Chemistry of Labdanediol from Cistus ladaniferus, L. Synthesis of 12-Nor-ambreinolide and α and β-Levantenolides

J. G. Urones*, P. Basabe, I. S. Marcos, D. Díez Martín, M. J. Sexmero, M. H. Peral
Departamento de Química Orgánica, Universidad de Salamanca Plaza de los Caidos 1-5,37008 Salamanca, Spain

and H. B. Broughton ${ }^{\mathbf{8}, \boldsymbol{\ddagger}}$

§ Department of Chemistry, Imperial College of Science. Technology and Medicine. London, SW7 2AY, UK.
(Received in UK 21 September 1992)

Abstract

Labdanediol, 2, the major component of the neutral part of Cistus ladaniferus L, was transformed into 12-nor-ambreinolide, precursor of ambrox ${ }^{(1)}$, in three steps with an overall yield of 70%. Molecular modelling techniques have been used to determine the stereochemistry of the byproducts of these reactions. The selenylation and elimination reactions of α and β levantanolides, obtained from labdanediol, 2 , were used to synthetise α and β-levantenolides.

INTRODUCTION

The two main components from the hexane extract of Cistus ladaniferus, are the labdanolic acid 1 (40% of the acid fraction) and labdanediol 2 (70% of the unsaponificable neutral fraction).

R
1 COOH
$2 \mathrm{CH}_{2} \mathrm{OH}$

3

4

In our previous work, 1,2 we described the transformation of methyl labdanolate into 12 -nor-ambreinolide 5, precursor of ambrox ${ }^{\circledR}$. In this work, we describe the transformation of labdanediol, 2, to 12-norambreinolide, 5, using iodine and lead tetracetate. We also discuss the byproducts 9a and 9b, (Scheme 1) arising from the oxidative cleavage of the B ring; the stereochemistry of these compounds was assigned by the use of molecular modelling techniques.

[^0]We also report the synthesis of α and β-levantenolides $6 \mathbf{a}$ and $\mathbf{6 b}$ from labdanediol, 2 . These compounds have been isolated from the turkish tobacco ${ }^{3}$ in small quantities. The functionality of these compounds is reminiscent not only of the furofuranic ring of some clerodanes, ${ }^{4} 3$, with biological activity, 5,6 but also of the γ butenolide ring of Ajugarin $I,{ }^{7} 4$, which has antifeedant activity. ${ }^{8}$ This feature is also found in the levantanolides whose synthesis we have previously reported. In order to have a good source of these compounds for biological screening we decided upon their synthesis.

5

6a: α-levantenolide (12S)
6b: β-levantenolide (12R)

RESULTS AND DISCUSSION

The labdanediol 2 was isolated from the neutral part of the hexane extract of Cistus ladaniferus, where it is found both free or esterified.

The functionalization of $\mathrm{C}-12$ is achieved with the hydroxyl group of $\mathrm{C}-15$ either free or as its acetyl derivative, which is readily obtained from 2 by treatment with $\mathrm{Ac}_{2} \mathrm{O} / \mathrm{Py}$ at room temperature in quantitative yield.

The treatment of the acetyl derivative 7 (Scheme 1) with $\mathrm{LTA} / \mathrm{I}_{2}{ }^{9}$ gave four main components. Two of them are cyclic compounds $\mathbf{8 a} / \mathbf{8 b}(71 \%)$ and the other two 11a/11b (23%) are compounds resulting from β fragmentation.

8a and 8 b were separated by P.T.L.C. and the absolute configuration at $\mathrm{C}-12$ assigned by comparison of their spectroscopic properties. In fact, when comparing the ${ }^{1} \mathrm{H}$ NMR spectra, the signal of the hydrogen on $\mathrm{C}-12$ in 8 a is deshielded respect to the same signal in $\mathbf{8 b}$, suggesting that the $\mathrm{Me}-17$ and $\mathrm{H}-12$ have a cis-relationship and that a 1,3-diaxial interaction exists causing a deshielding effect on $\mathrm{H}-12$. Moreover, the difference between the chemical shifts for that hydrogen between $\mathbf{8 a}$ and $\mathbf{8 b}(\Delta \delta=0.38 \mathrm{ppm})$ could be explained by the shielding effect caused by the oxiranic oxygen on $\mathrm{C}-12$, which is more pronounced when $\mathrm{Me}-17$ and the hydrogen at C 12 are trans as they are in $\mathbf{8 b}$. Hence the absolute configuration of $\mathrm{C}-12$ in $8 \mathbf{a}$ is R and in $\mathbf{8 b}$ is S.

