Preliminary communication

Synthesis and structure-activity relationships of potential anticonvulsants based on 2-piperidinecarboxylic acid and related pharmacophores

Bin $\mathrm{Ho}^{\mathrm{a}, 1}$, A. Michael Crider ${ }^{\text {a* }}$, James P. Stables ${ }^{\text {b }}$
${ }^{\text {a Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, }}$ LA 71209-0470, USA
${ }^{\text {b }}$ Preclinical Pharmacology, NINDSP, Bethesda, MD 20892-95243, USA

Received 13 June 2000; revised 24 November 2000; accepted 29 November 2000

Abstract

Using N-(2,6-dimethyl)phenyl-2-piperidinecarboxamide (1) and N-(α-methylbenzyl)-2-piperidinecarboxamide (2) as structural leads, a variety of analogues were synthesised and evaluated for anticonvulsant activity in the MES test in mice. In the N-benzyl series, introduction of $3-\mathrm{Cl}, 4-\mathrm{Cl}, 3,4-\mathrm{Cl}_{2}$, or $3-\mathrm{CF}_{3}$ groups on the aromatic ring led to an increase in MES activity. Replacement of the α-methyl group by either $i-\operatorname{Pr}$ or benzyl groups enhanced MES activity with no increase in neurotoxicity. Substitution on the piperidine ring nitrogen led to a decrease in MES activity and neurotoxicity, while reduction of the amide carbonyl led to a complete loss of activity. Movement of the carboxamide group to either the 3-or 4-positions of the piperidine ring decreased MES activity and neurotoxicity. Incorporation of the piperidine ring into a tetrahydroisoquinoline or diazahydrinone nucleus led to increased neurotoxicity. In the N-(2,6-dimethyl)phenyl series, opening of the piperidine ring between the 1 - and 6-positions gave the active norleucine derivative $75\left(\mathrm{ED}_{50}=5.8 \mathrm{mg} \mathrm{kg}^{-1}, \mathrm{TD}_{50}=36.4 \mathrm{mg} \mathrm{kg}^{-1}, \mathrm{PI}=6.3\right)$. Replacement of the piperidine ring of 1 by cycloalkane (cyclohexane, cyclopentane, and cyclobutane) resulted in compounds with decreased MES activity and neurotoxicity, whereas replacement of the piperidine ring by a 4-pyridyl group led to a retention of MES activity with a comparable PI. Simplification of the 2-piperidinecarboxamide nucleus of $\mathbf{1}$ into a glycinecarboxamide nucleus led to about a six-fold decrease in MES activity. The 2,6-dimethylanilides were the most potent compounds in the MES test in each group of compounds evaluated, and compounds $\mathbf{5 0}$ and $\mathbf{7 5}$ should be useful leads in the development of agents for the treatment of tonic-clonic and partial seizures in man. © 2001 Editions scientifiques et médicales Elsevier SAS

2,6-dimethylanilides / carboxamides / rotorod test / maximal electroshock seizure test / anticonvulsant

1. Introduction

Epilepsy is a major neurological disorder in the United States and throughout the world [1, 2]. Although $70-80 \%$ of epileptics are currently controlled by a variety of drugs, seizure protection is frequently accompanied by numerous adverse effects [3].

[^0]Previously, the activity of several 2-piperidinecarboxamides in the maximal electroshock seizure (MES) test in mice was reported. Receptor binding studies indicated that these amides demonstrated weak binding affinity at the phencyclidine (PCP) site on the N-methyl-D-aspartate (NMDA) receptor complex; however, a correlation between binding affinity and seizure protection in the MES test was not observed [4]. As a continuation of this work, a structure-activity relationship (SAR) study of the 2-piperidinecarboxamide nucleus was initiated. The most active compound arising from this study, the 2,6-dimethylanilide ($R S-1$, figure 1), exhibited an $\mathrm{ED}_{50}=5.8$ $\mathrm{mg} \mathrm{kg}{ }^{-1}$ in the MES test and a $\mathrm{TD}_{50}=33.2 \mathrm{mg} \mathrm{kg}^{-1}$ in the rotorod test to give a $\mathrm{PI}=5.7$. The $(R-1)$-isomer exhibited similar MES activity as the racemate
but was more neurotoxic, whereas the (S-1)-isomer was less active and less neurotoxic. Additionally, the N-(α-methylbenzyl)-2-piperidinecarboxamides $\quad \mathbf{2}$ (figure 1) also exhibited activity in the MES test; however, the stereochemistry at the 2-position of the piperidine ring or at the α-position of the side chain did not significantly affect activity [5].

Although several new drugs such as vigabatrin, lamotrigine, gabapentin, tiagabine, felbamate, topiramate, fosphenytoin, and levetiracetam have appeared on the market, the development of novel agents, particularly compounds effective against complex partial seizures, remains a major focus of antiepileptic drug research [6]. A review on new structural entities having anticonvulsant activity has recently appeared [7]. Since the 2-piperidinecarboxamides represent a novel series of compounds that are active in the MES test in mice, further exploration of the SAR was of interest. Using compounds $\mathbf{1}$ and $\mathbf{2}$ as structural leads, the following modifications were explored: (1) substi-

(RS)-1
(R)-1
(S) -1

($2 S, \alpha S$)-2
($2 R, \alpha R$)-2
($2 R, \alpha S$)- 2
$(2 S, \alpha R)-2$

Figure 1. Structures of 2-piperidinecarboxamides with activity against MES in mice.

Figure 2. (a) SOCl_{2}-benzene-pyridine; (b) AlCl_{3}-benzene; (c) $\mathrm{HCOOH}-\mathrm{HCONH}_{2}$; (d) concentrated HCl .
tution on the aromatic ring of compound $\mathbf{2}$, (2) replacement of the α-methyl substituent of 2 by other alkyl or aryl groups, (3) introduction of substituents on the piperidine ring nitrogen, (4) reduction of the side chain carbonyl, (5) movement of the carboxamide group to the 3 - and 4-positions, (6) incorporation of the piperidine ring into a tetrahydroisoquinoline or diazahydrindanone nucleus, (7) opening of the piperidine ring, (8) replacement of the piperidine ring by cycloalkyl or pyridine, and (9) simplification of the 2-piperidinecarboxamide nucleus into a glycinecarboxamide moiety.

2. Chemistry

The synthesis of the N-[(α-alkyl or aryl-substi-tuted)benzyl]-2-piperidine-carboxamides required the preparation of the precursor α-substituted-benzylamines which were prepared by the Leuckhart reaction (figure 2). The starting ketones were either commercially available or were prepared by Friedel-Crafts acylation of benzene with an appropriate acid chloride. In the case of solid ketones, the reaction of the ketone with a mixture of formic acid and formamide at $140^{\circ} \mathrm{C}$ usually required a reaction time of about 24 h to afford the N-formylamine. Some difficulty was encountered in maintaining the reaction temperature due to the periodic addition of formic acid. When liquid ketones were employed in the reaction, a mixture of the ketone and formic acid was added dropwise to a solution of formamide at $140^{\circ} \mathrm{C}$. The intermediate imine was rapidly hydrogenated by formic acid, and the total reaction time to yield the N-formylamine was only $6-8 \mathrm{~h}$. Removal of the formyl group was accomplished by refluxing in concentrated hydrochloric acid, and the free amines were generally purified by vacuum distillation followed by formation of the hydrochloride salts (table I).

The desired N-[(α-alkyl or aryl-substituted)benzyl]piperidinecarboxamides were prepared by a previously described [5] mixed anhydride coupling procedure. The general method (shown in figure 4) involved reaction of a tert-butoxycarbonyl (BOC)protected amino acid with isobutylchloroform (IBCF) and an arylamine or an (α-alkyl or aryl-substituted)benzylamine in the presence of N-methylmorpholine (NMM). Deprotection of the resulting BOC-protected carboxamide with hydrogen chloride

Table I. α-Substituted-benzylamines.

Compound	R	X	$\mathrm{Bp}\left({ }^{\circ} \mathrm{C}\right), \mathrm{mmHg}$	Yield (\%)	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)^{\mathrm{a}}$
5	CH_{3}	$3-\mathrm{OCH}_{3}$	129-132 (17)	66	$159-161{ }^{\text {b }}$
6	CH_{3}	3,4-($\left.\mathrm{OCH}_{3}\right)_{2}$	155-158 (13) ${ }^{\text {c }}$	27	$221-222{ }^{\text {c }}$
7	CH_{3}	$3-\mathrm{CF}_{3}$	77-81 (18) ${ }^{\text {d }}$	67	192-193 ${ }^{\text {d }}$
8	CH_{3}	3-F	99-111 (23)	55	$168-169{ }^{\text {e }}$
9	CH_{3}	$2-\mathrm{Cl}$	123-126 (25) ${ }^{\text {d }}$	60	183-184 ${ }^{\text {d }}$
10	CH_{3}	$3-\mathrm{Cl}$	112-115 (13) ${ }^{\text {f }}$	59	176-177 ${ }^{\text {f }}$
11	CH_{3}	$4-\mathrm{Cl}$	112-115 (13) ${ }^{\text {d }}$	63	192-193 d
12	Et	H	105-108 (27) ${ }^{\text {d }}$	77	194-195 d
13	$i-\mathrm{Pr}$	H	99-104 (14) ${ }^{\text {d }}$	85	284-285 ${ }^{\text {d }}$
14	Bn	H	165-180 (16) ${ }^{\text {g }}$	53	256-257 ${ }^{\text {h }}$
15	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	$140-145$ (1) ${ }^{\text {i }}$	78	$271-273{ }^{\text {i }}$
16	$\mathrm{cC}_{5} \mathrm{H}_{9}$	H		44	
17	$\mathrm{cC}_{6} \mathrm{H}_{11}$	H	180-183 (22)	59	$>325^{\text {j }}$

${ }^{\mathrm{a}} \mathrm{HCl}$ salt. All salts were recrystallised from absolute ethanol-diethyl ether. ${ }^{\mathrm{b}}$ Ref. [31]. ${ }^{\mathrm{c}}$ Ref. [32]. ${ }^{\text {d }}$ Ref. [33]. ${ }^{\mathrm{e}}$ Ref. [34]. ${ }^{\mathrm{f}}$ Ref. [35].
${ }^{\text {g }}$ Ref. [36]. ${ }^{\text {h }}$ Ref. [37]. ${ }^{\text {i Ref. [38]. }}{ }^{\text {j Ref. [39]. }}$
gas in methylene chloride gave the desired carboxamides. The pyridinecarboxamide $\mathbf{5 0}$ was prepared from isonicotinic acid by formation of the acid chloride in pyridine followed by reaction of the crude acid chloride with 2,6-dimethylaniline in tetrahydrofuran (THF).

Reaction of 2, as a mixture of diastereoisomers, with either benzoyl chloride or benzyl bromide gave the corresponding 1-benzoyl 39 and 1-benzyl derivatives $\mathbf{3 5 - 3 8}$, respectively. Alkylation of $\mathbf{2}$ with methyl iodide afforded 34 and some of the undesired disubstituted product. Reduction of 2 with refluxing lithium aluminum hydride (LAH) in THF afforded the diamine 51. In an effort to incorporate the 2-piperidinecarboxamide moiety into a more rigid framework, $\mathbf{2 3}$ was reacted with formaldehyde in ethanol to yield the diazahydrindanone 52. The physicochemical properties of these compounds are given in table II.

Incorporation of the 2-piperidinecarboxamide moiety into a tetrahydroisoquinoline nucleus required the preparation of the key 1,2,3,4-tetrahydroisoquinoline carboxylic acids $\mathbf{5 5}$ and $\mathbf{6 4}$ as shown in figure 3. Using sodium methoxide as the base, cyclisation between α, α-dichloro- o-xylene and diethyl-2-(acetylamino)malonate in refluxing methanol gave the diester 53 in
moderate yield. The reaction occurred with complete transesterification. The diester 53 was converted to the acid 54 via saponification and subsequent decarboxylation during work-up. The isoquinoline-3-carboxylic acid 55 was obtained by refluxing 54 in 6 N hydrochloric acid followed by neutralisation with ammonium hydroxide. The desired carboxamides were prepared by the standard mixed anhydride method to yield 58-63. Catalytic hydrogenation of isoquinoline1 -carboxylic acid using Adams' catalyst gave the te-trahydroisoquinoline-1-carboxylic acid 64. Reaction of 64 with di-tert-butyl dicarbonate followed by amide formation and deprotection gave the carboxamides $\mathbf{6 6}$ and 68. The physicochemical properties of the 1,2,3,4-tetrahydroisoquinolinecarboxamides are given in table III.

Ring-opened analogues of the 2-piperidinecarboxamide nucleus were prepared as shown in figure 4. The carboxamides 75 and 77 represent analogues in which the piperidine ring has been opened between positions 1 and 6 , whereas compounds $\mathbf{8 2}$ and $\mathbf{8 4}$ represent ring-opened analogues in which the piperidine ring has been cleaved between positions 2 and 3. The physicochemical properties of these derivatives are given in Section 5.

Table II. Piperidinecarboxamides and related derivatives.

$\left.\begin{array}{llllllll}\hline \text { Compound } & \mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{X} & \text { Ring position } & \mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right) & \text { Yield (\%) }\end{array} \begin{array}{l}\mathrm{Formula}^{\mathrm{a}} \\ \left(\text { (recrystallisation solvent }{ }^{\mathrm{b}}\right.\end{array}\right]$

[^1]

Figure 3. (a) $\mathrm{NaOCH}_{3}-\mathrm{MeOH}-\mathrm{CH}_{3} \mathrm{CONHCH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$; (b) KOH ; (c) 6 N HCl ; (d) $\mathrm{H}_{2}-\mathrm{PtO}_{2}-\mathrm{CH}_{3} \mathrm{COOH}$.

The cycloalkylcarboxamides ($\mathbf{8 5}-\mathbf{9 3}$) were prepared starting from the appropriate carboxylic acid. The intermediate acid chlorides were obtained by treating the cycloalkanecarboxylic acids with thionyl chloride in dichloromethane. Using triethylamine as the base, the acid chlorides gave moderate to high yields of the amides upon treatment with the appropriate amine in THF. The physicochemical properties of these compounds are given in table IV.

The 1-aminocyclopentanecarboxamide 97 (figure 5) was synthesised via the hydantoin 94 . Using the typical coupling procedure, the 1 -aminocyclohexanecarboxamide $\mathbf{9 9}$ was prepared from 1-aminocyclohexane carboxylic acid. Hydrogenation of 4 -aminobenzoic acid with Adams' catalyst in 30% ethanol yielded a mixture of cis-and trans-4-aminocyclohexanecarboxylic acids 100 and 101, respectively. Fractional crystallisation of the reaction mixture from aqueous ethanol yielded cis-100. Concentration of the mother liquor and recrystallisation of the resulting residue from an aqueous ethanol-diethyl ether mixture gave trans-101. The desired 2,6-dimethylanilides 104 and 105 (figure 5) were prepared from the corresponding BOC-protected acids $\mathbf{1 0 2}$ and $\mathbf{1 0 3}$ in the normal manner. The physicochemical properties of these compounds are given in Section 5. The NMR spectra of all final compounds were consistent with the assigned structures.

3. Pharmacology

3.1. 2,6-Dimethylanilide series

The anticonvulsant activity and the neurotoxicity (table V) of the target compounds of this investigation were evaluated by the National Institutes of Neurological Disorders and Stroke (NINDS) at the National Institutes of Health (NIH) using established procedures [5]. The ED_{50} in MES test and the TD_{50} in the rotorod test were calculated at the time of peak effect for the most active compounds according to a previously described method [4]. In the previous study, the 2,6dimethylanilide ($R S-\mathbf{1}$) was shown to exhibit potent activity in the MES test in mice [5]. Replacement of one of the ortho-methyl groups in $R S-\mathbf{1}$ by an isopropyl substituent (compound 19) resulted in similar MES activity $\left(\mathrm{ED}_{50}=8.3 \mathrm{mg} \mathrm{kg}^{-1}\right)$. Although the nipecotamide 20 and the isonipecotamide 21 were weakly active in the MES test, N-[(2,6-dimethyl)phenyl]-4-pyridinecarboxamide ($\mathbf{5 0}, \mathrm{ED}_{50}=9.7 \mathrm{mg} \mathrm{kg}^{-1} ; \mathrm{TD}_{50}=53.3 \mathrm{mg} \mathrm{kg}^{-1}$; $\mathrm{PI}=5.5$) approached the MES activity of $R S-\mathbf{1}$ with a similar PI.

Incorporation of the 2-piperidinecarboxamide moiety into a tetrahydroisoquinoline nucleus increased neurotoxicity while maintaining similar MES activity. The isoquinolinecarboxamides ($\mathbf{5 8}$ and 68) exhibited MES activity at $10 \mathrm{mg} \mathrm{kg}^{-1}$ in mice, but with neurotoxicity in the rotorod test at $30 \mathrm{mg} \mathrm{kg}^{-1}$. Apparently, the increase in lipophilicity by the fusion of a phenyl ring either at the 3,4 - or 4,5 -positions in these compounds contributes to the increase in neurotoxicity.

