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Abstract: Inductively heated copper wire inside a flow microreac-
tor can serve as a source for a catalytic copper species that promotes
1,3-dipolar cycloadditions of alkynes with in situ formed azides to
yield 1,2,3-triazoles. The same setup was used to carry out decar-
boxylations of 2-alkynoic acids and for the intramolecular C–O
coupling of 2′-bromobiphenyl-2-carboxylic acid.
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Recently, we introduced the term enabling technologies
for organic synthesis. These describe techniques that al-
low to perform organic synthesis as well as purification
more rapidly, more efficiently, and less wasteful.1 Typical
enabling technologies can be new heating devices like mi-
crowave assistance,2 new or nonclassical solvent sys-
tems,3 continuous flow reactors,4 and immobilization of
chemically active species such as reagents and homoge-
neous catalysts (Figure 1).5 Truly new synthetic technolo-
gy platforms, however, will not be based on the individual
application of these techniques but will require the inte-
gration of two or more of these enabling techniques for a
given synthetic challenge.

In this context, we developed several flow-reactor
devices6 and incorporated immobilised reagents7 as well
as catalysts8 and in selected cases encased this fixed bed
reactor by a microwave apparatus in order to accelerate
continuous-flow transformations and to reduce residence
times.9

Recently, we disclosed inductive heating of ferromagnetic
materials as a new heating technique and demonstrated
that it is particularly suitable for being combined as fixed
bed material inside flow reactors.10 As heating media in-
side flow reactors we chose magnetic Fe3O4 nanoparticles
that are commonly employed because of their magnetic
properties which allows to remove them from a reaction
mixture with a magnet.11,12 In our case, these Fe3O4 nano-
particles are coated with a silica shell. We showed that in-
ductive heating allows to perform many principle
endothermic reactions such as transesterifications, con-
densations, palladium-catalysed cross-coupling reactions
and Wittig olefinations under flow conditions.

Figure 1 Enabling technologies for organic synthesis

In principal, also conductive metals such as iron, cobalt,
nickel, copper, or alloys derived from these should be able
to serve as heating media. Copper and copper salts can be
a source for several catalytic transformations13 including
Meldal’s14 and Sharpless’15 copper-catalysed [3+2] cy-
cloaddition of acetylenic compounds with azides that is
founded on Huisgen’s pioneering work. Recently, also
copper-mediated examples of this cycloaddition under
flow conditions were reported by Ley16 and Sach,17 re-
spectively. In the present study, we disclose the use of
copper metal as an inductively heatable material in mini-
flow reactors that at the same time can serve as a catalytic
source. This concept was expected to have several charm-
ing features such as: a) simple setup, b) only copper is the
initial source of heat and it occurs inside the reactor, c) the
heated metal is the source of the catalyst which guarantees
ideal activation, d) copper can be heated at least above
220 °C, and e) metal leaching is kept to a minimum.

Inductive heating can be generated in medium or high fre-
quency fields. As the technical setup for the former is sim-
pler than for the latter, we carried out electromagnetic
induction of heat in magnetic nanoparticles or other con-
ductive materials by applying a medium frequency field
(10–25 kHz). The copper-loaded (24 g) flow reactor was
made of glass and encased with an inductor. The dimen-
sions of the reactor were 12 cm length and 8.5 mm internal
diameter. The inner volume (for the fluid) of this fixed
bed reactor was determined to be 2 mL. In cases when a
higher temperature than the boiling point of the solvent
was needed a PEEK (polyether ether ketone) reactor with
the same inner dimensions and equipped with an in-line
back-pressure regulator was applied (Figure 2).

Although the leaching of copper species was envisioned
to be low the system was also equipped with a metal scav-
enger cartridge. This cartridge was charged with commer-
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cially available Quadrapur TU.18 The processes can be
operated in a circular or a continuous mode. However, we
optimised reaction parameters (concentration of reactants,
flow rates, induction parameters for heating) to achieve
full conversion in a single pass.

Figure 3 Heating profile of copper wire, measured without solvent,
with degassed dodecane, and with degassed DMF–H2O (5:1), 15 kHz
(ppm = parts per million, equals percentage of power input)

First, we studied the effect of an inductive field on the
copper wire. A reactor was charged with copper wire (4
mm × 1 mm × 1 mm) and the generated heat in relation to
the used power was recorded. We found that copper heats
up very rapidly and efficiently to temperatures above
220 °C, irrespective of the solvent employed (the temper-
ature was determined by external application of an IR py-
rometer on the surface of the reactor). It should be noted
that at temperatures around 180 °C oxidations on the met-
al surface occurred that we associated to air oxygen
(Figure 3) and which is visualised by a plateau in the heat-
ing diagram. This means that raising the power does not
result in an increase of the temperature. However, this ef-
fect can be avoided if oxygen is excluded from the reac-
tion mixture using degassed solvents. 

