

Tetrahedron Letters 42 (2001) 7123-7125

TETRAHEDRON LETTERS

## Intramolecular coupling of chiral diimines using low-valent titanium reagents: stereoselective synthesis of chiral 3,4-disubstituted-2,5-diazabicyclo[4.4.0]decanes

Mariappan Periasamy,\* Gadthula Srinivas and Surisetti Suresh

School of Chemistry, University of Hyderabad, Central University P.O., Hyderabad 500 046, India Received 1 June 2001; revised 31 July 2001; accepted 7 August 2001

Abstract—Chiral 3,4-disubstituted-2,5-diazabicyclo[4.4.0]decanes are prepared from (1R,2R)-1,2-diaminocyclohexane derived diimines through intramolecular coupling using low valent titanium reagent systems. © 2001 Elsevier Science Ltd. All rights reserved.

Chiral 1.2 diamines are an important class of organic compounds, useful as ligands in asymmetric synthesis.<sup>1</sup> Synthetic methods based on enantioselective coupling of benzaldimines using a Zn-Cu couple in the presence of (+)-camphorsulphonic acid,<sup>2</sup> intermolecular reductive coupling of imines and imine derivatives promoted by reducing agents such as alkali metals,<sup>3</sup> TiCl<sub>4</sub>/Mg-Hg,<sup>4</sup> Cp<sub>2</sub>VCl<sub>2</sub>/Zn/ClSiH<sub>3</sub>,<sup>5</sup> TiCl<sub>4</sub>/Mg<sup>6</sup> reagents and electroreduction of dimines<sup>7</sup> have been reported. However, the stereoselectivities realized in these methods are somewhat poor. In continuation of our research efforts towards reductive coupling of imines using TiCl<sub>4</sub>/Mg<sup>8</sup> and TiCl<sub>4</sub>/Et<sub>3</sub>N,<sup>9</sup> we have examined the intramolecular reductive coupling of chiral diimines, prepared using chiral 1,2-diaminocyclohexane, using low valent titanium reagents. We wish to report here the results of this investigation.

Initially, the coupling experiments of the diimines derived from (1R,2R)-cyclohexyldiamine, benzaldehyde and 1-naphthaldehyde were carried out using low-valent titanium-(LVT) species, prepared using the TiCl<sub>4</sub>/Et<sub>3</sub>N and TiCl<sub>4</sub>/Mg reagent systems. Although only one isomer of the product was obtained in each of these cases, the chemical yields were poor (Eq. (1)). Fortunately, the TiCl<sub>4</sub>/Zn reagent system gave better yields (Eq. (1)). The X-ray crystal structure analysis revealed that the compound **2a** is (3S,4S)-diphenyl-2,5-diazabicyclo[4.4.0]decane (Fig. 1).<sup>10</sup>

*Keywords*: diimines; intramolecular coupling; titanium reagents; substituted diazabicyclo decanes.



We have examined this transformation with different diimines. The results are summarized in Table 1.

In the case of diimines **1b** and **1c**, prepared using chiral (1R,2R)-cyclohexyldiamine and *p*-Cl and *p*-CH<sub>3</sub> benzaldehydes, only one isomer was obtained in each case. These products have not been reported before but



Figure 1. ORTEP diagram of compound 2a.

<sup>\*</sup> Corresponding author.

| Entry | 1          | R                                                | 2                      | Yield (%) <sup>d</sup> | $[\alpha]_{\rm D}^{25}$ (c, solvent)          |
|-------|------------|--------------------------------------------------|------------------------|------------------------|-----------------------------------------------|
| 1     | <b>1</b> a | C <sub>6</sub> H <sub>5</sub>                    | 2a <sup>a,b</sup>      | 75                     | -77.4 (0.93, CHCl <sub>3</sub> ) <sup>b</sup> |
| 2     | 1b         | $p-ClC_6H_4$                                     | <b>2b</b> <sup>c</sup> | 73                     | -136 (1, CHCl <sub>3</sub> )                  |
| 3     | 1c         | $p-CH_3C_6H_4$                                   | $2c^{c}$               | 79                     | -104 (1, CHCl <sub>3</sub> )                  |
| 4     | 1d         | o-OCH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> | 2d <sup>a,b</sup>      | 86                     | +8 (1, CHCl <sub>3</sub> ) <sup>b,e</sup>     |
| 5     | 1e         | 1-Naphthyl                                       | $2e^{c}$               | 85                     | +200 (1, CHCl <sub>3</sub> )                  |
| 6     | 1f         | $C_4H_9$                                         | 2f°                    | 30                     | +15.4 (0.26, CHCl <sub>3</sub> )              |