Several open ring analogues exhibited potent activity in the MES test. The norleucine derivative $75\left(\mathrm{ED}_{50}=\right.$ $5.8 \mathrm{mg} \mathrm{kg}^{-1}, \mathrm{TD}_{50}=36.4 \mathrm{mg} \mathrm{kg}^{-1}, \mathrm{PI}=6.3$) was among the most potent compounds evaluated in the MES test in this study. In these derivatives introduction of a lipophilic n-butyl group at the α-position of the amino acid portion increased MES activity by about five-fold (compare compounds 75 and 76). Positioning the n-butyl group on the amine nitrogen (compound 84) led to a decrease in MES activity. The conformationally constrained 1-amino-1-cyclohexanecarboxamide 99 did not exhibit MES activity at $300 \mathrm{mg} \mathrm{kg}^{-1}$. Possibly, the cyclohexane ring exerts an unfavourable steric effect in this compound.

The cyclobutanecarboxamide $\mathbf{8 9}$ exhibited the greatest MES activity among the cycloalkanecarboxamides $\left(\mathrm{ED}_{50}=35 \mathrm{mg} \mathrm{kg}^{-1}, \quad \mathrm{TD}_{50}=203 \mathrm{mg} \mathrm{kg}{ }^{-1}, \mathrm{PI}=5.8\right)$. Compared with the cyclobutyl derivative, the cy-
clopentyl $90\left(\mathrm{ED}_{50}=55 \mathrm{mg} \mathrm{kg}{ }^{-1}\right)$ and the cyclohexyl 91 $\left(\mathrm{ED}_{50}=62 \mathrm{mg} \mathrm{kg}{ }^{-1}\right)$ derivatives were less active in the MES test. However, the cyclohexyl derivatives 91 and 92 exhibited considerably less neurotoxicity with PIs of >12.1 and >8.8, respectively. The cyclopropane $\mathbf{8 8}$ and the cycloheptane $\mathbf{9 3}$ derivatives were the least potent of the cycloalkanecarboxamides in the MES test. The presence of an ortho-chloro group in compound 92 in place of a methyl substituent led to a decrease in MES activity $\left(\mathrm{ED}_{50}=85 \mathrm{mg} \mathrm{kg}{ }^{-1}\right)$. Introduction of a 4 -amino group into the cyclohexane ring (compound 104) did not eliminate MES activity (active at $100 \mathrm{mg} \mathrm{kg}^{-1}$), but greatly increased the neurotoxicity (neurotoxic at $100 \mathrm{mg} \mathrm{kg}^{-1}$). Compound $\mathbf{1 0 4}$ may be viewed as a saturated analogue of the potent anticonvulsant ameltolide $\left(\mathrm{ED}_{50}=2.6\right.$ $\mathrm{mg} \mathrm{kg}{ }^{-1}$) [8, 9]. Apparently, modification of the planar
aromatic ring in ameltolide greatly decreases the MES activity.

3.2. (N-Benzyl)carboxamide series

The stereochemistry at the 2 -position or at the α-position of the N-(α-methylbenzyl) group (see the four stereoisomers of $\mathbf{2}$ in table V) did not significantly affect the MES activity. Introduction of a $3-\mathrm{Cl}\left(29, \mathrm{ED}_{50}=20\right.$ $\mathrm{mg} \mathrm{kg}{ }^{-1}$) or a $3,4-\mathrm{Cl}_{2}\left(32, \mathrm{ED}_{50}=28 \mathrm{mg} \mathrm{kg}^{-1}\right)$ into the aromatic ring led to a slight increase in MES activity; however, the compounds were slightly more neurotoxic. Substitution of an isopropyl group (42, $\mathrm{ED}_{50}=22$ $\mathrm{mg} \mathrm{kg}{ }^{-1}$) or a benzyl substituent ($S, R S-45, \mathrm{ED}_{50}=22$ $\mathrm{mg} \mathrm{kg}{ }^{-1}$) for the α-methyl group resulted in an increase in MES activity, although an increase in neurotoxicity

Table III. 1,2,3,4-Tetrahydroisoquinolinecarboxamides.

57-58

67-68

Compound	R_{1}	R_{2}	X	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)	Formula ${ }^{\text {a }}$ (recrystallisation solvent) ${ }^{\text {b }}$
57	BOC			140-141	40	$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$ (A)
58	H			255-258	82	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}^{\mathrm{c}},{ }^{\text {d }}$ (B)
59	H	H	3-F	221-223	62	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClFN}_{2} \mathrm{O}^{\text {c }}$ (B)
60	H	H	$3-\mathrm{CF}_{3}$	141-143	66	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClFN}_{2} \mathrm{O}^{\text {c }}$ (C)
61	H	CH_{3}	$3-\mathrm{CF}_{3}$	88-98	46	$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{\mathrm{e}}$ (D)
62	H	CH_{3}	$4-\mathrm{Cl}$	100-103	51	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}$ (D)
63	H	Bn	H	124-126	23	$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ (E)
66				164-166	37	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}^{\mathrm{c},{ }^{\text {f }} \text { (B) }}$
67	BOC			198-200	29	$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$ (A)
68	H			283-285	71	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}$ (B)

[^2]

Figure 4. (a) $(\mathrm{BOC})_{2} \mathrm{O}-\mathrm{NaOH}$ or $\mathrm{BOC}-\mathrm{ON}-\mathrm{Et}_{3} \mathrm{~N}$; (b) $\mathrm{NMM}-\mathrm{IBCF}-2,6$-dimethylaniline; (c) $\mathrm{HCl}(\mathrm{g})-\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) $\mathrm{NMM}-\mathrm{IBCF}-$ α-metylbenzylamine; (e) n-butylamine-benzene; (f) $25 \% \mathrm{NaOH}$.

Table IV. Cycloalkanecarboxamides.

Compound	R	X	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)	Formula ${ }^{\text {a }}$ (recrystallisation solvent) ${ }^{\text {b }}$
85	$\mathrm{cC}_{5} \mathrm{H}_{9}$	3-Cl	82-84	89	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClNO}$ (A)
86	$\mathrm{cC}_{6} \mathrm{H}_{11}$	$3-\mathrm{Cl}$	122-124	49	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{ClNO}$ (A)
87	$\mathrm{cC}_{6} \mathrm{H}_{11}$	H	112-113	47	$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}$ (A)
88	$\mathrm{cC}_{3} \mathrm{H}_{5}$	$2,6-\mathrm{Me}_{2}$	158-160	31	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}$ (B)
89	$\mathrm{cC}_{4} \mathrm{H}_{7}$	2,6-Me ${ }_{2}$	152-154	53	$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}$ (B)
90	$\mathrm{cC}_{5} \mathrm{H}_{9}$	2,6-Me ${ }_{2}$	177-179	75	$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$ (B)
91	$\mathrm{cC}_{6} \mathrm{H}_{11}$	2,6-Me	201-202	44	$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}$ (B)
92	$\mathrm{cC}_{6} \mathrm{H}_{11}$	$2-\mathrm{Cl}, 6-\mathrm{Me}$	190-191	56	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClNO}$ (A)
93	$\mathrm{cC}_{7} \mathrm{H}_{13}$	2,6-Me ${ }_{2}$	200-204	38	$\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}$ (B)

[^3]was noted. Introduction of an α-cyclopentyl or α-cyclohexyl substituent (compounds 47 and 49) afforded carboxamides with MES activity at 100 and $30 \mathrm{mg} \mathrm{kg}^{-1}$, respectively. However, both of these derivatives exhibited neurotoxicity at $100 \mathrm{mg} \mathrm{kg}^{-1}$. Alkylation or acylation of the 1-position of the piperidine ring in the N - (α-methylbenzyl) - 2 - piperidinecarboxamides (compounds 34-39) essentially led to a loss of anticonvulsant activity. Reduction of the carbonyl group of $N-(\alpha-$ methylbenzyl)-2-piperidinecarboxamide (2) gave the diamine 51 which exhibited no MES activity.

Only in the cycloalkanecarboxamides did the $N-(\alpha-$ methyl)benzyl-carboxamides approach the MES activity of the 2,6-dimethylanilides (compare compounds 85 and 90). However, the neurotoxicities of these derivatives were greater than the corresponding 2,6dimethylanilides.

4. Conclusions

In agreement with previous findings on the N-(benzyl)piperidinecarboxamides, introduction of $3-\mathrm{Cl}, 4-$ $\mathrm{Cl}, 3,4-\mathrm{Cl}_{2}$, or $3-\mathrm{CF}_{3}$ groups on the aromatic ring of N-(α-methylbenzyl)-piperidinecarboxamides led to an increase in MES activity. Replacement of the α methyl group of α-methylbenzylamides with either $i-\operatorname{Pr}\left(42, \mathrm{ED}_{50}=22 \mathrm{mg} \mathrm{kg}{ }^{-1}\right)$ or benzyl $(S, R S-45$, $\mathrm{ED}_{50}=22 \mathrm{mg} \mathrm{kg}^{-1}$) increased MES activity with no increase in neurotoxicity. In the piperidine series, movement of the carboxamide moiety to either the 3or 4-positions of the piperidine ring led to a decrease in anticonvulsant activity and neurotoxicity. Interestingly, the 4-pyridinecarboxamide (50, $\quad \mathrm{ED}_{50}=9.7$ $\mathrm{mg} \mathrm{kg}{ }^{-1}, \mathrm{TD}_{50}=53.3 \mathrm{mg} \mathrm{kg}^{-1}, \mathrm{PI}=5.5$) was highly active in the MES test. Any substitution on the piperidine ring nitrogen resulted in a decrease in MES activity and neurotoxicity. Also, reduction of the

97

99

Figure 5. Structures of compounds 97, 99, 104, and 105.
amide functional group (compound 51) led to a loss of anticonvulsant activity.

The incorporation of the piperidine ring into a tetrahydroisoquinoline nucleus increased neurotoxicity, while incorporation of the piperidine ring into a diazahydrindanone moiety (compound 52) led to a loss of anticonvulsant activity. Several open ring analogues exhibited potent activity in the MES test. The norleucine derivative 75 was among the most potent compounds in the MES test, which were evaluated in this study. In these derivatives the lipophilicity of the compound and the substitution at the α-position of the amino acid derivative played key roles in the quantitative anticonvulsant activity.

Compared with the piperidinecarboxamides, the cyclohexanecarboxamides showed decreased neurotoxicity. In fact, the cyclohexanecarboxamides (91 and 92) had high PI values (>8.9) when evaluated in mice. In general, these derivatives were, however, less potent than derivatives containing a basic nitrogen. Among the cyclohexanecarboxamides, the cyclobutane, cyclopentane, and cyclohexane analogues were active in the MES test, while the cyclopropane and cycloheptane derivatives were much less active.

The 2,6-dimethylanilides were the most potent compounds in the MES test in each group of compounds evaluated. The anticonvulsant activity of carbamazepine and phenytoin has, in part, been attributed to inhibition of voltage-dependent Na^{+} channels [10, 11]. Since the 2,6-dimethylanilides exhibit a similar anticonvulsant profile as phenytoin and carbamazepine, a similar mode of action is possible. Further studies are needed to fully characterise the mode of action of these novel anticonvulsants. The pyridinecarboxamide 50 and the norleucinecarboxamide 75 should serve as useful leads in the development of compounds with therapeutic potential in the treatment of tonic-clonic and partial seizures in man.

5. Experimental protocols

5.1. Chemistry

All chemicals were of reagent grade and were used without further purification. Melting points were determined on a Thomas Hoover melting point apparatus and were not corrected. The IR spectra were recorded as potassium bromide pellets or as liquid films on a Nicolet Impact 400 D spectrometer. The NMR spectra were

Table V. Anticonvulsant activity of 2-piperidinecarboxamides and related derivatives in mice (all compounds were administered by ip injection,,,+++++++++ , and + denote antiseizure activity or toxicity at $10,30,100$, and $300 \mathrm{mg} \mathrm{kg}^{-1}$, respectively; denotes no activity up to $300 \mathrm{mg} \mathrm{kg}{ }^{-1}$). ED_{50} and TD_{50} values were determined at the time of peak effect of the experimental compound and are reported as $\mathrm{mg} \mathrm{kg}^{-1}$ with the 95% confidence limits in parentheses [4]).

Compound	MES		Toxicity ${ }^{\text {a }}$		PI
	0.5 h	4.0 h	0.5 h	4.0 h	
(RS)-1	$5.8(4.7-7.5)^{\text {b }}$		$33.2(28.6-37.1)^{\text {b }}$		5.7
($2 S, \alpha S$)-2	$46(40-53){ }^{\text {b }}$		${ }^{\text {b, }}$,		
($2 R, \alpha R$)-2	$39(34-44)^{\text {b }}$		$>150{ }^{\text {d }}$		> 3.9
$(2 R, \alpha S)$-2	$35(29-43){ }^{\text {b }}$		159 (145-175) ${ }^{\text {b }}$		>4.5
($2 S, \alpha R$)-2	47 (39-55) ${ }^{\text {b }}$		162 (143-185) ${ }^{\text {b }}$		3.5
19	8.3 (6.4-10.6) ${ }^{\text {e }}$		$+++{ }^{\text {f }}$	+ +	
20	+	-	+	-	
21	+ +	+ +	+	+	
22	24 (21-26) ${ }^{\text {b }}$		82 (78-87) ${ }^{\text {b }}$		3.4
23	$42(38-46){ }^{\text {b }}$		$132(121-144)^{\text {b }}$		3.1
24	+ +	+ +	+ +	+ +	
25	$49(43-55)^{e}$		135 (115-151) ${ }^{\text {e }}$		2.8
27	+ +	-	+ +	+	
28	+ +	-	+ +	+	
29	$20(17-25)^{\text {e }}$		$78(71-84)^{\text {e }}$		3.9
30	+ + +	+ +	+ +	-	
31	+ + +	+ +	+ +	+	
32	$28(23-33){ }^{\text {e }}$		$79(69-84)^{\text {e }}$		2.8
33	-	-	+	-	
34	+ +	-	-	-	
36	+ +	-	-	-	
37	-	+ +	-	-	
38	-	-	-	-	
39	-	-	-	-	
40	-	-	+ +	$+$	
41	+ + +	+ +	+ +	+	
42	22 (17-25) ${ }^{\text {e }}$		66 (55-77) ${ }^{\text {e }}$		3.0
43	$+++$	+ +	+ +	+	
($S, R S$)-44	+ + +	+ +	+ +	-	
($S, R S$)-45	$22(19-28){ }^{\text {e }}$		64 (56-75) ${ }^{\text {e }}$		2.9
47	$++$	-	+ +		
49	+ + +	+ +	+ +	+ +	
50	9.7 (7.9-11.3) ${ }^{\text {e }}$		53.3 (45.9-67.5) ${ }^{\text {e }}$		5.5
51	-	-	-	-	
52	-	-	ND ${ }^{\text {g }}$		
58	$+++$	-	$+++$	+ +	
59	+ +	-	$++$	$+$	
60	+ +	-	+ +	+ +	
68	+ + + +	-	+ + +	+ +	
75	$5.8(4.5-6.9){ }^{\text {e }}$		36.4 (31.6-40.2) ${ }^{\text {e }}$		6.3
76	$30(22-36){ }^{\text {e }}$	-	$82(70-98)^{\text {e }}$		2.7
77	+ +		(7-98)	-	
78	+ +		-	-	
84	$+++$	-		-	
85	$59(44-82)^{\text {e }}$		$104(83-118){ }^{\text {e }}$		1.8
86	$180(156-216)^{\text {h }}$		$>500^{\text {i }}$		2.8
87	76 (66-86) ${ }^{\text {e }}$		$230(185-266){ }^{\text {e }}$		3.0
88	+ +	-	+ +	-	
89	$35(28-43){ }^{\text {e }}$		203 (185-266) ${ }^{\text {e }}$		5.8
90	55 (47-62) ${ }^{\text {e }}$		209 (184-243) ${ }^{\text {e }}$		
91	$62(49-74)^{\text {i }}$		$>750^{\text {i }}$		> 12.1

Table V. (Continued)

Compound	MES		Toxicity ${ }^{\text {a }}$		PI
	0.5 h	4.0 h	0.5 h	4.0 h	
92	85 (68-107) ${ }^{\text {i }}$		$>750{ }^{\text {i }}$		>8.8
93	$++$	-	-	-	
97	$43(42-46)^{e}$		$126(106-155)^{\text {e }}$		2.9
99	-	-	-	-	
104		+ +		+	
CBZ	9.85 (8.77-10.7) ${ }^{\text {b }}$		$47.8(39.2-59.2)^{\mathrm{b}}$		$4.85{ }^{\text {b }}$
PTN	$6.48(5.65-7.24)^{\text {b }}$		$42.8(36.4-47.5)^{\text {b }}$		$6.60{ }^{\text {b }}$

${ }^{\text {a }}$ Neurotoxicity as measured by the rotorod test.
${ }^{\mathrm{b}}$ Previously reported [5].
${ }^{c}$ Death at $80 \mathrm{mg} \mathrm{kg}^{-1}$.
${ }^{\mathrm{d}}$ Death at $170 \mathrm{mg} \mathrm{kg}{ }^{-1}$.
${ }^{\mathrm{e}}$ Determined at 0.25 h .
${ }^{\mathrm{f}}$ Unable to determine TD_{50}.
${ }^{\mathrm{g}}$ Not determined.
${ }^{\mathrm{h}}$ Determined at 1 h .
${ }^{\mathrm{i}}$ Determined at 2 h .
recorded on a JEOL FX 90Q spectrometer. Chemical shifts were recorded in parts per million (δ) relative to tetramethylsilane (1%). Optical rotations were recorded on a Perkin-Elmer 241 polarimeter. Ion exchange chromatography was performed on an Econo-Column (5 $\mathrm{cm} \times 10 \mathrm{~cm}$) purchased from Bio-Rad using Amberlite IR-120 (H^{+}form, 16-45 mesh) ion exchange resin which was purchased from Fluka. Ninhydrin spray reagent (0.1%) was purchased from Brinkmann Instruments Inc. Analytical data were obtained from Oneida Research Services Inc., Whitesboro, NY, Micro-Analysis Inc., Wilmington, DE, and Desert Analytics, Tucson, AZ.

