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The efficient removal of primary and secondary amines from organic solutions using a macroporous poly-
mer-supported anhydride is described. The sequestering of primary amines by the anhydride via poly-
mer-bound amide formation is completed within 2–4 h at room temperature. Secondary amines
require typically 4 h for complete sequestration.
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The use of polymer-supported scavenger reagents for the con-
trolled removal of excess reactants following a reaction has facili-
tated the development of high throughput parallel solution-phase
synthesis of compound libraries.1 This unique scavenging method-
ology, in effect a purification technique, relies on the principle of
complementary molecular reactivity, in which the polymer-sup-
ported reagent reacts chemoselectively with substrates (i.e., the
unreacted excess starting material used to drive reactions to com-
pletion) in solution to give polymer-bound products that can be
removed readily by simple filtration.2 Such polymer-supported
scavengers significantly simplify the reaction work-up and isola-
tion. An extension of the technique is the use of ‘sequestration-
enabling reagents’, including methods that exploit fluorous
chemistry, to chemically tag the substrates thus affording readily
sequestrable chemical species.3,4

A number of polymer-bound electrophilic scavengers, including
supported methyl isocyanate,1b,5 acetaldehyde,1a,6 benzoyl chlo-
ride,7 and N-methylisatoic anhydride8 for the direct sequestration
of amines have been reported. However, since many of these poly-
mer-bound reagents are prepared by the chemical modification of
low-crosslinked polystyrene resin beads, they display restricted
applicability as they are unsuitable for use in flow reactors or with
polar solvents such as acetonitrile and methanol.9 These restric-
tions can be overcome by using highly crosslinked polystyrene res-
ins, but these supports tend to be friable and have low bulk
ll rights reserved.
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densities. In order to overcome these limitations, the use of com-
posite resin supports has been investigated. A highly porous
poly(4-vinylbenzyl chloride-co-divinylbenzene)-grafted mono-
lithic support has been prepared, derivatized with tris(2-amino-
ethyl)amine and used as a nucleophilic scavenger.10 Similarly,
poly(2-vinyl-4,4-dimethylazlactone-co-divinylbenzene)-grafted
monolithic disks were reported to be a useful matrix for sequestra-
tion of amines.11 However, although the grafted monolithic sup-
ports are highly functionalized, they are mechanically fragile and
hence only appropriate for flow rather than batch sequestration
chemistry. A novel polymer-supported ROMPGEL anhydride for
sequestering amines and hydrazines was also recently reported.12

The ROMPGEL polymeric backbone is derived from a ring-opening
metathesis reaction, thus resulting in ultra-high loading material.
In our hands, although the ROMPGEL anhydride12b displays highly
efficient scavenging properties, we found that the solid-support
undergoes extensive swelling in chloroform to give a gelatinous
material. This resulted in handling difficulties, especially in small
volumes of solutions.

We therefore envisaged the synthesis of a robust macroporous
carboxy anhydride resin as a superior scavenger matrix for the re-
moval of reactive amines. In our considerations, the matrix should
be applicable in both flow and batch methods. The poly(metha-
crylic acid) resin, Amberlite� IRC-50 (16–50 mesh) was deemed
to meet many of the desired properties, including the ultra-high
density of carboxylic acid units (10–15 mmol g�1) and the stable
macroporous structure. Chemically, the carboxylic functionalities
are sequentially repeated in a 1,3-relationship on the polymeric
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Table 1
The sequestering of amines by the macroporous anhydride resin 1 (2 equiv)

Amine Exposure time (h) % Scavenged

Primary Propylamine 1 90
2 95
4 >99

Isobutylamine 1 90
2 >99

Benzylamine 1 90
2 98
4 >99

Secondary Piperidine 2 70
4 >99

Pyrrolidine 2 95
4 >99

Diisopropylamine 2 53
4 80

Aromatic 4-Methoxyaniline 18 26
18 (60 �C) >99

The experiments were carried out in CDCl3 and at room temperature, unless
otherwise stated. The percentage scavenged was estimated using 1H NMR with the
aid of dimethyl sulfoxide as the internal standard.
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linear hydrocarbon chain, thus resembling repeated units of pivalic
acid. From this, the generation of a six-membered cyclic carboxy
anhydride is evident. We herein report the synthesis and applica-
tion of an ultra-high loading polymer-supported cyclic anhydride
(5.0–6.7 mmol g�1) 1.

