Intramolecular coupling of chiral diimines using low-valent titanium reagents: stereoselective synthesis of chiral 3,4-disubstituted-2,5-diazabicyclo[4.4.0]decanes

Mariappan Periasamy,* Gadthula Srinivas and Surisetti Suresh
School of Chemistry, University of Hyderabad, Central University P.O., Hyderabad 500 046, India

Received 1 June 2001; revised 31 July 2001; accepted 7 August 2001

Abstract

Chiral 3,4-disubstituted-2,5-diazabicyclo[4.4.0]decanes are prepared from ($1 R, 2 R$)-1,2-diaminocyclohexane derived diimines through intramolecular coupling using low valent titanium reagent systems. © 2001 Elsevier Science Ltd. All rights reserved.

Chiral 1,2 diamines are an important class of organic compounds, useful as ligands in asymmetric synthesis. ${ }^{1}$ Synthetic methods based on enantioselective coupling of benzaldimines using a $\mathrm{Zn}-\mathrm{Cu}$ couple in the presence of (+)-camphorsulphonic acid, ${ }^{2}$ intermolecular reductive coupling of imines and imine derivatives promoted by reducing agents such as alkali metals, ${ }^{3} \mathrm{TiCl}_{4} / \mathrm{Mg}-$ $\mathrm{Hg},{ }^{4} \quad \mathrm{Cp}_{2} \mathrm{VCl}_{2} / \mathrm{Zn} / \mathrm{ClSiH}_{3},{ }^{5} \quad \mathrm{TiCl}_{4} / \mathrm{Mg}^{6}$ reagents and electroreduction of diimines ${ }^{7}$ have been reported. However, the stereoselectivities realized in these methods are somewhat poor. In continuation of our research efforts towards reductive coupling of imines using $\mathrm{TiCl}_{4} / \mathrm{Mg}^{8}$ and $\mathrm{TiCl}_{4} / \mathrm{Et}_{3} \mathrm{~N},{ }^{9}$ we have examined the intramolecular reductive coupling of chiral diimines, prepared using chiral 1,2-diaminocyclohexane, using low valent titanium reagents. We wish to report here the results of this investigation.

Initially, the coupling experiments of the diimines derived from $(1 R, 2 R)$-cyclohexyldiamine, benzaldehyde and 1 -naphthaldehyde were carried out using lowvalent titanium-(LVT) species, prepared using the $\mathrm{TiCl}_{4} / \mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{TiCl}_{4} / \mathrm{Mg}$ reagent systems. Although only one isomer of the product was obtained in each of these cases, the chemical yields were poor (Eq. (1)). Fortunately, the $\mathrm{TiCl}_{4} / \mathrm{Zn}$ reagent system gave better yields (Eq. (1)). The X-ray crystal structure analysis revealed that the compound $\mathbf{2 a}$ is ($3 S, 4 S$)-diphenyl-2,5diazabicyclo[4.4.0]decane (Fig. 1). ${ }^{10}$

[^0]

We have examined this transformation with different diimines. The results are summarized in Table 1.

In the case of diimines $\mathbf{1 b}$ and $\mathbf{1 c}$, prepared using chiral $(1 R, 2 R)$-cyclohexyldiamine and $p-\mathrm{Cl}$ and $p-\mathrm{CH}_{3}$ benzaldehydes, only one isomer was obtained in each case. These products have not been reported before but

Figure 1. ORTEP diagram of compound 2a.

Table 1. Reaction of diimines with the $\mathrm{TiCl}_{4} / \mathrm{Zn}$ reagent system ${ }^{11}$

Entry	1	R	2	Yield (\%) ${ }^{\text {d }}$	$[\alpha]_{\mathrm{D}}^{25}(c$, solvent $)$
1	1a	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathbf{2 a}^{\text {a,b }}$	75	$-77.4\left(0.93, \mathrm{CHCl}_{3}\right)^{\text {b }}$
2	1b	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$2 \mathrm{~b}^{\text {c }}$	73	$-136\left(1, \mathrm{CHCl}_{3}\right)$
3	1c	$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$2 c^{\text {c }}$	79	$-104\left(1, \mathrm{CHCl}_{3}\right)$
4	1d	$o-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$2 \mathrm{~d}^{\text {a,b }}$	86	$+8\left(1, \mathrm{CHCl}_{3}\right)^{\mathrm{b}, \mathrm{e}}$
5	1e	1-Naphthyl	$2 \mathrm{e}^{\text {c }}$	85	$+200\left(1, \mathrm{CHCl}_{3}\right)$
6	1f	$\mathrm{C}_{4} \mathrm{H}_{9}$	$2 \mathrm{f}^{\text {c }}$	30	$+15.4\left(0.26, \mathrm{CHCl}_{3}\right)$

