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D-glutamine is a D type stereoisomer of glutamine which is involved in many metabolic processes.
Seeking lower-cost and industrially scalable approaches for the synthesis of D-glutamine is very valuable
both in academic career and potential applications. Herein, we developed a novel efficient chemo-
enzymatic strategy for producing D-glutamine. Initially, DL-glutamine was chemically prepared with
cheap and accessible DL-glutamic acid as raw material. Subsequently, the L-glutamine among the

racemic mixture was selectively hydrolyzed to L-glutamic acid by Escherichia coli whole-cell system

Keywords:

D-glutamine

DL-glutamic acid
Chemoenzymatic synthesis
L-aminopeptidase

which expressed L-aminopeptidase D-Ala-esterase/amidase (DmpA) from Ochrobactrum anthropi. The
left D-glutamine was obtained by isoelectric point precipitation with 70% of the theoretical yield.
Furthermore, we optimized enzymatic resolution conditions to determine the optimum parameters as
pH 8, 30 °C, 0.1% (v/v) Triton X-100, and 1 mM Mn?*. These results suggested that our strategy might be
potentially usable for the synthesis of D-glutamine in industrial productions.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

D-amino acids and their amide derivatives, the non-
proteinogenic forms of amino acids, are naturally recognized as
the relevant components in the biosynthesis of the peptide anti-
biotic and bacterial cell walls [1,2]. With significant biological ac-
tivity, D-amino amides indicate great potential in nutrition and
disease treatment [3—5]. Especially, the amide form of D-glutamic
acid, D-glutamine, is essential for the oxidative stress, nitrogen
metabolism and mitochondrial function [6,7], so as a key raw ma-
terial which is widely used in the production of food additives and
pharmaceutical products [8]. Therefore, many researches on lower-
cost and scale-up synthesis of D-glutamine have been conducted
[9].

The previous chemical synthesis strategy of DL-glutamine and
the acquisition process of D-glutamine were both difficult and not
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industrial because of the low stereoselectivity and yield [10].
Nowadays, enzymatic or chemoenzymatic synthesis of pharma-
ceutical intermediates has exhibited a great potential, which ben-
efits from the stereo-specificity and high efficiency brought by
biological enzymes [11,12]. There are two common kinds of en-
zymes associated with the synthesis of D-glutamine. One of them
directly catalyzes the formation of glutamine from glutamate and
ammonium ion [13,14], for example, Glutamine synthetase (E.C.
6.3.1.2). This kind of enzyme is one of the key enzymes in nitrogen
metabolism, but has low reactivity in external catalysis reaction
and need expensive coenzyme ATP. The other kind first synthesizes
D, L-amino amide, then selectively degrades L-form to obtain the
undegraded D-amino amide [15], for example, L-glutamate decar-
boxylase (E.C. 4.1.1.15). Undoubtedly, it leads to a serious waste of
raw material.

Herein, distinguishing from the above-mentioned two ap-
proaches, we introduced a novel strategy for the efficient chemo-
enzymatic synthesis of D-glutamine as shown in Scheme 1. This
strategy included two procedures, the chemical preparation of DL-
glutamine, and the biological resolution by an enzyme which has
not yet been reported for such a utility. To avoid the unavailable and
high cost L-glutamine, the cheaper raw material DL-glutamic acid
was used to synthesize DL-glutamine through a four-step chemical


mailto:ys_yang@nju.edu.cn
mailto:junzhongliu2414@163.com
mailto:jiaoqc@nju.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molstruc.2020.128600&domain=pdf
www.sciencedirect.com/science/journal/00222860
http://www.elsevier.com/locate/molstruc
https://doi.org/10.1016/j.molstruc.2020.128600
https://doi.org/10.1016/j.molstruc.2020.128600

2 Q. Du et al. / Journal of Molecular Structure 1219 (2020) 128600

0 o
ACZO

COQ reflux

@ J met

M

e

L-glutamic acid

Hz
COLH

DL-3 DL-4

‘ NoH,+H,0

DL-1 DL-5
+
- 0o (o) )
DL-1:DL-glutamic acid )J\ )L DL-4:N-Pht-DL-glutamine
HO™ ™Y~ " NH, _
DL-2:N-Pht-DL-glutamate NH DL-5:DL-glutamine
2
DL-3:N-Pht-DL-glutamic anhydride
D-glutamine

