6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl -Me$), 2.13-2.03\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{B}}\right)$, $1.78-1.67\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) ; 176.86,175.85$, 174.92, 165.82, 165.52, 132.26, 128.65, 127.95, 126.20, 118.47, 80.09, 68.30, 51.93, 49.95, 47.99, 30.16, 25.42, 23.27; $\nu_{\max } / \mathrm{cm}^{-1}$ (film); 3425, 3060, 2964, 2873, 1775, 1712, 1679, 1594, 1543, 1499, 1440, 1379; m/z
$\left(\mathrm{ESI}^{+}\right) 406.2\left(100 \%, \mathrm{MH}^{+}\right)$; found $\mathrm{MH}^{+}, 406.1864 . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{3}$ requires MH, 406.1874.
4.3.4. 4-(4,6-Dimethylpyrimidin-2-yl)-6-(pyridin-2-yl)tetrahy-dropyrrolo[3,4-clpyrrole-1,3(2H,3aH)-dione (13a). A mixture of $\mathbf{1}$ ($0.136 \mathrm{~g}, 1 \mathrm{mmol}$), 2-aminomethylpyridine ($0.102 \mathrm{~mL}, 1 \mathrm{mmol}$), maleimide ($0.097 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.13 \mathrm{~mL}, 1 \mathrm{mmol})$ was heated at $100{ }^{\circ} \mathrm{C}$ in toluene $(7 \mathrm{~mL})$ for 1.5 h . The solvent was removed under vacuum and the crude product was purified by flash chromatography with gradient elution from EtOAc to $1: 1 \mathrm{v} / \mathrm{v} \mathrm{EtOAc} / \mathrm{MeOH}$ to afford the corresponding adduct 13a, which crystallized from CHCl_{3} as colourless needles ($0.27,84 \%$), mp $148-150^{\circ} \mathrm{C}$; (Found: C, $63.40 ; \mathrm{H}, 5.25$; N, 21.75. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires: $\left.\mathrm{C}, 63.15 ; \mathrm{H}, 5.30 ; \mathrm{N}, 21.66 \%\right)$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$, DMSO- d_{6}); 10.89 (1H, s, 2-NH), 8.53 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.6$, pyridinyl-H), 7.77 ($1 \mathrm{H}, \mathrm{dt}, J 7.7$ and 2.05 , pyridinyl-H), 7.46 ($1 \mathrm{H}, \mathrm{d}, J 7.7$, pyridinyl-H), $7.29(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and 4.6 , pyridinyl-H), 7.16 ($1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), $4.62(1 \mathrm{H}, \mathrm{dd}, J 12.9$ and $8.5,6-\mathrm{H}), 4.54(1 \mathrm{H}, \mathrm{dd}, J 12.9$ and $7.9,4-\mathrm{H}), 4.03$ ($1 \mathrm{H}, \mathrm{t}, J 12.9,5-\mathrm{NH}$), $3.66(1 \mathrm{H}, \mathrm{t}, J 7.9,3 \mathrm{a}-\mathrm{H}), 3.56(1 \mathrm{H}, \mathrm{t}, J 7.9,6 \mathrm{a}-\mathrm{H}), 2.42$ ($6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl-Me); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$); 175.79, 175.69 , $166.55,164.64,155.56,149.30,136.48,123.06,122.92,119.12,66.92$, 66.29, 53.75, 53.68, 23.97; $\nu_{\max } / \mathrm{cm}^{-1}$ (film); 3467, 3285, 3164, 3054, 2762, 1774, 1715, 1596, 1546, 1475, 1442, 1350; m/z (ESI $\left.{ }^{+}\right) 324.1$ (100%, MH^{+}); found $\mathrm{MH}^{+}, 324.1456 . \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires $\mathrm{MH}, 324.1455$.
4.3.5. 4-[3-Chloro-5-(trifluoromethyl)pyridin-2-yl]-6-(4,6-dimethylpyrimidin-2-yl)tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (13b). Prepared by general procedure A from 1 ($0.136 \mathrm{~g}, 1.00 \mathrm{mmol}$), 2-aminomethyl-3-chloro-5-(trifluoromethyl) pyridine hydrochloride ($0.246 \mathrm{~g}, 1.00 \mathrm{mmol}$), maleimide (0.097 g , 1.00 mmol) and $\mathrm{Et}_{3} \mathrm{~N}(0.26 \mathrm{~mL}, 2.00 \mathrm{mmol})$ in toluene $(7 \mathrm{~mL})$ at $100^{\circ} \mathrm{C}$ for 10 min . The product ($0.34 \mathrm{~g}, 80 \%$) crystallized from MeOH as colourless needles, $\mathrm{mp} 262-264^{\circ} \mathrm{C}$; (Found: C, $50.55 ; \mathrm{H}, 3.50 ; \mathrm{Cl}$, 8.35; $\mathrm{N}, 16.45 . \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClF}_{3} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires: $\mathrm{C}, 50.77$; $\mathrm{H}, 3.55 ; \mathrm{Cl}, 8.33$; $\mathrm{N}, 16.45 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{MeOH}-d_{4}\right) ; 8.77(1 \mathrm{H}, \mathrm{d}, J 1.3$, pyridinyl-H), $8.00(1 \mathrm{H}, \mathrm{d}, J 1.5$, pyridinyl-H), $6.99(1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), $5.07(1 \mathrm{H}, \mathrm{d}, J 8.0,4-\mathrm{H}), 4.77(1 \mathrm{H}, \mathrm{d}, J 8.0,6-\mathrm{H}), 3.93$ ($1 \mathrm{H}, \mathrm{t}, J 8.0,6 \mathrm{a}-\mathrm{H}$), $3.84(1 \mathrm{H}, \mathrm{t}, J 8.0,3 \mathrm{a}-\mathrm{H}), 2.82(2 \mathrm{H}, \mathrm{br}$ s, 2-NH and $5-\mathrm{NH}$), $2.51\left(6 \mathrm{H}, \mathrm{s}, 2 \times\right.$ pyrimidinyl-Me); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{MeOH}-\right.$ $\left.d_{4}\right) ; 176.34,176.07,166.92,164.24,157.00,143.72(\mathrm{q}, J 3.8), 133.89(\mathrm{q}$, $J 3.5$), 131.34, 126.89 (q, J 33.7), 120.37 (q, J 273.6), 119.42, 66.09, 62.62, 53.74, 51.69, 23.81; $\nu_{\text {max }} / \mathrm{cm}^{-1}$ (film); 3407, 3054, 2758, 1776, 1714, 1595, 1544, 1410, 1344, 1321; m/z (ESI $\left.{ }^{+}\right) 426.1\left(100 \%, \mathrm{MH}^{+}\right)$; found MH^{+}, 426.0947. $\mathrm{C}_{18} \mathrm{H}_{16}{ }^{35} \mathrm{ClF}_{3} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires $\mathrm{MH}, 426.0939$.
4.3.6. 4-(1H-Benzimidazol-2-yl)-6-(4,6-dimethylpyrimidin-2-yl)tet-rahydropyrrolo[3,4-clpyrrole-1,3(2H,3aH)-dione (14). Prepared by general procedure A from $1(0.136 \mathrm{~g}, 1.00 \mathrm{mmol})$, 2aminomethylbenzimidazole dihydrochloride ($0.22 \mathrm{~g}, 1.00 \mathrm{mmol}$), maleimide ($0.097 \mathrm{~g}, 1.00 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.39 \mathrm{~mL}, 3.00 \mathrm{mmol})$ in toluene (7 mL) at $100^{\circ} \mathrm{C}$ for 3 h . The product ($0.21 \mathrm{~g}, 58 \%$) was obtained as an amorphous off white powder from $\mathrm{MeOH}, \mathrm{mp}$ $210-212{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6}); $11.00(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{NH}), 7.58(1 \mathrm{H}$, d, J 7.2, benzimidazolyl-H), $7.51(1 \mathrm{H}, \mathrm{d}, J 7.5$, benzimidazolyl-H), 7.20-7.13 (3H, m, $2 \times$ benzimidazolyl-H and pyrimidinyl-H), 4.73 $(1 \mathrm{H}, \mathrm{dd}, J 12.3$ and $8.0,4-\mathrm{H}), 4.60(1 \mathrm{H}, \mathrm{dd}, J 12.3$ and $8.0,6-\mathrm{H}), 4.02$ ($1 \mathrm{H}, \mathrm{t}, J 12.3,5-\mathrm{NH}$), 3.71 ($1 \mathrm{H}, \mathrm{t}, J$ 8.0, $6 \mathrm{a}-\mathrm{H}$), 3.63 ($1 \mathrm{H}, \mathrm{t}, J 8.0,3 \mathrm{a}-\mathrm{H}$), 2.44 ($6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl-Me); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz}\right.$, DMSO- d_{6}); 177.4 , 177.0, 166.2, 165.4, 151.8, 121.7 (br s), 119.1, 66.3, 59.3, 53.8, 53.3, 23.9 (two symmetrical benzimidazolyl carbons could not be located due to peak overlaps); $\nu_{\max } / \mathrm{cm}^{-1}$ (film); 3478, 3297, 2950, 1868, 1761, 1713, 1599, 1542, 1485,1437, 1360, 1276; m/z (ESI ${ }^{+}$) 363.2 (53\%, MH^{+}); found MH^{+}, 363.1563. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{6} \mathrm{O}_{2}$ requires $\mathrm{MH}, 363.1564$.
4.3.7. Methyl 5-(4,6-dimethylpyrimidin-2-yl)-2-methyl-4-(phenyl-sulfonyl)pyrrolidine-2-carboxylate (17a,b) and methyl 5-(4,6-dimethyl-pyrimidin-2-yl)-2-methyl-3-(phenylsulfonyl)pyrrolidine-2-carboxylate
(17c). A mixture of 4,6-dimethyl-2-formylpyrimidine 1 (0.136 g , 1 mmol), D -alanine methyl ester hydrochloride ($0.139 \mathrm{~mL}, 1 \mathrm{mmol}$), phenyl vinylsulfone ($0.168 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.26 \mathrm{~mL}, 2 \mathrm{mmol})$ in toluene (7 mL) was heated at $100^{\circ} \mathrm{C}$ for 15 min . The solvent was removed under vacuum, the residue dissolved in CHCl_{3} and washed with water $(3 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under vacuum to give crude cycloadduct. The crude product was purified by column chromatography eluting with AcOEt to separate cycloadduct 17a and changing to EtOAc/MeOH (10:1) to separate cycloadducts $\mathbf{1 7}$ c then $\mathbf{1 7 b}$.