We found that heating of the solution proceeds very rap-
idly once it has entered the reactor. The desired tempera-
ture was commonly reached within the first cm of the
reactor. In analogy to recent work by Sach et al.17 we first
explored a one-pot click methodology by in situ creating
organic azides from their corresponding alkyl halides at
high temperatures and immediately reacted them with
acetylenes. This approach would reduce the problem of
safety when preparing 1,2,3-triazoles. We optimised (res-
idence time, reactor temperature, concentration and
equivalents of alkyl azide19,20) the one-pot click method-
ology using phenyl acetylene (1), 2-bromoethanol (2), and
sodium azide in a DMF–water mixture (Scheme 1). By
employing those conditions we reacted selected organo-
bromides with either 5-hexynol (7) or phenyl acetylene
(1). In fact, benzyl bromides were smoothly converted
into triazoles in high yields (equations 2 and 3). On the
other hand nonbenzylic bromides/iodides provided the
products, too, but needed lower flow rates due to their
lower nucleophilicity (equations 1, 4, and 5). We also em-
ployed more functionalised as well as chiral bromides and
smoothly obtained the expected products without loss of
any functionality (equations 4 and 5). Under our opti-
mised flow conditions with respect to temperature, con-
centration, and catalyst no conversion could be achieved
in a flask (e.g., equation 2). This observation can be ratio-
nalised if one assumes hot-spot effects on the copper sur-
face inside the flow reactor. Induction is expected to
create much higher temperatures inside the copper wire
than the global temperatures measured. This may result in
the generation of active catalytic species on the surface or
its release into solution. Under conventional heating con-
ditions (oil bath) in the batch mode this activation will not
necessarily occur.

In order to further demonstrate the applicability of our
copper flow system we investigated other copper-cata-
lysed reactions. For that purpose we chose the catalytic
decarboxylation of 2-alkynoic acids and the C–O cou-
pling (Scheme 2). Thus, alkynoic acids can serve as pro-
tecting groups, as anchor groups for resolutions,21 or as
control elements for improved stereoselectivity.22 In addi-
tion, the copper-catalysed C–O coupling has become an
established method23 and was utilised for the synthesis of
the isolamellarins.24 Our flow system is ideally suited for
the decarboxylation of 2-alkynoic acids 13 and 15 (equa-
tions 6 and 7)25 as well as for the formation of benzopyra-
none 18 via C–O coupling (equation 8).26 In the case of
the C–O coupling we found that in the batch mode no con-
version occurred. Only when the reaction was run in the
presence of equimolar amounts of copper(I) chloride and
sodium carbonate full conversion was observed in the
flask.

With respect to copper leaching under our flow conditions
we found for the ‘click’-type cycloaddition 3.52 ppm cop-
per on average. During the copper-catalysed decarboxyla-
tion the degree of copper leaching was even below the
ICP-OES sensitivity threshold (<0.01 ppm). In contrast,
we encountered significant amount of leaching with 12.65

Figure 2 Reactor filled with copper wire and encased with an in-
ductor (bottom) and schematic drawing of experimental setup (up)
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ppm on average for the C–O coupling, which can be at-
tributed to elevated temperature (200 °C) employed.

In conclusion, we demonstrated the use of copper metal as
a material that can rapidly be heated up to 220 °C in an in-
ductive field and simultaneously be employed as a source
for a catalytic species that enables to carry out several
transformations under flow conditions.

Acknowledgment

This work was supported by the Fonds der Chemischen Industrie.
We thank Henkel AG & KGaA (Düsseldorf, Germany), Evonik In-
dustries AG (Essen, Germany) and IFF GmbH (München, Germa-
ny) for financial or technical support. We thank Monika Vogt and
Simone Eichner for expert preparative support.

Scheme 1 Continuous (single pass) copper-catalysed Huisgen-‘click’ cycloadditions with inductive heating (full conversion, isolated yields).
Reagents and conditions: glass reactor, substrates dissolved in DMF–H2O (10:1, 0.25 M for bromides, 0.125 M for alkynes, 0.25 M for sodium
azide), inductive frequency 15 kHz.
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