Scheme 1. Chemoenzymatic synthesis of D-glutamine using DL-glutamic acid as raw material with whole-cell catalysis harboring recombinant DmpA.

reaction series. Afterwards, L-aminopeptidase D-Ala-esterase/
amidase (DmpA, E.C. 3.4.13.20), as a key factor of this strategy, was
utilized in the following resolution to achieve D-glutamine. DmpA
exists widely in bacteria and naturally catalyzes the hydrolysis of
83-or f?-amino acid residues from amides and peptides. With the
privileges of heterologous expression in E. coli and cofactor-free
catalytic reaction [16], DmpA is an ideal enzyme for the resolu-
tion of DL-glutamine and has not been reported for this function
yet. Combining the chemical preparation of DL-glutamine as sub-
strate and the biological resolution by recombinant expressed
DmpA in Escherichia coli, we optimized our strategy by refining the
parameters and finally achieved the efficient chemoenzymatic
synthesis of D-glutamine with industrial potential.

2. Materials and methods
2.1. Chemicals

D-glutamine standard was purchased from Shanghai Macklin
Biochemical Co. Ltd., (1-Fluoro-2,4-dinitrophenyl)-5-L-alanina-
mide (FDAA) was purchased from Tianjin Heowns Biochemical
Technology Co. Ltd., Isopropyl-G-D-thiogalactopyranoside (IPTG)
was purchased from Nanjing Jitian Biotechnology Co., Ltd., Kits for
genetic manipulation were purchased form Takara Bio (Dalian,
China). All other chemicals were analytical grade.

2.2. Synthesis

2.2.1. Synthesis of N-Pht-DL-glutamate

DL-glutamic acid (29.4 g) and phthalic anhydride (29.6 g) were
added into a 500 mL round-bottomed flask. N-Pht-DL-glutamate
was prepared by the melting method [17]. Yield: 88%, 48.8 g white
acicular crystal.

2.2.2. Synthesis of N-Pht-DL-glutamic anhydride
N-Pht-DL-glutamate (41.6 g) was refluxed in 45 mL acetic an-
hydride for 15 min, cooled naturally, crystallized, filtered and
washed with ethyl acetate for crystallization. Yield: 95%, 369 g
colorless acicular crystal. 'H NMR (600 MHz, DMSO-dg) d:

8.00—7.89 (m, 4H), 5.48 (dd, J = 13.0, 5.8 Hz, 1H), 3.17—3.07 (m, 1H),
3.03—2.92 (m, 1H), 2.68—2.55 (m, 1H), 2.19—2.07 (m, 1H). 13C NMR
(151 MHz, DMSO-dg) 8: 167.18,166.77,166.11, 135.52, 131.58, 124.09,
48.15,29.92, 20.87.

2.2.3. Synthesis of N-Pht-DL-glutamine

N-Pht-DL-glutamic anhydride (20.7 g) was dissolved in 2 M
ammonia (80 mL) at ambient temperature with stirring for 20 min.
Subsequently, the solution was acidified to pH 3 with hydrochloric
acid (6 M). The precipitate was filtered, washed with ultrapure
water for three times. The filtered precipitate dried at 70 °C for 12 h
to afford the N-Pht-DL-glutamine. Yield: 76%, 16.8 g white acicular
crystal. '"H NMR (600 MHz, DMSO-dg) 8: 13.21 (s, 1H), 7.20 (s, 1H),
6.72(s,1H),4.75 (dd,J = 11.0, 4.5 Hz, 1H), 3.36 (s, 1H), 2.41-2.32 (m
1H), 2.31-2.22 (m, 1H), 2.10 (t, ] = 7.5 Hz, 2H). 13C NMR (151 MHz,
DMSO0-dg) 3: 173.55, 170.91, 167.88, 135.26, 131.70, 123.82, 51.80,
31.84, 24.44.

2.2.4. Synthesis of DL-glutamine

N-Pht-DL-glutamine (15.2 g) was added to an aqueous solution
containing 2.5 g hydrazine hydrate at room temperature for 48 h.
The reaction liquid was acidified with 6 N hydrochloric acid to pH 3.
Phthalic hydrazine precipitated was removed by filtration. DL-
glutamine was precipitated by decompression. Yield: 90%, 8.0 g
white needle crystal. 'H NMR (600 MHz, D,0) &: 3.67 (t, ] = 6.2 Hz,
1H), 2.43—2.29 (m, 2H), 2.09—1.95 (m, 2H). 3C NMR (151 MHz, D,0)
d: 177.55, 173.91, 54.06, 30.75, 26.12.