Acetic anhydride treatment (50 �C, 18 h) was initially used for
the conversion of the poly(methacrylic acid) to the required
poly(methacrylic anhydride) resin 1. Following Ac2O treatment,
the resin product was washed extensively (DMF and CH2Cl2) and
dried in vacuo. The chemical conversion was deemed to be suc-
cessful by FT-IR analysis of the resin product. However, careful
analysis of the resin product showed the persistent presence of
‘trapped’ acetic anhydride. We next considered the use of carbodi-
imide reagents for the formation of the poly(methacrylic anhy-
dride) resin 1, and subsequently established a robust method by
using 1,3-diisopropylcarbodiimide in a mixture of DMF/CH2Cl2

(1:1) (Scheme 1).13 The purity of the resin product 1 was estab-
lished by FT-IR, elemental analysis and by suspending a known
quantity of the resin in CDCl3 (in the presence of DMSO as internal
standard) for 4 h followed by 1H NMR analysis of the filtrate.

The precise anhydride level was then determined by the con-
densation of the anhydride resin with 4-chlorobenzylamine
(5 equiv, 16 h, DMF), followed by elemental analysis for N and Cl
content.13 As indicated earlier, we have utilized the macroporous
matrix due to its low degree of swelling and excellent compatibil-
ity with a wide range of organic solvents,9 as well as good mechan-
ical stability. In fact, the capacity volume of the macroporous
anhydride resin 1 ranges from ca. 1.8 (dried state or in CH2Cl2

and toluene) to 2.4 mL g�1 (in DMF and THF).
In order to quantify the amine-scavenging efficiency of the

anhydride resin 1, a solution of an amine (0.1 mmol) and dimethyl
sulfoxide (0.1 mmol, used as the internal reference) in CDCl3

(0.5 mL) was treated with a known amount of anhydride resin 1
at room temperature (Scheme 2). The solution was then quantita-
tively analyzed by 1H NMR, in which integration of the signal at dH

2.61 due to (CH3)2SO was used as the reference. Thus, in prelimin-
ary investigations using an equivalent of the anhydride resin 1, we
established that 42% and 61% of 4-methoxybenzylamine was
sequestered after 1 h and 4 h treatment, respectively, and that no
byproducts were generated or released during the scavenging
process.
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Scheme 1. The synthesis of the macroporous anhydride resin.
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Scheme 2. The sequestering of amines by the macroporous anhydride resin 1.
Moreover, following an exposure time of 18 h, the equivalent of
anhydride resin 1 scavenged 80% of 4-methoxybenzylamine from a
CDCl3 solution. The resin product was collected, and a portion of
the sample was additionally washed with 1 M HCl(aq), DMF and
CH2Cl2. Comparative elemental analyses of both resin samples
showed that ca. 10% of the sequestered 4-MeOBnNH2 was due to
ionic interactions (Scheme 2); a similar result was observed with
PrNH2.

The potential of the poly(methacrylic anhydride) resin for effi-
cient scavenging of amines was then systematically evaluated
using a 2 equiv excess of 1 and the results are summarized in
Table 1. Propylamine and both isobutylamine and benzylamine
were used as illustrative examples of linear and branched primary
amines, respectively. As anticipated, though 90% of the available
amines were scavenged within 1 h, quantitative removal of these
amines was achieved after 2–4 h of exposure to 2 equiv of the
anhydride resin 1 at room temperature. In contrast, the sequester-
ing of secondary amines (piperidine and pyrrolidine were used as
representative examples of non-hindered secondary amines) was
generally incomplete after 2 h, and a minimum of 4 h exposure
was necessary for complete removal from the CDCl3 solution. Fur-
thermore, we were gratified to observe that, within 4 h at room
temperature, 2 equiv of the anhydride resin 1 sequestered 80% of
a sterically-hindered secondary amine, N,N-diisopropylamine.

We then turned our attention to electron-‘rich’ anilines, for
which 4-methoxyaniline was used as an example. As anticipated,
the anhydride resin 1 captured only 26% of the aniline after 18 h
at room temperature. However, nearly quantitative removal of
the aniline was accomplished when the reaction was carried out
at 60 �C in a sealed vessel.

The application of the macroporous anhydride resin 1 within
the context of small-scale parallel synthesis of ureas was evalu-
ated, in which an excess of amine (1.2 equiv) was reacted with
an isocyanate, followed by sequestering of the unreacted amine
by the resin 1 (Scheme 3). For simplicity, 1.5–2 equiv of anhydride
resin was used (i.e., 1.3–1.7 equiv in excess for the initial amine
content) and the scavenging process was allowed to proceed over-
night (18 h). The ureas were isolated in good-to-excellent yields
and were of high purity (established by RP-HPLC and elemental
CHN analyses).14

In summary, we have developed an ultra-high loading macro-
porous polymer-supported anhydride15 (5.0–6.7 mmol g�1) 1,
which showed efficient sequestration of both primary and second-
ary amines, as well as electron-rich anilines from organic solutions.
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The reactivity per gram of the anhydride resin in fact exceeds that
of benzoic anhydride (4.4 mmol g�1). Due to the robustness of the
matrix, we anticipate that the poly(methacrylic anhydride) resin
will have amine scavenging utility in both batch1 and flow16 meth-
ods for parallel synthesis of compound libraries.
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