Catalytic Formal [4 + 2] Cycloadditions between Unactivated Allenes and *N*-Hydroxyaniline Catalyzed by $AuCl_3/CuCl_2/O_2$

Jian-Ming Chen, Chin-Jung Chang, Yao-Jin Ke, and Rai-Shung Liu*

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC

Supporting Information

ABSTRACT: AuCl₃-catalyzed formal [4 + 2]-cycloadditions between substituted allenes and *N*-hydroxyanilines are described. This reaction sequence comprises initial isomerizations of allenes to butadienes under N₂ and subsequent oxidations of *N*-hydroxyanilines to nitrosoarenes under O₂. CuCl₂ (5 mol %) was added in the second step to increase the

oxidation efficiency. The reactions are compatible with various 1,1-di- and 1,1,3-trisubstituted allenes and N-hydroxyaniline derivatives. Our experimental data reveal that the roles of $AuCl_3$ are 3-fold, including catalytic oxidations of N-hydroxyaniline derivatives to nitrosoarenes, isomerizations of alkyl-substituted allenes to dienes, and final nitroso/butadiene [4 + 2] cycloadditions.

INTRODUCTION

Lewis acid catalyzed [4 + 2] cycloadditions of butadienes with nitroso species are useful tools to access highly functionalized molecules because both nitrogen and oxygen functionalities are introduced at the 1,4-carbons of the product skeletons (eq 1);

Literature report

$$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$$

$$Ph \xrightarrow{H} OH + O_2 \xrightarrow{CuCl} N = O$$
(2)

$$R^{2} \xrightarrow{F^{2}} PhNO (10 \text{ mol}\%) R^{1} \xrightarrow{K^{2}} (3)$$

Ph

This report

$$PH \xrightarrow{H} OH + R^{1} \xrightarrow{R^{2}} \underbrace{AuCl_{3}'CuCl_{2}}_{MeCN, O_{2}} R^{1} \xrightarrow{O-N}_{R^{2}} (4)$$

the resulting N–O bond of products is readily cleaved with chemical reduction.^{1,2} High regio- and enantioselectivity of these [4 + 2] cycloaddition have been implemented with suitable chiral acid catalysts.^{1,2} Nitrosoarenes are generally prepared from the oxidation of *N*-hydroxyanilines with suitable oxidants.^{1a,3} Among the reported methods, the use of copper catalysts and oxygen^{3e,f,4} is particularly appealing because of the low cost. Development of Cu-catalyzed cascade [4 + 2] cycloadditions between *N*-hydroxyanilines and dienes was reported by de Alaniz.⁴

Recently, we reported gold-catalyzed room-temperature isomerizations of unactivated allenes to butadienes in CH_3CN with nitrosobenzene as an additive (a proton shuttle);⁵

subsequent [4 + 2] cycloadditions between the resulting dienes and nitrosobenzene proceeded rather slowly in the presence of AuCl₃. Interest in gold catalysis stimulates new cascade reactions because gold complexes can initiate electrophilic activations of various functional groups including alkynes, allenes, alkenes, epoxides and carbonyls.⁶ Furthermore, many gold complexes can tolerate other metal catalysts and organocatalysts, thus allowing the combination of two individual steps into one-pot operations.⁷ In this work, we report new formal [4 + 2] cycloadditions between unactivated allenes and N-hydroxyanilines, as described in eq 4; this cascade sequence merges three separate steps (eqs 1-3) into a single process. Of particular interest is the use of AuCl₃ to catalyze all three steps in this sequence; herein, CuCl₂ additive is added to enhance the oxidation of N-hydroxyaniline to nitrosobenzene. Catalytic air oxidation of N-hydroxyaniline to nitrosobenzene and AuCl₃-catalyzed nitroso/diene cycloaddition remain unclear in gold catalysis.

RESULTS AND DISCUSSION

Shown in Table 1 is the realization of a new formal [4 + 2] cycloaddition between allene **1a** and *N*-hydroxyaniline in CH₃CN at room temperature (rt). We sought suitable catalysts to realize this whole sequence with oxygen as the oxidant. We tested the reaction with AuCl₃ (5 mol %) because of its high activity in the isomerization of unactivated allenes to butadienes at rt (eq 3).⁵ As shown in entry 1, an initial treatment of allene **1a** with *N*-hydroxyaniline in CH₃CN (28 °C, 3 h) under N₂ resulted in a clean isomerization to butadiene **2a**; this CH₃CN solution was charged with an oxygen balloon before a slow addition of *N*-hydroxyaniline (3 equiv) in MeCN. A workup afforded 3,6-dihydro-2*H*-1,2-oxazine **3a** in 75% yield. When the entire sequence was performed under N₂, the yield of desired

Received: January 2, 2014 Published: April 22, 2014 Table 1. Formal [4 + 2]-Cycloadditions over VariousCatalysts

Ph PhNHOH Ph 1a (10 mol %) 2a time (t₂), 28 °C time (t₁)/gas, 28 °C	3a
compd (yie	ld, %) ^b
entry M_1 M_2 gas $\begin{pmatrix} t_1 & t_2 \\ (h) & (h) \end{pmatrix}$ 1a 2a	3a
1 $AuCl_3$ N ₂ 3 24 0 0	$75(22)^d$
2 $AuCl_3$ O_2 5 24 0 0	54
3 $AuCl_3^{c}$ O_2 48 70 0	0
$4 AuBr_3 \qquad \qquad N_2 14 48 0 0$	49
5 PicAuCI ₂ N ₂ 48 60 0 0	45
6 AuCl N ₂ 48 76 0	0
$\begin{array}{cccc} 7 & LAuCl/ & N_2 & 72 & 67 & 0 \\ & AgNTf_2 & \end{array}$	0
$8 CuCl_2 \qquad \qquad N_2 48 \qquad 81 0$	0
9 AuCl ₃ N ₂ 3 0 91	0
$10 AuCl_3 O_2 5 0 85$	0
$11 AuCl_3 \qquad CuCl_2 N_2 \qquad 3 18 0 0$	87
$12 \text{AuCl}_3 \qquad \qquad \text{CuBr}_2 \text{N}_2 3 15 0 0$	78