2.3. Bacterial strains, plasmids, and culture conditions

The dmpA gene from Ochrobactrum anthropi LMG7991 (Gene-
Bank accession number CAA66259.1) was synthesized by TsingKe.
E. coli BL21(DE3). The pETDuet-1 plasmids were used as the host
cells as well as expression vector, respectively. The E. coli BL21(DE3)
carrying the recombinant plasmid pET-Duetl-dmpA was con-
structed in our laboratory. The recombinant strain was inoculated
in 3 mL of LB medium supplemented with 100 mg ampicillin/L and
cultivated in a rotary shaker (200 rpm) at 37 °C for 12 h. After that,
5% seed culture was inoculated into 30 mL LB medium in 100 mL
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flask and was cultured at 37 °C and 200 rpm in a rotary shaker.
When the optical density of the culture at 600 nm reached 0.5, the
expression of DmpA was induced by adding IPTG to a final con-
centration of 0.5 mM, and the culture was incubated at 28 °C and
200 rpm for 8 h. Cells were harvested via 5 min centrifugation at
10,000xg and 4 °C, and washed with 0.2 M phosphate buffer (pH
7.5). Then the obtained cell pellet was maintained at 4 °C for further
studies.

2.4. DmpA activity assay

The whole-cell strains expressing DmpA were kept in store in
the freezing condition. Before the activity assay, the whole-cell
strains were weighted to control the steadiness, and then initially
recovered with a 20-min incubation. This pre-incubation has been
convinced to recover the high DmpA activity. Afterwards, the
recovered whole-cell strains were used directly as an enzyme
source to produce L-glutamic acid from DL-glutamine. Activities of
DmpA was measured by detecting the formation of L-glutamic acid.
The standard assay solution (final volume, 2 mlL) containing
200 mM DL-glutamine and the whole-cell (0.02 g) were further
incubated for 20 min at 30 °C, pH 8. One unit (U) of enzyme activity
was defined as the amount of whole-cell strain catalyzing the
conversion of substrate to the product at a rate of 1 pmol/min [18].

2.5. Analytical methods

The chemical structures of components synthesized in Scheme 1
were determined by Bruker DRX-600 MHz spectrometer. D-gluta-
mine and L-glutamine were separated and detected by HPLC after
the derivatization with the chiral derivative reagent (1-Fluoro-2, 4-
dinitrophenyl)-5-L-alaninamide (FDAA) according to the literature
[19]. The elution conditions were as follows: solvent A, 20 mM
ammonium acetate in aqueous solution; solvent B, acetonitrile;
flow rate, 0.6 mL/min; 0—8 min 95% A and 5% B; 8—30 min 87% A
and 13% B. Ultimate XB-C18 (4.6 x 100 mm, 5 pm) was used for
compound separation. The compounds were monitored at
UV = 340 nm.

2.6. Molecular docking analysis

In order to hint the mechanism of DmpA preferentially hydro-
lysis L-glutamine than D-glutamine, we performed molecular
docking analysis thus the possible patterns could be visualized
before a further exploration. The three-dimensional structures of
D-glutamine and L-glutamine were constructed using Chem. 3D
ultra 19.0 software, then they were energetically minimized by
using Minimize Small Moleculars function under CharMm force-
field by Discovery Stutio (version 3.5). The crystal structure of
DmpA (PDB code: 1B65) complex was downloaded from the RCSB
Protein Data Bank. All bound waters and ligands were eliminated
from the protein and the polar hydrogen was added to the proteins
after the Prepare Protein procedure in the same software [20].
Molecular docking of compounds L-glutamine and D-glutamine
into the three-dimensional X-ray structure of DmpA was carried
out using the CDOCKER protocol Discovery Stutio (version 3.5).

2.7. Enzymatic resolution of DL-glutamine by DmpA

Enzymatic resolution reaction was in 10 mL tube filled with
2 mL of reaction mixtures containing Nap,CO3/NaHCOs; buffer
(50 mM), the whole-cell catalyzing system, and 200 mM DL-
glutamine. Reaction condition optimization was performed under
the following parameter variation: temperature variation from 20
to 45 °C; pH variation from 6 to 11; surfactants including Sodium

dodecyl sulfate ( SDS ), Tween-80 and Triton X-100; metal ions
including Mg?*, Mn?*, Zn?*, Co?*, Ca?* and Zn?*.