5.1.1. Cyclopentyl phenyl ketone (3)

The synthesis of this compound was accomplished using the method described by Padwa and Eastman [12]. A solution of cyclopentanecarboxylic acid ($11.4 \mathrm{~g}, 100$ $\mathrm{mmol})$ in dry benzene $(60 \mathrm{~mL})$ was treated in a dropwise manner with a solution of thionyl chloride ($22.8 \mathrm{~g}, 190$ $\mathrm{mmol})$ in dry benzene $(20 \mathrm{~mL})$ at room temperature under nitrogen. The reaction mixture was heated to $50^{\circ} \mathrm{C}$ and treated with several drops of pyridine. After stirring for 2 h , the mixture was evaporated under reduced pressure. The resulting acid chloride was dissolved in dry benzene (100 mL) and added to a wellstirred suspension of powered anhydrous aluminum chloride ($20.0 \mathrm{~g}, 150 \mathrm{mmol}$) in dry benzene (100 mL).

The reaction mixture was refluxed for 1 h , cooled, and poured into a mixture of concentrated hydrochloric acid (200 mL) and ice. The aqueous solution was extracted with diethyl ether $(3 \times 75 \mathrm{~mL})$, and the combined extracts were washed with a saturated solution of NaHCO_{3} followed by water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure to give an oil. Vacuum distillation afforded $9.8 \mathrm{~g}(56 \%)$ of $\mathbf{3}$ as a clear, colourless oil: b.p. $155-159^{\circ} \mathrm{C}$; $(27 \mathrm{~mm})$ [12], b.p. $136-140^{\circ} \mathrm{C}$; (16 mm); IR (neat) 3061, $1680(\mathrm{C}=\mathrm{O}$), 1600, 1450, 991, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.82($ br m, 8 H$), 3.65(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHCO}$), $7.52(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 8.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 26.3,30.0,46.4,128.5,132.7$, 137.0, $202.8(\mathrm{C}=\mathrm{O})$.

5.1.2. Cyclohexyl phenyl ketone (4)

Following the procedure used for the preparation of 3, cyclohexanecarboxylic acid ($25.6 \mathrm{~g}, 200 \mathrm{mmol}$), thionyl chloride ($45.7 \mathrm{~g}, 380 \mathrm{mmol}$), and anhydrous aluminum chloride $(40.0 \mathrm{~g}, 300 \mathrm{mmol})$ gave an oil. Following vacuum distillation [b.p. $180-185^{\circ} \mathrm{C}$ (27 $\mathrm{mm})$], recrystallisation of the resulting solid from petroleum ether gave $17.2 \mathrm{~g}(46 \%)$ of 4: m.p. $55-57^{\circ} \mathrm{C}$ ([13] m.p. $54^{\circ} \mathrm{C}$); IR (KBr) $1682(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 1.64(\mathrm{br} \mathrm{m}, 10 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCO}), 7.45$ $(\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 25.9,26.0,29.4$, 45.6, 128.3, 128.6, 132.7, 136.4, 203.9 ($\mathrm{C}=\mathrm{O}$).
5.1.3. General procedure for the synthesis of (α-substituted)benzylamines by the Leuckhart reaction: (\pm)-1-(3-methoxyphenyl)ethylamine (5)

According to the method described by Moore [14], a three-necked flask was equipped with a thermometer, an addition funnel, and a reflux condenser. The top of the condenser was connected to a short-path distillation apparatus. The flask was charged with $3^{\prime \prime}$ methoxyacetophenone $(15.0 \mathrm{~g}, \quad 100 \mathrm{mmol})$, formamide ($18.5 \mathrm{~g}, 400 \mathrm{mmol}$), and formic acid $(2.1 \mathrm{~g}, 46.6$ mmol), and the mixture was refluxed for 8 h at a temperature of approximately $180^{\circ} \mathrm{C}$. To prevent the deposition of ammonium carbonate in the condenser and to maintain a slightly acidic reaction mixture, formic acid (2.6 g) was added portionwise on a hourly basis. The solution was cooled and extracted with toluene ($3 \times 50 \mathrm{~mL}$), and the toluene extracts were combined and evaporated under reduced pressure to yield an oil. The oil was suspended in concentrated hydrochloric acid $(20 \mathrm{~mL})$ and refluxed for 1 h . The warm mixture was treated with toluene (40 mL), and the aqueous portion was separated, basified to pH 11 with $30 \% \mathrm{NaOH}$ solution, and extracted with ethyl acetate ($3 \times 75 \mathrm{~mL}$). The ethyl acetate extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated under reduced pressure to yield an oil. Vacuum distillation gave 10.0 g of $\mathbf{5}$ as a colourless oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.38(\mathrm{~d}, 3 \mathrm{H}$, $J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}$), $\left.1.58(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHNH})_{2}\right), 3.81(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $\left.4.09(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHCH})_{3}\right), 6.86(\mathrm{br} \mathrm{m}, 3 \mathrm{H}, \mathrm{ArH})$, $7.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 25.6, 51.3, 55.2, 111.3, 112.0, 118.0, 129.4, 149.6, 159.7. Using this method, the α-substituted-benzylamines $6-17$ were prepared. The physicochemical properties of these derivatives are given in table I.
5.1.4. Synthesis of (\pm)-2-(tert-butoxycarbonyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (56): general procedure for the preparation of BOC-amino acids using BOC-ON

Following a previously reported procedure [15], the acid $55(7.1 \mathrm{~g}, 40.0, \mathrm{mmol})$ was dissolved in a mixture of water (50 mL) and acetone (50 mL) and treated with triethylamine ($6.2 \mathrm{~g}, 60.0 \mathrm{mmol}$) followed by the addition of BOC-ON ($10.9 \mathrm{~g}, 44.0 \mathrm{mmol}$). After stirring overnight, a mixture of water (100 mL) and ethyl acetate (150 mL) was added. The ethyl acetate layer was separated and washed with water (100 mL). The combined aqueous phase was washed with ethyl acetate (50 mL), acidified with cold 1 N HCl , and extracted with ethyl acetate $(3 \times 100 \mathrm{~mL})$. The combined ethyl acetate ex-
tracts were dried (sodium sulphate), filtered, and evaporated to give a white solid upon trituration with hexane. Recrystallisation from ethyl acetate-hexane yielded 7.8 $\mathrm{g}(70 \%)$ of 56: m.p. $150-151^{\circ} \mathrm{C}$; IR (KBr) 1716 (C=O, acid), 1697 (C=O, carbamate); ${ }^{1} \mathrm{H}$-NMR (CDCl_{3}) $\delta 1.45$ ($\left.\mathrm{s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.18\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHCOOH}\right), 4.57(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{C} H \mathrm{NCH}_{2}$), $7.14(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}), 9.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 28.4,31.2,44.4,53.5,81.1,126.3$, 126.9, 128.2, 132.0, 134.0, 155.0, 176.6. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5.1.5. N-(tert-Butoxycarbonyl)glycine (72)

Following the method for the preparation of 56, glycine ($5.0 \mathrm{~g}, 66.6 \mathrm{mmol}$) in a mixture of water $(50 \mathrm{~mL})$ and acetone (50 mL), triethylamine ($10.2 \mathrm{~g}, 99.9 \mathrm{mmol}$), and BOC-ON ($18.1 \mathrm{~g}, 73.0 \mathrm{mmol}$) gave a white solid upon cooling. Recrystallisation from ethyl acetatepetroleum ether yielded $8.9 \mathrm{~g}(76 \%)$ of 72 : m.p. $87-89^{\circ} \mathrm{C}$ ([16] m.p. $85-89^{\circ} \mathrm{C}$); IR (KBr) 1749 (C=O, acid), 1670 ($\mathrm{C}=\mathrm{O}$, carbamate); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.46$ (s, 9H, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.93$ (br d, $2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{COOH}$), 6.82 (br s, $1 \mathrm{H}, \mathrm{OCONH}), 11.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 28.3,42.3,43.4,80.5\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 156.2$ (CONH), $174.7(\mathrm{COOH})$.

5.1.6. Synthesis of 1-[(N-tert-butoxycarbonyl)amino]-1cyclopentanecarboxylic acid (96): general procedure for the preparation of BOC-amino acids using di-tert-butyl dicarbonate

According to the method of Shuman et al. [17], 1-amino-1-cyclopentane-carboxylic acid $\mathbf{(9 5}, 4.6 \mathrm{~g}, 35.9$ mmol) was dissolved in a mixture of $2 \mathrm{~N} \mathrm{NaOH}(40$ $\mathrm{mL})$ and tert-butanol (40 mL) and di-tert-butyl dicarbonate $(9.4 \mathrm{~g}, 43.0 \mathrm{mmol})$ were added in one portion. After stirring overnight, the tert-butanol was evaporated under reduced pressure, and the remaining water layer was extracted with diethyl ether $(2 \times 50 \mathrm{~mL})$. The diethyl ether was discarded, and the water layer was acidified with cold 1 N HCl and extracted with ethyl acetate $(3 \times 100 \mathrm{~mL})$. The combined ethyl acetate extracts were dried (sodium sulphate), filtered, and evaporated to yield after recrystallisation from ethyl acetate-hexane $3.2 \mathrm{~g}(39 \%)$ of 96: m.p. $131-133^{\circ} \mathrm{C}$ ([18] m.p. 131$133^{\circ} \mathrm{C}$); IR (KBr) 1734 ($\mathrm{C}=\mathrm{O}$, acid), 1697 ($\mathrm{C}=\mathrm{O}$, carbamate) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.91(\mathrm{br} \mathrm{m}, 8 \mathrm{H}), 7.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}), 9.45(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{COOH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \quad \delta \quad 24.5, \quad 25.1, \quad 28.3$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 37.7,66.0,80.2\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 158.1(\mathrm{OCONH}) \text {, }}\right.$ $179.5(\mathrm{COOH})$.

5.1.7. (\pm)- N-(tert-Butoxycarbonyl)-

1,2,3,4-tetrahydro-1-isoquinolinecarboxylic acid (65)

Following the method for the preparation of $\mathbf{9 6}$, the acid $64(4.7 \mathrm{~g}, 26.6 \mathrm{mmol})$ and di-tert-butyl dicarbonate $(7.0 \mathrm{~g}, 31.9 \mathrm{mmol})$ gave $6.2 \mathrm{~g}(84 \%)$ of $\mathbf{6 5}$ as an oil: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.87(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 5.53(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{CHCOOH}), 7.35(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 9.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 28.3,28.7,39.9,41.0,57.6,58.7$, 80.9, 81.3, 126.6, 128.0, 128.6, 129.7, 135.4, 135.8, 155.0, 155.5, 176.2, 176.8 .

The BOC-acid was dissolved in diethyl ether (100 mL), and dicyclohexylamine ($1.8 \mathrm{~g}, 10 \mathrm{mmol}$) was added to the solution. After standing in the freezer overnight, the precipitate was filtered, washed with diethyl ether, and dried under vacuum to afford $4.4 \mathrm{~g}(96 \%)$ of the dicyclohexylamine salt as colourless crystals: m.p. 175$177^{\circ} \mathrm{C}$ ([17] no reported m.p.); IR (KBr) 1697 ($\mathrm{C}=\mathrm{O}$, carbamate) and $1633\left(\mathrm{C}=\mathrm{O}, \mathrm{COO}^{-}\right) \mathrm{cm}^{-1}$.

5.1.8. (\pm)- N-(tert-Butoxycarbonyl)norleucine (71)

According to the method used for the preparation of 96, norleucine ($5.0 \mathrm{~g}, 38.1 \mathrm{mmol}$) and di-tert-butyl dicarbonate ($10.0 \mathrm{~g}, 45.7 \mathrm{mmol}$) gave $7.6 \mathrm{~g}(87 \%)$ of 71 after recrystallisation from petroleum ether: m.p. $75-76^{\circ} \mathrm{C}$ ([19] no reported m.p.); IR (KBr) 1720 ($\mathrm{C}=\mathrm{O}$, acid), $1669\left(\mathrm{C}=\mathrm{O}\right.$, carbamate); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.35$ (br m, $9 \mathrm{H}), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.30(\mathrm{br} \mathrm{m}, 1 \mathrm{H}, \mathrm{CHCOOH})$, 5.16 (br s, $1 \mathrm{H}, \mathrm{OCONHCH}$), $10.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.9,22.3,27.4,28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $32.2,53.4,54.7,80.3\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 155.8(\mathrm{CONH}), 177.7$ (COOH).

5.1.9. N-(tert-Butoxycarbonyl)-2-(n-butyl)aminoacetic acid (81)

The ethyl ester $79(9.1 \mathrm{~g}, 57.2 \mathrm{mmol})$ was refluxed with $25 \% \mathrm{NaOH}$ solution (50 mL) for 2 h . The reaction mixture was cooled, neutralised with 2 N HCl , and evaporated to dryness under reduced pressure to yield a solid which was used directly in the next step. Using the general method described for 96, the crude amino acid and di-tert-butyl dicarbonate ($13.1 \mathrm{~g}, 61.9 \mathrm{mmol}$) gave $9.4 \mathrm{~g}(71 \%)$ of 81 as an oil: IR (neat) 1732 ($\mathrm{C}=\mathrm{O}$, acid), $1699\left(\mathrm{C}=\mathrm{O}\right.$, carbamate) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.92$ (t, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), 1.35 (br m, $\left.4 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right), 1.45$ (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.28\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right), 3.98$ (br $\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{COOH}$), 9.88 (br s, $1 \mathrm{H}, \mathrm{COOH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 13.8,20.0,28.4,30.4,48.4,49.1,80.6,156.0$, 174.8. Anal. Found: C, 55.87. Calc. for $\left(\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{4}\right)$: C, 57.12%; H; N.

5.1.10. 1-[N-(tert-Butoxycarbonyl)amino]cyclohexanecarboxylic acid (98)

In a similar manner as described for the synthesis of 96, 1-amino-1-cyclohexanecarboxylic acid (5.0 g, 35.0 mmol) and di-tert-butyl dicarbonate ($9.1 \mathrm{~g}, 42.0 \mathrm{mmol}$) gave $5.1 \mathrm{~g}(60 \%)$ of $\mathbf{9 8}$ after recrystallisation from ethyl acetate-hexane: m.p. $177-178^{\circ} \mathrm{C}$ ([20] m.p. $175-176^{\circ} \mathrm{C}$); IR (KBr) $1682\left(\mathrm{C}=\mathrm{O}\right.$, acid and carbamate); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.78(\mathrm{br} \mathrm{m}, 10 \mathrm{H}), 6.90$ (br s, $1 \mathrm{H}, \mathrm{NHCOO}$), 9.14 (br s, $1 \mathrm{H}, \mathrm{COOH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 21.2,25.2,28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 32.6,58.8,80.8$ $\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 155.7(\mathrm{NHCOO}), 179.7(\mathrm{COOH}) .}\right.$

5.1.11. cis-4-[N-(tert-Butoxycarbonyl)amino]cyclohexanecarboxylic acid (101)

The cis-acid 100 ($3.2 \mathrm{~g}, 22.4 \mathrm{mmol}$) and di-tert-butyl dicarbonate ($5.9 \mathrm{~g}, 26.9 \mathrm{mmol}$) gave 4.2 g (76%) of cis $\mathbf{- 1 0 2}$ after recrystallisation from ethyl acetate: m.p. $169-172^{\circ} \mathrm{C}\left([21] \mathrm{m} . \mathrm{p} .164-168^{\circ} \mathrm{C}\right)$; IR (KBr) $1701(\mathrm{C}=\mathrm{O}$, acid), 1639 ($\mathrm{C}=\mathrm{O}$, carbamate) cm^{-1}; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO$\left.d_{6}\right) \delta 1.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.55($ br $\mathrm{m}, 8 \mathrm{H}), 2.42(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHCOOH}), 3.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}), 6.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, NHCOO), 12.1 (br s, $1 \mathrm{H}, \mathrm{COOH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO$\left.d_{6}\right) \delta 24.8,28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.3,39.2,47.4,77.3$

5.1.12. trans-4-[N-(tert-Butoxycarbonyl)amino]cyclohexanecarboxylic acid (103)

The trans-acid $101(0.4 \mathrm{~g}, 2.8 \mathrm{mmol})$ and di-tert-butyl dicarbonate $(0.73 \mathrm{~g}, 3.4 \mathrm{mmol})$ gave $0.5 \mathrm{~g}(66 \%)$ of trans $\mathbf{- 1 0 3}$ after recrystallisation from ethyl acetate-hexane: m.p. $183-185^{\circ} \mathrm{C}$ ([22] no reported m.p.); IR (KBr) 1682 ($\mathrm{C}=\mathrm{O}$, acid and carbamate) cm^{-1}; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.65($ br m, 8 H$), 1.95$ (m, $1 \mathrm{H}, \mathrm{CHCOOH}$), 3.55 (br m, $1 \mathrm{H}, \mathrm{NHCH}$), 6.75 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{N} H \mathrm{COO}), 9.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 27.7,28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.7,41.7,48.7,77.4$ $\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 154.8(\mathrm{CON}), 176.5(\mathrm{COOH})$.