^{*a*}[1a] = 0.1 M, L = PPh₃, 0₂ (1 atm). ^{*b*}Yields are reported after purification from a silica column. ^{*c*}In entry 3, PhNHOH (3.1 equiv) was used to test a one-step operation. ^{*d*}This value corresponds to N₂, which replaces O₂ in the cycloaddition.

cycloadduct 3a was only 22% (entry 1). When the allene \rightarrow diene $(1a \rightarrow 2a)$ transformation was performed under O₂ (entry 2), desired cycloadduct 3a was obtained in 54% yield. Entry 3 shows a one-step operation involving $AuCl_3$ (5 mol %), allene (1a), and PhNHOH (3.1 equiv) in MeCN and under O₂; this mixture gave only unreacted 1a in 70% recovery. Excessive PhNHOH reduces the acidity of AuCl₃, thus inhibiting the allene \rightarrow diene isomerization. With a standard procedure in entry 1, AuBr₃ and PicAuCl₂ became less efficient to form cycloadduct 3a in 49% and 45% yields, respectively (entries 4 and 5). We performed the initial isomerization of 1a with AuCl under N2 atmosphere, and starting 1a was recovered in 76% yield (entry 6). Commonly used PPh₃AuCl/AgNTf₂ and CuCl₂ failed to give the desired product 3a in a tractable proportion because of their inactivity in the initial $1a \rightarrow 2a$ isomerization (entries 7 and 8). Entries 9 and 10 suggested that N-hydroxyaniline was also an effective additive in the $1a \rightarrow 2a$ isomerization because of a shorter period and a better yield of diene 2a $(3 h)^8$ under N₂; nitrosobenzene was found to be more abundant in the presence of oxygen (see Table 4, entries 3 and 4; vide infra). We added CuCl₂ and CuBr₂ in the second step to increase the oxidation efficiency of N-hydroxyaniline to nitrosobenzene^{1a,3} (entries 11 and 12), and the yields of desired 3a were increased to 87% and 78%, respectively. The structure of cycloadduct 3a was confirmed by its ¹H NOE; the two singlets in the δ 5–6 ppm were assignable to the OPhCH– CH = protons, and the PhN- CH_2 protons appear as AB quartets at δ 3.75 ppm. Such a regioselectivity is consistent with literature reports.^{9,10}

To assess the reaction scope, we examined the cycloadditions of various trisubstituted allenes 1b-p with *N*-hydroxyanilines; the results are summarized in Table 2. The catalytic reaction was operated according to the procedure described in Table 1 (entry 11). We investigated the effect of various phenyl substituents (R = Cl, F, Br, CF₃, Me, and OMe) as in allenes

Table 2. Substrate Scope of formal [4 + 2]-Cycloadditions

	5	% AuCl ₃	5%	CuCl ₂
	MeCN,	, PhNH(OH) (10%)	PhNH(C	DH) (3 equiv)
		R1. N ₂	0	2
	allenes	t ₁ (hour)	t ₂ (hour)	Products
	,	<u> </u>		Ph
	\sim			O N
R	\searrow			R
(1)	R = CI (1b) ^a	6	24	3b (81%) ^b
(2)	R = F (1c)	4	23	3c (87%)
(3)	R = Br (1d)	6	18	3d (78%)
(4)	$R=CF_3\left(\mathbf{1e}\right)$	48	48	3e (60%)
(5)	R = Me(1f)	1.5	20	3f (84%)
(6)	R = OMe(1g)	1.5	20	3g (72%)
(7)	/			Pn O ^{-N}
(7)	2-Np	2	24	2-Np
				3h (65%) Ph
	0,	0.5	16	
(8)	0 1i	`		3i (73%)
	/			Ph
	Ar			Ar
(9)	Ar = 3-furanyl (1	j) 1	20	3j (67%)
(10)	Ar = 2-furanyl (1	k) 1	18	3k (69%)
(11)	Ar = 2-thienyl (1	I) 1	18	3I (67%)
(12)	_ /			Ph O ^Ń
(12)	Ph 1m Ph	1	8	Ph
				3m (90%)
(13)	Et			
()	Ph In Ph	1	12	Ph Ph Ph
	. /			3n (66%) 3n' (25%) Ph
(14)	Ph d			о ^{- N}
	''' 10			Ph Ph
(15))Et	0	40	30 (84%)
	^{Ph´} 1p	2	16	Et Ph 3p (69%)

a[1] = 0.1 M. ^bProduct yields are reported after separation from a silica column.

1b-g (entries 1-6); their corresponding products 3b-g were obtained with yields exceeding 72% in most instances except trifluoromethyl derivative 3e that was produced in 60% yield (entry 4). In the $1 \rightarrow 2$ isomerization, short reaction periods (t_1) of electron-rich allenes 1f and 1g were consistent with our previous observations.⁵ For 2-naphthyl- and 1,3-benzodioxolylsubstituted allenes 1h and 1i, their resulting cycloadducts 3h and 3i were obtained in 65% and 73% yields, respectively (entries 7 and 8). These gold-catalyzed cascade reactions were compatible with heteroaryl-substituted allenes 1j-l (Ar = 2- or 3-furanyl and 2-thienyl), affording desired the cycloadducts 3jl in satisfactory yields (67-69%, entries 9-11). Entries 12 and 13 showed the cycloadditions of trisubstituted allenes 1m and In bearing two phenyl groups at the 1- and 3-allenyl carbons respectively, producing desired cycloadducts 3m and 3n in 90-91% yields. For allene 1n, two diastereomeric cycloadducts 3n

The Journal of Organic Chemistry

and 3n' were produced and separable on a silica column; the structure of compound 3n was confirmed by X-ray diffraction.¹¹ The reactions were extendible to trisubsituted allenes 10 and 1p bearing two alkyl groups at the 1- and 3-allenyl carbons, affording desired cycloadducts 30 and 3p in 84% and 69% yields, respectively (entries 14 and 15); herein, the *Me*PhC= methyl group was preferably functionalized, whereas the other methyl or ethyl groups remained intact.