3. Results and discussion

3.1. Docking simulation of the DmpA between L-glutamine and D-
glutamine

D-glutamine and L-glutamine were docked into the enzyme,
respectively. The docking results were shown in Fig. 1. The active
center we selected from over 30 supposed receptor cavities for
docking was consistent with the previous report [21], and we knew
that Ser250 at the active site was the most important catalytic
residue. The results of molecular docking showed that the
CDOCKER Interaction Energy (interaction energy between the
ligand and receptor) of the enzyme in combination with L gluta-
mine (—27.9136 kcal/mol) was lower than that in combination with
D glutamine (—25.4735 kcal/mol), indicating that L-glutamine was
the preferred binding configuration of the enzyme. Moreover, seen
in Fig. 1B, C, L-glutamine might form two possible hydrogen bonds
with Ser250 (O---H—N: 2.66 A, 119.566°; O---H—N: 1.87 A, 141.012°),
whereas in Fig. 1E, F, D-glutamine only form one hydrogen bond
with Ser250 (O---H—N: 2.75 A, 117.525°) [22]. The analysis of the
above molecular docking results inferred that, it possibly gave
priority to the hydrolysis of L-glutamine theoretically when DmpA
catalyzed the hydrolysis of the substrate DL-glutamine.

3.2. Effect of temperature and pH on DmpA activity

The preferences of DmpA under different temperature and pH
conditions exhibited consistency with that of the previous report
[23]. The reaction was carried out in a 2 mL mixture containing
200 mM DL-glutamine and 0.02 g recovered whole-cell strain. The
optimal temperature of the enzyme was evaluated using the
NayCO3/NaHCO3 (pH 8). The temperature stability of DmpA was
determined after pre-incubation of the recovered whole-cell strain
at a broad temperature range of 20—45 °C. The enzymic activity was
measured after 2 h. The highest relative activity and residual ac-
tivity of 100% denoted 66.7% and 55.9% conversion of L-glutamine.
The data were presented as mean + standard deviation (SD) from
three independent experiments. Subsequently, the effect of tem-
perature on DmpA activity was investigated within a range from 20
to 45 °C. Along with the increase of temperature, the activity of
DmpA also enhanced. The highest activity of DmpA was observed at
30 °C and then its activity decreased significantly with a further
increase of temperature (Fig. 2A). The thermostability of DmpA was
examined by determination of its residual activity after incubation
at 20, 30 and 40 °C, respectively. Accordingly, 30 °C was chosen as a
favorable temperature for glutamine synthesis (Fig. 2B).

In terms of pH, the reaction was carried out the same as Fig. 2.
The optimal pH of the enzyme was evaluated using the following
buffers (50 mM): sodium phosphate (pH 6—7), Na,CO3/NaHCOs (pH
8—10). The pH stability of DmpA was determined after pre-
incubation of the recovered whole-cell strain at a broad pH range
of 6—10. The enzyme activity was measured after 2 h. The highest
relative activity and residual activity of 100% denoted 18.8% and
50.1% L-glutamine, respectively. The mixture was kept in a shaking
plastic tube at 30 °C. The data were presented as mean + standard
deviation (SD) from three independent experiments. The
maximum activity of DmpA for the hydrolysis of L-glutamine was
observed at pH 8 in 50 mM Na;CO3/NaHCO3 buffer, while it
decreased significantly with pH lower than 7 or higher than 9, as
shown in Fig. 3A. Therefore the optimum pH of this reaction was
considered as pH 8. Similarly, the pH stability of the enzyme was
also the best at pH 8 (Fig. 3B).
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3.3. Effect of surfactants and divalent cations on DmpA activity

Generally, surfactants can obviously improve the cell membrane
permeability [24]. In the present study, the effect of three surfac-
tants on DmpA activity was researched by following the release of
L-glutamic acid. The reaction was carried out in the conditions of
pH 8 and 30 °C. Concentration of SDS, Tween-80 and Triton X-100
ranges from 0.01%, 0.02%, 0.03%, 0.04%, 0.05% and 0.06% (v/v),
respectively. The mixture components were the same as those
mentioned in Fig. 2. The enzymic activity was measured after 2 h.
The highest relative activity of 100% denoted 40.2% L-glutamic acid
on the condition of 0.04% Triton X-100. The data were shown as
mean + SD of three independent experiments. Fig. 4A showed the
relative activity of DmpA in different surfactants. Accordingly, SDS
had almost no effect on DmpA relative activity. On the contrary,
Tween-80 caused a little broad, simultaneously weak enhancement
on DmpA relative activity, and Triton X-100 led to the emergence of
the highest relative activity. It was noted that the addition of Triton
X-100 could distinctly improve the enzymatic activity of DmpA, but
the addition of the other two kinds of surfactants could not.