5.1.13. Synthesis of (\pm)-1-(tert-butoxycarbonyl)- N -[3-fluoro- α-(methyl)benzyl]-2-piperidinecarboxamide

 (26): general procedure for the mixed anhydride methodUsing the previously reported method [5], a solution of (R, S)-1-(tert-butoxycarbonyl)-2-piperidinecarboxylic acid $(4.6 \mathrm{~g}, 20.0 \mathrm{mmol})$ in dry THF $(100 \mathrm{~mL})$ was cooled to $0-5^{\circ} \mathrm{C}$, and NMM ($2.0 \mathrm{~g}, 20.0 \mathrm{mmol}$) was added under nitrogen. After stirring for 5 min , IBCF (2.7 g , 20.0 mmol) was added in one portion and immediately a white precipitate formed. The reaction was allowed to proceed for an additional 5 min , and a solution of
(\pm) - 3 - fluoro - α - (methyl)benzylamine ($\mathbf{1 4}, 2.8 \mathrm{~g}, 20.0$ mmol) in THF (20 mL) was added over 10 min at $0-5^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 1 h , and the precipitated NMM hydrochloride was suction filtered. Removal of the solvent under reduced pressure gave a white solid upon trituration with ethyl acetate. Recrystallisation from ethanol-water yielded $4.9 \mathrm{~g}(70 \%)$ of 26: m.p. $102-105^{\circ} \mathrm{C}$; IR (KBr) 1697 ($\mathrm{C}=\mathrm{O}$, carbamate), 1655 ($\mathrm{C}=\mathrm{O}$, amide) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.46\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.47$ (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.10$ (br m, 9 H$), 5.15(\mathrm{~m}, 1 \mathrm{H}$, CHCH_{3}), 6.45 (br s, $1 \mathrm{H}, \mathrm{CONH}$), 7.02 (m, $4 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(\mathrm{CDCl}_{3}\right) \quad \delta \quad 20.4, \quad 22.0, \quad 24.8,25.4, \quad 28.3$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 42.0,48.3(\mathrm{CONHCH}), 54.5(\mathrm{NCCO}), 80.8$ $\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 112.4,113.4,113.7,114.6,121.6,121.7$, $130.0,130.3,146.1,157.5$ (NHCOO), 168.4, 170.3 (CONH), $170.5(\mathrm{CONH})$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}$, N . Using this procedure, the carboxamides 18, 46, 48, 57 , and 67 were prepared. The physicochemical properties of these compounds are given in tables II and III.

5.1.14. (\pm)-2-(tert-Butoxycarbonyl)-

 amino- N-[(2,6-dimethyl)phenyl]hexaneamide (73)$(\pm)-N$-(tert-Butoxycarbonyl)norleucine(71, $3.5 \mathrm{~g}, 15.0$ mmol), NMM ($1.5 \mathrm{~g}, 15.0 \mathrm{mmol}$), IBCF ($2.0 \mathrm{~g}, 15.0$ mmol), and 2,6-dimethylaniline ($3.0 \mathrm{~g}, 25.0 \mathrm{mmol}$) gave $2.9 \mathrm{~g}(59 \%)$ of 73 after recrystallisation from ethanolwater: m.p. $152-155^{\circ} \mathrm{C}$; IR (KBr) 1710 ($\mathrm{C}=\mathrm{O}$, carbamate), $1622\left(\mathrm{C}=\mathrm{O}\right.$, amide) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 0.90 (t, 3H, $\left.\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}\right), 1.43$ (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.51$ (br $\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}, 2.15\left(\mathrm{~s}, 6 \mathrm{H}, 2,6-\mathrm{diCH}_{3}\right), 4.26(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\right), 5.55$ (br s, $\left.1 \mathrm{H}, \mathrm{OCONH}\right), 7.02(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{ArH}$), 7.93 (br s, 1H, CONHAr); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 13.9,18.3,22.4,28.0,28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 32.0\right.$, $54.9,80.1\left(C_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 127.2,128.3,133.6,135.4, ~} 156.0\right.$ (NCOO), 171.0 (CONH). Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5.1.15. 2- $\{[N$-(tert-Butoxycarbonyl)- N-(n-butyl)]amino $\}$ -N-[(2,6-dimethyl)-phenyl]acetamide (83)

The BOC-acid 81 ($3.0 \mathrm{~g}, 13.0 \mathrm{mmol}$), NMM (1.3 g , $13.0 \mathrm{mmol})$, IBCF ($1.8 \mathrm{~g}, 13.0 \mathrm{mmol}$), and 2,6-dimethylaniline ($3.0 \mathrm{~g}, 25.0 \mathrm{mmol}$) yielded $2.3 \mathrm{~g}(53 \%)$ of $\mathbf{8 3}$ after recrystallisation from methanol-water: m.p. $85-87^{\circ} \mathrm{C}$; IR (KBr) $1780\left(\mathrm{C}=\mathrm{O}\right.$, carbamate) cm^{-1}; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 0.94\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}\right), 1.35$ (br m, 4 H , $\left.\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right), 1.50\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.22(\mathrm{~s}, 6 \mathrm{H}$, $\left.2,6-\mathrm{diCH}_{3}\right), 3.35\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right), 4.02(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{NCH} 2 \mathrm{CO}), 7.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 13.8, 18.5, 19.9, $28.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 30.4, 48.8, 52.1, 81.0
$\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 127.4,128.2,135.3,168.5 \text { (CONH). Anal. }}^{\text {(}}\right.$ $\left(\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
5.1.16. Synthesis of $(\pm)-n-[3-$-fluoro- α-(methyl)benzyl-2-piperidinecarboxamide hydrochloride (27): general procedure for the removal of the BOC-protecting group

A solution of $26(3.7 \mathrm{~g}, 10.6 \mathrm{mmol})$ in dichloromethane (50 mL) was cooled to $0-5^{\circ} \mathrm{C}$ and was saturated with hydrogen chloride gas. The mixture was stirred for another 2 h , and the solvent was removed under reduced pressure to yield an oil which solidified upon trituration with diethyl ether. Recrystallisation from absolute ethanol-diethyl ether yielded 2.52 g (83%) of 27: m.p. $195-210^{\circ} \mathrm{C}$; IR (KBr) 1682 (amide) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 1.39(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}$, CHCH_{3}), 1.78 (br m, 6H), 2.94 (br m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}^{+}$ $\mathrm{CH}), 3.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}_{2}^{+} \mathrm{CHCO}\right), 4.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right)$, $7.24(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 9.15$ (br s, 2H, NH2 ${ }^{+}$), 9.35 (br d, 1H, CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 21.2,21.6,22.4,26.9$, 27.1, 43.2, 48.1, 56.7, 56.9, 112.1, 112.5, 113.1, 113.4, $114.0,121.8,122.0,122.3,122.4,130.1,130.5,147.3$, 147.6, 158.8, 167.6 (CONH); MS (CI, methane) $m / z 251$ $\left(\mathrm{M}^{+}+1\right)$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ClFN}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5.1.17. (\pm)-2-Amino- N-[(2,6-dimethyl)phenyl]hexaneamide hydrochloride (75)

The BOC-amide 73 ($2.3 \mathrm{~g}, 6.9 \mathrm{mmol}$) gave $1.0 \mathrm{~g}(52 \%)$ of 75 after recrystallisation from methanol-diethyl ether: m.p. $215-217^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 1662(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 0.93\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}\right), 1.62$ (br m, 6H, $\left.\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}\right), 2.19\left(\mathrm{~s}, 6 \mathrm{H}, 2,6-\mathrm{diCH}_{3}\right), 4.15(\mathrm{t}$, $1 \mathrm{H}, \mathrm{NH}_{3}^{+} \mathrm{CHCO}$), 7.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArH}$), 8.53 (br s, 3 H , $\left.\mathrm{NH}_{3}^{+}\right), 10.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta$ 13.7, 18.3, 21.9, 26.4, 31.0, 52.4, 126.7, 127.8, 134.1, 135.1, 167.2,; MS (CI, methane) $m / z 235\left(\mathrm{M}^{+}+1\right)$. Anal. Found: C, 59.16; N, 9.85. Calc. for $\left(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}\right)$: C, $62.10 ; \mathrm{H} ; \mathrm{N}, 10.34 \%$.

5.1.18. 2-Amino- N-[(2,6-dimethyl)phenyl]acetamide hydrochloride (76)

N-(tert-Butoxycarbonyl)glycine (72, $1.5 \mathrm{~g}, 8.3 \mathrm{mmol}$), NMM ($0.8 \mathrm{~g}, 8.3 \mathrm{mmol}$), IBCF ($1.1 \mathrm{~g}, 8.3 \mathrm{mmol}$), and 2,6-dimethylaniline ($2.4 \mathrm{~g}, 20.0 \mathrm{mmol}$) gave $1.4 \mathrm{~g}(59 \%)$ of the BOC-amide after recrystallisation from ethanolwater: m.p. $120-122^{\circ} \mathrm{C}$; IR (KBr) 1696 (C=O, carbamate), $1655\left(\mathrm{C}=\mathrm{O}\right.$, amide); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.45$ (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.18\left(\mathrm{~s}, 6 \mathrm{H}, 2,6-\mathrm{diCH}_{3}\right), 3.94(\mathrm{~d}, 2 \mathrm{H}$, $J=5.9 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{NH}$), 5.55 (br s, $1 \mathrm{H}, \mathrm{OCONH}$), 7.05 (s, $3 \mathrm{H}, \mathrm{ArH}$), 7.81 (br s, $1 \mathrm{H}, \mathrm{CONH}$). In the usual manner, the BOC -amide $(1.2 \mathrm{~g}, 4.3 \mathrm{mmol})$ gave 0.8 g
(81%) of 76 after recrystallisation from absolute etha-nol-diethyl ether: m.p. $292-294^{\circ} \mathrm{C}$; IR (KBr) 1674 $\left(\mathrm{C}=\mathrm{O}\right.$, amide) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 2.16(\mathrm{~s}, 6 \mathrm{H}$, 2,6-diCH ${ }_{3}$), $3.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONH}\right), 7.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH})$, 8.34 (br s, $3 \mathrm{H}, \mathrm{NH}_{3}^{+}$), 10.11 (s, $1 \mathrm{H}, \mathrm{CONH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 18.2,40.3,126.7,127.8,134.2,135.1$, $164.6(\mathrm{CONH})$; MS (CI, methane) $m / z 179\left(\mathrm{M}^{+}+1\right)$. Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
5.1.19. Reaction of $(\pm)-71$ with
(\pm)-(α-methyl)benzylamine: formation of the
diastereoisomeric mixture (77)
$(\pm)-71(2.3 \mathrm{~g}, 10.0 \mathrm{mmol}), \mathrm{NMM}(1.0 \mathrm{~g}, 10.0 \mathrm{mmol})$, IBCF ($1.4 \mathrm{~g}, 10.0 \mathrm{mmol}$), and (\pm)- α-methylbenzylamine $(1.2 \mathrm{~g}, 10.0 \mathrm{mmol})$ afforded a diastereoisomeric mixture as an oil. After deprotection in the normal manner, the mixture was chromatographed on a silica gel column using ethyl acetate-ammonium hydroxide (99:1) as the mobile phase. Fractions homogeneous by TLC were combined and concentrated under vacuum to yield 0.5 g (21%) of a light yellow oil of the less-polar diastereoisomer as a racemic mixture: IR (neat) $1655(\mathrm{C}=\mathrm{O}$, amide) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\right)$, 1.37 (br m, 6H), $1.49\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.51$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}$), $3.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}_{2} \mathrm{CHCO}\right), 5.08(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NHCHCH} 3), 7.31(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CONH})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.0,22.1,22.5,28.0,34.8,48.1$, 55.3, 126.1, 127.1, 128.6, 143.9, 174.2. Anal. Found: C, 69.99; $\mathrm{N}, 11.54$. Calc. for $\left(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}\right)$: C, $71.75 ; \mathrm{H} ; \mathrm{N}$, 11.96\%.

The more polar diastereoisomer was obtained as a light yellow oil as a racemic mixture. The hydrochloride was prepared and recrystallised from isopropanol-diethyl ether to afford $0.7 \mathrm{~g}(26 \%):$ m.p. $198-200^{\circ} \mathrm{C}$; IR (KBr) $1678(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 0.78(\mathrm{t}$, $\left.3 \mathrm{H}, J=5.4 \mathrm{~Hz}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\right), 3.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}_{3}^{+}\right.$ $\mathrm{CHCO}), 4.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CONHCHCH} 3), 7.31(\mathrm{~m}, 5 \mathrm{H}$, ArH), 9.07 (d, $1 \mathrm{H}, \mathrm{CONH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) δ 13.7, 21.7, 22.3, 26.1, 30.9, 48.3, 52.2, 125.9, 126.8, 128.2, 144.2, 167.9. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5.1.20. 2-Amino- N-(α-methylbenzyl)acetamide hydrochloride (78)

BOC-glycine (72, $1.8 \mathrm{~g}, 10.0 \mathrm{mmol}$), NMM (1.0 g , $10.0 \mathrm{mmol})$, IBCF $(1.4 \mathrm{~g}, 10.0 \mathrm{mmol})$, and $(\pm)-\alpha-$ methylbenzylamine ($1.2 \mathrm{~g}, 10.0 \mathrm{mmol}$) yielded an oil. After deprotection, the hydrochloride was recrystallised from absolute ethanol-diethyl ether to give $1.6 \mathrm{~g}(73 \%)$ of 78 : m.p. $124-127^{\circ} \mathrm{C}$; IR (KBr) $1660\left(\mathrm{C}=\mathrm{O}\right.$, amide) cm^{-1}; ${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(\mathrm{DMSO}-d_{6}\right) \quad \delta \quad 1.38 \quad(\mathrm{~d}, \quad 3 \mathrm{H}, \quad J=7.1 \quad \mathrm{~Hz}$,
$\left.\mathrm{CHCH}_{3}\right), 3.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CONH}\right), 4.96(\mathrm{~m}, 1 \mathrm{H}$, NHCHCH_{3}), $7.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 8.27$ (br s, $3 \mathrm{H}, \mathrm{NH}_{3}^{+}$), $9.15(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{CONH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right)$ δ 22.4, 40.0, 48.3, 126.0, 126.7, 128.2, 143.9, 164.8 (CONH). Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5.1.21. (\pm)-2-(n-Butylamino)- N-(α-methylbenzyl)acetamide hydrochloride (82)

The BOC-acid $81(4.6 \mathrm{~g}, 20.0 \mathrm{mmol})$, NMM (2.0 g , $20.0 \mathrm{mmol})$, IBCF ($2.7 \mathrm{~g}, 20.0 \mathrm{mmol}$), and (\pm)- α-methylbenzylamine ($2.4 \mathrm{~g}, 20.0 \mathrm{mmol}$) gave an oil. After deprotection, the hydrochloride was recrystallised from absolute ethanol-diethyl ether to yield 2.2 g (41\%) of 82: m.p. $129-131^{\circ} \mathrm{C}$; IR (KBr) $1666(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.86\left(\mathrm{t}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.48$ (d, $3 \mathrm{H}, \quad J=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}$), 1.50 (br m, 4 H , $\left.\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right), 3.85(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{NH}_{2}^{+} \mathrm{CH}_{2} \mathrm{CO}\right), 4.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 7.27(\mathrm{~m}, 5 \mathrm{H}$, ArH), 9.00 (br m, $3 \mathrm{H}, \mathrm{NH}_{2}^{+}$and CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 13.5,19.8,22.5,27.9,48.0,48.7,50.1,126.2$, 127.2, 128.6, 143.4, 164.2. Anal. Found: C, 60.93. Calc. for $\left(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}\right): \mathrm{C}, 62.09 \% ; \mathrm{H} ; \mathrm{N}$.