We prepared 1,1-disubstituted allenes 4a and 4b to test their catalytic reactions with *N*-hydroxyaniline, giving the desired [4 + 2]-cycloadducts 5a and 5b in 66% and 63% yields, respectively (eq 5). We examined the reactions also on

substituted *N*-hydroxyanilines to expand the reaction scope. As shown in Table 3, these new oxidative cycloadditions were

a[1a] = 0.1 M. ^bProduct yields are reported after separation from a silica column.

extendible to several *N*-hydroxyanilines bearing alterable *p*-phenyl substitutents X = methyl, *tert*-butyl, chloro, and fluoro, affording desired cycloadducts **6a**–**d** in 69–81% yields.

Table 4 shows the control experiments to elucidate the oxidation behavior of *N*-hydroxyaniline affected by $AuCl_3$ (5 mol %); the product distributions are estimated by ¹H NMR. In the absence of $AuCl_3$, the oxidation of *N*-hydroxyaniline to

Table 4. Effects of Catalysts and Gas on N-Hydroxyaniline

	PhNOH MeCN, gas H 25 °C, time	PhNO + (X %)	Ph Ph (Y %)	PhNH((Z %)	Н	
entry	$M^{a,b} \pmod{\%}$	gas	time (h)	X	Y	Ζ
1		O_2	24	0	13	74
2		N_2	24	0	7.5	85
3	$AuCl_3$ (1.7)	O ₂	24	27	5	63
4	$\operatorname{AuCl}_{3}(1.7)$	N_2	24	13	11.5	67
5	$AuCl_{3}$ (1.7)/ $CuCl_{2}$ (1.7)	O ₂	24	48	16	20
6	$AuCl_3$ (50)	O_2	3	13	22	43
7	$AuCl_3$ (50)	N_2	3	3	28	41

^{*a*}[*N*-Hydroxyaniline] = 0.31 M. ^{*b*}Product yields are reported after separation from a silica column.

nitrosobenzene failed to proceed in acetonitrile under O₂ or N₂ (entries 1 and 2). Under O₂, AuCl₃ (1.7 mol %) catalyzed the transformation of N-hydroxyaniline into nitrosobenzene and diazene N-oxide in 27% and 5% yields, respectively, together with a 63% recovery of unreacted N-hydroxyaniline (entry 3). Under N2, nitrosobenzene and diazene N-oxide were formed from AuCl₃ and N-hydroxyaniline in 13% and 11.5% yields, respectively (entry 4). If AuCl₃ was used at a 50% loading under O2, nitrosobenzene and diazene N-oxide were produced in 3% and 13% yields, respectively. With this catalyst loading under N₂, the yield of nitrosobenzene was decreased to 3% together with an increased yield of diazene N-oxide (28%). Herein, AuCl₃ enabled a reversible redox reaction between nitrosobenzene and N-hydroxyaniline.¹² Furthermore, Nhydroxyaniline itself was known to undergo slow decomposition to form diazene N-oxide and aniline in solution,¹³ but we were unable to detect aniline with tractable amount.

Analysis of the product distributions in Table 4 suggests that diazene *N*-oxide is probably the truly active component for the isomerization of allene to diene with PhNH(OH). We tested the reactivity of diazene *N*-oxide versus PhNH(OH) using AuCl₃ catalyst; the results are shown in eq 6. With diazene *N*-oxide (10 mol %) as an promoter, the isomerization of allene **1a** to diene **2a** was complete within 1.5 h with 94%, more efficient than PhNHOH (Table 1 entry 9).

We also examined the effect of $AuCl_3$ on the [4 + 2] cycloaddition between diene **2a** and nitrosobenzene; the results are shown in eq 7. The desired [4 + 2]-cycloadduct **3a** was

produced in 16% yield in the absence of $AuCl_3$ for a brief period but increased significantly to 76% yield when $AuCl_3$ was present. The catalytic role of $AuCl_3$ on the nitroso/diene cycloaddition was thus ascertained.

We also performed additional experiments to compare the efficiency between nitrosobenzene and *N*-hydroxyaniline as starting reagents; the results are provided in Table 5. No reaction occurred between *N*-hydroxyaniline and allene 1a in acetonitrile in the absence of AuCl₃ (entry 1). The yield of the desired cycloadduct 3a was decreased to 68% when DCM replaced MeCN (entry 2). If CuCl₂ (5 mol %) was present was present in the second step, the yield of compound 3a was increased to 81%. Compared to data in Table 1 (entries 1 and 11), MeCN is thus better than DCM as the reaction solvent. We also performed the reactions using nitrosobenzene; the yields of desired 3a in DCM were 87% and 82%, under N₂ or O₂ respectively. Similar yields were obtained for product 3a if nitrosobenzene was used in MeCN. The better yields of compound 3a from nitrosobenzene than *N*-hydroxyaniline

Table 5. N-Hydroxyaniline and Nitrosobenzene as Reagents

 a [1a] = 0.1 M. b Product yields are reported after purification from a silica column. c The value in parentheses corresponds to added CuCl₂ (5 mol %) for a period of 15 h.

(Table 1, entries 1 and 2) are reasonable because an extra step is involved in the oxidation of *N*-hydroxyaniline to nitrosobenzene. But the efficiency of PhNH(OH) become comparable to that of nitrosobenzene if $CuCl_2/O_2$ is present in the second oxidation phrase.

We postulate a mechanism to rationalize a formal [4 + 2]cycloaddition between N-hydroxyaniline and allene 1a. AuCl₃, like CuCl₂ was shown to catalyze the dehydrogenation of Nhydroxyaniline to form nitrosobenzene, as depicted in Table 4 (entries 3–7); this transformation could proceed under N_{2i} but more efficiently under O2. An isomerization of allene 1a to diene 2a could be implemented by AuCl₃ and nitrosobenzene, as revealed in our previous work.⁵ Under nitrogen, we observed that N-hydroxyaniline was also active to implement this allene \rightarrow diene (1a \rightarrow 2a) isomerization because the yield of diene 2a is better in the presence of N_2 than O_2 (see entries 9 and 10, Table 1). Subsequent control experiments suggests that diazene N-oxide was more active than PhNHOH for this isomerization. $^{15}\ \mathrm{AuCl}_3$ eventually proved to catalyze a cycloaddition between diene 2a and nitrosobenzene in MeCN, as depicted in eq 6. These data supports a postulated route in Scheme 1. This

Scheme 1. Plausible Reaction Mechanism

proposed mechanism summarizes the active role of AuCl₃ on the three elementary steps in eqs 1–3. Among these steps, diazene *N*-oxide greatly assists the allene \rightarrow diene isomerization and CuCl₂ enhances the efficiency of the oxidation of PhNHOH to PhNO.