Oxidation with $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ of the mixture $\mathbf{8 a} / 8 \mathrm{~b}$ gives 5 with an excellent 97% yield, a considerable improvement on the yield of 5 using $\mathrm{CrO}_{3} .^{1}$ The other two compounds formed in the reaction of 7 with $\mathrm{LTA} / \mathrm{I}_{2}$ are the iododerivatives 9 a and 9 b . The cleavage of ring B was detected by analysis of their spectroscopic properties (IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table 1), and MS) of the products as well as the presence of iodine in these molecules.

By comparison of spectroscopic data for 9 a and 9 b it could be deduced that both were epimers at $\mathrm{C}-9$. In order to confirm the structures of these compounds some chemical transformations were performed (Scheme 2). Treatment of 9 a and $\mathbf{9 b}$ with NaOAc and AcOH for 7 hours under reflux yields the same compound $\mathbf{1 3}$. This compound is the product of a Wagner-Meerwein type rearrangement. However, when treated with $\mathrm{KOH} / \mathrm{MeOH}$ their behaviour is quite different: 9a gives only the olefin 14, whereas 9 b gives the cyclisation product 15.

 $25^{\circ} \mathrm{C} ; \mathrm{eRuO}_{2} / \mathrm{NaIO}_{4}, \mathrm{Me}_{2} \mathrm{CO} / \mathrm{H}_{2} \mathrm{O} ;$ f $\mathrm{LDA}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SeCl}, \mathrm{HMPA} ; \mathrm{gAcOH}^{2} / \mathrm{H}_{2} \mathrm{O}_{2}$

Scheme 2. ${ }^{\text {a NaOAc }} / \mathrm{AcOH} ; \mathrm{b}_{\mathrm{KOH}} / \mathrm{MeOH}$

In order to explain the difference in reactivity between 9a and 9b, a molecular modelling study was performed, from which we have deduced the stereochemistry of both iododerivatives. This study ${ }^{10}$ was done with the Macromodel Program MM2 forcefield, final minimization with FMNR option, and the most stable conformations found are shown Ia and $\boldsymbol{\Pi a}$ (Fig.1). Geometric data are given in table 2, for the three most stable conformations.

Ia

IIa

Figure 1

I and II are the enols of models of $9 \mathrm{a} / 9 \mathrm{~b}$ in which the sidechain was modelled by a t-butylgroup for simplicity.

Although the distance in these ground states between the nucleophile and the C-9 atom, that bears the halogen, is very similar in all conformations, the dihedral angles are quite different. In I a-c the angle varies between 86.6 and 95.0°, so an intramolecular SN 2 displacement would require substantial changes from the ground-state to the transition state geometry and thus a large activation energy. By contrast, in II a-c that angle is nearly 180° and so the cyclization may be expected to take place with a low free energy of activation and hence a high rate to give 9 b (9 R). In both cases I and II the iodine atom has an antiperiplanar hydrogen with angles between 158.7 and 170.3° so an E2 elimination is possible for both compounds, and could thus be expected to be more quicker for 9 a than the disfavoured intramolecular SN 2 reaction. The streochemical assignment for $\mathrm{C}-5$ in compounds $9 a$ and $9 b$ is confirmed on the basis of the ${ }^{13} \mathrm{C}$ NMR chemical shifts observed for that carbon atom in $\mathrm{C}-9$ oxygenated seco-labdanes ${ }^{11}$ (Table 1).

The reaction between labdanediol 2 and LTA 1_{2} gives two epimeric spiranes at $\mathrm{C}-12,10 \mathrm{a}$ and 10b1,12 that are easily interchangeable in CDCl_{3}; for this reason the NMR spectra were recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$. Oxidation of $10 \mathrm{a} / 10 \mathrm{~b}$ with $\mathrm{RuO}_{2} / \mathrm{NaIO}_{4}$ gives α and β-levantanolides 11a and 11b.