The stimulatory or inhibitory effect of common divalent cations
including Mg?*, Mn?*, Zn?*, Co®**, Cu®*", and Ca®*" on the DmpA
activity was negligible as shown in Fig. 4B. The reaction was carried
out in the conditions of pH 8 and 30 °C. Concentration of Mg?*,
Mn?*, Zn?*and Co?* ranges from 100, 10, 1, 0.1 and 0.01 mM,
respectively. The mixture components were the same as those
mentioned in Fig. 2. The enzyme activity was also measured after
2 h. The highest relative activity of 100% denoted 16.7% L-glutamic
acid on the condition of 1 mM Mn?*. The data were presented as
mean + SD of three independent experiments. The highest relative
activity of DmpA was observed at 1 mM of Mn®*, and then
decreased shapely with a further increase of concentration of Mn>*.
When the concentration of metal ions was 0.1 and 0.01 mM, the
system hardly promoted enzymatic activity. Cu** and Ca** had no
effect on the activity of DmpA.

3.4. Effect of substrate concentration

The substrate concentration effect on the conversion rate from
DL-glutamine to L-glutamic acid was also studied [25,26]. The re-
action was carried out in a 2 mL mixture containing 50 mM NayCOs/
NaHCOs3 buffer (pH 8), 0.02 g recovered whole-cell strain and DL-
glutamine with different concentrations. The mixture was kept
shaking at 30 °C. The highest conversion rate of 100% denoted
25 mM L-glutamic acid. The data were presented as mean + SD of
three independent experiments. The conversion rate time course
under different substrate concentrations was shown in Fig. 5. The
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Fig. 5. Effect of concentration of DL-glutamine on DmpA activity.

results indicated that with substrate concentration increasing form
50 mM—-200 mM, the time required to achieve the highest con-
version rate decreased. But when the substrate concentration was
400 mM, it took 8 h to reach the highest conversion rate. Reaction
inhibition was observed at high substrate concentration. Taking
production efficiency into consideration, the optimal substrate
concentration would be 200 mM.

3.5. Biotransformation process

We discovered the process of enzymatic resolution of DL-
glutamine to D-glutamine. The reaction mixture (final volume,
1 L) contained 10 g/L recovered whole-cell strain with 200 mM DL-
glutamine. Error bars show one standard deviation, as determined
from triplicate experiments.

Obviously, with the increase of reaction time, the concentration
of L-glutamic acid increased gradually. In Fig. 6, with the extension
of the reaction time, the content of L-glutamine decreased. After
12 h of reaction, only 12.06% of L-glutamine was not hydrolyzed,
whereas the content of D-glutamine remained unchanged. This
result could indirectly indicate that the enantiomeric excess (ee)
value at this time was greater than 99%. After 13 h of reaction,
although only 6.5% of L-glutamine remained unhydrolyzed, the D-
glutamine began to decrease (Fig. 6). Therefore, it seemed neces-
sary to control the time of the biological resolution reaction within
12 h, which ensured the content and purity of the product D-
glutamine.
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Fig. 4. Effect of surfactants (A) and divalent cations (B) on enzymatic activity.
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3.6. Isolation and identification of D-Glutamine

The reaction mixture included 30 g/L DL-glutamine, 10 g
recovered whole-cell strain, 1 L NayCO3/NaHCO3 buffer (pH 8),
0.04% (v/v) Triton X-100, 1 mM Mn?*. After incubation at 30 °C for
12 h, the mixture was centrifuged at 12000xg for 10 min to remove
the insoluble fraction. And the resulting supernatant was decolor-
ized by active carbon at 60 °C for 30 min. After that, adjusting the
pH of the conversion solution to 3.22, L-glutamic acid precipitated
at its isoelectric point. Finally, 8.45 g L-glutamic acid was obtained
by drying precipitated crystals [27]. Then the reaction mixture was
adjusted to pH 5.65, and concentrated to 30 mL under vacuum, thus
D-glutamine crystallized. At last, 10.6 g D-glutamine was obtained,
with 70% of theoretical yield. Specific rotation of D-glutamine was

(@] = 7.3 (c = 1, Hy0).