Compound 17a, crystallized from CHCl_{3} as colourless needles ($0.11 \mathrm{~g}, 28 \%$), mp $121-123^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 7.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.7$, phenyl-H), $7.51(1 \mathrm{H}, \mathrm{t}, J 7.4$, phenyl-H), $7.42(2 \mathrm{H}, \mathrm{t}, J 7.4$, phenyl-H), $6.73(1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), $4.72(1 \mathrm{H}, \mathrm{d}, J 6.7,5-\mathrm{H}), 4.61(1 \mathrm{H}, \mathrm{ddd}, J$ $6.7,8.5$ and $15.5,4-\mathrm{H}$), 3.55 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), 3.19 ($1 \mathrm{H}, \mathrm{br}$ s, NH), 2.86 ($1 \mathrm{H}, \mathrm{dd}, J 9.4$ and $13.7,3-\mathrm{Ha}$), 2.44 ($1 \mathrm{H}, \mathrm{dd}, J 8.5$ and $13.6,3-\mathrm{Hb}$), 2.31 ($6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl-Me), 1.51 ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$); 175.6, 166.8, 166.6, 138.4, 133.4, 128.8 ($2 \times$ C), 118.4, 67.3, 66.0, 64.9, 52.3, 37.4, 25.6, 23.8; $\nu_{\max } / \mathrm{cm}^{-1}$ (film); 3332, 2953, 1732, 1593, 1542, 1447, 1372, 1304, 1266; m/z (ESI ${ }^{+}$) $390.2\left(100 \%, \mathrm{MH}^{+}\right)$; found MH^{+}, 390.1483. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}{ }^{32} \mathrm{~S}$ requires $\mathrm{MH}, 390.1482$.

NOE data for 17a:

	\% Enhancement							
Irradiated proton	$5-\mathrm{H}$	$4-\mathrm{H}$	$3-\mathrm{Ha}$	$3-\mathrm{Hb}$	Ph	Me		
$5-\mathrm{H}$		-	-	-	3.9	-		
$4-\mathrm{H}$	-		6.4	-	4.6	-		
$3-\mathrm{Ha}$	3.8	-	27.4		25.5	-		
$3-\mathrm{Hb}$				3.8				

Compound 17b, $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$; $7.58(2 \mathrm{H}, \mathrm{d}, J 7.7$, phe-nyl-H), $7.53(1 \mathrm{H}, \mathrm{t}, J 7.4$, phenyl-H), $7.38(2 \mathrm{H}, \mathrm{t}, J 7.7$, phenyl-H), $6.78(1 \mathrm{H}$, s, pyrimidinyl-H), $4.69(1 \mathrm{H}, \mathrm{d}, J 5.6,5-\mathrm{H}), 4.17(1 \mathrm{H}, \mathrm{dt}, J$ $5.6,4-\mathrm{H}), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.38(1 \mathrm{H}, \mathrm{dd}, J 5.4$ and $14.6,3-\mathrm{Ha})$, 2.35 ($6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl-Me), $2.25(1 \mathrm{H}, \mathrm{dd}, J 7.7$ and $14.3,3-\mathrm{Hb}$), 1.51 (3H, s, 2-Me); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 176.3,166.6,165.0,139.6$, $133.5,129.1,128.5,119.3,67.5,66.1,65.5,53.0,38.3,29.7,24.1 ; \nu_{\max } /$ cm^{-1} (film); 3330, 2927, 1736, 1593, 1543, 1446, 1371, 1305.