CONCLUSIONS

Formal [4 + 2] cycloadditions between substituted allenes and *N*-hydroxyallenes under O₂ are implemented by AuCl₃/CuCl₂ catalysts. The reactions are compatible with a reasonable range of allene substrates including 1,1-di- and 1,1,3-trisubstituted allenes and N-hydroxyaniline derivatives. Our mechanistic analysis reveals the 3-fold roles of AuCl₃ including catalytic oxidations of N-hydroxyanilines to nitrosobenzenes, isomerizations of alkyl-substituted allenes to dienes, and final nitroso/ diene [4 + 2]-cycloadditions. Herein, N-hydroxyaniline generates diazene N-oxide that turns out to be very active to implement with AuCl₃ in the isomerization of unactivated allenes to butadienes.

EXPERIMENTAL SECTION

General Comments. Unless otherwise noted, all reactions were performed in oven-dried glassware under N₂ with freshly distilled solvents. CH₃CN was distilled from CaH₂ under nitrogen and stored over molecular sieves (4 Å) before use. All other commercial reagents were used without further purification, unless otherwise indicated. ¹H and ¹³C NMR spectra were recorded on 400 or 600 MHz spectrometers using chloroform- d_1 (CDCl₃) as internal standards. HRMS was performed on a double-focusing sector mass spectrometer in EI mode. Allene compounds (1a–p, 4a,b) were prepared according to the methods reported in our previous work;⁵ N-Phenylhydroxylamine compounds were prepared from the reductions of nitrobenzene¹⁴ according to literature procedures;¹⁴ newly prepared compounds were stored in darkness.

General Procedure for Gold-Catalyzed [4 + 2]-Cycloadditions between (3-Methylbuta-1,2-dien-1-yl)benzene (1a) and N-Hydroxyaniline. A flask (10 mL) containing AuCl₃ (5.3 mg, 5.0 mol %) was dried in vacuum for 1 h before it was filled with N₂ using a N₂ balloon. This flask was charged with an acetonitrile (2 mL) solution containing allene 1a (50 mg, 0.35 mmol) and N-phenylhydroxylaniline (4.3 mg, 0.035 mmol); the mixture was stirred at room temperature for 3 h. The resulting solution was then flushed with O₂ and charged with a O₂ balloon. To this solution was added CuCl₂ (2.4 mg, 5 mmol), followed by an acetonitrile (1.5 mL) solution of Nphenylhydroxylaniline (129 mg, 1.05 mmol); the mixture was stirred for 6 h. The resulting solution was concentrated and eluted through a silica column (pentane) to afford compound 3a (75.9 mg, 0.26 mmol, 87%). This procedure was applicable to other allene substrates (1b-p and 4a,b) with a 50-mg scale.

4-Methyl-2,6-diphenyl-3,6-dihydro-2H-1,2-oxazine (**3a**): pale yellow oil (75.9 mg, 87%); ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.4 Hz, 2 H), 7.35–7.22 (m, 5 H), 7.08 (d, J = 8.4 Hz, 2 H), 6.93 (t, J = 6.8 Hz, 1 H), 5.73 (s, 1 H), 5.51 (s, 1 H), 3.75 (AB quartets, J = 7.2 Hz, 2 H), 1.87 (s, 3 H); ¹³C NMR (100 MHz CDCl₃) δ 150.2, 139.5, 131.5, 128.7, 128.4, 128.2, 128.0, 122.9, 122.1, 115.8, 79.3, 55.3, 20.3; HRMS calcd for C₁₇H₁₇NO 251.1310, found 251.1308.

6-(4-Chlorophenyl)-4-methyl-2-phenyl-3,6-dihydro-2H-1,2-oxazine (**3b**): pale yellow oil (65.0 mg, 81%); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.4 Hz, 2 H), 7.32 (d, *J* = 8.4 Hz, 2 H), 7.28 (t, *J* = 7.6 Hz, 2 H), 7.08 (d, *J* = 7.6 Hz, 2 H), 6.97 (t, *J* = 6.8 Hz, 1 H), 5.70 (s, 1 H), 5.47 (s, 1 H), 3.75 (AB quartets, *J* = 7.2 Hz, 2 H), 1.88 (s, 3 H); ¹³C NMR (100 MHz CDCl₃) δ 150.1, 138.1, 134.0, 132.0, 129.5, 128.8, 128.5, 122.3, 112.3, 115.8, 78.5, 55.4, 20.3; HRMS calcd for C₁₇H₁₆CINO 285.0920, found 285.0911.

6-(4-Fluorophenyl)-4-methyl-2-phenyl-3,6-dihydro-2H-1,2-oxazine (**3c**): pale yellow oil (72.3 mg, 87%); ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.38 (dd, *J* = 8.8, 5.6 Hz, 2 H), 7.28–7.24 (m, 2 H), 7.08–7.00 (m, 4 H), 6.95 (t, *J* = 7.2 Hz, 1 H), 5.71 (s, 1 H), 5.49 (s, 1 H), 3.76 (AB quartets, *J* = 7.2 Hz, 2 H), 1.89 (s, 3 H); ¹³C NMR (100 MHz CDCl₃) δ 150.1, 131.9, 130.0, 129.9, 128.8, 122.6, 122.2, 115.8, 115.3, 115.1, 78.6, 55.3, 20.3; HRMS calcd for C₁₇H₁₆FNO 269.1216, found 269.1217.

6-(4-Bromophenyl)-4-methyl-2-phenyl-3,6-dihydro-2H-1,2-oxazine (**3d**): yellow oil (57.7 mg, 78%); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.4 Hz, 2 H), 7.31–7.24 (m, 4 H), 7.07 (d, *J* = 8.4 Hz, 2 H), 6.95 (t, *J* = 7.2 Hz, 1 H), 5.70 (s, 1 H), 5.46 (s, 1 H), 3.75 (AB quartets, *J* = 7.2 Hz, 2 H), 1.88(s, 3 H); ¹³C NMR (100 MHz CDCl₃) δ 150.1, 138.6, 132.1, 131.5, 129.8, 128.8, 122.3, 122.2, 122.2, 115.8,

The Journal of Organic Chemistry

78.5, 55.4, 20.3; HRMS calcd for $C_{17}H_{16}BrNO$ 329.0415, found 329.0410.