**Table 1.** Reaction of dimines with the  $TiCl_4/Zn$  reagent system<sup>11</sup>

<sup>a</sup> The products **2a** and **2d** were identified by the spectral data (IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and MS) and comparison with reported data.<sup>7</sup> <sup>b</sup> Lit<sup>7</sup> [ $\alpha$ ]<sub>D</sub> -70 (*c* 1.7, CHCl<sub>3</sub>) and +6.1 (*c* 3.3, CHCl<sub>3</sub>) for **2a** and **2d**, respectively.

<sup>c</sup> The products 2b, 2c, 2e and 2f were identified using the spectral data (IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and MS<sup>11</sup>).

<sup>d</sup> Yields of isolated products.

 $[\alpha]_{\rm D} = 17 \ (c \ 1, \ {\rm MeOH}).$ 

comparison of the  $[\alpha]_D$  values suggests that the configuration of the new chiral centers in these cases may be also (3S,4S) as in **2a**. However, on the basis of the  $[\alpha]_D$  values of the products **2d** and **2e** obtained from the dimines **1d** and **1e** the configurations of the new chiral centers at C3 and C4 cannot be assigned without ambiguity.

Shono et al.<sup>7</sup> previously reported the synthesis of compounds **2a** and **2d** through an electroreduction method. They assigned *trans* stereochemistry of the phenyl groups in compound **2a** on the basis of NOE enhancements observed in <sup>1</sup>H NMR (400 MHz) spectrum. Further, these authors suggested *trans* stereochemistry for **2d** and several other derivatives by comparison of <sup>1</sup>H NMR (200 MHz) data. It seems reasonable to assign *trans* stereoconfigurations for the aryl and *t*-butyl derivatives reported here as they exhibit <sup>1</sup>H NMR (200 MHz) signals similar to that reported for **2a** and **2d** and other similar derivatives.<sup>7</sup> However, these *trans* stereochemical assignments are only tentative.

In conclusion, we anticipate that the simple method of synthesis of chiral 3,4-disubstituted 2,5-diazabicyclo[4.4.0]decanes reported here using low-valent titanium species would stimulate further research in the synthetic applications of these chiral derivatives as a 3,4-diaryl-2,5diazabicyclo[4.4.0]decane derivative has shown excellent chiral discriminating ability (80–99%) in diethylzinc addition to certain aldehydes.<sup>7</sup>

## Acknowledgements

We are thankful to the UGC, New Delhi for support under the Special Assistance Program. G.S. and S.S. thank UGC, New Delhi for financial support. X-Ray data were collected using the National Single Crystal X-ray facility, School of Chemistry, University of Hyderabad, funded by DST, New Delhi. We thank Dr. S. Pal for helpful discussion.

## References

 Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed. 1998, 37, 2580–2627.