NOE data for 17b:

	\% Enhancement						
Irradiated proton	$5-\mathrm{H}$	$4-\mathrm{H}$	$3-\mathrm{Ha}$	$3-\mathrm{Hb}$	Ph		
$5-\mathrm{H}$	9.5	10.4	-	-	-		
$4-\mathrm{H}$	-	-	-	-	8.3		
$3-\mathrm{Ha}$	-	17.2	25.4	21.5	-		
$3-\mathrm{Hb}$			-				

Compound 17c, $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 7.86(2 \mathrm{H}, \mathrm{d}, J 7.2$, phe-nyl-H), $7.63(1 \mathrm{H}, \mathrm{t}, J 7.3$, phenyl-H), $7.53(2 \mathrm{H}, \mathrm{t}, J 7.4$, phenyl-H), $6.90(1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), 4.38 ($1 \mathrm{H}, \mathrm{dd}, J 7.0$ and $9.1,5-\mathrm{H}$), 3.82 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.70(1 \mathrm{H}, \mathrm{dd}, J 7.4$ and $10.2,3-\mathrm{H}), 2.46-2.39(2 \mathrm{H}, \mathrm{m}$, $\left.4-\mathrm{CH}_{2}\right), 2.45\left(6 \mathrm{H}, \mathrm{s}\right.$, pyrimidinyl-Me), $1.25(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}) ; \delta_{\mathrm{c}}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$); 173.4, 167.9, 167.2, 140.4, 134.2, 129.6, 128.6, 118.9, 74.7, 67.7, 61.8, 53.4, 37.4, 27.8, 24.3; $\nu_{\max } / \mathrm{cm}^{-1}$ (film); 3296, 2952, 1737, 1593, 1545, 1447, 1373, 1308.

NOE data for 17c:

	\% Enhancement						
Irradiated proton	$5-\mathrm{H}$	$4-\mathrm{H}_{2}$	$3-\mathrm{Ha}$	Ph	Me		
$5-\mathrm{H}$	7.9	4.1	-	-			
$3-\mathrm{H}$	-	5.6		5.9	4.1		

4.3.8. 4,6-Dimethyl-2-[4-(phenylsulfonyl)-5-(pyridin-2-yl)pyrrolidin2 -ylppyrimidine (18). A mixture of 4,6-dimethyl-2-formylpyrimidine 1 ($0.136 \mathrm{~g}, 1 \mathrm{mmol}$), 2-aminomethylpyridine ($0.103 \mathrm{~mL}, 1 \mathrm{mmol}$), phenyl vinylsulfone ($0.168 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.13 \mathrm{~mL}, 1 \mathrm{mmol})$ in toluene (7 mL) was heated at $100^{\circ} \mathrm{C}$ for 30 min . The solvent was removed under reduced pressure, the residue dissolved in CHCl_{3} and washed with water $(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed under reduced pressure to give crude cycloadduct. The crude product was purified by column chromatography eluting with AcOEt to give the product, which crystallized from CHCl_{3} as colourless needles $(0.25 \mathrm{~g}, 64 \%)$, mp $132-134{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ; 8.50(1 \mathrm{H}, \mathrm{d}, J 4.1$, pyridinyl-H), $7.83(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4$, phenyl-H), $7.54(2 \mathrm{H}, \mathrm{dt}, J 2.1$ and 7.7 , pyridinyl-H), 7.43 ($2 \mathrm{H}, \mathrm{t}, J 7.6$, phenyl-H), $7.22(1 \mathrm{H}, \mathrm{d}, J 7.7$, pyridinyl-H), $7.15(1 \mathrm{H}, \mathrm{dd}, J 5.1$ and 7.2 , phenyl-H), $6.90(1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), 4.79 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.2,2-\mathrm{H}), 4.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.6$ and 8.8, 5-H), 4.25 (1 H , ddd, J 4.6, 7.1 and $11.3,3-\mathrm{H}$), 3.61 (1 H , br s, NH), $2.93(1 \mathrm{H}$, ddd, $J 4.6,7.2$ and $12.0,4-\mathrm{Ha}), 2.44(6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl-Me), 2.34 (1 H , ddd, $J 9.5,10.8$ and $13.8,4-\mathrm{Hb}$); δ_{c} ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$); 167.8, 166.8, 157.9, 149.4, 138.8, 136.6, 133.5, 129.1, 128.3, 123.9, 122.6, 118.6, 69.1, 65.4, 64.6, 36.2, 23.9; $\nu_{\text {max }} / \mathrm{cm}^{-1}$ (film); 3276, 3061, 2925, 1593, 1544, 1474, 1446, 1384, 1348, 1304; m/ $z\left(\mathrm{ESI}^{+}\right) 395.2\left(100 \%, \mathrm{MH}^{+}\right)$; found MH^{+}, 395.1553. $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{32} \mathrm{~S}$ requires $\mathrm{MH}, 395.1536$.

4.4. General procedure for 19 and 20

A solution of the pyrimidine carboxaldehyde (1.5 mmol), benzylamine (1.5 mmol) and a catalytic amount of acetic acid (few drops) in dichloroethane (10 mL) was stirred for 1 h at $25^{\circ} \mathrm{C}$. Sodium triacetoxy borohydride (2.2 mmol) was then added under a nitrogen atmosphere and stirring continued for further 2 h . The reaction mixture was diluted with dichloromethane (10 mL) and washed sequentially with saturated NaHCO_{3} solution and saturated brine. The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue afforded the amine.
4.4.1. N-Benzyl-1-(4,6-dimethyl-2-pyrimidinyl)methanamine (19). Flash chromatography of the residue eluting with $19: 1 \mathrm{v} / \mathrm{v}$ ether/methanol afforded the amine $(0.27 \mathrm{~g}, 81 \%)$ as a pale yellow oil. (Found: C, 73.50; H, 7.65; N, 18.50. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3}$ requires: C, 73.95; H, 7.55 ; N, 18.50%); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 7.40-7.24$ ($5 \mathrm{H}, \mathrm{m}$, phe-nyl-H), $6.88\left(1 \mathrm{H}, \mathrm{s}\right.$, pyrimidinyl-H), $3.99\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\right.$ pyrimidinyl), $3.88\left(2 \mathrm{H}\right.$, s, benzyl $\left.-\mathrm{CH}_{2}\right), 2.42(6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl-Me), 2.34 (1 H , br s, NH); $m / z(\%) 226\left(\mathrm{M}^{+}-1,2\right), 197(<1), 150(2), 136(1), 122$ (100), 91 (26).
4.4.2. N-Benzyl-1-(2-methyl-4-pyrimidinyl)methanamine (20). Flash chromatography of the residue eluting with $19: 1 \mathrm{v} / \mathrm{v}$ ether/methanol afforded the product $(0.71 \mathrm{~g}, 81 \%)$ as pale yellow oil. (Found: C, 73.40; H, 7.20; N, 19.70. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3}$ requires: $\mathrm{C}, 73.20$; $\mathrm{H}, 7.10 ; \mathrm{N}, 19.70 \%) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 8.56(1 \mathrm{H}, \mathrm{d}, J 5.1$, pyrimidinyl-H), $7.35-7.27(5 \mathrm{H}, \mathrm{m}$, phenyl-H), $7.18(1 \mathrm{H}, \mathrm{d}, J 5.1$, pyrimidinyl-H), $3.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\right.$ pyrimidinyl $)$, $3.84(2 \mathrm{H}, \mathrm{s}$, ben-zyl-CH2), 2.72 ($3 \mathrm{H}, \mathrm{s}$, pyrimidinyl-Me), 2.15 (1 H , br s, NH); $m / z(\%$, FAB) $214\left(\mathrm{M}^{+}+1,100\right), 122(5), 108$ (17), 91 (32).
4.4.3. 5-Benzyl-4-(4,6-dimethylpyrimidin-2-yl)-6-phenyltetrahydro-pyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (23a and 24a). Prepared by general procedure A from $19(0.37 \mathrm{~g}, 1.62 \mathrm{mmol})$, benzaldehyde ($0.17 \mathrm{~mL}, 1.62 \mathrm{mmol}$) and maleimide ($0.16 \mathrm{~g}, 1.62 \mathrm{mmol}$) in dry toluene (12 mL) at $100{ }^{\circ} \mathrm{C}$ for 5 h . Flash chromatography (100% ether to 100% ethyl acetate gradient elution) afforded $23 a(0.23 \mathrm{~g}$, 34%) followed by $\mathbf{2 4 a}$ ($0.23 \mathrm{~g}, 34 \%$).