3.7. Discussion

In this study, we have successfully developed an efficient che-
moenzymatic synthesis method of D-glutamine. A simple chemical
method was discovered to produce DL-glutamine using low price
material with high efficiency. Moreover, products from each step of
the chemical reaction were easy to crystallize and separate. The
whole procedure was strong operability, and very suitable for in-
dustrial application. Besides, it seemed a better choice to take
advantage of bio-resolution rather than chemical resolution [28].
Compared with chemical resolution, bio-resolution was environ-
mentally friendly and more cost-effective due to using a starting
material (DL-glutamic acid) which could be produced from
biomass. More importantly, compared with the acylation-
hydrolysis pathway, the direct degradation method could obtain a
higher yield of D-amino acid [29,30].

In this work, enzymes were mainly used for biological resolu-
tion. The essence was to use enzymes to hydrolyze the y-amide
bond of L-glutamine efficiently and rapidly. As we knew, there were
many enzymes that could hydrolyze amide bonds, such as the
aminopeptidase used here, as well as proteolytic and amidase.
DmpA is a member of serine aminopeptidase. According to the

catalytic mechanism, the aminopeptidase superfamily can be
divided into metal aminopeptidase, cysteine aminopeptidase and
serine aminopeptidase [22,24]. D-aminopeptidase (DAP) and D-
aminopeptidase B (DmpB), like DmpA, also belong to Serine
aminopeptidase. Due to their strict substrate specificity, DAP and
DmpB can only catalyze substrates in the D-configuration, thus
they are not suitable for biological resolution of DL-glutamine. In
contrast, DmpA has a broader substrate specificity and is more
suitable for biological resolution of DL-glutamine. However, Ami-
dases are an important class of biocatalysts that act on lactam
bonds and catalyze the hydrolysis of amides to the corresponding
carboxylic acids and ammonia [31,32]. In the past 20 years,
although a large number of amidase-producing microorganisms
have been screened from natural sources, they have faced real
difficulties. Due to the low expression of amidases in wild bacteria
and the stereoselectivity in the same microorganism, these are
several reasons to limit their large-scale application. With the
advent of genetic engineering technology, the use of E. coli as a host
to express amylase from different sources (B. stearothermophilus
BR388, C. acidovorans KPO-2771-4 and Pseudomonas sp. MCI3434)
has gradually become a common method for industrial applications
[33—35]. There have been a large number of reports using genetic
engineering bacteria to produce a variety of substances, such as S-
2,2-dimethylcyclopropane carboxylic acid, 1-CCHAA and (R)-
TFHMA [36—38]. Of course, there have been reports in which the
researchers used genetically engineered bacteria to heterologously
express amidase with L-glutamine as a substrate, but the specific
enzyme activity is only 17%, being far lower than the enzyme ac-
tivity of DmpA [39].

In summary, the heterologous expression of DmpA for the bio-
logical resolution of DL-glutamine seemed the most suitable
method to the best of our knowledge. Moreover, the combined use
of chemical synthesis and enzymatic resolution to produce D-
glutamine in this work provided a certain theoretical basis for
potential industrial applications. There might be more suitable
enzymes for biological resolution of DL-glutamine in the near
future. At least, this work provided a good idea for the production of
D-amino acids.



Q. Du et al. / Journal of Molecular Structure 1219 (2020) 128600 7

4. Conclusion

To sum up, we developed a novel efficient chemoenzymatic
synthesis method of D-glutamine using DL-glutamic acid as the
raw material. This was the first report that D-glutamine could be
prepared by the resolution of DL-glutamine with recombinant
DmpA which was expressed in E. coli. Meanwhile, it was also the
first time for DmpA to be recruited in the synthesis of D-amino
acids. Attractively, the D-glutamine was obtained by isoelectric
point precipitation with the theoretical yield as high as 70%.
Furthermore, the optimum parameters were determined as pH 8,
30 °C, 0.1% (v/v) Triton X-100, and 1 mM Mn?* all through the
control variable optimizing procedures. Stepping closer and closer
to the productive requirements, our strategy seemed potential for
the industrialized preparation of D-glutamine, thus might boost the
corresponding applications such as chemical engineering and bio-
logical medicine.
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