5.1.22. 2-(n-Butylamino)- N-[(2,6-dimethyl)phenyl]acetamide hydrochloride (84)

The BOC-amide $83(2.0 \mathrm{~g}, 6.0 \mathrm{mmol})$ gave 1.2 g (71\%) of $\mathbf{8 4}$ after deprotection and recrystallisation from absolute ethanol: m.p. $139-141^{\circ} \mathrm{C}$; IR (KBr) 1676 ($\mathrm{C}=\mathrm{O}$, amide) cm^{-1}; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \quad \delta \quad 0.89$ (t, 3 H , $\left.\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}\right), 1.45$ (br m, 4H, $\left.\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right), 2.17$ (s, $\left.6 \mathrm{H}, 2,6-\mathrm{diCH}_{3}\right), 2.95$ (br t, $2 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{NH}$), $4.00\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CO}\right), 7.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}), 9.33$ (br s, $2 \mathrm{H}, \mathrm{NH}_{2}^{+}$), 10.27 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 13.4,18.1,19.2,27.2,46.5,47.5,126.7,127.6,134.0$, 135.0, $163.6(\mathrm{CONH})$; MS (CI, methane) $m / z 235\left(\mathrm{M}^{+}+\right.$ 1). Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5.1.23. (\pm)-1-Amino- $N-[(\alpha-m e t h y l) b e n z y l]-$ cyclopentanecarboxamide (97)

The BOC-acid $96(2.3 \mathrm{~g}, 10.0 \mathrm{mmol})$, NMM (1.0 g , $10.0 \mathrm{mmol})$, IBCF $(1.4 \mathrm{~g}, 10.0 \mathrm{mmol})$, and $(\pm)-\alpha-$ methylbenzylamine afforded 1.1.g (48%) of 97 after deprotection and recrystallisation from diethyl ether-petroleum ether: m.p. $77-78^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 1642$ ($\mathrm{C}=\mathrm{O}$, amide) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.48(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 1.81(\mathrm{br} \mathrm{m}, 10 \mathrm{H}), 5.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CONHCH})$, 7.31 (s, $5 \mathrm{H}, \mathrm{ArH}$), 8.12 (br s, $1 \mathrm{H}, \mathrm{CONH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 22.3,24.5,40.6,48.5,65.1,126.1,127.1$, 128.6, 143.9, 176.3 (CONH). Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$, N.

5.1.24. N-[(2,6-Dimethyl)phenyl]-1-

aminocyclohexanecarboxamide (99)

The BOC-acid $98(2.4 \mathrm{~g}, 10.0 \mathrm{mmol})$, NMM (1.0 g , $10.0 \mathrm{mmol})$, IBCF ($1.4 \mathrm{~g}, 10.0 \mathrm{mmol}$), and 2,6-dimethylaniline ($2.4 \mathrm{~g}, 20.0 \mathrm{mmol}$) gave, after deprotection and recrystallisation from petroleum ether, $0.4 \mathrm{~g}(16 \%)$ of 99 as the free base: m.p. $133-135^{\circ} \mathrm{C}$; IR (KBr) 1666 (C=O, amide) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.61(\mathrm{~m}, 12 \mathrm{H}), 2.20$ (s, $6 \mathrm{H}, 2,6-\mathrm{diCH}_{3}$), $7.06(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}$), 9.38 (br s, 1 H , CONH). Anal. ($\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$) C, H, N.

5.1.25. cis- N-[(2,6-Dimethyl)phenyl]-4aminocyclohexanecarboxamide hydrochloride (104)

The cis-BOC-acid 102 ($3.7 \mathrm{~g}, 15.0 \mathrm{mmol}$), NMM (1.5 $\mathrm{g}, 15.0 \mathrm{mmol})$, $\operatorname{IBCF}(2.0 \mathrm{~g}, 15.0 \mathrm{mmol})$, and $2,6-$ dimethylaniline ($2.4 \mathrm{~g}, 20.0 \mathrm{mmol}$) afforded, after deprotection and recrystallisation from absolute ethanoldiethyl ether, $2.1 \mathrm{~g}\left(49^{\circ} \%\right)$ of 104: m.p. $275^{\circ} \mathrm{C}$; IR (KBr) 1651 (C=O, amide) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 1.75$ (br m, 8H), 2.13 (s, 6H, 2,6- diCH_{3}), 3.27 (br m, 2 H , $\mathrm{CH} \mathrm{NH}_{2}$ and CHCONH), $7.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}$), 8.21 (br s, $3 \mathrm{H}, \mathrm{NH}_{3}^{+}$), 9.32 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$); ${ }^{13} \mathrm{C}$-NMR (DMSO- d_{6}) $\delta 18.2,24.3,27.1,40.4,47.4,126.3,127.6,135.3,172.9$ (CONH); MS (CI, methane) $m / z 247\left(\mathrm{M}^{+}+1\right)$. Anal. Found: C, 62.96. Calc. for $\left(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}\right)$: $\mathrm{C}, 63.70 \%$; H; N.

5.1.26. trans- N-[(2,6-Dimethyl)phenyl]-4aminocyclohexanecarboxamide hydrochloride (105)

The trans-acid $103(0.4 \mathrm{~g}, 1.4 \mathrm{mmol})$, NMM (0.1 g , 1.4 mmol), IBCF ($0.2 \mathrm{~g}, 1.4 \mathrm{mmol}$), and 2,6-dimethylaniline ($1.0 \mathrm{~g}, 8.3 \mathrm{mmol}$) gave, after deprotection and recrystallisation from absolute ethanol-diethyl ether, $0.15 \mathrm{~g}(38 \%)$ of trans-105: m.p. $>325^{\circ} \mathrm{C}$; IR (KBr) 1637 (C=O, amide) $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 1.75$ (br m, $8 \mathrm{H}), 2.11\left(\mathrm{~s}, 6 \mathrm{H}, 2,6-\mathrm{diCH}_{3}\right), 3.07\left(\mathrm{br} \mathrm{m}, 2 \mathrm{H}, \mathrm{NH}_{3}^{+}\right.$and $\mathrm{CHCONH}), 7.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}), 8.25\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{NH}_{3}^{+}\right)$, $9.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}) ;{ }^{13} \mathrm{C}$-NMR (DMSO- d_{6}) $\delta 18.0$, $27.4,29.5,42.6,48.8,126.3,127.6,135.2,173.0$ (CONH). Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{ClN}_{3} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5.1.27. General procedure for the synthesis of

 cycloalkanecarboxamides: synthesis of (\pm)- N-(α-methylbenzyl)cyclohexanecarboxamide (87)A solution of cyclohexanecarboxylic acid ($2.6 \mathrm{~g}, 20.0$ mmol) in methylene chloride (50 mL) was cooled to $0-5^{\circ} \mathrm{C}$ under a nitrogen atmosphere, and the mixture was treated in a dropwise manner with a solution of $\mathrm{SOCl}_{2}(7.1 \mathrm{~g}, 59.7 \mathrm{mmol})$ in methylene chloride (20 mL). The reaction mixture was allowed to warm to room
temperature and was stirred overnight. The solvent was evaporated under reduced pressure, and additional methylene chloride was added and again evaporated. The resulting residue was dissolved in dry THF (80 mL), cooled to $0-5^{\circ} \mathrm{C}$, and triethylamine ($2.0 \mathrm{~g}, 20.0 \mathrm{mmol}$) was added under nitrogen. The cooled solution was treated dropwise with (\pm)- α-methylbenzylamine $(2.4 \mathrm{~g}$, 20.0 mmol) in dry THF (20 mL). After warming to room temperature, the reaction mixture was stirred for 2 h and filtered to remove the precipitated triethylamine hydrochloride. Evaporation of the filtrate under reduced pressure gave an oil which was partitioned between ethyl acetate (100 mL) and $1 \mathrm{~N} \mathrm{HCl}(50 \mathrm{~mL})$. The ethyl acetate layer was separated, washed with water (100 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated under reduced pressure to afford a solid. Recrystallisation from ethyl acetate-hexane yielded $2.2 \mathrm{~g}(47 \%)$ of $\mathbf{8 7}$: m.p. $112-113^{\circ} \mathrm{C}$; IR (KBr) 3321 (NH , amide), 1644 ($\mathrm{C}=\mathrm{O}$, amide) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.44$ (d, 3 H , $J=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}$), $1.51(\mathrm{br} \mathrm{m}, 11 \mathrm{H}), 5.19(\mathrm{~m}, 1 \mathrm{H}$, CONHCHCH 3), 6.05 (br s, $1 \mathrm{H}, \mathrm{CONH}$), 7.28 ($\mathrm{s}, 5 \mathrm{H}$, $\mathrm{ArH}) ;{ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.8,25.7,29.6,45.5,48.2$, 126.1, 127.1, 128.5, 143.6, 175.2 (CONH). Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. Following this method, the cycloalkanecarboxamides 85,86 , and $88-93$ were prepared. The physicochemical properties of these compounds are given in table IV.

5.1.28. (\pm)-1-Benzyl-N-[(α-methylbenzyl)-2piperidinecarboxamide hydrochloride (35)

To a suspension of the carboxamide $2(2.0 \mathrm{~g}, 8.6$ mmol) and potassium carbonate ($1.4 \mathrm{~g}, 10.3 \mathrm{mmol}$) in DMF (40 mL), a solution of benzyl bromide ($1.8 \mathrm{~g}, 10.3$ mmol) in DMF (10 mL) was added dropwise under nitrogen. The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 5 h , and the solvent was removed under reduced pressure. The residue was partitioned between ethyl acetate (100 $\mathrm{mL})$ and water (50 mL), and the ethyl acetate phase was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated under vacuum to afford an oil. A hydrochloride was prepared and recrystallised from absolute ethanol-diethyl ether to yield $1.2 \mathrm{~g}(39 \%)$ of 35 : m.p. $243-245^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$-NMR (DMSO- d_{6}) $\delta 1.46\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.64$ (br $\mathrm{m}, 6 \mathrm{H}$), 3.68 (br m, $\left.5 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right) \mathrm{NH}^{+} \mathrm{CH}\right), 5.05(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CONHCHCH} 3$), $7.41(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}$), 9.48 (br s, $1 \mathrm{H}, \mathrm{NH}^{+}$), $9.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CONH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 21.1,21.7,22.3,28.2,48.6,50.8,58.0,64.7,125.8$, 126.9, 128.3, 128.7, 129.5, 131.5, 143.9, 166.9. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
5.1.29. (\pm)-1-Benzoyl- N-(α-methylbenzyl)-2piperidinecarboxamide (39)

A solution of benzoyl chloride $(0.6 \mathrm{~g}, 4.0 \mathrm{mmol})$ and triethylamine ($0.4 \mathrm{~g}, 4.0 \mathrm{mmol}$) in THF (50 mL) was cooled to $0-5^{\circ} \mathrm{C}$ under nitrogen and treated dropwise with a solution of the amide 2 (mixture of diastereoisomers) ($0.9 \mathrm{~g}, 4.0 \mathrm{mmol}$) in THF (20 mL). The mixture was stirred at room temperature for 2 h , the precipitated triethylamine hydrochloride was suction filtered, and the filtrate was removed under reduced pressure to give a yellow solid. The resulting solid was partitioned between ethyl acetate (100 mL) and water (50 mL), and the organic layer was washed with 1 N HCl , dried $\left(\mathrm{Na}_{2}-\right.$ SO_{4}), filtered, and evaporated under vacuum to afford $0.7 \mathrm{~g}(53 \%)$ of 39 after recrystallisation from petroleum ether-diethyl ether: m.p. $144-146^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.64\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 2.04(\mathrm{br} \mathrm{m}, 6 \mathrm{H}), 3.35(\mathrm{br} \mathrm{m}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NHCH}$), $5.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CONHCHCH} 3$), 6.90 (br s, $1 \mathrm{H}, \mathrm{CONH}$), $7.35(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 10.5, 22.2, 25.6, 46.1, 48.7, 52.8, 126.1, 127.2, 127.4, 129.1, 130.2, 135.4, 143.5, 169.9, 172.3. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5.1.30. N-[(2,6-Dimethyl)phenyl]-4-pyridinecarboxamide (50)

A suspension of isonicotinic acid ($2.5 \mathrm{~g}, 20.0 \mathrm{mmol}$) in pyridine (100 mL) was cooled to $0-5^{\circ} \mathrm{C}$ under a nitrogen atmosphere and treated in a dropwise manner with a solution of thionyl chloride $(7.1 \mathrm{~g}, 60.0 \mathrm{mmol})$ in pyridine $(20 \mathrm{~mL})$. The reaction mixture was allowed to warm to room temperature and was stirred overnight. The solvent was removed under vacuum, and the resulting residue was dissolved in THF (50 mL) and treated with triethylamine ($2.0 \mathrm{~g}, 20.0 \mathrm{mmol}$) followed by the dropwise addition of 2,6-dimethylaniline $(2.4 \mathrm{~g}, 20.0$ mmol) in THF (20 mL) under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 1 h , the triethylamine hydrochloride was suction filtered, and the filtrate was evaporated under vacuum to give a solid upon trituration with hexane. Recrystallisation from ethyl acetate-hexane gave $1.4 \mathrm{~g}(30 \%)$ of 50: m.p. $157-159^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.19(\mathrm{~s}, 6 \mathrm{H}$, 2,6-diCH3 $), 7.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}), 7.64(\mathrm{dd}, 2 \mathrm{H}, J=1.7,4.5$ Hz, H-3, H-5), 8.18 (br s, 1H, CONH), 8.66 (dd, 2H, $J=1.7,4.5 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-6) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 18.3$, 121.1, 127.8, 128.3, 133.3, 135.5, 141.4, 150.5, 164.1. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5.1.31. [1-(Phenylethyl)piperidin-2-yl]methylamine (51)

A solution of the carboxamide $2(2.0 \mathrm{~g}, 8.6 \mathrm{mmol})$ in
dry THF (40 mL) was added dropwise to a stirred suspension of LAH ($1.0 \mathrm{~g}, 25.8 \mathrm{mmol}$) in dry THF (60 mL) under a nitrogen atmosphere. The mixture was refluxed for 12 h , cooled, treated carefully with water to decompose the excess LAH, and basified with 1 N NaOH to pH 10 . The precipitate was filtered, and the filtrate was evaporated under reduced pressure. The resulting residue was partitioned between ethyl acetate $(100 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$, and the ethyl acetate phase was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated to yield an oil. The crude product was subjected to flash chromatography on a silica gel column using ethyl acetate-methanol-ammonium hydroxide (80:20:1) as the mobile phase. Fractions homogeneous by TLC were combined and concentrated under reduced pressure to afford an oil. A dihydrochloride was prepared and recrystallised from 2-propanol-diethyl ether to yield $1.1 \mathrm{~g}(44 \%)$ of 51: m.p. $214-216^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.74\left(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.78$ (br m, 6 H), 3.25 (br m, $5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}^{+} \mathrm{CHCH}_{2} \mathrm{NH}_{2}^{+}$), 4.53 (q, $1 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{CHCH} 3$), $7.55(\mathrm{~s}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 17.6,20.6,20.8,21.7,23.5,23.9,28.9,47.7$, 49.6, 49.8, 55.7, 55.9, 57.0, 62.3, 62.5, 130.4, 132.2, 132.7, 137.4. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5.1.32. (\pm)-2-[(4-Trifluoromethyl)benzyl]-2,3,5,6,7,8-hexahydroimidazo[1,5-a]-pyridin-1-one (52)

Using the described method [23], a mixture of 23 (6.0 $\mathrm{g}, 21.0 \mathrm{mmol}$), formaldehyde (60 mL), and ethanol (5 mL) was refluxed under a nitrogen atmosphere for 2 h . The reaction mixture was concentrated to half volume under reduced pressure, diluted with water $(60 \mathrm{~mL})$, and extracted with diethyl ether $(3 \times 30 \mathrm{~mL})$. The combined diethyl ether extracts were washed with water (50 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated under reduced pressure to give a solid upon cooling. Recrystallisation from petroleum ether afforded $5.4 \mathrm{~g}(86 \%)$ of $\mathbf{5 2}$: m.p. $67-70^{\circ} \mathrm{C}$; IR (KBr) $1696\left(\mathrm{C}=\mathrm{O}\right.$, lactam) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 2.05(\mathrm{br} \mathrm{m}, 9 \mathrm{H}), 3.81(\mathrm{dd}, 1 \mathrm{H}, J=2 \mathrm{~Hz}, 5.1$ $\left.\mathrm{Hz}, \mathrm{H}-3_{\mathrm{ax}}\right), 4.04\left(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{H}-3_{\mathrm{eq}}\right), 4.52(\mathrm{q}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 7.48(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 23.2, 24.4, 24.9, 45.0, 49.6, 63.2, 67.7, 118.3, 125.8, 126.0, 126.1, 128.3, 140.6, 173.0. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}\right)$ C, H, N.