4-Methyl-2-phenyl-6-(4-(trifluoromethyl)phenyl)-3,6-dihydro-2H-1,2-oxazine (**3e**): yellow oil (45.2 mg, 60%); ¹H NMR (600 MHz, CDCl₃) δ 7.60–7.54 (m, 4 H), 7.28–7.26 (m, 2 H), 7.09 (d, *J* = 8.4 Hz, 2 H), 6.97 (t, *J* = 8.4 Hz, 1 H), 5.73 (s, 1 H), 5.55 (s, 1 H), 3.77 (AB quartets, *J* = 7.2 Hz, 2 H), 1.89 (s, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 150.1, 143.7.0, 132.3, 130.2 (q, *J*_{C-F} = 32.3 Hz), 128.8, 128.1, 125.3, 125.3, 122.4, 122.0, 115.9, 78.5, 55.6, 20.3; HRMS calcd for C₁₈H₁₆F₃NO 319.1184, found 319.1180.

4-Methyl-2-phenyl-6-(p-tolyl)-3,6-dihydro-2H-1,2-oxazine (**3f**): yellow oil (70.4 mg, 84%); ¹H NMR (400 MHz CDCl₃) δ 7.34 (d, J = 7.6 Hz, 2 H), 7.26 (t, J = 8 Hz, 2 H), 7.18 (d, J = 8 Hz, 2 H), 7.11 (d, J = 8 Hz, 2 H), 6.95 (t, J = 7.6 Hz, 1 H), 5.74 (s, 1 H), 5.50 (s, 1 H), 3.77 (AB quartets, J = 7.2 Hz, 2 H), 2.34 (s, 3 H), 1.89 (s, 3 H); ¹³C NMR (100 MHz CDCl₃) δ 150.3, 138.0, 136.5, 131.4, 129.1, 128.7, 128.1, 123.1, 122.0, 115.8, 79.11, 55.3, 21.2, 20.3; HRMS calcd for C₁₈H₁₉NO 265.1467, found 265.1459.

6-(4-Methoxyphenyl)-4-methyl-2-phenyl-3,6-dihydro-2H-1,2-oxazine (**3g**): yellow oil (58.1 mg, 72%); ¹H NMR (400 MHz CDCl₃) δ 7.36 (d, *J* = 8.4 Hz, 2 H), 7.26–7.22 (m, 2 H), 7.09 (d, *J* = 8.4 Hz, 2 H), 6.93 (t, *J* = 6.0 Hz, 1 H), 6.89 (d, *J* = 8.8 Hz, 2 H), 5.72 (s, 1 H), 5.46 (s, 1 H), 3.79 (s, 3 H), 3.76–3.74 (AB quartets, *J* = 7.2 Hz, 2 H), 1.88 (s, 3 H); ¹³C NMR (100 MHz CDCl₃) δ 159.6, 150.2, 131.7, 131.5, 129.6, 128.7, 123.1, 122.0, 115.8, 113.7, 78.9, 55.3, 55.2, 20.3; HRMS calcd for C₁₈H₁₉NO₂ 281.1416, found 281.1412.

4-Methyl-6-(naphthalen-2-yl)-2-phenyl-3,6-dihydro-2H-1,2-oxazine (**3h**): pale yellow oil (50.4 mg, 65%); ¹H NMR (400 MHz CDCl₃) δ 7.87 (s, 1 H), 7.85–7.81 (m, 3 H), 7.59 (d, *J* = 8.8 Hz, 1 H),7.47 (m, 2 H), 7.26 (t, *J* = 7.2 Hz, 2 H), 7.13 (d, *J* = 8.0 Hz, 2 H), 6.95 (t, *J* = 8.0 Hz, 1 H), 5.84 (s, 1 H), 5.69 (s, 1 H),3.82 (AB quartets, *J* = 7.2 Hz, 2 H), 1.91 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 137.0, 133.3, 133.2, 131.8, 128.7, 128.1, 128.1, 127.6, 127.2, 126.1, 126.0, 125.9, 122.8, 122.1, 115.9, 79.4, 55.4, 20.4; HRMS calcd for C₂₁H₁₉NO 301.1467, found 301.1469.

6-(Benzo[d][1,3]dioxol-5-yl)-4-methyl-2-phenyl-3,6-dihydro-2H-1,2-oxazine (**3i**): yellow oil (57.3 mg, 73%); ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.25 (m, 2 H), 7.10 (d, J = 8.4 Hz, 2 H), 6.97–6.90 (m, 3 H), 6.94 (d, J = 8.0 Hz, 1 H), 5.94 (s, 2 H), 5.70 (s, 1 H), 5.43 (s, 1 H), 3.75 (AB quartets, J = 7.2 Hz, 2 H), 1.89 (s, 3 H); ¹³C NMR (100 MHz CDCl₃) δ 150.2, 147.6, 147.5, 133.4, 131.8, 128.7, 122.9, 122.1, 122.0, 115.8, 108.7, 108.0, 101.03, 79.1, 55.2, 20.3; HRMS calcd for C₁₈H₁₇NO₃ 295.1208, found 295.1208.

6-(Furan-3-yl)-4-methyl-2-phenyl-3,6-dihydro-2H-1,2-oxazine (**3***j*): yellow and brown oil (60.3 mg, 67%); ¹H NMR (400 MHz CDCl₃) δ 7.45 (s, 1 H), 7.38 (s, 1 H), 7.29–7.25 (m, 2 H), 7.10–7.08 (m, 2 H), 6.97 (t, J = 7.2 Hz, 1 H), 6.48 (s, 1 H), 5.72 (s, 1 H), 5.47 (s, 1 H), 3.72 (AB quartets, J = 7.2 Hz, 2 H),1.86 (s, 3 H); ¹³C NMR (100 MHz CDCl₃) δ 150.2, 143.1, 140.8, 131.8, 128.8, 124.5, 122.1, 122.1, 115.8, 109.9, 71.9, 55.2, 20.2; HRMS calcd for C₁₅H₁₅NO₂ 241.1103, found 241.1106.