Freatment of 11a / 11b with LDA/THF followed by quenching with $\mathrm{PhSeCl}{ }^{13}$ gives a mixture of four selenoderivatives. Whether the selenylation is done with 11a or 11b, the same derivatives are obtained. The oxidation/elimination reaction of these selenides gives a mixture of α and β-levantenolides 6 a and $\mathbf{6 b}$ that were separated by P.T.L.C. and tested biologically. ${ }^{14}$
Table 1. ${ }^{13} \mathrm{C}$ NMR Data (50.3 MHz)

C	$2^{\text {a }}$	5	$6 a^{\text {b }}$	$6 b^{\text {b }}$	7	$8 \mathbf{}$	8b	$9 \mathrm{a}^{\text {a }}$	$9{ }^{\text {a }}$	$10{ }^{\text {b }}$	$10 b^{\text {b }}$	$11 a^{\text {b }}$	11b ${ }^{\text {b }}$	13	14	15
1	39.91	39.59	40.05	40.33	39.93	39.81	40.17	35.20	36.29	40.33	40.04	40.10	40.30	40.71	23.76	35.03
2	18.53	18.15	18.60	18.60	18.53	18.48	18.51	18.49	18.63	18.76	18.73	18.60	18.55	18.33	19.57	19.87
3	42.11	42.26	42.60	42.36	42.12	42.59	42.60	41.47	42.10	42.78	42.66	42.66	42.36	42.35	40.13	41.46
4	33.27	33.20	33.11	33.07	33.29	33.14	33.16	35.88	36.00	33.20	33.15	33.10	33.03	34.64	35.50	33.11
5	56.22	58.75	57.37	56.39	56.27	57.49	57.27	53.77	48.43	57.46	56.83	57.31	56.26	53.59	136.05	51.51
6	20.57	20.82	20.73	21.42	20.63	20.82	20.98	19.69	20.22	20.73	21.17	20.73	21.06	21.33	21.91	27.52
7	40.94	38.81	40.05	39.33	41.04	40.11	40.73	46.77	46.33	40.57	41.20	39.81	39.70	47.34	45.57	56.75
8	74.41	86.31	84.78	85.44	74.20	80.59	80.38	208.89	207.70	81.43	81.68	84.08	84.18	208.75	208.48	210.67
9	62.48	59.19	62.65	58.09	62.54	59.96	61.03	62.18	62.45	62.06	58.95	62.08	57.76	145.06	35.18	53.67
10	39.19	36.14	36.60	36.50	39.24	36.38	36.38	42.66	42.77	36.36	36.27	36.33	36.10	40.92	135.61	43.54
11	23.09	28.73	32.48	33.07	22.89	25.81	28.31	32.33	33.33	32.67	30.24	34.02	30.38	124.49	32.06	29.85
12	44.31	176.74	113.74	113.64	44.85	79.17	83.51	38.44	38.82	114.32	116.21	115.67	117.01	40.93	35.18	35.28
13	30.65		164.87	164.34	30.90	35.12	38.23	29.41	29.76	43.00	42.47	41.09	40.08	30.18	30.28	29.67
14	39.80		117.48	119.33	35.62	31.47	33.39	35.53	35.44	32.86	32.37	36.60	37.22	39.50	35.66	40.24
15	60.52		169.72	169.00	62.99	63.20	63.33	62.87	62.83	65.61	64.90	174.22	174.30	61.13	63.04	61.09
16	20.03		11.71	12.15	19.54	15.04	15.93	19.22	20.05	13.75	16.86	13.08	15.97	19.83	19.56	19.77
17	24.01	21.60	22.53	23.69	24.07	21.31	24.81	29.93	30.06	23.48	23.35	21.11	23.09	29.83	29.75	28.71
18	33.47	33.20	33.53	33.07	33.45	33.57	33.58	34.18	33.67	33.55	33.52	33.48	33.35	33.82	28.98	33.73
19	21.53	20.96	21.10	21.07	21.53	21.15	21.10	21.52	22.18	21.23	21.17	22.77	21.06	22.02	28.60	21.44
20	15.52	15.09	14.91	15.74	15.50	14.79	15.58	16.44	24.72	15.06	15.54	14.91	15.54	18.05	19.55	23.21
OCOMe					171.08	171.10	171.07	171.08	171.02						171.08	
COMe					20.98	20.98	20.98	20.99	20.97						20.96	

Table 2. Geometric Data

compound	energy $\mathrm{KJ} / \mathrm{mol}$	diedral angle C7-C9-I	diedral angle Me-C10-C9-I	diedral angle H-C11-C9--	distance $(\dot{\mathbf{A}})$ $\mathrm{C} 7-\mathrm{C9}-\mathrm{I}$
Ia	132.38	89.7°	171.6°	169.0°	3.16
Ib	134.94	95.0°	174.3°	169.4°	3.18
Ic	138.80	86.6°	173.4°	166.7°	3.18
IIa	130.08	144.6°	51.8°	170.3°	3.15
IIb	134.14	139.3°	49.4°	167.0°	3.21
IIc	141.17	148.7°	65.1°	158.7°	3.19