5.1.33. Dimethyl 2-acetyl-1,2,3,4-tetrahydro-3,3isoquinolinedicarboxylate (53)

Using the method of Kammermeier et al. [24], a stirred suspension of α, α^{\prime}-dichloro-o-xylene $(17.5 \mathrm{~g}, 100$
mmol) and diethyl acetamidomalonate $(21.7 \mathrm{~g}, 100$ $\mathrm{mmol})$ in methanol (175 mL) was treated dropwise with 30% sodium methoxide in methanol ($20 \mathrm{~mL}, 111 \mathrm{mmol}$) over 10 min at room temperature under nitrogen. The reaction mixture was heated to reflux, treated with additional 30% sodium methoxide in methanol (22 mL , 122 mmol) in a dropwise fashion over 2 h , and stirred for another 2 h . The mixture was cooled to room temperature and concentrated under reduced pressure. The resulting solid residue was partitioned between water $(100 \mathrm{~mL})$ and ethyl acetate $(150 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate $(2 \times 75 \mathrm{~mL})$, and the combined ethyl acetate extracts were washed with brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated under reduced pressure to give a solid. Recrystallisation from 2-propanol-tert-butyl methyl ether gave 12.3 g (43%) of 53: m.p. $141-143^{\circ} \mathrm{C}$; ([24] m.p. $141-143^{\circ} \mathrm{C}$); IR (KBr) 1745 ($\mathrm{C}=\mathrm{O}$, ester), 1649 ($\mathrm{C}=\mathrm{O}$, amide) cm^{-1}; $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.29(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NHCOCH})_{3}\right), 3.43$ (s, $2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CHN}$), 3.68 (s, 6H, $\left.\mathrm{CH}\left(\mathrm{COOCH}_{3}\right)_{2}\right), 4.68$ (s, $2 \mathrm{H}, \quad \mathrm{ArCH}_{2} \mathrm{~N}$), 7.20 (br m, 4H, ArH); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 22.3,37.6,47.9,52.9,68.2,126.1,127.5$, $127.8,127.9,132.3,132.7,168.5,171.0$.

5.1.34. (\pm)-2-Acetyl-1,2,3,4-tetrahydro-3isoquinolinecarboxylic acid (54)

Following the method of Kammermeier et al. [24], a well-stirred suspension of $53(10.7 \mathrm{~g}, 37.0 \mathrm{mmol})$ in a mixture of methanol (100 mL) and water $(20 \mathrm{~mL})$ was treated portionwise with $\mathrm{KOH}(4.6 \mathrm{~g}, 81 \mathrm{mmol})$ over 30 min . The mixture was refluxed for 5 h , cooled, and evaporated to dryness under reduced pressure. The residue was partitioned between ethyl acetate and 2 N $\mathrm{HCl}(\mathrm{pH} 1)$, and the aqueous phase was separated and extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated under vacuum to yield $7.2 \mathrm{~g}(89 \%)$ of $\mathbf{5 4}$ after trituration with tert-butyl methyl ether: m.p. $161-165^{\circ} \mathrm{C}$ ([24] m.p. $171-173^{\circ} \mathrm{C}$); IR (KBr) 1738 ($\mathrm{C}=\mathrm{O}$, acid), 1649 ($\mathrm{C}=\mathrm{O}$, amide) cm^{-1}.
5.1.35. (\pm)-1,2,3,4-Tetrahydro-3-isoquinolinecarboxylic acid (55)

Compound $54(6.5 \mathrm{~g}, 30.0 \mathrm{mmol})$ was refluxed in 6 N $\mathrm{HCl}(50 \mathrm{~mL})$ for 5 h , cooled to $0-5^{\circ} \mathrm{C}$ in an ice-water bath, and treated with aqueous $\mathrm{NH}_{3}(25 \%)$ to pH 7 . The mixture was stirred for an additional 1 h in an ice-water bath. The resulting precipitate was filtered, washed with water, and dried to yield $4.4 \mathrm{~g}(83 \%)$ of 55 : m.p.
$327-330^{\circ} \mathrm{C}$ ([24] m.p. $321-325^{\circ} \mathrm{C}$); IR (KBr) 1600 (C=O), 1497, $1460 \mathrm{~cm}^{-1}$.

5.1.36. (\pm)-1,2,3,4-Tetrahydro-1-isoquinolinecarboxylic

 acid (64)Using the method of Shuman et al. [17], a mixture of 1-isoquinoline-carboxylic acid ($12.5 \mathrm{~g}, 72.2 \mathrm{mmol}$) and platinum(IV) oxide (1.0 g) in glacial acetic acid (100 mL) was shaken on a Parr hydrogenator at an initial pressure of 60 psi for 24 h . The catalyst was filtered through a Celite pad, and the solvent was removed under reduced pressure to afford a solid. The solid was triturated with water, filtered, and dried to give 7.51 g (59\%) of 64: m.p. $269-271^{\circ} \mathrm{C}$ ([17] no reported m.p.); IR 1614 ($\mathrm{C}=\mathrm{O}$).

5.1.37. Ethyl 2-(n-butyl)aminoacetate (79)

According to the method described by Speziale and Jaworski [25], a solution of n-butylamine ($16.8 \mathrm{~g}, 230$ $\mathrm{mmol})$ in benzene $(100 \mathrm{~mL})$ was treated dropwise with a solution of ethyl bromoacetate $(16.7 \mathrm{~g}, 10 \mathrm{mmol})$ in benzene (15 mL) at room temperature. The reaction mixture was heated at reflux for 2 h , cooled, and basified with 2 N NaOH to pH 10 . The organic layer was separated, washed with water $(2 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated under reduced pressure to give an oil. Vacuum distillation yielded 9.1 g (57%) of 79 as a colourless oil: b.p. $57-60^{\circ} \mathrm{C}(1.1 \mathrm{~mm}$, [25] b.p. $52^{\circ} \mathrm{C}(1.1 \mathrm{~mm})$; IR (neat) $1739(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(\mathrm{CDCl}_{3}\right) \quad \delta 1.04 \quad\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2}\right.$ and $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.42 (br m, $5 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{NH}$), 2.60 $\left(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right), 3.41(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CO}\right), 4.00\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

5.1.38. (5,5-Tetramethylene)hydantoin (94)

Using the method of Henze and Speer [26], a mixture of ammonium carbonate $(45.5 \mathrm{~g}, 470 \mathrm{mmol})$ and cyclopentanone ($8.4 \mathrm{~g}, 100 \mathrm{mmol}$) in 50% ethanol (250 mL) was treated with $\mathrm{NaCN}(9.8 \mathrm{~g}, 200 \mathrm{mmol})$. After heating at $58-60^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was cooled to room temperature, concentrated to a volume of about 150 mL under reduced pressure, and chilled in an ice-bath. The resulting precipitate was filtered to give $9.8 \mathrm{~g}(64 \%)$ of 94 : m.p. $202-203^{\circ} \mathrm{C}$ ([26] m.p. $204-$ $205^{\circ} \mathrm{C}$).

5.1.39. 1-Amino-1-cyclopentanecarboxylic acid (95)

Using the method of Conners and Ross [27], a mixture of $94(7.83 \mathrm{~g}, 50.8 \mathrm{mmol})$ and barium hydroxide
octahydrate $(28.0 \mathrm{~g}, 88.8 \mathrm{mmol})$ in water $(170 \mathrm{~mL})$ was heated to reflux for 3 h . The mixture was cooled to room temperature, and the precipitated barium carbonate was filtered. The filtrate was treated with ammonium carbonate ($6.3 \mathrm{~g}, 65.7 \mathrm{mmol}$) to remove the excess barium. Evaporation of the filtrate under reduced pressure gave $4.6 \mathrm{~g}(71 \%)$ of $\mathbf{9 5}$ after recrystallisation from ethanol-water: m.p. $>317^{\circ} \mathrm{C}$ ([27] m.p. $328^{\circ} \mathrm{C}$).
5.1.40. cis-4-Aminocyclohexanecarboxylic acid (100) and trans-4-aminocyclohexanecarboxylic acid (101)

Using the method of Skaric et al. [28], a mixture of 4-aminobenzoic acid ($1.6 \mathrm{~g}, 11.6 \mathrm{mmol}$) and platinum(IV) oxide (0.4 g) in 30% ethanol was shaken on a Parr hydrogenator at an initial pressure of 52 psi for 24 h at room temperature. This process was repeated six times, and the solutions were combined. After removal of the catalyst by filtration, the filtrate was removed under reduced pressure to give $8.0 \mathrm{~g}(81 \%)$ of a mixture of cis-and trans-diastereoisomers after recrystallisation from aqueous ethanol-diethyl ether: m.p. $>300^{\circ} \mathrm{C}$ ([28] m.p. $>300^{\circ} \mathrm{C}$).

Using the method of Ferber and Bruker [29], the diastereoisomeric mixture ($8.0 \mathrm{~g}, 55.9 \mathrm{mmol}$) was dissolved in water, and ethanol was added to induce crystallisation of the cis-isomer. The crystals were collected, and the filtrate was treated in a similar manner to obtain two additional crops of the cis-acid. Recrystallisation of the combined crops from ethanol-water gave 3.9 g (49\%) of cis-100: m.p. $295-298^{\circ} \mathrm{C}$ ([30] m.p. $258-$ $264^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.77(\mathrm{br} \mathrm{m}, 8 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHCOOH}), 3.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{NH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta$ 27.6, 30.1, 44.3, 51.8, 186.4. The filtrates were combined and concentrated under reduced pressure, and the resulting solid was crystallised from aqueous ethanol-diethyl ether to give the trans-acid. The filtrate yielded two additional crops of the trans-acid. Recrystallisation of the combined crops from aqueous ethanol-diethyl ether yielded $1.3 \mathrm{~g}(16 \%)$ of trans-101: m.p. $297-302^{\circ} \mathrm{C}$ ([30] m.p. 262-267 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 1.71$ (br m, 4H), 2.13 (br m, 5H), $3.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{NH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 30.3,32.3,47.9,52.5,187.4$.

6. NMR data

Compound 6. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.37(\mathrm{~d}, 3 \mathrm{H}$, $J=6.4 \mathrm{~Hz}, \mathrm{CHCH}_{3}$), $1.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHNH}_{2}\right), 3.86(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.09(\mathrm{q}, 1 \mathrm{H}, J=6.4$ $\left.\mathrm{Hz}, \mathrm{CHCH})_{3}\right), 6.87(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$
$25.8\left(\mathrm{CHCH}_{3}\right), 51.1\left(\mathrm{CHCH}_{3}\right), 56.2\left(\mathrm{OCH}_{3}\right), 109.8$, 111.9, 117.8, 140.9, 148.3, 149.5.

Compound 7. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.49(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CHNH}_{2}\right), 2.90(\mathrm{~m}, 2 \mathrm{H}, \quad \mathrm{CHCH}), 4.18(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CHCH})_{3}\right), 7.26(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $46.7\left(\mathrm{CHCH}_{2}\right), 57.7\left(\mathrm{CHCH}_{2}\right), 126.4,126.5,127.1$, 128.5, 129.4, 139.3, 145.9.

Compound 8. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.71(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CHNH}_{2}\right), 5.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHNH}$), $7.28(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 59.5\left(\mathrm{CHNH}_{2}\right), 125.2,126.9$, 127.3, 128.7, 129.7, 134.5, 145.1, 147.9.

Compound 9. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.82(\mathrm{t}, 3 \mathrm{H}$, $\left.J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHNH}_{2}\right), 1.62(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.71(\mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CHCH} 3), 7.24$ (s, 5H, ArH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 10.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $32.5\left(\mathrm{CHCH}_{3}\right), 57.8\left(\mathrm{CHCH}_{2}\right), 126.4,126.8,128.3$, 146.5.

Compound 10. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.77(\mathrm{~d}, 3 \mathrm{H}$, $\left.J=6.6 \mathrm{~Hz}, \quad \mathrm{CHCH}_{3}\right), 0.97(\mathrm{~d}, 3 \mathrm{H}, \quad J=6.6 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{3}\right), 1.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHNH}_{2}\right), 1.75(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 3.58 \quad(\mathrm{~d}, \quad 1 \mathrm{H}, \quad J=7.3 \mathrm{~Hz}$, $\left.\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.27(\mathrm{~s}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 18.9,19.8,35.4,62.5,126.8,127.0,128.1,145.5$.

Compound 11. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 1.75$ (br m, $9 \mathrm{H}), 3.98\left(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}, \mathrm{C} H \mathrm{NH}_{3}^{+}\right), 7.48(\mathrm{~m}, 5 \mathrm{H}$, ArH), 8.85 (br s, $3 \mathrm{H}, \mathrm{NH}_{3}^{+}$); ${ }^{13} \mathrm{C}\left(\mathrm{DMSO}-d_{6}\right) \delta 24.4$, $24.9,29.6,30.0,44.6\left(\mathrm{CHCHNH}_{3}^{+}\right), 59.2\left(\mathrm{CHNH}_{3}^{+}\right)$, 127.8, 128.2, 128.5, 138.6.

Compound 12. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.48$ (br m, $11 \mathrm{H}), 1.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHNH}_{2}\right), 3.56(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}$, $\mathrm{CH} \mathrm{NH}_{2}$), 7.25 (s, 5H, ArH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 26.1, 26.3, 29.4, 30.0, $45.1\left(\mathrm{CHCHNH}_{2}\right), ~ 61.6$ $\left(\mathrm{CHNH}_{2}\right), 126.6,126.9,128.0,145.4$.

Compound 13. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.39(\mathrm{~d}, 3 \mathrm{H}$, $\left.\left.J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.52(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHNH})_{2}\right), 4.19(\mathrm{q}$, $1 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH} 3), 7.55(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 25.8\left(\mathrm{CHCH}_{3}\right)$, $51.1\left(\mathrm{CHCH}_{3}\right)$, $118.1\left(\mathrm{CF}_{3}\right), 122.7,122.8,123.0,123.5,123.6,123.8$, 124.0, 128.9, 129.3, 130.5, 148.9, 170.0, 182.0.

Compound 14. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.36(\mathrm{~d}, 3 \mathrm{H}$, $\left.J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHNH}_{2}\right), 4.11(\mathrm{q}$, $1 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH} 3$), $7.14(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 25.7\left(\mathrm{CHCH}_{3}\right)$, $51.0\left(\mathrm{CHCH}_{3}\right)$, 112.1, 113.1, 114.0, 121.3, 121.4, 129.7, 130.1, 150.4, 150.7, 157.6, 168.5.

Compound 15. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.37(\mathrm{~d}, 3 \mathrm{H}$, $\left.J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.53\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHNH}_{2}\right), 4.53(\mathrm{q}$, $1 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH} 3$), $7.32(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 23.6\left(\mathrm{CHCH}_{3}\right)$, $47.5\left(\mathrm{CHCH}_{3}\right)$, 126.2, 127.1, 127.7, 129.5, 132.6, 144.6.

Compound 16. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.36(\mathrm{~d}, 3 \mathrm{H}$, $J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}$), $1.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHNH} \mathrm{H}_{2}\right), 4.11(\mathrm{q}$, $\left.1 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 7.27(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 25.7\left(\mathrm{CHCH}_{3}\right)$, $51.0\left(\mathrm{CHCH}_{3}\right)$, 124.0, 126.1, 126.9, 129.7, 134.5, 150.1.

Compound 17. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.35(\mathrm{~d}, 3 \mathrm{H}$, $\left.J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHNH} \mathrm{H}_{2}\right), 4.10(\mathrm{q}$, $\left.1 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 7.27(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 25.8\left(\mathrm{CHCH}_{3}\right), 50.8\left(\mathrm{CHCH}_{3}\right)$, 127.2, 128.6, 132.5, 146.4.

Compound 18. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{~d}, 6 \mathrm{H}$, $\left.J=6.8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.51\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.85$ (br m, 9H), $2.23\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 3.09(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.16$ (m, 3H, ArH), 7.46 (br s, 1 H , CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 18.9,20.7,23.5,25.0$, 25.6, $28.4\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), ~ 28.7, ~}^{20.9}\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 123.4\right.$, $127.9,128.1,135.9,145.6,155.1$ (NCOO), 170.1 (CONH).

Compound 19. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.11(\mathrm{~d}, 6 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.62(\mathrm{br} \mathrm{m}, 6 \mathrm{H}), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 3.15$ (br m, $3 \mathrm{H}, \mathrm{CHNH}_{2}^{+} \mathrm{CH}_{2}$ and $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.07(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH} \mathrm{NH}_{2}^{+} \mathrm{CH}_{2}$), 7.16 (s, $3 \mathrm{H}, \mathrm{ArH}$), 9.20 (br s, 2 H , $\left.\mathrm{NH}_{2}^{+}\right), 10.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 18.4, 21.2, 21.7, 23.4, 27.3, 27.7, 43.2, 56.9, 123.1, $127.4,127.5,132.6,135.7,145.7,167.7$ (CONH).

Compound 20. ${ }^{1} \mathrm{H}$-NMR (DMSO- d_{6}) $\delta 1.71$ (br m, $4 \mathrm{H}), 2.09\left(\mathrm{~s}, 6 \mathrm{H}, 2,6-\mathrm{diCH}_{3}\right), 3.54$ (br m, 5 H , $\mathrm{CH}_{2} \mathrm{NH}_{2}^{+} \mathrm{CH}_{2} \mathrm{CH}$), $7.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}$), 9.26 (br s, 2 H , NH_{2}^{+}), $9.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta$ 18.0, 21.1, 26.5, 38.6, 42.8, 44.3, 126.5, 127.6, 134.6, 135.1, 170.3 (CONH).