${ }^{\text {a }}$ The products $\mathbf{2 a}$ and $\mathbf{2 d}$ were identified by the spectral data (IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS) and comparison with reported data. ${ }^{7}$
${ }^{\mathrm{b}} \mathrm{Lit}^{7}[\alpha]_{\mathrm{D}}-70\left(c 1.7, \mathrm{CHCl}_{3}\right)$ and $+6.1\left(c 3.3, \mathrm{CHCl}_{3}\right)$ for $\mathbf{2 a}$ and 2d, respectively.
${ }^{\text {c }}$ The products 2b, 2c, 2e and $\mathbf{2 f}$ were identified using the spectral data (IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS ${ }^{11}$).
${ }^{\mathrm{d}}$ Yields of isolated products.
${ }^{\mathrm{e}}[\alpha]_{\mathrm{D}}-17$ (c 1, MeOH).
comparison of the $[\alpha]_{\mathrm{D}}$ values suggests that the configuration of the new chiral centers in these cases may be also $(3 S, 4 S)$ as in $\mathbf{2 a}$. However, on the basis of the $[\alpha]_{\mathrm{D}}$ values of the products $\mathbf{2 d}$ and $\mathbf{2 e}$ obtained from the diimines $\mathbf{1 d}$ and $\mathbf{1 e}$ the configurations of the new chiral centers at C3 and C4 cannot be assigned without ambiguity.

Shono et al. ${ }^{7}$ previously reported the synthesis of compounds 2a and 2d through an electroreduction method. They assigned trans stereochemistry of the phenyl groups in compound 2a on the basis of NOE enhancements observed in ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectrum. Further, these authors suggested trans stereochemistry for $\mathbf{2 d}$ and several other derivatives by comparison of ${ }^{1} \mathrm{H}$ NMR (200 MHz) data. It seems reasonable to assign trans stereoconfigurations for the aryl and t-butyl derivatives reported here as they exhibit ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz})$ signals similar to that reported for $\mathbf{2 a}$ and $\mathbf{2 d}$ and other similar derivatives. ${ }^{7}$ However, these trans stereochemical assignments are only tentative.

In conclusion, we anticipate that the simple method of synthesis of chiral 3,4-disubstituted 2,5-diazabicyclo[4.4.0]decanes reported here using low-valent titanium species would stimulate further research in the synthetic applications of these chiral derivatives as a 3,4-diaryl-2,5diazabicyclo[4.4.0]decane derivative has shown excellent chiral discriminating ability ($80-99 \%$) in diethylzinc addition to certain aldehydes. ${ }^{7}$

Acknowledgements

We are thankful to the UGC, New Delhi for support under the Special Assistance Program. G.S. and S.S. thank UGC, New Delhi for financial support. X-Ray data were collected using the National Single Crystal X-ray facility, School of Chemistry, University of Hyderabad, funded by DST, New Delhi. We thank Dr. S. Pal for helpful discussion.