Compound 23a, crystallized from dichloromethane/hexane as colourless rods, $\mathrm{mp} 205-207{ }^{\circ} \mathrm{C}$; (Found: C, 72.60; H, 5.85; N, 13.80.
$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}_{4}$ requires: $\mathrm{C}, 72.80 ; \mathrm{H}, 5.85 ; \mathrm{N}, 13.60 \%$); $\delta_{\mathrm{H}}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ; 7.90(1 \mathrm{H}, \mathrm{br} s, \mathrm{NH}), 7.43-7.17(10 \mathrm{H}, \mathrm{m}$, aryl-H), $6.95(1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), $4.89(1 \mathrm{H}, \mathrm{d}, J 9.5,6-\mathrm{H}), 4.90(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.92(1 \mathrm{H}$, dd, $J .9$ and $9.5,6 \mathrm{a}-\mathrm{H}), 3.54\left(1 \mathrm{H}, \mathrm{d}, J 14.3\right.$, benzyl- CH_{2}), $3.55(1 \mathrm{H}, \mathrm{d}, J$ $7.9,3 \mathrm{a}-\mathrm{H}), 3.10\left(1 \mathrm{H}, \mathrm{d}, J 14.3\right.$, benzyl- CH_{2}), $2.48(6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl-Me); $\nu_{\text {max }} / \mathrm{cm}^{-1}$ (film); 1716, 1591, 1540, 1342, 1318 and $1181 ; m / z(\%, \mathrm{FAB}) 413\left(\mathrm{M}^{+}+1,100\right), 321$ (72), $250(6), 91$ (72).

Compound 24a, crystallized from dichloromethane/hexane as colourless plates, mp $227-229^{\circ} \mathrm{C}$; (Found: C, 72.55 ; H, 5.85; N, 13.85. $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}_{4}$ requires: C, $72.80 ; \mathrm{H}, 5.85$; $\mathrm{N}, 13.60 \%$); δ_{H} ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$); 8.04 (1 H , br s, NH), $7.50-7.12$ ($10 \mathrm{H}, \mathrm{m}$, aryl-H), $6.89(1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), 4.93 ($1 \mathrm{H}, \mathrm{d}, J 4.8,6-\mathrm{H}$), 4.78 ($1 \mathrm{H}, \mathrm{d}, J 9.0$, $4-\mathrm{H}), 3.94$ ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.3,3 \mathrm{a}-\mathrm{H}$), 3.48 ($1 \mathrm{H}, \mathrm{d}, J 13.7$, benzyl- CH_{2}), 3.46 (1H, dd, J 4.8 and 9.7, 6a-H), 2.91 (d, 1H, J 13.7, benzyl-CH2), 2.43 ($6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl-Me); $\nu_{\text {max }} / \mathrm{cm}^{-1}$ (film); 1716, 1593, 1542, 1453, 1370, 1346 and 1184; $m / z(\%) 412$ ($\mathrm{M}^{+}, 2$), 395 (1), 321 (100), 250 (17) 224 (7), 161 (7), 91 (44).
4.4.4. 5-Benzyl-4-(4,6-dimethylpyrimidin-2-yl)-6-(1,3-thiazol-2$y l)$ tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (23b and 24b). Prepared by general procedure A from 19 ($0.18 \mathrm{~g}, 0.8 \mathrm{mmol}$), thiazole-2-carboxaldehyde ($0.09 \mathrm{~g}, 0.8 \mathrm{mmol}$) and maleimide ($0.077 \mathrm{~g}, 0.8 \mathrm{mmol}$) in dry toluene (12 mL) at $100^{\circ} \mathrm{C}$ for 5 h . Flash chromatography eluting with ethyl acetate afforded $\mathbf{2 3 b}$ (0.11 g , 32%) followed by $\mathbf{2 4 b}$ ($0.1 \mathrm{~g}, 31 \%$).

Compound 23b, crystallized from ethanol as colourless needles, $\mathrm{mp} 223-225{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 7.81(1 \mathrm{H}, \mathrm{d}, J 3.2$, thiazolyl-H), 7.76 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$), 7.33 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.2$, thiazolyl-H), 7.29-7.18 ($5 \mathrm{H}, \mathrm{m}$, phenyl-H), 6.95 ($1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), $5.53(1 \mathrm{H}$, d, J 9.7, 6-H), 4.88 ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$), 4.13 (1 H , dd, $J 8.2$ and $9.7,6 \mathrm{a}-\mathrm{H}$), 3.75 $(1 \mathrm{H}, \mathrm{d}, J 14.2$, benzyl-CH2), $3.56(1 \mathrm{H}, \mathrm{dd}, J 1.0$ and 8.2 , $3 \mathrm{a}-\mathrm{H}$), 3.20 ($1 \mathrm{H}, \mathrm{d}, J 14.2$, benzyl- CH_{2}), 2.46 ($6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl-Me); $\nu_{\max } /$ cm^{-1} (film); 1718, 1594, 1540, 1345, 1202, 1184; m/z (ESI ${ }^{+} 420.1$ ($100 \%, \mathrm{MH}^{+}$); found MH^{+}, 420.1496. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2}{ }^{32} \mathrm{~S}$ requires MH , 420.1494.

NOE data for 23b:

	\% Enhancement			
Irradiated proton	4-H	3a-H	$6 \mathrm{a}-\mathrm{H}$	$6-\mathrm{H}$
4-H	6.2	6.0	-	-
3a-H	-	12.6	8.8	-
6a-H	-	-	15.8	14.3
6-H				

Compound 24b, crystallized from ethanol as colourless plates, $\mathrm{mp} 250-252{ }^{\circ} \mathrm{C}$; (Found: C, 62.45; H, 5.00; N, 16.95; S, 7.45. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}_{5} \mathrm{~S}$ requires: C, 63.00; $\left.\mathrm{H}, 5.05 ; \mathrm{N}, 16.70 ; \mathrm{S}, 7.65 \%\right) ; \delta_{\mathrm{H}}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$); 7.83 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.2$, thiazolyl-H), 7.72 (1 H , br s, NH), 7.33 ($1 \mathrm{H}, \mathrm{d}, J 3.2$, thiazolyl-H), $7.28-7.20(5 \mathrm{H}, \mathrm{m}$, phenyl-H), $6.88(1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), $5.20(1 \mathrm{H}, \mathrm{d}, J 2.6,6-\mathrm{H}), 4.85(1 \mathrm{H}, \mathrm{d}, J 9.1$, $4-\mathrm{H}), 4.02$ ($1 \mathrm{H}, \mathrm{t}, J 8.9,3 \mathrm{a}-\mathrm{H}$), 3.66 (1 H, dd, $J 2.7$ and $8.8,6 \mathrm{a}-\mathrm{H}$), 3.58 $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0\right.$, benzyl-$\left.-\mathrm{CH}_{2}\right), 3.16\left(1 \mathrm{H}, \mathrm{d}, J 14.0\right.$, benzyl- $\left.\mathrm{CH}_{2}\right), 2.44$ ($6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl-Me); $m / z\left(\%\right.$, FAB) $420\left(\mathrm{M}^{+}+1,100\right), 335$ (29), 314 (13), 91 (82).