EXPERIMENTAL SECTION

The IR spectra were determined on a Bomem-100FT spectrophotometer in the form in each case indicated. The $200 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $50 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectra were determined on a Bruker WP-200-SY spectrometer. Chemical shifts are referenced in CDCl_{3} to the residual $\mathrm{CHCl}_{3}, 7.26 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ and 77.0 ppm for ${ }^{13} \mathrm{C}$, respectively and in $\mathrm{C}_{6} \mathrm{D}_{6}$ to the residual $\mathrm{C}_{6} \mathrm{H}_{6}, 7.15 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ and 129.0 ppm for ${ }^{13} \mathrm{C}$, respectively. Mass spectra were obtained on a VG 7070B instrument. Optical rotations were performed in a chloroformic solution unless otherwise stated, with a digital Perkin-Elmer-241 polarimeter. Melting points were determined in a Kofler hot plate apparatus and are uncorrected. Molecular modelling calculations were carried out using Macromodel V. 2.5 running on a MicroVax II.

Isolation of labdanediol 2. Labdanediol, $2 .(48 \mathrm{~g})$, was isolated from the unsaponificable part of the hexane extract of Cistus ladaniferus by chromatography on silica gel (800 g) eluting with mixtures Hexane/EtOAc of increasing polarity. The fraction eluted with Hexane/EtOAc 7:3 (33.6 g), 70% of the unsaponificable neutral part is labdanediol, 2.

8,15-dihydroxy-labdane (labdanediol) $2 . \mathrm{Mp} 82-83^{\circ} \mathrm{C}$ (Hexane). $[\alpha]_{\mathrm{D}}-5.2^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 1.3\right)$. IR $v_{\max }$ $\mathrm{cm}^{-1}: 3350,1150,1130,1080,1050,940$ and $910 .{ }^{1} \mathrm{H}$ NMR $\delta: 3.62(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-15), 1.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-17), 0.90$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{Me}-16$), 0.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19$), 0.77 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$ and $\mathrm{Me}-20$). MS, m/z $310\left(\mathrm{M}^{+}, 5\right.$), 293 (10), 195 (15), 157 (45), 128 (60), 84 (95), 69 (100). ${ }^{13}$ C NMR (See table 1).

Acetylation of 2. Labdanediol, $2,(5.0 \mathrm{~g}, 16.1 \mathrm{mmol})$ was dissolved in 4.3 ml of pyridine and acetic anhydride (6.5 ml) was added. The reaction mixture was left at room temperature over 15 hours. Ice was added and after one hour, the product was extracted with ether. The ethereal phase was washed with $2 \mathrm{M} \mathrm{HCl}, 6 \%$ NaHCO_{3} and water; dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then the solvent was evaporated to give labdanediol acetate (5.2 g) in quantitative yield..

15-acetoxy-8-hydroxylabdanol 7. [$\alpha]_{\mathrm{D}}-6.5^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 1.0\right)$. $\mathrm{IR} \mathrm{v}_{\text {max }} \mathrm{cm}^{-1} 3400,1750,1460,1400$, $1380,1250,940$ and $910 .{ }^{1} \mathrm{H}$ NMR $\delta: 4.08(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-15), 2.00(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 1.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-17), 0.89(3 \mathrm{H}$, d, J=6.5 Hz, Me-16), 0.82 ($3 \mathrm{H}, \mathrm{s}$), 0.75 ($6 \mathrm{H}, \mathrm{s}$). ${ }^{13} \mathrm{C}$ NMR (See table 1).