References

1. Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed. 1998, 37, 2580-2627.
2. Shimizu, M.; Iida, T.; Fujisawa, T. Chem. Lett. 1995, 609-610.
3. Smith, J. G.; Ho, I. J. Org. Chem. 1972, 37, 653-656.
4. Mangenuy, P.; Tejero, T.; Alexakis, A.; Grosjean, F.; Normant, J. Synthesis 1988, 255-257.
5. Hatano, B.; Ojawa, A.; Hirao, T. J. Org. Chem. 1998, 63, 9421-9424.
6. Betshart, V. C.; Schmidt, B.; Seebach, D. Helv. Chim. Acta 1988, 71, 1999-2021.
7. Shono, T.; Kise, N.; Shirakawa, E.; Matsumoto, H.; Okazaki, E. J. Org. Chem. 1991, 56, 3063-3067.
8. Periasamy, M.; Reddy, M. R.; Kanth, J. V. B. Tetrahedron Lett. 1996, 37, 4767-4770.
9. Periasamy, M.; Srinivas, G.; Karunakar, G. V.; Bharathi, P. Tetrahedron Lett. 1999, 40, 7577-7580.
10. The X-ray diffraction measurements were carried out at 293 K on an automated Enraf-Nonious MACH 3 diffractometer using graphite-monochromated, Mo-K ${ }_{\alpha}(\lambda=$ $0.71073 \AA$) radiation. Intensity data were collected by the ω-scan mode. The data were reduced using the XTAL program. No absorption correction was applied. Crystal structure data for compound 2a: θ range for data collection is 1.64-24.97 . Empirical formula $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2}$ $0.25 \mathrm{H}_{2} \mathrm{O}$, colorless needles $(0.38 \times 0.52 \times 0.8 \mathrm{~mm})$, crystal system is monoclinic, space group C_{2}, unit cell dimensions: $a=25.307(2), b=5.4788(10), c=15.9953(14) \AA, \alpha=$ 90, $\beta=129.11(2), \gamma=90^{\circ}$; volume 1721.0(4) $\AA^{3}, Z=4$, $D_{\text {calcd }}=1.360 \mathrm{Mg} / \mathrm{m}^{3}$, absorption coefficient is 0.084 $\mathrm{mm}^{-1}, F(000)=744$, index ranges $-30 \leq h \leq 30,-6 \leq k \leq 0$, $-18 \leq l \leq 18$, total reflections collected were $3368 / 1686$ reflections with $R_{\mathrm{int}}=0.0436$. The structure was solved by direct methods and refined by full-matrix least-squares procedure using the SHELX-97 program package. The refinement was carried out using 931 observed $[F>4 \sigma(F)]$ reflections and converged to a final $R_{1}=0.0484, w R_{2}=$ 0.1369 and goodness of fit is 0.813 with largest difference peak and hole 0.197 and -0.230 e \AA^{-3}, respectively. The configuration of the compound 2a moiety present in the crystal structure was confirmed to be $(3 S, 4 S)$ by using the platon 98 program, A. L. Spak, version 291198.
11. General experimental procedure: In dry THF (100 ml), TiCl_{4} (20 mmol) was added under an N_{2} atmosphere at $0^{\circ} \mathrm{C} . \mathrm{Zn}(40 \mathrm{mmol})$ was added with a solid addition flask for 10 min . The reaction mixture was stirred for 0.5 h at $0^{\circ} \mathrm{C}$ and the imine (5 mmol) in 50 ml of THF was added for 15 min . The reaction mixture was stirred for 0.5 h at $0^{\circ} \mathrm{C}$ and for 12 h at $25^{\circ} \mathrm{C}$. It was quenched with saturated $\mathrm{K}_{2} \mathrm{CO}_{3}(30 \mathrm{ml})$ and filtered through a Buchner funnel.

The organic layer was separated and the aqueous layer was extracted with ether $(2 \times 30 \mathrm{ml})$. The combined organic extract was washed with brine solution (20 ml) and dried over anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$. The solvent was removed and the residue was chromatographed on basic alumina column using EtOAc/hexane mixture as eluent. Physical constant and spectroscopic data for compounds 2a-f: 2a: mp $60-62^{\circ} \mathrm{C},{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ ppm 24.96, 31.65, 61.61, 66.54, 127.14, 127.61, 128.13, 141.46, mass $(\mathrm{m} / \mathrm{z}) 292$; 2b: mp $148-150^{\circ} \mathrm{C},{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 24.89,31.79,61.47,68.03$,
128.02, 129.40, 132.91, 139.84, mass (m / z) $360 ; \mathbf{2 c}:{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm} 21.06,25.00,31.88$, 61.67, 68.03, 128.02, 128.48, 136.43, 138.73, mass (m / z) 320; 2d: ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm} 25.29$, 32.17, 55.13, 60.60, 61.99, 110.19, 120.18, 127.57, 129.06, 129.93, 157.09, mass (m / z) 352; 2e: mp $159-161^{\circ} \mathrm{C},{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm} 25.01,31.81,60.65$, $62.21,122.53,124.95,125.16,127.62,128.49$, 131.58, 133.60, 137.00, mass (m / z) 392; 2f: ${ }^{13} \mathrm{C}$ NMR (50 MHz , CDCl_{3}): $\delta \mathrm{ppm} 24.86,27.40,34.39,36.14,55.32,58.20$, mass $(m / z) 252$.

[^0]: Keywords: diimines; intramolecular coupling; titanium reagents; substituted diazabicyclo decanes.

 * Corresponding author.