NOE data for 24b:

	\% Enhancement			
Irradiated proton	$4-\mathrm{H}$	$3 \mathrm{a}-\mathrm{H}$	$6 \mathrm{a}-\mathrm{H}$	$6-\mathrm{H}$
4-H	13.5	14.8	-	-
3a-H	-	9.7	10.8	-
6a-H	-	-	4.3	5.4
6-H				

4.4.5. 5-Benzyl-4-(4,6-dimethylpyrimidin-2-yl)-6-(1-methyl-1H-in-dol-3-yl)tetrahydropyrrolo[3,4-clpyrrole-1,3(2H,3aH)-dione (23c and

24c). Prepared by general procedure A from $19(0.18 \mathrm{~g}, 0.8 \mathrm{mmol})$, N -methyl indole-3-carboxaldehyde ($0.127 \mathrm{~g}, 0.8 \mathrm{mmol}$) and maleimide ($0.077 \mathrm{~g}, 0.8 \mathrm{mmol}$) in dry toluene (12 mL) at $100^{\circ} \mathrm{C}$ for 5 h . Flash chromatography eluting with ether afforded $23 \mathrm{c}(0.126 \mathrm{~g}$, 34%) followed by $\mathbf{2 4 c}$ ($0.11 \mathrm{~g}, 29 \%$).

Compound 23c, crystallized from ethanol as pale yellow plates, mp 235-237 ${ }^{\circ} \mathrm{C}$; (Found: C, 72.05; H, 5.90; N, 15.20. $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{~N}_{5}$ requires: C, $72.25 ; \mathrm{H}, 5.85 ; \mathrm{N}, 15.05 \%$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 7.80$ (1 H , br s, NH), 7.70 (1 H , br s, indolyl-H), 7.27-7.04 ($9 \mathrm{H}, \mathrm{m}$, phenyl and indolyl-H), $6.94(1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), $5.25(1 \mathrm{H}, \mathrm{d}, J 9.4,6-\mathrm{H})$, $4.93(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.91(1 \mathrm{H}, \mathrm{t}, J 9.0,6 \mathrm{a}-\mathrm{H}), 3.74(1 \mathrm{H}, \mathrm{d}, J 13.7$, ben-zyl- CH_{2}), $3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.58(1 \mathrm{H}, \mathrm{dd}, J 0.6$ and $7.9,3 \mathrm{a}-\mathrm{H}), 3.12$ ($1 \mathrm{H}, \mathrm{d}, J 13.7$, benzyl- CH_{2}), 2.48 ($6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl-Me); $\nu_{\max } /$ cm^{-1} (film); 1717, 1653, 1591, 1558, 1540, 1343; m/z (\%, FAB) 465 ($\mathrm{M}^{+}, 6$), 374 (100), 360 (5), 335 (54), 91 (37).

NOE data for 23c:

	\% Enhancement					
Irradiated proton	$4-\mathrm{H}$	$3 \mathrm{a}-\mathrm{H}$	$6 \mathrm{a}-\mathrm{H}$	$6-\mathrm{H}$	$\mathrm{Ar}-\mathrm{H}$	
$4-\mathrm{H}$		5.6	-	-	3.7	
3a-H	7.2		4.3	-	-	
6a-H	-	9.9		11.9	-	
6-H	-	-	13.7		4.1	

Compound 24c, crystallized from ethanol as pale yellow needles, mp 240-242 ${ }^{\circ} \mathrm{C}$; (Found: C, 71.95; H, 5.90; N, 15.30. $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{~N}_{5}$ requires: C, $72.25 ; \mathrm{H}, 5.85 ; \mathrm{N}, 15.05 \%$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, CDCl_{3}); 7.75 ($1 \mathrm{H}, \mathrm{dd}, J 0.8$ and 7.1 , indolyl-H), $7.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$, 7.33-7.05 ($\mathrm{m}, ~ 9 \mathrm{H}$, phenyl and indolyl-H), $6.88(1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), $5.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.7,6-\mathrm{H}), 4.77(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 3.98(1 \mathrm{H}, \mathrm{t}$, $J 9.2,3 \mathrm{a}-\mathrm{H}$), 3.78 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 3.74 (1 H, dd, $J 4.7$ and 9.4, 6a-H), 3.56 and $2.96\left(2 \mathrm{H}, 2 \mathrm{~d}, J 13.9\right.$, benzyl- $\left.\mathrm{CH}_{2}\right), 2.43(6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl-Me); $\nu_{\text {max }} / \mathrm{cm}^{-1}$ (film); 1715, 1593, 1558, 1540, 1329, 1187; m/z (\%, FAB); 465 ($\mathrm{M}^{+}, 16$), 374 (91), 335 (51), 144 (48), 91 (100).

NOE data for 24c:

	\% Enhancement					
Irradiated proton	4-H	3a-H	$6 \mathrm{a}-\mathrm{H}$	$6-\mathrm{H}$	$\mathrm{Ar}-\mathrm{H}$	
4-H		11.4	-	-	5.3	
3a-H	13.2		6.7	-	3.1	
6a-H	-	7.9		3.8	9.1	
6-H	-	-	2.6		9.0	

4.4.6. 5-Benzyl-4-(4,6-dimethylpyrimidin-2-yl)-2-methyl-6-phenyltetrahydropyrrolo [3,4-c]pyrrole-1,3(2H,3aH)-dione (23d and 24d). Prepared by general procedure A from $19(0.18 \mathrm{~g}, 0.8 \mathrm{mmol})$, benzaldehyde ($0.1 \mathrm{~mL}, 0.8 \mathrm{mmol}$) and N-methylmaleimide (0.088 g , 0.8 mmol) in dry toluene (12 mL) at $110^{\circ} \mathrm{C}$ for 5 h . Flash chromatography eluting with $10: 1 \mathrm{v} / \mathrm{v}$ ether/hexane afforded $\mathbf{2 3 d}(0.118 \mathrm{~g}$, 35%) followed by $\mathbf{2 4 d}$ ($0.135 \mathrm{~g}, 39 \%$).

Compound 23d, crystallized from dichloromethane/hexane as colourless plates, mp $173-175{ }^{\circ} \mathrm{C}$; (Found: C, $72.95 ; \mathrm{H}, 6.10 ; \mathrm{N}$, 13.40. $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~N}_{4}$ requires: $\mathrm{C}, 73.20 ; \mathrm{H}, 6.15 ; \mathrm{N}, 13.15 \%$); δ_{H} ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $7.35-7.11(10 \mathrm{H}, \mathrm{m}$, aryl-H), $6.95(1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), $4.93(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 4.91(1 \mathrm{H}, \mathrm{d}, J .9 .1,6-\mathrm{H}), 3.96(1 \mathrm{H}$, dd, $J .8$ and $9.5,6 \mathrm{a}-\mathrm{H}), 3.57\left(1 \mathrm{H}, \mathrm{d}, J 14.1\right.$, benzyl- $\left.\mathrm{CH}_{2}\right), 3.45(1 \mathrm{H}, \mathrm{d}, J$ 7.7, 3a-H), 3.10 ($1 \mathrm{H}, \mathrm{d}, J$ 14.1, benzyl-CH2), 2.93 (3H, s, NMe), 2.48 ($6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl-Me); $\nu_{\max } / \mathrm{cm}^{-1}$ (film); 1779, 1705, 1591, $1540,1495,1343,1318,1216 ; m / z(\%$, FAB $) 427\left(\mathrm{M}^{+}+1,100\right), 349(7)$, 335 (90), 319 (7), 91 (60).