Reaction of 3 with $\mathrm{Pb}(O A C) 4 / I_{2}$. To labdanediol $2(2.32,6.59 \mathrm{mmol})$ dissolved in cyclohexane (100 ml) were added $\mathrm{Pb}(\mathrm{OAc})_{4}(17.59 \mathrm{~g}, 39.6 \mathrm{mmol})$ and $\mathrm{CaCO}_{3}(4.95 \mathrm{~g}, 49.5 \mathrm{mmol}) . \mathrm{I}_{2}(1.67 \mathrm{~g}, 6.5 \mathrm{mmol})$, dissolved in 86 ml of cyclohexane, was added dropwise. After the addition of Iodine, the reaction mixture was irradiated with two 100 W lamps, refrigerating the system so that temperature is maintained at $25^{\circ} \mathrm{C}$. The reaction was monitored by T.L.C. After 3 hours the lighting was stopped and ethyleneglycol (3 ml) was added. The solution
was filtered, washed with $5 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue purified by chromatography on silica gel to give 8a/8b ($1.3 \mathrm{~g}, 71 \%$) and $9 \mathrm{a} / \mathbf{9 b}$ (0.65 $\mathrm{g}, 23 \%$) eluting with Hexane/EtOAc $8: 2(0.15 \mathrm{~g}, 5.5 \%)$ and labdanediol $2(0.15 \mathrm{~g}, 5.5 \%)$ eluting with Hexane/EtOAc 1:1. The mixture of oxides 8a/8b were separated by P.T.L.C. eluting three times with Hexane/EtOAc 9:1.
$12(R)-15$-acetoxy-8,12 epoxy-labdane 8a. $[\alpha]_{\mathrm{D}}-5.7^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 1.1\right)$. IR $\mathrm{v}_{\text {max }} \mathrm{cm}^{-1} 1740,1250,1170$, 1150 and $1120{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta: 4.05(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-15), 3.98\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}_{1}=2.1 \mathrm{~Hz}, \mathrm{~J}_{2}=8.2 \mathrm{~Hz}\right.$ and $\left.\mathrm{J}_{3}=4.2 \mathrm{~Hz}, \mathrm{H}-12\right)$, 2.04 ($3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}$), 1.12 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-17$), 0.93 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{Me}-16$), $0.87(3 \mathrm{H}, \mathrm{s}), 0.82(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR. (See table 1).

12(S)-15-acetoxy-8,12 epoxy-labdane 8b. [$\alpha]_{\mathrm{D}}-3.3^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 1.1\right)$. IR $\mathrm{v}_{\max } \mathrm{cm}^{-1} 1740,1250,1170$, 1150 and $1120 .{ }^{1} \mathrm{H}$ NMR $\delta: 4.15(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-15), 3.60(1 \mathrm{H}, \mathrm{m}, \mathrm{J}=16 \mathrm{~Hz}, \mathrm{H}-12), 2.03(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc})$, 1.10 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-17$), 0.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19$), 0.84 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$ and Me-20). ${ }^{13} \mathrm{C}$ NMR (See table 1).

9(S)-15-acetoxy-8-oxo-8,9 seco-9-iodo-labdane: 9a. [$\alpha]_{\mathrm{D}}-3.3^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 1.1\right)$. $\mathrm{IR} \mathrm{v}_{\max } \mathrm{cm}^{-1} 1740$, $1720,1250,1170$ and $1150{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta: 4.20(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-15$ and $\mathrm{H}-9), 2.14\left(3 \mathrm{H}, \mathrm{s},-\mathrm{COCH}_{3}\right), 2.04$ ($3 \mathrm{H}, \mathrm{s}$, -OAc), 1.04 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19$), 0.93 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$), 0.91 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{Me}-16$) and 0.89 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-20$). MS, $\mathrm{m} / \mathrm{z} 478$ ($\mathrm{M}^{+}, 4$), 419 (1), 401 (3), 351 (7), 333 (90), 291 (9), 273 (11), 195 (15), 177 (36), 163 (42), 149 (38), 128 (71), 121 (59), 109 (100), 95 (93). ${ }^{13} \mathrm{C}$ NMR. (See table 1).
$9(R)$-15-acetoxy-8-oxo-8,9 seco-9-iodo-labdane 9 b . IR $v_{\max } \mathrm{cm}^{-1} 1740,1720,1250,1170$ and 1150 ; ${ }^{1} \mathrm{H}$ NMR $\delta: 4.15(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-15, \mathrm{H}-9), 2.13\left(3 \mathrm{H}, \mathrm{s},-\mathrm{CO}-\mathrm{CH}_{3}\right), 2.05(3 \mathrm{H}, \mathrm{s},-\mathrm{OAc}), 1.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-$ 19), 0.97 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{Me}-16$), 0.92 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$) and 0.91 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-20$). MS, $\mathrm{m} / \mathrm{z} 478$ ($\mathrm{M}^{+}, 2$), 351 (10), 333 (100), 291 (11), 273 (22), 177 (49), 163 (47), 149 (46), 135 (42), 128 (72), 121 (48), 109 (75), 95 (91). ${ }^{33} \mathrm{C}$ NMR. (See table 1).