Compound 21. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 1.81$ (br m, 4 H), 2.11 ($\mathrm{s}, 6 \mathrm{H}, 2,6-\mathrm{diCH}_{3}$), 2.94 (br m, 5 H , $\mathrm{CH}_{2} \mathrm{NH}_{2}^{+} \mathrm{CH}_{2}$ and $\mathrm{CH}_{2} \mathrm{CHCH}_{2}$), 7.05 (s, $3 \mathrm{H}, \mathrm{ArH}$), 9.34 (br s, 2H, NH ${ }_{2}^{+}$), 9.52 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 18.1,24.5,38.9,42.3,126.4,127.6$, 135.0, 135.2, 171.7 (CONH).

Compound 24. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.68(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NHCH}$), 1.75 (br m, 6H), 2.89 (br m, 3 H , $\mathrm{CH}_{2} \mathrm{NHCH}$), 4.47 (d, 2H, J=5.9 Hz, CONHCH ${ }_{2}$), 7.25 (br s, 1H, CONH), 7.55 (br m, $4 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 23.7,26.2,30.1,42.3,45.8,60.1$, $117.8\left(\mathrm{CF}_{3}\right)$, 123.4, 123.6, 129.3, 131.2, 139.5, 174.5.

Compound 25. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.46(\mathrm{~d}, 3 \mathrm{H}$, $\left.J=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.59\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHCH}\right), 1.65$ (br m, 6H), 2.90 (br m, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHCH}$), $3.80(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 5.08(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}), 7.05(\mathrm{br} \mathrm{m}, 5 \mathrm{H}, \mathrm{ArH}$ and CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 21.9,24.2,26.3$, 30.1, 46.0, 48.2, $55.3\left(\mathrm{OCH}_{3}\right), 60.5(\mathrm{NHCHCO})$,
$112.4,112.6,118.5,129.7,145.4,160.1,173.1$ (CONH).

Compound 28. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 1.37(\mathrm{~d}, 3 \mathrm{H}$, $J=7.1 \mathrm{~Hz}, \mathrm{CHCH}_{3}$), $2.50(\mathrm{brm}, 6 \mathrm{H}), 3.01(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NH}_{2}^{+}$), $3.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}^{+} \mathrm{CH}\right), 5.32(\mathrm{~m}, 1 \mathrm{H}$, CONHCH), 7.36 (m, 4H, ArH), 9.15 (br s, 2H, NH ${ }_{2}^{+}$), 9.45 (br d, 1H, CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) δ 20.8, 21.1, 21.5, 26.8, 43.2, 45.7, 56.6, 56.8, 126.7, 127.3, 127.5, 128.5, 129.3, 131.2, 131.4, 141.5, 167.5 (CONH).

Compound 29. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 1.42(\mathrm{~d}, 3 \mathrm{H}$, $J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}$), 2.01 (br m, 6H), 3.35 (br m, 3H, $\left.\mathrm{CH}_{2} \mathrm{NH}_{2}^{+} \mathrm{CH}\right), 5.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CONHCH}), 7.61(\mathrm{~m}, 4 \mathrm{H}$, ArH), 8.95 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}^{+}$), 9.45 (br d, $1 \mathrm{H}, \mathrm{CONH}$); ${ }^{13} \mathrm{C}$-NMR (DMSO- d_{6}) $\delta 21.1,21.4,21.9,26.9,43.2$, 45.9, 48.0, 56.7, 56.8, 124.4, 124.8, 125.7, 125.9, 126.6, 130.0, 132.9, 146.4, 146.7, 167.5 (CONH).

Compound 30. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.45(\mathrm{~d}, 3 \mathrm{H}$, $\left.J=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.57\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHCH}\right), 1.65$ (br m, 6H), 2.85 (br m, 3H, CH2NHCH), 5.07 (m, $1 \mathrm{H}, \mathrm{CHCH}_{3}$), 7.25 (br m, $5 \mathrm{H}, \mathrm{ArH}$ and CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 21.8,24.1,26.2,30.0,45.9,47.6$, 60.2, 127.6, 128.8, 133.0, 142.3, 173.1 (CONH).

Compound 31. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 1.42$ (d, 3H, $J=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}$), 1.91 (br m, 6H), 3.05 (br m, 3H, $\mathrm{CH}_{2} \mathrm{NH}_{2}^{+} \mathrm{CH}$), $5.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CONHCH}), 7.62(\mathrm{~m}, 4 \mathrm{H}$, ArH), 9.04 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}^{+}$), 9.36 (br d, 1H, CONH); ${ }^{13} \mathrm{C}$-NMR (DMSO- d_{6}) $\delta 21.2,21.5,22.3,26.8,27.1$, 43.2, 48.2, 56.6, 56.8, $118.1\left(\mathrm{CF}_{3}\right), 122.4,123.6,129.5$, 130.0, 145.5, 145.8, 167.7 (CONH).

Compound 32. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 1.39$ (d, 3H, $J=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}$), 1.81 (br m, 6H), 3.25 (br m, 3H, $\left.\mathrm{CH}_{2} \mathrm{NH}_{2}^{+} \mathrm{C} H\right), 4.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CONHC} H), 7.50(\mathrm{~m}, 3 \mathrm{H}$, ArH), 9.45 (br d, $1 \mathrm{H}, \mathrm{CONH}$); ${ }^{13} \mathrm{C}$-NMR (DMSO- d_{6}) $\delta 21.2,21.5,21.9,26.8,43.1,47.5,56.6,126.2,127.9$, 130.5, 130.9, 145.4, 167.8 (CONH).

Compound 33. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.47(\mathrm{~d}, 3 \mathrm{H}$, $J=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}$), $1.60\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHCH}\right), 1.65$ (br m, 6H), 2.90 (br m, 3H, CH2NHCH), 3.87 (s, 6H, $\left.3,4-\mathrm{diOCH}_{3}\right), 5.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 6.85(\mathrm{~s}, 3 \mathrm{H}$, ArH), 6.95 (br s, $1 \mathrm{H}, \mathrm{CONH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $21.8,24.2,26.3,30.1,46.0,47.8,47.9,56.2,60.4$, 110.7, 110.9, 112.0, 118.2, 118.3, 136.6, 148.7, 149.5, 173.0 (CONH).

Compound 34. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.50(\mathrm{~d}, 3 \mathrm{H}$, $J=7.1 \mathrm{~Hz}, \mathrm{CHCH}_{3}$), 1.67 (br m, 6 H), 2.23 ($\mathrm{s}, 3 \mathrm{H}$, NCH_{3}), $2.25\left(\mathrm{br} \mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.83(\mathrm{~m}, 1 \mathrm{H}$, NCHCO), 5.17 (m, 1H, CONHCHCH ${ }_{3}$), 6.89 (br s, $1 \mathrm{H}, \mathrm{CONH}$), 7.31 (s, $5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 21.7, 23.4, 25.4, 30.9, 44.7, 47.6, 55.5, 69.9, 126.1, 127.2, 128.6, 143.4, 173.5 (CONH).

Compound 36. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 1.64$ (d, 3 H , $J=7.1 \mathrm{~Hz}, \mathrm{CHCH}_{3}$), $2.02(\mathrm{brm}, 6 \mathrm{H}), 3.74(\mathrm{br} \mathrm{m}, 5 \mathrm{H}$, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right) \mathrm{NH}^{+} \mathrm{CH}\right), 5.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CONHCHCH} 3)$, $7.36(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}), 8.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CONH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 18.0,21.8,22.3,27.0,27.7,48.4,49.7$, 50.5, 52.1, 56.7, 57.6, 59.2, 70.0, 115.6, 115.9, 116.5, 116.9, 122.9, 123.0, 124.8, 126.0, 126.7, 127.3, 127.5, $128.7,133.6,134.0,143.5,158.1,165.7,166.6,169.3$.

Compound 37. ${ }^{1} \mathrm{H}$-NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.46(\mathrm{~d}, 3 \mathrm{H}$, $J=7.1 \mathrm{~Hz}, \mathrm{CHCH}_{3}$), $1.65(\mathrm{br} \mathrm{m}, 6 \mathrm{H}), 3.35(\mathrm{br} \mathrm{m}, 5 \mathrm{H}$, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right) \mathrm{NH}\right), 5.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CONHCHCH} 3), 7.18$ (m, 10H, ArH and CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 21.3, 21.7, 23.4, 24.8, 30.4, 30.6, 47.9, 48.1, 51.6, 51.8, $60.0,67.8,120.8,120.9,126.0,126.2,127.3,127.5$, $128.7,129.9,130.1,131.3,131.5,136.8,137.1,142.8$, 143.2, 173.4 (CONH).

Compound 38. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 1.46$ (d, 3H, $J=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}$), 1.88 ($\mathrm{brm}, 6 \mathrm{H}$), 3.71 (br m, 5 H , $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right) \mathrm{NH}^{+} \mathrm{CH}\right), 5.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CONHCHCH} 3)$, $7.57(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 9.82\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}^{+}\right), 10.21(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CONH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) δ 21.1, 21.7, 22.4, 28.2, 48.7, 51.0, 56.6, 65.0, 125.6, 125.8, 126.8, $128.3,130.2,130.8,131.2,131.9,132.5,133.5,144.1$, 166.8 (CONH).

Compound 40. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.43$ (d, 3H, CHCH_{3}), 1.64 (br m, 4H), $1.84\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHCH}\right.$), $2.32(\mathrm{~m}, ~ 1 \mathrm{H}, ~ \mathrm{CHCONH}), 2.88(\mathrm{br} \mathrm{m}, ~ 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{NHCH}_{2}\right), 5.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 7.34(\mathrm{~s}, 5 \mathrm{H}$, ArH), 7.88 (br s, $1 \mathrm{H}, \mathrm{CONH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 22.1, 23.7, 27.8, 42.3, 42.5, 46.7, 48.1, 48.3, 126.3, 127.2, 128.8, 144.1, 174.1 (CONH).

Compound 41. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 0.87$ (t , 3H, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.60(\mathrm{br} \mathrm{m}, 8 \mathrm{H}), 3.45\left(\mathrm{br} \mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}^{+}\right.$ CH), 4.75 (m, 1H, CONHCH), 7.25 (br m, $5 \mathrm{H}, \mathrm{ArH}$), 9.40 (br m, 3H, NH ${ }_{2}^{+}$and CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 11.1,21.2,21.6,27.0,27.4,29.4,43.3$, 54.6, 56.7, 57.0, 126.3, 126.7, 128.2, 143.1, 143.4, 167.8 (CONH).

Compound 42. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{dd}, 6 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.65$ (s, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHCH}$), 1.70 (br m, $7 \mathrm{H}), 2.80\left(\mathrm{br} \mathrm{m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHCH}\right), 4.82(\mathrm{t}, 1 \mathrm{H}, \mathrm{CON}-$ HCH), 7.35 (br s, 6 H , ArH and CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 18.8,19.8,24.1,26.0,30.4,33.7,45.8,58.2$, 60.6, 127.0, 128.4, 141.8, 173.3 (CONH).

Compound 43. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.34$ (br m, 6 H), $1.56\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHCH}\right), 2.84(\mathrm{br} \mathrm{m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{NHCH}\right), 6.02(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{CONHCH}$), 6.82 (br s, $1 \mathrm{H}, \mathrm{CONH}$), $7.15(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.2,26.2,30.1,46.0,48.2,56.3$, $60.5,127.4,127.6,128.7,142.1,173.2$ (CONH).

Compound ($S, R S-44$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 1.64$ (br m, 6H), 3.16 (br m, 2H, CH $\mathrm{H}_{2} \mathrm{NHCH}$), 3.95 (m , $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHCHCO}\right), 6.18(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{CON}-$ $\mathrm{HCH}), 7.36(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) δ 21.2, 21.6, 27.1, 43.3, 55.7, 56.7, 125.7, 126.2, 126.8, 127.0, 127.4, 128.6, 130.4, 133.1, 141.1, 141.3, 144.3, 144.5, 167.9 (CONH).

Compound ($S, R S-45$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.55$ (br m, 7H), 2.75 (br m, 5H, ArCHCH ${ }_{2} \mathrm{Ar}$ and $\mathrm{CH}_{2} \mathrm{NHCH}$), $5.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArCHCH}), 7.23(\mathrm{~m}, 11 \mathrm{H}$, ArH and CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 23.9,24.1$, 26.1, 29.8, 30.0, 42.9, 45.6, 45.8, 53.8, 53.8, 60.1, 60.4, 126.5, 127.3, 128.3, 128.5, 129.4, 137.7, 141.9, 173.3.

Compound 46. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 1.48$ ($\mathrm{s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.51(\mathrm{br} \mathrm{m}, 15 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCO})$, $3.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCO}), 4.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CONHCH})$, 7.38 (s, 5H, ArH), 8.35 (m, 1H, CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 19.6,24.3,24.7,24.9,25.0,28.0$ $\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 29.6, ~ 29.7, ~ 29.9, ~ 30.0, ~ 45.0, ~ 57.1, ~}^{78.7}\right.$ $\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, 126.6, 126.8, 127.0, 128.0, 143.6, 143.8, 155.1 (NCOO), 170.5 (CONH).

Compound 47. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 1.54$ (br m, 15 H), 3.07 (br m, $2 \mathrm{H}, \mathrm{NH}_{2}^{+} \mathrm{CH}_{2}$), $3.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}_{2}^{+}\right.$ $\mathrm{CHCO}), 4.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CONHCH}), 7.31(\mathrm{~m}, 5 \mathrm{H}$, ArH), 9.01 (br s, $2 \mathrm{H}, \mathrm{NH}_{2}^{+}$), $9.35(\mathrm{t}, 1 \mathrm{H}, \mathrm{CONH})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 21.1,21.5,24.7,24.9,26.8$, 27.4, 29.5, 29.7, 43.2, 45.1, 45.3, 56.7, 56.7, 56.9, 57.5, $57.6,126.8,127.2,128.1,142.8,143.2,167.6$ (CONH).

Compound 48. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.49(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.51(\mathrm{br} \mathrm{m}, 17 \mathrm{H}), 2.54$ (br m, 2 H , $\left.\mathrm{CH}_{2} \mathrm{NCH}\right), 4.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHCO}), 4.75(\mathrm{~m}, 1 \mathrm{H}$, CONHCH), 7.28 ($\mathrm{s}, 5 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 20.4, 25.0, 25.2, 26.0, 26.2, $28.4\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 29.2,30.1$, 30.3, 42.0, 43.0, 43.3, 58.3, $80.7\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, 126.9, 128.4, 141.5, 170.4 (CONH).

Compound 49. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right) \delta 1.48$ (br m, 17 H), 3.17 (br m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}^{+}$), $3.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}_{2}^{+}\right.$ $\mathrm{CHCO}), 4.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CONHCH}), 7.39(\mathrm{~s}, 5 \mathrm{H}, \mathrm{ArH})$, 9.13 (m, 3H, CONH and NH_{2}^{+}); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSOd_{6}) $\delta 21.1,21.5,25.5,25.8,26.9,29.1,29.6,43.2,56.7$, 58.2, 126.7, 127.0, 128.1, 141.9, 167.8 (CONH).

Compound 57. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 1.55$ (s, 9H, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.78$ (s, $6 \mathrm{H}, 2,6-\mathrm{diCH}_{3}$), 3.35 (br m, 2 H , $\left.\mathrm{CH}_{2} \mathrm{CHN}\right), 4.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 4.92(\mathrm{~m}, 1 \mathrm{H}$, NCHCO), 6.97 (m, 2H, ArH), 7.23 (m, 6H, ArH and CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(\mathrm{DMSO}-d_{6}\right) \quad \delta \quad 17.8, \quad 28.4$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.9,32.1,45.5,56.0,56.4,81.6\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right)}\right.$, 126.4, 127.0, 127.3, 127.8, 128.0, 128.4, 133.2, 133.9, 135.3, 155.6 (NCOO), 170.0 (CONH).

Compound 58. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 2.20$ (s, 6H, 2,6-diCH ${ }_{3}$, 3.41 (br m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHN}$), 4.34 (m, 3 H , $\left.\mathrm{CH}_{2} \mathrm{NH}_{2}^{+} \mathrm{CH}\right), 7.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArH}), 7.27(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH})$, 9.95 (br s, 2H, NH ${ }_{2}^{+}$), 10.49 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}$); ${ }^{13} \mathrm{C}-$ NMR (DMSO- d_{6}) $\delta 18.2,29.6,43.6,54.1,126.6$, $126.9,127.4,127.8,128.6,128.7,130.9,133.9,135.2$, 166.5 (CONH).

Compound 59. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 3.15$ (br m, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHNH}_{2}^{+}\right), 4.32\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CONHCH}_{2}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{NH}_{2}^{+} \mathrm{CH}\right), 7.26(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 9.57(\mathrm{br} \mathrm{t}, 2 \mathrm{H}$, NH_{2}^{+}), 9.85 (br s, $1 \mathrm{H}, \mathrm{CONH}$); ${ }^{13} \mathrm{C}$-NMR (DMSO- d_{6}) $\delta 29.4,41.6,43.8,54.0,113.3,113.5,114.2,114.4$, 123.2, 123.3, 126.6, 126.9, 127.5, 128.6, 130.2, 130.5, 131.1, 141.5, 141.9, 156.9, 167.7, 168.0.