Compound 24d, crystallized from dichloromethane/hexane as colourless needles, mp $185-187^{\circ} \mathrm{C}$; (Found: C, 73.20; H, 6.20; N, 13.40. $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~N}_{4}$ requires: $\mathrm{C}, 73.20 ; \mathrm{H}, 6.15 ; \mathrm{N}, 13.15 \%$); $\delta_{\mathrm{H}}(250 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) ; 7.53-7.10(10 \mathrm{H}, \mathrm{m}$, aryl -H$), 6.89(1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), 4.88 ($1 \mathrm{H}, \mathrm{d}, J 4.9,6-\mathrm{H}$), $4.80(1 \mathrm{H}, \mathrm{d}, J 9.0,4-\mathrm{H}), 3.93(1 \mathrm{H}, \mathrm{t}, J .9 .2,3 \mathrm{a}-\mathrm{H}), 3.47$ ($1 \mathrm{H}, \mathrm{d}, J 13.0$, benzyl-CH2), 3.42 ($1 \mathrm{H}, \mathrm{dd}, J 4.9$ and $9.4,6 \mathrm{a}-\mathrm{H}$), 2.87 (1 H , d, J 13.0, benzyl- CH_{2}), 2.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 2.41 ($6 \mathrm{H}, \mathrm{s}, 2 \times$ pyrimidinyl-Me); $\nu_{\max } / \mathrm{cm}^{-1}$ (film); 1702,1592,1540,1435,1284; m/z (\%, FAB) $427\left(\mathrm{M}^{+}+1,34\right), 335$ (77), 250 (14), 224 (11), 91 (100).

4.4.7. 5-Benzyl-4-(2-methylpyrimidin-4-yl)-6-phenyltetrahydropyrrolo

 [3,4-c]pyrrole-1,3(2H,3aH)-dione (23e and 24e). Prepared by general procedure A from $20(0.36 \mathrm{~g}, 1.68 \mathrm{mmol})$, benzaldehyde (0.17 mL , 1.68 mmol) and maleimide ($0.163 \mathrm{~g}, 1.68 \mathrm{mmol}$) in dry toluene $(12 \mathrm{~mL})$ at $100^{\circ} \mathrm{C}$ for 10 h . Flash chromatography eluting with ether afforded 23e followed by $\mathbf{2 4 e}$ (combined yield, $0.163 \mathrm{~g}, 61 \%$).Compound 23e, crystallized from ethanol as colourless plates, $\mathrm{mp} 225-227^{\circ} \mathrm{C}$; (Found: C, 72.25; H, 5.55; N, 14.30. $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}_{4}$ requires: $\mathrm{C}, 72.35 ; \mathrm{H}, 5.55 ; \mathrm{N}, 14.05 \%)$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 8.57(1 \mathrm{H}$, d, J 5.0, pyrimidinyl-H), $7.90(1 \mathrm{H}, \mathrm{br}$ s, NH), $7.47-7.18(10 \mathrm{H}, \mathrm{m}$, aryl-H), $6.62(1 \mathrm{H}, \mathrm{d}, J 5.0$, pyrimidinyl-H), $4.83(1 \mathrm{H}, \mathrm{d}, J 9.5,2-\mathrm{H})$, $4.71(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 4.03(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $9.6,3-\mathrm{H}), 3.71(1 \mathrm{H}, \mathrm{d}, J 14.5$, benzyl- CH_{2}), $3.50(1 \mathrm{H}, \mathrm{d}, J 7.9,4-\mathrm{H}), 2.83\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.5\right.$, benzyl $\left.-\mathrm{CH}_{2}\right)$, 2.8 (3H, s, pyrimidinyl-Me); $\nu_{\text {max }} / \mathrm{cm}^{-1}$ (film); 1718, 1576, 1558, 1456,$1342 ; \mathrm{m} / \mathrm{z}(\%, \mathrm{FAB}) 399\left(\mathrm{M}^{+}+1,100\right), 307$ (77), 210 (6), 91 (52).

Compound 24e, crystallized from ethanol as colourless plates, $\mathrm{mp} 195-197{ }^{\circ} \mathrm{C}$; (Found: C, 72.10; H, 5.50; N, 14.10. $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}_{4}$ requires: C, 72.35 ; H, 5.55 ; N, 14.05\%); $\delta_{\mathrm{H}}(250 \mathrm{MHz}$); 8.55 ($1 \mathrm{H}, \mathrm{d}, J$ 5.0, pyrimidinyl-H), $8.31(1 \mathrm{H}$, br s, NH), $7.46-7.12(10 \mathrm{H}, \mathrm{m}$, aryl-H), $6.89(1 \mathrm{H}, \mathrm{d}, J 5.1$, pyrimidinyl-H), $4.92(1 \mathrm{H}, \mathrm{d}, J 3.8,6-\mathrm{H}), 4.57(1 \mathrm{H}, \mathrm{d}$, $J 9.0,4-\mathrm{H}), 3.98(1 \mathrm{H}, \mathrm{t}, J 9.1,3 \mathrm{a}-\mathrm{H}), 3.59-3.52(2 \mathrm{H}, \mathrm{m}, 6 \mathrm{a}-\mathrm{H}$ and benzyl- CH_{2}), $2.89\left(1 \mathrm{H}, \mathrm{d}, J\right.$ 14.4, benzyl $\left.-\mathrm{CH}_{2}\right), 2.73(3 \mathrm{H}, \mathrm{s}$, pyrimidinyl-Me); $\nu_{\max } / \mathrm{cm}^{-1}$ (film); 1772, 1719, 1575, 1559, 1494, 1454, 1406, 1346; m/z (\%) 498 ($\mathrm{M}^{+}, 1$), 307 (100), 293 (7), 236 (10), 210 (10), 91 (62).
4.4.8. 5-Benzyl-4-(4-methylpyrimidin-2-yl)-6-(1,3-thiazol-2-yl)tetra-hydropyrrolo[3,4-clpyrrole-1,3(2H,3aH)-dione(23fand 24f). Prepared by general procedure A from $20(0.4 \mathrm{~g}, 1.87 \mathrm{mmol})$, thiazole-2carboxaldehyde ($0.16 \mathrm{~mL}, 1.87 \mathrm{mmol}$) and maleimide (0.18 g , 1.87 mmol) in dry toluene (10 mL) at $100^{\circ} \mathrm{C}$ for 5 h . Flash chromatography eluting with ethyl acetate afforded $\mathbf{2 4 f}(0.34 \mathrm{~g}, 45 \%$), followed by $23 f(0.228 \mathrm{~g}, 30 \%)$.