Treatment of 9a with $\mathrm{AcONa} / \mathrm{AcOH}$ 13. A mixture of $9 \mathrm{a}(82 \mathrm{mg}, 0.17 \mathrm{mmol})$ and $\mathrm{NaOAc}(26 \mathrm{mg}, 0.32$ mmol) and acetic glacial acid ($44 \mathrm{mg}, 0.73 \mathrm{mmol}$) were refluxed over 7 hours. Then the mixture was cooled, water was added and extracted with ether. The ethereal phase was washed with water to neutrality, dried and after evaporation of the solvent and chromatography on silica gel eluting with Hexane/EtOAc 8:2, gave 13 (22 $\mathrm{mg}, 37 \%)$ as an oil: $\mathrm{IR} \mathrm{v}_{\max } \mathrm{cm}^{-1} 1735,1720,1250,1170,1090$ and $1010 .{ }^{1} \mathrm{H}$ NMR $\delta: 4.15(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-$ 15), $2.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19), 0.97(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 0.90(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}$, $\mathrm{Me}-\mathrm{C}-9), 0.97$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{Me}-16$). ${ }^{13} \mathrm{C}$ NMR. (See table 1).

Treatment of 9 b with AcONa/AcOH. A mixture of $9 \mathrm{~b}(48 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\mathrm{NaOAc}(15 \mathrm{mg}, 0.18$ mmol) and acetic glacial acid ($258 \mathrm{mg}, 0.43 \mathrm{mmol}$) were refluxed over 29 hours. Then the mixture was cooled, water was added. After the usual work-up, chromatography on silica gel eluting with Hexane/EtOAc 8:2, gave 13 ($22 \mathrm{mg}, 63 \%$).

Treatment of 9a with $\mathrm{KOH} / \mathrm{MeOH} 14.50 \mathrm{mg}$ of 9 a dissolved in 4 ml of MeOH were saponificated with 4 ml of $2 \mathrm{M} \mathrm{KOH} / \mathrm{MeOH}$, at room temperature overnight. The reaction mixture is concentrated under vacuum, $\mathrm{H}_{2} \mathrm{O}$ is added, the mixture is carefully acidulated with 2 N HCl to pH 5 and extracted with ether affording, after the usal work up, 14 ($30 \mathrm{mg}, 92 \%$) as an oil: IR $v_{\text {max }} \mathrm{cm}^{-1} 3400,1700,1650,1450,1050$ and $970 .{ }^{1} \mathrm{H}$ NMR δ : $5.2(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$ and $\mathrm{H}-11), 3.58(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}-15), 2.53(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7), 2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 0.98(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}-19), 0.89(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{Me}-16), 0.88$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18$ and $\mathrm{Me}-20$). ${ }^{13} \mathrm{C}$ NMR (See table 1).

Treatment of 9b with $\mathrm{KOH} / \mathrm{MeOH}$ 15. To a solution of 9 b (48 mg) in MeOH were added 4 ml of a solution of $2 \mathrm{M} \mathrm{KOH} / \mathrm{MeOH}$, the mixture was kept at room temperature during 7 hours. After working in the usual way 15 ($34 \mathrm{mg}, 96 \%$) was obtained as an oil: IR $v_{\text {max }} \mathrm{cm}^{-1} 1740,1710,1380,1360$ and $1250 .{ }^{1} \mathrm{H}$ NMR
$\delta: 4.12(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{H}-15), 2.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 0.89(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19), 0.88(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6$ $\mathrm{Hz}, \mathrm{Me}-16), 0.86(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18)$ and 0.83 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-20$). ${ }^{13} \mathrm{C}$ NMR. (See table 1).

Oxidation of $8 \mathrm{a} / 8 \mathrm{~b}$ with $\mathrm{Na}_{2} \mathrm{CrO}_{4}: 5$. To $8 \mathrm{a} / 8 \mathrm{~b}(210 \mathrm{mg}, 0.6 \mathrm{mmol})$ dissolved in benzene (8 ml), were added 8 ml of $\mathrm{AcOH}, 8 \mathrm{ml}$ of $\mathrm{Ac}_{2} \mathrm{O}$ and 174 mg of NaAcO . Later $\mathrm{Na}_{2} \mathrm{CrO}_{4}(445 \mathrm{mg}, 2.74 \mathrm{mmol}$) was added and the temperature kept between $30-40^{\circ} \mathrm{C}$. After 12 hours, ice was added and extracted with ether and the organic layer was washed with NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation of the solvent afforded 5 ($146 \mathrm{mg}, 97 \%$).