6-(*Furan-2-yl*)-4-methyl-2-phenyl-3,6-dihydro-2H-1,2-oxazine (**3k**): yellow and brown oil (62.1 mg, 69%); ¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 1 H), 7.27 (t, *J* = 7.2 Hz, 2 H), 7.09 (d, *J* = 8.0 Hz, 2 H), 6.96 (t, *J* = 7.2 Hz, 1 H), 6.35–6.34 (d, *J* = 6.0 Hz, 2 H), 5.77 (s, 1 H), 5.53 (s, 1 H), 3.73 (AB quartets, *J* = 7.2 Hz, 2 H), 1.89 (s, 3 H); ¹³C NMR (100 MHz CDCl₃) δ 152.8, 150.0, 142.8, 133.2, 128.7, 122.2, 119.6, 115.9, 110.3, 109.4, 72.4, 54.9, 20.3; HRMS calcd for C₁₅H₁₅NO₂ 241.1103, found 241.1105.

4-Methyl-2-phenyl-6-(thiophene-2-yl)-3,6-dihydro-2H-1,2-oxazine (**3***l*): yellow and brown oil (57.3 mg, 67%); ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.23 (m, 3 H), 7.09–7.07 (m, 3 H), 6.98–6.93 (m, 2 H), 5.81 (s, 1 H), 5.70(s, 1 H), 3.79–3.70 (m, 2 H), 1.88 (s, 3 H); ¹³C NMR (100 MHz CDCl₃) δ 149.9, 143.0, 132.1, 128.7, 126.3, 126.2, 122.3, 122.2, 115.9, 74 0.5, 55.0, 20.2; HRMS calcd for C₁₅H₁₅NOS 257.0874, found 257.0876.

2,4,6-Triphenyl-3,6-dihydro-2H-1,2-oxazine (**3m**): pale yellow oil (68.4 mg, 90%); ¹H NMR (400 MHz CDCl₃) δ 7.5 (m, 4 H), 7.40–7.27 (m, 8 H), 7.19 (d, J = 8.6 Hz, 2 H), 6.99 (t, J = 7.2 Hz, 1 H), 6.39 (d, J = 1.6 Hz, 1 H), 5.73 (d, J = 2.4 Hz, 1 H), 4.36–4.22 (AB quartets,

J = 7.2 Hz, 2 H); $^{13}{\rm C}$ NMR (100 MHz CDCl₃) δ 150.2, 139.0, 138.0, 134.3, 128.8, 128.7, 128.5, 128.48, 128.3, 128.0, 125.1, 125.0, 122.5, 116.2, 79.6, 53.3; HRMS calcd for C₂₂H₁₉NO 313.1467, found 313.1464.

3-Methyl-2,4,6-triphenyl-3,6-dihydro-2H-1,2-oxazine (**3n**): white solid (47.5 mg, 66%); melting point 144.5–146 °C; ¹H NMR (400 MHz CDCl₃) δ 7.50–7.47 (m, 4 H) 7.42 (t, *J* = 7.2 Hz, 2 H), 7.35–7.23 (m, 6 H), 7.09–7.06 (m, 2 H), 6.89 (t, *J* = 1.6 Hz, 1 H), 6.36 (d, *J* = 2.8 Hz, 1 H) 5.58 (d, *J* = 3.6 Hz, 1 H) 4.76–4.74 (m, 1 H),1.16 (d, *J* = 6.4 Hz, 3 H); ¹³C NMR (100 MHz CDCl₃) δ 148.7, 141.2, 140.3, 138.1, 128.7, 128.7, 128.2, 128.0, 127.9, 127.8, 126.2, 123.5, 121.0, 115.7, 78.9, 55.9, 12.5; HRMS calcd for C₂₃H₂₁NO 327.1623, found 327.1616.

3-Methyl-2,4,6-triphenyl-3,6-dihydro-2H-1,2-oxazine (3n'): pale yellow oil (18.6 mg, 25%); ¹H NMR (400 MHz CDCl₃) δ 7.50–7.36 (m, 9 H), 7.33–7.28 (m, 3 H), 7.17 (d, *J* = 7.6 Hz, 2 H), 6.95 (t, *J* = 7.6 Hz, 1 H), 6.12 (s, 1 H), 5.66 (s, 1 H), 4.79–4.75 (m, 1 H), 1.28 (d, *J* = 6.4 Hz, 3 H); ¹³C NMR (100 MHz CDCl₃) δ 148.5, 140.4, 138.5, 137.9, 128.9, 128.7, 128.7, 128.6, 128.2, 128.0, 125.9, 125.2, 121.5, 115.9, 79.5, 55.8, 14.5; HRMS calcd for C₂₃H₂₁NO 327.1623, found 327.1626.

6-Methyl-2,4-diphenyl-3,6-dihydro-2H-1,2-oxazine (**3o**): yellow oil (73.2 mg, 84%); ¹H NMR (400 MHz CDCl₃) δ 7.44 (d, *J* = 8.0 Hz, 2 H), 7.39–7.3 (m, 5 H), 7.23 (d, *J* = 8.0 Hz, 2 H), 7.03 (t, *J* = 7.6 Hz, 1 H), 6.19 (d, *J* = 2 Hz, 1 H), 4.86–4.84 (m, 1 H), 4.26–4.06 (AB quartets, *J* = 7.2 Hz, 2 H), 1.43 (d, *J* = 5.6 Hz, 3 H); ¹³C NMR (100 MHz CDCl₃) δ 150.4, 139.2, 133.4, 128.8, 128.6, 127.8, 127.1, 125.0, 122.3, 116.0, 73.6, 53.2, 19.1; HRMS calcd for C₁₇H₁₇NO 251.1310, found 251.1312.