Compound 23f, crystallized from ethanol as colourless rods, mp 233-235 ${ }^{\circ} \mathrm{C}$; (Found: C, 62.35; H, 4.85; N, 17.40; S, 7.65. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}_{5} \mathrm{~S}$ requires: C, $\left.62.20 ; \mathrm{H}, 4.70 ; \mathrm{N}, 17.30 ; \mathrm{S}, 7.90 \%\right) ; \delta_{\mathrm{H}}$ ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $8.60(1 \mathrm{H}, \mathrm{d}, J 5.0$, pyrimidinyl-H), $8.3(1 \mathrm{H}$, br s, NH), 7.84 ($1 \mathrm{H}, \mathrm{d}, J 3.2$, thiazolyl-H), $7.36-7.19$ ($6 \mathrm{H}, \mathrm{m}$, phenyl-H and thiazolyl-H), $6.67(1 \mathrm{H}, \mathrm{d}, J 5.0$, pyrimidinyl -H$), 5.48(1 \mathrm{H}, \mathrm{d}, J$ $9.7,6-\mathrm{H}), 4.66(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 4.22(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and $9.7,6 \mathrm{a}-\mathrm{H}), 3.84$ (1H, d, J 14.3, benzyl-CH2), 3.48 (1H, d, J 8.2, 3a-H), 3.97 ($1 \mathrm{H}, \mathrm{d}, J$ 14.3, benzyl $-\mathrm{CH}_{2}$), 2.78 (3H, s, pyrimidinyl-Me); $\nu_{\max } / \mathrm{cm}^{-1}$ (film); 1720, 1575, 1558; m/z (\%) 405 ($\mathrm{M}^{+}, 7$), 314 (100), 300 (13), 269 (8), 243 (15), 217 (5), 91 (86).

Compound 24f, crystallized from ethanol as colourless prisms, $\mathrm{mp} 255-257{ }^{\circ} \mathrm{C}$; (Found: C, 62.00; H, 4.75; N, 17.50; S, 7.75. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~N}_{5} \mathrm{~S}$ requires: C, 62.20; H, 4.70; N, 17.30; S, 7.90\%); δ_{H} ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $8.60(1 \mathrm{H}, \mathrm{d}, J 5.0$, pyrimidinyl-H), $8.0(1 \mathrm{H}$, br s, NH), $7.86(1 \mathrm{H}, \mathrm{d}, J 3.2$, thiazolyl-H), $7.35-7.25(6 \mathrm{H}, \mathrm{m}$, phenyl and thiazolyl-H), 7.18 ($1 \mathrm{H}, \mathrm{d}, J 5.0$, pyrimidinyl-H), 5.15 ($1 \mathrm{H}, \mathrm{d}, J 2.6,6-$ H), 4.82 ($1 \mathrm{H}, \mathrm{d}, J 9.1,4-\mathrm{H}), 4.10$ ($1 \mathrm{H}, \mathrm{t}, J 8.9,3 \mathrm{a}-\mathrm{H}$), 3.67 ($1 \mathrm{H}, \mathrm{dd}, J 2.7$ and $8.8,6 \mathrm{a}-\mathrm{H}), 3.62$ and $3.16\left(2 \mathrm{H}, 2 \times \mathrm{d}, J 14.0\right.$, benzyl $\left.-\mathrm{CH}_{2}\right), 2.76$ (3H, s, pyrimidinyl-Me); $\nu_{\max } / \mathrm{cm}^{-1}$ (film); 1718, 1576, 1559; m/z(\%, ES) $406\left(\mathrm{M}^{+}+1,38\right), 315$ (100).
4.4.9. 5-Benzyl-4-(1-methyl-1H-imidazol-2-yl)-6-(4-methylpyrimidin-2-yl)tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (23g). Prepared by general procedure A from $20(0.3 \mathrm{~g}, 1.4 \mathrm{mmol}), \mathrm{N}$ -methylimidazole-2-carboxaldehyde ($0.15 \mathrm{~g}, 1.4 \mathrm{mmol}$) and maleimide
($0.13 \mathrm{~g}, 1.4 \mathrm{mmol}$) in dry toluene (12 mL) at $110^{\circ} \mathrm{C}$ for 10 h . Flash chromatography eluting with 9:1 v/v ethyl acetate/methanol afforded the product ($0.3 \mathrm{~g}, 53 \%$), which crystallized from ethanol as colourless plates, mp 253-255 ${ }^{\circ} \mathrm{C}$; (Found: C, 65.50; H, 5.55; N, 21.05. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}_{6}$ requires: C, $65.65 ; \mathrm{H}, 5.50 ; \mathrm{N}, 20.90 \%$); $\delta_{\mathrm{H}}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$; 8.68-8.57 ($2 \mathrm{H}, \mathrm{m}$, pyrimidinyl-H and NH), $7.35-7.17(4 \mathrm{H}, \mathrm{m}$, phenyl-H and imidazolyl-H), 7.10-6.90 (3H, m, phenyl-H and imidazolyl-H), $6.73(1 \mathrm{H}, \mathrm{s}$, pyrimidinyl-H), $5.09(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{H}), 4.75$ $(1 \mathrm{H}, \mathrm{br}, 6-\mathrm{H}), 3.96(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 3.73-3.63(2 \mathrm{H}, \mathrm{m}, 6 \mathrm{a}-\mathrm{H}$ and ben-zyl- CH_{2}), 3.30-3.10 ($4 \mathrm{H}, \mathrm{m}$, NMe and benzyl- CH_{2}), $2.80(3 \mathrm{H}, \mathrm{s}$, pyrimidinyl-Me); $\nu_{\max } / \mathrm{cm}^{-1}$ (film); 1718, 1576, 1558, 1191; m/z(\%, ES) $403\left(\mathrm{M}^{+}+1,100\right)$.

Acknowledgements

We thank the Commonwealth Scholarships Commission and the Egyptian Government for studentships to (M.A.B.S.) and (E.E.E.), respectively, and Leeds University for support.