- Shimizu, M.; Iida, T.; Fujisawa, T. Chem. Lett. 1995, 609–610.
- 3. Smith, J. G.; Ho, I. J. Org. Chem. 1972, 37, 653-656.
- Mangenuy, P.; Tejero, T.; Alexakis, A.; Grosjean, F.; Normant, J. Synthesis 1988, 255–257.
- Hatano, B.; Ojawa, A.; Hirao, T. J. Org. Chem. 1998, 63, 9421–9424.
- Betshart, V. C.; Schmidt, B.; Seebach, D. Helv. Chim. Acta 1988, 71, 1999–2021.
- Shono, T.; Kise, N.; Shirakawa, E.; Matsumoto, H.; Okazaki, E. J. Org. Chem. 1991, 56, 3063–3067.
- Periasamy, M.; Reddy, M. R.; Kanth, J. V. B. Tetrahedron Lett. 1996, 37, 4767–4770.
- Periasamy, M.; Srinivas, G.; Karunakar, G. V.; Bharathi, P. Tetrahedron Lett. 1999, 40, 7577–7580.
- 10. The X-ray diffraction measurements were carried out at 293 K on an automated Enraf-Nonious MACH 3 diffractometer using graphite-monochromated, Mo-K<sub> $\alpha$ </sub> ( $\lambda$  = 0.71073 A) radiation. Intensity data were collected by the  $\omega$ -scan mode. The data were reduced using the XTAL program. No absorption correction was applied. Crystal structure data for compound 2a:  $\theta$  range for data collection is 1.64-24.97°. Empirical formula C20H24N2 0.25H<sub>2</sub>O, colorless needles (0.38×0.52×0.8 mm), crystal system is monoclinic, space group  $C_2$ , unit cell dimensions: a = 25.307(2), b = 5.4788(10), c = 15.9953(14) Å,  $\alpha =$ 90,  $\beta = 129.11(2)$ ,  $\gamma = 90^{\circ}$ ; volume 1721.0(4) Å<sup>3</sup>, Z=4,  $D_{\text{calcd}} = 1.360 \text{ Mg/m}^3$ , absorption coefficient is 0.084 mm<sup>-1</sup>, F(000) = 744, index ranges  $-30 \le h \le 30$ ,  $-6 \le k \le 0$ ,  $-18 \le l \le 18$ , total reflections collected were 3368/1686 reflections with  $R_{\rm int} = 0.0436$ . The structure was solved by direct methods and refined by full-matrix least-squares procedure using the SHELX-97 program package. The refinement was carried out using 931 observed [ $F > 4\sigma(F)$ ] reflections and converged to a final  $R_1 = 0.0484$ ,  $wR_2 =$ 0.1369 and goodness of fit is 0.813 with largest difference peak and hole 0.197 and -0.230 e Å<sup>-3</sup>, respectively. The configuration of the compound 2a moiety present in the crystal structure was confirmed to be (3S, 4S) by using the platon 98 program, A. L. Spak, version 291198.
- 11. General experimental procedure: In dry THF (100 ml), TiCl<sub>4</sub> (20 mmol) was added under an N<sub>2</sub> atmosphere at 0°C. Zn (40 mmol) was added with a solid addition flask for 10 min. The reaction mixture was stirred for 0.5 h at 0°C and the imine (5 mmol) in 50 ml of THF was added for 15 min. The reaction mixture was stirred for 0.5 h at 0°C and for 12 h at 25°C. It was quenched with saturated  $K_2CO_3$  (30 ml) and filtered through a Buchner funnel.

The organic layer was separated and the aqueous layer was extracted with ether (2×30 ml). The combined organic extract was washed with brine solution (20 ml) and dried over anhydrous  $K_2CO_3$ . The solvent was removed and the residue was chromatographed on basic alumina column using EtOAc/hexane mixture as eluent. **Physical constant and spectroscopic data for compounds 2a–f: 2a**: mp 60–62°C, <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>):  $\delta$  ppm 24.96, 31.65, 61.61, 66.54, 127.14, 127.61, 128.13, 141.46, mass (*m*/*z*) 292; **2b**: mp 148–150°C, <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>):  $\delta$  ppm 24.89, 31.79, 61.47, 68.03,

128.02, 129.40, 132.91, 139.84, mass (m/z) 360; **2c**: <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>):  $\delta$  ppm 21.06, 25.00, 31.88, 61.67, 68.03, 128.02, 128.48, 136.43, 138.73, mass (m/z) 320; **2d**: <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>):  $\delta$  ppm 25.29, 32.17, 55.13, 60.60, 61.99, 110.19, 120.18, 127.57, 129.06, 129.93, 157.09, mass (m/z) 352; **2e**: mp 159–161°C, <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>):  $\delta$  ppm 25.01, 31.81, 60.65, 62.21, 122.53, 124.95, 125.16, 127.62, 128.49, 131.58, 133.60, 137.00, mass (m/z) 392; **2f**: <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>):  $\delta$  ppm 24.86, 27.40, 34.39, 36.14, 55.32, 58.20, mass (m/z) 252.