Compound 60. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 3.25$ (br m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHNH}_{2}^{+}$), $4.35\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CONHCH}_{2}\right.$ and $\mathrm{CH}_{2} \mathrm{NH}_{2}^{+} \mathrm{CH}$), 7.26 (s, $4 \mathrm{H}, \mathrm{ArH}$), 7.65 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{ArH}$), 9.58 (br t, $2 \mathrm{H}, \mathrm{NH}_{2}^{+}$), 11.1 (br s, $1 \mathrm{H}, \mathrm{CONH}$); ${ }^{13} \mathrm{C}-$ NMR (DMSO- d_{6}) δ 29.5, 41.7, 43.7, 53.8, 123.7, 126.4, 126.7, 127.3, 128.5, 129.3, 130.9, 131.3, 140.1, 168.0.

Compound 61. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.49$ (d, 3 H , $J=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}$), $1.92\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHCH}\right), 3.25$ (br m, 3H, CH $\mathrm{C}_{2} \mathrm{C} H \mathrm{NH}$), 3.98 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$), 5.16 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}$), $7.35(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}$ and CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 22.0,30.9,47.5,48.1,56.4,118.1$ $\left(\mathrm{CF}_{3}\right), 122.5,122.7,122.9,123.0,123.9,124.1,124.2$, $124.4,125.6,126.3,126.7,129.2,129.8,130.2,134.2$, 135.8, 144.5, 172.4.

Compound 62. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.46(\mathrm{~d}, 3 \mathrm{H}$, $J=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}$), $1.69\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHCH}\right), 3.15$ (br m, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHNH}$), 3.98 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$), 5.15 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}$), $7.20(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}$ and CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 21.9,31.1,47.4,47.6,47.7,47.8$, 56.4, 56.6, 125.6, 126.3, 126.8, 127.4, 127.6, 128.8, 129.2, 133.2, 134.5, 135..9, 142.2, 172.3.

Compound 63. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.56(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NHCH}$), 3.05 (br m, $5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHNH}$ and $\mathrm{ArCH}_{2} \mathrm{CH}_{2}$), 3.88 (d, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}$), 5.28 (m, 1H, ArCHCH $), 7.20(\mathrm{~m}, 15 \mathrm{H}, \mathrm{ArH}), 7.57$ (br d, $1 \mathrm{H}, \mathrm{CONH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 30.7,31.0,42.9$, 47.3, 53.7, 54.1, 56.3, 125.5, 126.2, 126.6., 127.3, 128.3, 128.5, 129.1, 129.4, 134.5, 135.9, 136.1, 137.5, 141.8, 172.3.

Compound 66. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}\right) \delta 1.48$ (d, 3H, $\left.J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 3.25(\mathrm{~m}, 4 \mathrm{H}), 4.91(\mathrm{~m}, 1 \mathrm{H}$, NHCHCH_{3}), 5.16 (br s, $1 \mathrm{H}, \mathrm{NH}_{2}^{+} \mathrm{CHCO}$), 7.33 (m, $9 \mathrm{H}, \mathrm{ArH}$), 9.75 (br d, $1 \mathrm{H}, \mathrm{CONH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\right.$ DMSO- $\left.d_{6}\right) \delta 22.3,24.4,39.0,48.8,55.2,126.1,126.3$,
$126.6,127.0,128.1,128.4,129.2,132.7,143.7,165.9$ (CONH).

Compound 67. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.52(\mathrm{~d}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.12\left(\mathrm{~s}, 6 \mathrm{H}, 2,6-\mathrm{diCH}_{3}\right), 2.93(\mathrm{~m}, 2 \mathrm{H}$, ArCH_{2}), 3.73 (t, $2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 5.65 (br s, 1 H , NCHCO), 7.16 ($\mathrm{m}, 8 \mathrm{H}, \mathrm{ArH}$ and CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 18.3,28.4\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), ~ 28.7, ~ 41.0, ~ 58.9, ~ 59.1, ~}^{\text {, }}\right.$ 59.2, $81.2\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 126.5,127.1,127.7, ~ 128.1, ~ 128.3, ~}^{\text {, }}\right.$ 131.8, 133.6, 135.1, 135.3, 155.5 (NCOO), 169.2 (CONH).

Compound 68. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 2.16$ (s, 6 H , 2,6-diCH ${ }_{3}$), 3.16 (br m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$), 3.65 (m , $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}^{+}$), $5.52\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{2}^{+} \mathrm{CHCO}\right), 7.10(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{ArH}$), $7.33(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.74\left(\mathrm{br} \mathrm{d}, 2 \mathrm{H}, \mathrm{NH}_{2}^{+}\right)$, 10.77 (s, 1H, CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 18.3$, $24.5,39.0,55.3,126.6,126.9,127.9,128.1,129.2$, 132.8, 133.8, 135.1, 165.6 (CONH).

Compound 85. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 1.32$ (d, 3H, $J=7.1 \mathrm{~Hz}, \mathrm{CHCH}_{3}$), $1.56(\mathrm{brm}, 8 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHCONH}), 4.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CONHCHCH} 3), 7.23(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{ArH}$), 8.24 (br d, 1H, CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 22.4,25.6,29.7,30.0,44.1,47.4,124.6$, 125.7, 126.4, 130.1, 132.9, 147.7, 174.4 (CONH).

Compound 86. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.42(\mathrm{~d}, 3 \mathrm{H}$, $\left.J=7.1 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.61(\mathrm{br} \mathrm{m}, 11 \mathrm{H}), 5.06(\mathrm{~m}, 1 \mathrm{H}$, CONHCHCH ${ }_{3}$), 6.15 (br s, 1H, CONH), 7.23 (m, $4 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 21.8,25.7,29.6,45.4$, 47.9, 124.4, 126.1, 127.3, 129.9, 134.4, 145.8, 175.3 (CONH).

Compound 88. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.52$ (br m, $4 \mathrm{H}), 1.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{CONH}), 1.85(\mathrm{~s}, 6 \mathrm{H}, 2,6-$ diCH_{3}), 6.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArH}$), 9.19 (br s, $1 \mathrm{H}, \mathrm{CONH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.7,13.8,18.3,126.6,127.9$, 135.5, 171.8 (CONH).

Compound 89. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.10(\mathrm{~s}, 6 \mathrm{H}$, 2,6-diCH $)_{3}$, 2.11 (br m, 6H), $3.12(\mathrm{~m}, 1 \mathrm{H}$, CHCONH), 6.98 (s, $3 \mathrm{H}, \mathrm{ArH}$), 7.25 (br s, 1 H , CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 18.3,25.1,25.4,39.7$, 126.9, 127.9, 128.4, 134.0, 135.4, 173.5 (CONH).

Compound 90. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.71$ (br m, $8 \mathrm{H}), \quad 2.10\left(\mathrm{~s}, \quad 6 \mathrm{H}, \quad 2,6-\mathrm{diCH}_{3}\right), \quad 2.62(\mathrm{~m}, \quad 1 \mathrm{H}$, CHCONH), 6.98 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArH}$), 7.32 (br s, 1H, CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 18.3,25.9,30.6,45.6$, 126.9, 127.9, 135.4, 174.8 (CONH).

Compound 91. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}) $\delta 1,55$ (br m, $11 \mathrm{H}), 2.09\left(\mathrm{~s}, 6 \mathrm{H}, 2,6-\mathrm{diCH}_{3}\right.$), 7.03 (s, 3H, ArH), 9.05 (s, $1 \mathrm{H}, \mathrm{CONH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}) δ 18.0, 25.3, 25.5, 29.4, 44.2, 126.2, 127.5, 135.2, 173.7 (CONH).

Compound 92. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\mathrm{DMSO}-d_{6}$) $\delta 1.56$ (br m, $10 \mathrm{H}), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{CH}_{3}\right), 2.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCONH})$,
7.27 (m, 3H, ArH), 9.35 (s, 1H, CONH); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{DMSO}_{6}\right) \delta 18.2,25.3,25.5,29.2,44.0,126.8,127.5$, $128.8,132.0,134.0,138.3,173.9$ (CONH).

Compound 93. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.66$ (br m, $12 \mathrm{H}), \quad 2.14\left(\mathrm{~s}, \quad 6 \mathrm{H}, \quad 2,6-\mathrm{diCH}_{3}\right), \quad 2.45(\mathrm{~m}, \quad 1 \mathrm{H}$, CHCONH), 7.01 (m, 4H, ArH and CONH); ${ }^{13} \mathrm{C}-$ NMR (DMSO- d_{6}) $\delta 18.4,26.7,28.1,32.0,47.7,127.0$, 128.0, 134.0, 135.6, 175.7 (CONH).

References

[1] McNamara J.O., in: Hardman J.G., Limbird L.E., Molinoff P.B., Ruddon R.W., Gilman A.G. (Eds.), The Pharmacological Basis of Therapeutics, 9th ed., McGraw-Hill, New York, 1990, pp. 461-486.
[2] Loscher W., Schmidt D., Epilepsy Res. 17 (1994) 95-134.
[3] Lin Z., Kadaba P.K., Med. Res. Rev. 17 (1997) 537-572.
[4] Hinko C.N., Crider A.M., Kliem M.A., Steinmiller C.I., Seo T.H., Ho B., Venkatarangan P., El-Assadi A.A., Chang H., Burns C.M., Tietz E.I., Andersen P.H., Klitgaard H., Neuropharmacology 35 (1996) 1721-1735.
[5] Ho B., Venkatarangan P., Cruse S.F., Hinko C.N., Andersen P.H., Crider A.M., Adloo A.A., Roane D.S., Stables J.P., Eur. J. Med. Chem. 33 (1998) 23-31.
[6] Wolfe J.F., Greenwood T.D., Mulheron J.M., Exp. Opin. Ther. Patents 8 (1998) 361-381.
[7] Cosford N.D.P, McDonald I.A., Schweiger E.J., Annu. Rep. Med. 33 (1998) 61-70.
[8] Clark C.R., Sanson R.T., Lin C.-M., Norris G.N., J. Med. Chem. 28 (1985) 1259-1262.
[9] Clark C.R., Lin C.-M., Sanson R.T., J. Med. Chem. 29 (1986) 1534-1537.
[10] Willow M., Gonoi T., Catterall W.A., Mol. Pharmacol. 27 (1985) 547-558.
[11] Levy R.H., Mattson R.H., Meldrum B.S. (Eds.), Antiepileptic Drugs, 4th ed., Raven Press, New York, 1995.
[12] Padwa A., Eastman D., J. Am. Chem. Soc. 91 (1969) 462-467.
[13] Sidorova N.G., Tsukervanik I.P., J. Gen. Chem. 10 (1940) 2073-2076 (Chem. Abstr. 35 (1941) 3979).
[14] Moore M.L., in: Adams R., Bachmann W.E., Blatt A.H., Fieser L.F., Johnson J.R., Synder H.R. (Eds.), Organic Reactions (V), Wiley, New York, 1949, pp. 301-330.
[15] Crider A.M., Tita T.T., Wood J.D., Hinko C.N., J. Pharm. Sci. 71 (1982) 1214-1219.
[16] McKay F.C., Albertson N.F., J. Am. Chem. Soc. 79 (1957) 4686-4690.
[17] Shuman R.T., Rothenberger R.B., Campbell C.S., Smith G.F., Gifford-Moore D.S., Gesellchen P.D., J. Med. Chem. 36 (1993) 314-319.
[18] Jorgensen E.C., Rapaka S.R., Windridge G.C., J. Med. Chem. 14 (1971) 904-906.
[19] Nicola A.D., Einhorn J., Lunhe J.-L., Tetrahedron Lett. 33 (1992) 6461-6464.
[20] Konopinska D., Rosinski G., Sobotka W., Pol. J. Pharmacol. Pharm. 44 (1992) 505-514.
[21] Kleemann H.-W., Heitsch H., Henning R., Kramer W., Kocher W., Lerch U., Linz W., Nickel W.-U., Ruppert D., Urbach H., Utz R., Wagnet A., Weck R., Wiegand F., J. Med. Chem. 35 (1992) 559-567.
[22] Japanese Patent 04,316,544 1992, Chem. Abstr. 118 (1993) 147316w.
[23] Hoffman-LaRoche and Co., Grenzacherstrasse, Basle, Switzerland, Br. Patent 1,114,397, 1968.
[24] Kammermeier B.O.T., Lerch U., Sommer C., Synthesis 11 (1992) 1157-1160.
[25] Speziale A.J., Jaworski E.G., J. Org. Chem. 25 (1960) 728-732.
[26] Henze H.R., Speer R.J., J. Am. Chem. Soc. 64 (1942) 522-523.
[27] T.A. Conners, W.C. Ross, J. Chem. Soc. (1960) 2119-2132.
[28] V. Skaric, M. Kovaceric, D. Skaric, J. Chem. Soc. Perkin Trans. 1 (1976) 1199-1202.
[29] Ferber E., Brukner H., Chem. Ber. 76 (1943) 1019-1027.
[30] Snyder K.B., Murray T.F., DeLander G.E., Aldrich J.V., J. Med. Chem. 36 (1993) 1100-1103.
[31] Redeuilh P.G., Rumpf P., Viel C., Bull. Soc. Chim. Fr. 9-10 (1973) 2668-2673.
[32] Potapov V.M., Demyanovich V.M., Skvortsova T.V., Melekhina N.N., Vestn. Mosk. Univ. Ser. 2: Khim. 18 (1977) 446-450.
[33] Roocker A.D., Radzitsky P.D., Bull. Soc. Chim. Belges 72 (1963) 195-207 (Chem. Abstr. 59 (1963) 9845).
[34] Reiter I., Toldy L., Schafer I., Szondy E., Borsky J., Eur. J. Med. Chem. 15 (1980) 41-53.
[35] Roocker A.D., Radzitzky P.D., Bull. Soc. Chim. Belges 73 (1964) 181-188 (Chem. Abstr. 61 (1964) 597).
[36] Fox H.H., Wenner W., J. Org. Chem. 16 (1951) 225-231.
[37] Gonzales C.T.Y., Bull. Soc. Chim. 37 (1925) 1591-1596.
[38] H. Najer, P. Chabrier, R. Giudicelli, Bull. Soc. Chim. Fr. (1959) 352-359.
[39] Grisar J.M., Claxton G.P., Wiech N.L., J. Med. Chem. 19 (1976) 365-369.
[40] Ekenstam B.T., Egner B., Pettersen G., Acta Chem. Scand. 11 (1957) 1183-1190.

[^0]: Abbreviations: SAR, structure-activity relationship; BOC, tert-butoxycarbonyl; NMM, N-methylmorpholine; IBCF, isobutyl chloroformate; MES, maximal electroshock seizure; CBZ, carbamazepine; PTN, phenytoin; ip, intraperitoneal; PI, protective index, TD50/ED50; LAH, lithium aluminium hydride; THF, tetrahydrofuran; NMDA, N-methyl-D-aspartate; PCP, phencyclidine.

 * Correspondence and reprints

 E-mail address: pycrider@alpha.ulm.edu (A. Michael Crider).
 ${ }^{1}$ Nova Biomedical Corporation, Waltham, MA 02453, USA.

[^1]: ${ }^{\text {a }}$ All compounds gave acceptable C, H, and N analyses, $\pm 0.4 \%$ of the calculated values, except where indicated.
 ${ }^{\mathrm{b}}$ Recrystallisation solvents, $\mathrm{A}, \mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O} ; \mathrm{B}$, absolute $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O} ; \mathrm{C}$, petroleum ether- $\mathrm{EtOAc} ; \mathrm{D}$, petroleum ether- $-\mathrm{Et}_{2} \mathrm{O} ; \mathrm{E}$, absolute EtOH ; F, petroleum ether; G, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O} ; \mathrm{H}$, EtOAc-hexane; $\mathrm{I}, i-\mathrm{PrOH}-\mathrm{Et}_{2} \mathrm{O}$.
 ${ }^{\text {c }}$ Hydrochloride.
 ${ }^{d}$ [40] no reported m.p.
 ${ }^{\text {e }}$ Previously reported [5].
 ${ }^{\mathrm{f}}$ Calc. 72.37; found, 71.42.
 ${ }^{\mathrm{g}}$ [40] m.p. ${ }^{154-155^{\circ} \mathrm{C} \text {. }}$
 ${ }^{h}$ Dihydrochloride.

[^2]: ${ }^{\text {a }}$ All compounds gave acceptable C, H, and N analyses, $\pm 0.4 \%$ of the calculated values, except where indicated.
 ${ }^{\mathrm{b}}$ Recrystallisation solvents, $\mathrm{A}, \mathrm{EtOH}$-water; B, absolute $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O} ; \mathrm{C}, 95 \% \mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O} ; \mathrm{D}, \mathrm{Et}_{2} \mathrm{O}$-petroleum ether; E, EtOAchexane.
 ${ }^{\mathrm{c}}$ Hydrochloride.
 ${ }^{\mathrm{d}}$ Calc. C, 68.24; found, 67.71.
 ${ }^{e}$ Calc. C, 65.50; found, 65.09.
 ${ }^{\mathrm{f}}$ Calc. C, 68.23; found, 67.30.

[^3]: ${ }^{\text {a }}$ All compounds gave acceptable C, H , and N analyses, $\pm 0.4 \%$ of the calculated values.
 ${ }^{\mathrm{b}}$ Recrystallisation solvents, A, EtOAc-hexane; B, EtOAc.