6-*E*thyl-2,4-*d*iphenyl-3,6-*d*ihydro-2*H*-1,2-oxazine (**3***p*): yellow oil (57.8 mg, 69%); ¹H NMR (600 MHz CDCl₃) δ 7.43 (d, *J* = 8.4 Hz, 2 H), 7.36–7.27 (m, 5 H), 7.21 (d, *J* = 8.4 Hz, 2 H), 7.01 (t, *J* = 7.2 Hz, 1 H), 6.21 (s, 1 H),4.63–4.59 (m, 1 H), 4.25–4.06 (AB quartets, *J* = 7.2 Hz, 2 H), 1.82–1.69 (m, 2 H), 1.13 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz CDCl₃) δ 150.5, 138.3, 133.8, 128.9, 128.6, 127.8, 126.0, 125.0, 122.1, 115.8, 78.7, 53.4, 26.7, 10.1; HRMS calcd for C₁₈H₁₉NO 265.1467, found 265.1457.

2-Phenyl-6-propyl-5-(thiophene-2-yl)-3,6-dihydro-2H-1,2-oxazine (**5a**): yellow oil (52.8 mg, 66%); ¹H NMR (600 MHz CDCl₃) δ 7.28–7.21 (m, 2 H), 7.20 (d, *J* = 1.2 Hz, 1 H), 7.07–6.93 (m, 4 H), 6.93 (s, 1 H), 5.98 (m, 1 H), 4.53–4.49 (m, 1 H), 4.39–4.24 (m, 1 H), 4.23–4.21 (m, 1 H), 2.02–1.70 (m, 2 H), 1.50–1.38 (m, 2 H) 0.86 (t, *J* = 7.4 Hz, 3 H); ¹³C NMR (150 MHz, CDCl₃) δ 148.0, 142.9, 132.6, 129.0, 127.5, 124.1, 122.1, 121.6, 119.7, 116.5, 63.6, 58.2, 34.3, 20.4, 14.1; HRMS calcd for C₁₇H₁₉NOS 285.1187, found 285.1183.

2-Phenyl-6-propyl-5-(thiophene-3-yl)-3,6-dihydro-2H-1,2-oxazine (**5b**): yellow oil (50.4 mg, 63%); ¹H NMR (600 MHz CDCl₃) δ 7.32–7.31 (d, *J* = 3.0 Hz, H), 7.29–7.26 (m, 2 H), 7.21–7.19 (m, 2 H), 7.08 (dd, *J* = 8.4, 1.2 Hz, 2 H), 6.93 (t, *J* = 1.2 Hz, 1 H) 5.98–5.97 (m, 1 H), 4.55–4.39 (m, 1 H), 4.27 (m, 1 H), 4.26–4.23 (m, 1 H), 1.99–1.67 (m, 2 H), 1.55–1.37 (m, 2 H), 0.85 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (150 MHz CDCl₃) δ 148.2, 140.2, 133.4, 129.0, 126.0, 125.0, 121.4, 119.7, 119.1, 116.4, 63.9, 58.0, 34.2, 20.4, 14.1; HRMS calcd for C₁₇H₁₉NOS 285.1187, found 285.1185.

4-Methyl-6-phenyl-2-(p-tolyl)-3,6-dihydro-2H-1,2-oxazine (**6a**): yellow oil (65.4 mg, 71%); ¹H NMR (400 MHz CDCl₃) δ 7.44 (d, J = 8.4 Hz, 2 H), 7.37–7.30 (m, 3 H), 7.08–7.01 (m, 4 H), 5.74 (s, 1 H), 5.52 (s, 1 H), 3.73 (AB quartets, J = 7.2 Hz, 2 H), 2.27 (s, 3 H), 1.88 (s, 3 H); ¹³C NMR (100 MHz CDCl₃) δ 148.0, 139.7, 131.7, 131.6, 129.3, 128.3, 128.1, 128.0, 122.9, 116.2, 79.2, 55.8, 20.6, 20.3; HRMS calcd for C₁₈H₁₉NO 265.1467, found 265.1457.

2-[4-(tert-Butyl)phenyl)]-4-methyl-6-phenyl-3,6-dihydro-2H-1,2oxazine (**6b**). yellow oil (77.8 mg, 73%); ¹H NMR (400 MHz CDCl₃) δ 7.44 (d, *J* = 7.2 Hz, 2 H), 7.36–7.27 (m, 5 H), 7.05 (d, *J* = 8.8 Hz, 2 H), 5.73 (s, 1 H), 5.51 (s, 1 H), 3.74 (AB quartets, *J* = 7.2 Hz, 2 H), 1.88 (s, 3 H), 1.27 (s, 9 H); ¹³C NMR (100 MHz CDCl₃) δ 147.8, 145.1, 139.7, 131.6, 128.3, 128.1, 128.0, 125.5, 122.9, 115.9, 79.2, 55.6, 34.1, 31.9, 20.3; HRMS calcd for C₂₁H₂₅NO 307.1936, found 307.1929. 2-(4-Chlorophenyl)-4-methyl-6-phenyl-3,6-dihydro-2H-1,2-oxazine (**6***c*): yellow and brown oil (80.3 mg, 81%); ¹H NMR (400 MHz CDCl₃) δ 7.42 (d, *J* = 7.6 Hz, 2H), 7.37–7.31 (m, 3H), 7.21 (d, *J* = 8.8 Hz, 2H), 7.02 (d, *J* = 8.8 Hz, 2H), 5.74 (s, 1 H), 5.51 (s, 1 H), 3.73 (AB quartets, *J* = 7.2 Hz, 2 H), 1.88 (s, 3 H); ¹³C NMR (100 MHz CDCl₃) δ 148.8, 139.3, 131.3, 128.7, 128.4, 128.3, 128.0, 127.0, 122.9, 117.0 79.4, 55.2, 20.3; HRMS calcd for C₁₇H₁₆CINO 285.0920, found 285.0915.

2-(4-Fluorophenyl)-4-methyl-6-phenyl-3,6-dihydro-2H-1,2-oxazine (**6d**): yellow and brown oil (64.4 mg, 69%); ¹H NMR (400 MHz CDCl₃) δ 7.43 (d, *J* = 7.6 Hz, 2 H), 7.37–7.31 (m, 3 H), 7.08–7.05 (m, 2 H), 6.97–6.93 (m, 2 H), 5.74 (s, 1 H), 5.52 (s, 1 H), 3.71 (AB quartets, *J* = 7.2 Hz, 2 H), 1.88 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 158.6 (*J*_{C-F} = 239 Hz), 146.5 (*J*_{C-F} = 2 Hz), 139.4, 131.5, 128.4, 128.3, 128.0, 122.9, 117.8 (*J*_{C-F} = 8 Hz), 115.28 (*J*_{C-F} = 23 Hz), 79.5, 56.0, 20.3; HRMS calcd for C₁₇H₁₆FNO 269.1216, found 269.1215.