References and notes

1. Part 64. Grigg, R.; Kilner, C.; Sarker, M. A. B.; Orgaz de la, C.; Dondas, H. A. Tetrahedron 2008, 64, 8974-8991.
2. Carter, D. S.; Alam, M.; Cai, H.; Dillon, M. P.; Ford, A. P. D.; Gever, J. R.; Jahangir, A.; Lin, C.; Moore, A. G.; Wagner, P. J.; Zhai, Y. Bioorg. Med. Chem. Lett. 2009, 19, 1628-1631; Jahangir, A.; Alam, M.; Carter, D. S.; Dillon, M. P.; Du Bois, D. J.; Ford, A. P. D.; Gever, J. R.; Lin, C.; Wagner, P. J.; Zhai, Y.; Zira, J. Bioorg. Med. Chem. Lett. 2009, 19, 1632-1635.
3. Haebich, D.; Kroll, H.-P.; Lerchen, H.-G. Bioorg. Med. Chem. Lett. 2009, 19, 6317-6318.
4. Jones, C. D.; Andrews, D. M.; Barker, A. J.; Blades, K.; Byth, K. F.; Finlay, M. R. V.; Geh, C.; Green, C. P.; Johannsen, M.; Walker, M.; Weir, H. M. Bioorg. Med. Chem. Lett. 2008, 18, 6486-6489.
5. Clark, D. A.; Finkelstein, B. I.; Armel, G. R.; Wittenbach, V. A.; Patent publication number: WO/2005/063721, 2005.
6. Review: Bartlett, D. W.; Clough, J. M.; Goodwin, J. R.; Hall, A. A.; Hamer, M.; Parr-Dobrzanski, B. Pest Manage. Sci. 2002, 58, 649-662.
7. Review: Lamberth, C. Heterocycles 2005, 65, 667-695.
8. Review: Lamberth, C. Heterocycles 2006, 68, 561-603.
9. (a) Rosowsky, A.; Bader, H.; Wright, J. E.; Moran, R. G. J. Heterocycl. Chem. 1994, 31, 1241-1250; (b) Mansour, T. S.; Jin, H. Bioorg. Med. Chem. Lett. 1991, 1, 757-760; (c) Koomen, G. I.; Pandit, U. K. J. Chem. Soc., Perkin Trans. 1 1973, 1929-1933; (d) Minguez, J. M.; Vaquero, J. J.; Alvarez-Builla, J.; Castano, O.; Andres, J. L. J. Org. Chem. 1999, 64, 7788-7801; (e) Matsushima, T.; Takahashi, K.; Funasaka, S.; Obaishi, H.; Shirotori, S., U.S. Patent Appl., 2008, 167 pp. (f) Pajouhesh, H.; Pajouhesh, H.; Ding, Y.; Tan, J.; Grimwood, M; Belardetti, F.; Kaul, R., U.S. Patent Appl., 2008, 60 pp. (g) Hubbard, R. D.; Dickerson, S. H.; Emerson, H. K.; Griffin, R. J.; Reno, M. J.; Hornberger, K. R.; Rusnak, D. W.; Wood, E. R.; Uehling, D. E.; Waterson, A. G. Bioorg. Med. Chem. Lett. 2008, 18, 5738-5740; (h) Obaishi, H.; Nakagawa, T.; Matsushima, T.; Funasaka, S.; Shirotori, S.; Takahashi, K., PCT Int. Appl., 2008, 186 pp. (i) Coteron Lopez, J.-M.; Fiandor Roman, J.-M.; Kusalakumari, S.; Senthill, K., PCT Int. Appl., 2008, 150 pp. (j) Butterworth, S.; Griffin, E. J.; Hill, G. B.; Pass, M., PCT Int. Appl., 2008, 127 pp. (k) Cousins, R. D.; Herbert, M. R.; Lang, H.; Gahman, T. C.; Noble, S. A., PCT Int. Appl., 2007, 59 pp.
10. (a) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484-4517; (b) Harwood, L. M.; Vickers, R. J. In Synthetic Application of 1,3-dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products; Padwa, A., Pearson, W. H., Eds.; Wiley-Interscience: Hoboken, 2003; pp 169-252; (c) Agbodjan, A. A.; Cooley, B. E.; Copley, R. C. B.; Corfield, J. A.; Flanagan, R. C.; Glover, B. N.; Guidetti, R.; Haigh, D.; Howes, P. D.; Jackson, M. M.; Matsuoka, R. T.; Medhurts, K. J.; Millar, A.; Sharp, M. J.; Slater, M. J.; Toczko, J. F.; Xie, S. J. Org. Chem. 2008, 73, 3094-3102; (d) Lygo, B.; Beynon, C.; McLeod, M. C.; Roy, C. E.; Wade, C. E. Tetrahedron 2010, 66, 8832-8836.
11. For reviews see: (a) Grigg, R. Bull. Chem. Soc. Belg. 1984, 93, 593-603; (b) Grigg, R. Biochem. Soc. Trans. 1986, 14, 404-408 (relevance to pyridoxal biochemistry); (c) Grigg, R.; Sridharan, V. In Advances in Cycloaddition; Curran, D. P., Ed.; JAI Press: Middlesex, UK, 1993; Vol. 3, pp 161-204; (d) Tsuge, O.; Kanemasa, S. In Advances in Cycloaddition; Curran, D. P., Ed.; JAI Press: Middlesex, UK, 1993; Vol. 3, pp 99-159.
12. Grigg, R.; Kemp, J.; Thompson, N. Tetrahedron Lett. 1978, 2827-2830
13. Joule, J. A.; Mills, K. Heterocyclic Chemistry, Wiley, Chichester, UK 5th ed., Chapter 14.
14. Jones, R. C. F.; Rafiq, S.; Elsegood, M. R. J.; Mckee, V.; Slater, M. J. Chem.-Asian J. 2010, 5, 461-465.
15. Abdul-Magid, A. F.; Maryanoff, C. A.; Carson, K. G. Tetrahedron Lett. 1990, 31, 5595-5598.
16. Sakamoto, T.; Tanji, K.-I.; Niitsuma, S.; Ono, T.; Yamanaka, H. Chem. Pharm. Bull. 1980, 28, 3362-3368.
17. (a) Confalone, P. N.; Huie, E. M. J. Org. Chem. 1983, 48, 2994-2997; (b) Confalone, P. N.; Huie, E. M. J. Am. Chem. Soc. 1984, 106, 7175-7178.
18. (a) Joucla, M.; Mortier, J.; Hamelin, J. Tetrahedron Lett. 1985, 26, 2775-2778; (b) Joucla, M.; Mortier, J.; Hamelin, T.; Toupet, L. Bull. Soc. Chim. Fr. 1988, 143-150.
19. Wittland, C.; Floerke, U.; Risch, N. Synthesis 1997, 11, 1291-1295.
20. Tsuge, O.; Kanemasa, S.; Ohe, M.; Yorozu, K.; Takenaka, S.; Uneo, K. Bull. Chem. Soc. Jpn. 1987, 60, 4067-4087.
21. Wittland, C.; Arend, M.; Risch, N. Synthesis 1996, 367-371.
22. (a) Ardill, H.; Fontaine, X. L. R.; Grigg, R.; Henderson, D.; Montgomery, J.; Sridharan, V.; Surendrakumar, S. Tetrahedron 1990, 46, 6449-6466; (b)

Hernandez-Toribio, J.; Gomez Arrayas, R.; Martin-Matute, B.; Carretero, J. C. Org Lett. 2009, 11, 393-396; (c) Shi, J.-W.; Zhao, M.-X.; Lei, Z.-Y.; Shi, M. J. Org. Chem. 2008, 73, 305-308; (d) Kawashima, K.; Hiromoto, M.; Hayashi, K.; Akikazu, S. M.; Noguchi, M. Tetrahedron Lett. 2007, 48, 941-944.
23. Ardill, H.; Grigg, R.; Sridharan, V.; Surendrakumar, S.; Thianpatanagul, S.; Kanajun, S. J. Chem. Soc., Chem. Commun. 1986, 602-604.
24. Ardill, H.; Dorrity, M. J. R.; Grigg, R.; Leon-Ling, M.-S.; Malone, J. F.; Sridharan, V.; Thianpatanagul, S. Tetrahedron 1990, 46, 6433-6448.

[^0]: st See Ref. 1.

 * Corresponding author. E-mail address: r.grigg@leeds.ac.uk (R. Grigg)

[^1]: ${ }^{\text {a }}$ Conditions: 1 (1 mmol), aminomethyl heterocycle (1 mmol), maleimide $(1 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{mmol})$ in toluene $(7 \mathrm{~mL})$ at $100^{\circ} \mathrm{C}$ (oil bath) for 1.5 h .
 ${ }^{\mathrm{b}}$ Isolated yield.
 ${ }^{\text {c }}$ Reaction completed after 10 min .