ASSOCIATED CONTENT

S Supporting Information

¹H, ¹³C NMR and HRMS spectra of cycloadducts **3**, **5**, and **6**; crystallographic data for compound **3n** (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: rsliu@mx.nthu.edu.tw.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Science Council, Taiwan, for financial support of this work

REFERENCES

 For reviews, see: (a) Bodnar, B. S.; Miller, M. J. Angew. Chem., Int. Ed. 2011, 50, 5630. (b) Weinreb, S. M.; Staib, R. R. Tetrahedron 1982, 38, 3087. (c) Yamamoto, Y.; Yamamoto, H. Eur. J. Org. Chem. 2006, 2031. (d) Yamamoto, H.; Kawasaki, M. Bull. Chem. Soc. Jpn. 2007, 80, 595.

(2) Selected examples: (a) Zhang, D.; Sueling, C.; Miller, M. J. J. Org. Chem. 1998, 63, 885. (b) Ware, R. W.; Day, C. S.; King, S. B. J. Org. Chem. 2002, 67, 6174. (c) Miller, C. A.; Batey, R. A. Org. Lett. 2004, 6, 699. (d) Yamamoto, H.; Momiyama, N. Chem. Commun. 2005, 3514.
(e) Moyiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 1080.
(f) Jana, C. K.; Studer, A. Angew. Chem., Int. Ed. 2007, 46, 6542.

(3) Selected examples: (a) Barton, D. H. R.; Lester, D. J.; Ley, S. V. Chem. Commun. 1978, 276. (b) Cicchi, S.; Corst, M.; Goti, A. J. Org. Chem. 1999, 64, 7243. (c) Cicchi, S.; Marradi, M.; Goti, A.; Brandi, A. Tetrahedron Lett. 2001, 42, 6503. (d) Adam, W.; Krebs, O. Chem. Rev. 2003, 103, 4131. (e) Frazier, C. P.; Engelking, J. R.; Read de Alaniz, J. J. Am. Chem. Soc. 2011, 133, 10430. (f) Chaiyaveij, D.; Cleary, L.; Batsanov, A. S.; Marder, T. B.; Shea, K. J.; Whiting, A. Org. Lett. 2011, 13, 3442.

(4) Frazier, C. P.; Bulgarin, A.; Engelking, J. R.; de Alaniz, J. R. Org. Lett. 2012, 14, 3620.

(5) Ting, C.-M.; Hsu, Y.-L.; Liu, R.-S. Chem. Commun. 2012, 48, 6577.

(6) For selected reviews, see: (a) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (b) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (c) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. (d) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (e) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. (f) Sohel, S. M. A.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269. (g) López, F.; Mascareńas, J. L. Beilstein J. Org. Chem. 2011, 7, 1075. (h) Garayalde, D.; Nevado, C. ACS Catal. 2012, 2, 1462.

(7) For selected examples, see: (a) Binder, J. T.; Crone, B.; Haug, T. T.; Menz, H.; Kirsh, S. F. Org. Lett. 2008, 10, 1025. (b) Belot, S.; Vogt, K. A.; Besnard, C.; Krause, N.; Alexakis, A. Angew. Chem., Int. Ed. 2009, 48, 8923. (c) Muratore, M. E.; Holloway, C. A.; Pilling, A. W.; Storer, R. I.; Trevitt, G.; Dixon, D. J. J. Am. Chem. Soc. 2009, 131, 10796. (d) Han, Z.-Y.; Xiao, H.; Chen, X. H.; Gong, L.-Z. J. Am. Chem. Soc. 2009, 131, 9182. (e) Monge, D.; Jensen, K. L.; Franke, P. T.; Lykke, L.; Jørgensen, K. A. Chem.—Eur. J. 2010, 16, 9478. (f) Loh, C. C. J.; Badorrek, J.; Raabe, G.; Enders, D. Chem.—Eur. J. 2011, 17, 13409. (g) Han, Z.-Y.; Chen, D.-F.; Wang, Y.-Y.; Guo, R.; Wang, P.-S.; Wang, C.; Gong, L.-Z. J. Am. Chem. Soc. 2012, 134, 6532.

(8) In the presence of nitrosobenzene (10 mol %) and $AuCl_3$ (5 mol %), the isomerization of allene **1a** to diene **2a** was complete within 3 h in CH₃CN with a 91% product yield.⁵ *N*-Hydroxyaniline was thus as effective as nitrosobenzene based on the reaction time and product yield (see entry 9, Table 1).

(9) (a) Kresze, G.; Firl, J. *Tetrahedron* **1968**, 1043. (b) Sasaki, T.; Eguchi, S. J. Org. Chem. **1970**, 35, 4273. (c) Leach, A. G.; Houk, K. N. J. Org. Chem. **2001**, 66, 5192.

(10) (a) Meekel, A. A. P.; Resmini, M.; Pandit, U. K. *Chem. Commun.* **1995**, 571–572. (b) Resmini, M.; Meekel, A. A. P.; Pandit, U. K. *Pure Appl. Chem.* **1996**, 68, 2025.

(11) The crystallographic data of compound **3n** was deposited at the Cambridge Crystallographic Data Centre (CCDC 978242).

- (12) Lutz, R. E.; Lytton, M. R. J. Org. Chem. 1937, 2, 68.
- (13) Wang, Y.; Ye, L.; Zhang, L. Chem. Commun. 2011, 47, 7815.
- (14) Bordwell, F. G.; Liu, W.-Z. J. Am. Chem. Soc. 1996, 118, 8777.
- (15) For the use of pyridine N-oxide as a proton shuttle, see: Wang, W.; Kumar, M.; Hammond, G. B.; Xu, B. Org. Lett. 2014, 16, 636.