12-nor-ambreinolide 5. mp 118-119 ${ }^{\circ} \mathrm{C}$ (hexane). $[\alpha]_{\mathrm{D}}+49.7^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 1.0\right)$. IR $v_{\text {max }} \mathrm{cm}^{-1} 1775$, $1285,1270,1220,1170,1120$ and 1110 . ${ }^{1} \mathrm{H}$ NMR $\delta: 2.42\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1}=16.1 \mathrm{~Hz}, \mathrm{~J}_{2}=14.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-11\right), 2.23$ $\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1}=16.1 \mathrm{~Hz}, \mathrm{~J}_{2}=6.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-11\right), 1.31(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-17), 0.90(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-19), 0.86(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-18), 0.82$ (3H, s, Me-20). ${ }^{13}$ C NMR. (See table 1).

Reaction of, 2 with $\mathrm{Pb}(\mathrm{OAc})_{4} / I_{2} .20 \mathrm{~g}$ of $\mathrm{Pb}(\mathrm{OAc})_{4}(45 \mathrm{mmol})$ and 8 g of CaCO_{3} were dissolved in dry cyclohexane (450 ml). To the solution labdanediol, $2(2.2 \mathrm{~g}, 7 \mathrm{mmol}$), dissolved in 50 ml of cyclohexane and $4.8 \mathrm{~g}^{\text {of } \mathrm{I}_{2}}(18.9 \mathrm{mmol})$ dissolved in 100 ml of cyclohexane, were added The reaction mixture was stirred and lighted with two 100 W lamps and monitored by T.L.C.. After 1 hour 4 ml of ethylenglycol was added. The solution was washed with, $5 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Column chromatography of the residue on silica gel, Hexane/EtOAc $95: 5$ afforded the mixture of spiranes $10 \mathrm{a} / 10 \mathrm{~b}(1.56 \mathrm{~g}, 72 \%$). The spiranes $10 \mathrm{a} / 10 \mathrm{~b}$ were separated by P.T.L.C (Benzene/EtOAc)
$12(R)-8(12), 12(15)$-diepoxy-labdane 10a. $\mathrm{mp} 93-94^{\circ} \mathrm{C}$ (acetone). [$\left.\alpha\right]_{\mathrm{D}}+42.2^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 0.9\right.$). IR $v_{\max }$ $\mathrm{cm}^{-1} 2840,1510,1400,1290,1270,1230,1120,1010,970$ and $940 .{ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 3.97\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}}-\right.$ 15), $3.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}}-15\right), 1.44(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-17), 1.05(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Me}-16), 0.78(3 \mathrm{H}, \mathrm{s}), 0.75(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR. (See table 1).

12(S)-8(12), 12(15)-diepoxy-labdane 10b. [α]D $-63.7^{\circ}\left(\mathrm{CHCl}_{3}\right.$, c 0.9$)$. IR $\mathrm{v}_{\max } \mathrm{cm}^{-1}: 2970,2960$, $1570,1500,1450,960$ and $850{ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{C}_{6} \mathrm{D} 6\right): 4.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}}-15\right), 3.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}}-15\right), 1.04(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}-17), 0.85(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Me}-16), 0.75(6 \mathrm{H}, \mathrm{s})$ and $0.71(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR. (See table 1).

Oxidation of spiranes, $10 \mathrm{a} / 10 \mathrm{~b}$ with RuO_{4} / Acetone. To 266 mg of $\mathrm{RuO}_{2} \mathrm{in} 33 \mathrm{ml}$ of acetone, NaIO_{4} (2 $\mathrm{g}, 9.3 \mathrm{mmol}$) dissolved in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ was added. To the yellow solution ($10 \mathrm{a} / 10 \mathrm{~b}$) ($666 \mathrm{mg}, 2.17 \mathrm{mmol}$) dissolved in acetone (33 ml) were added. A solution of 4.6 g of NaIO_{4} in 13 ml of water and 13 ml of acetone was used to keep the colour of the solution yellow. The reaction was monitored by T.L.C. After 47 hours EtOH (2 ml) was added. The solution was filtered and pass through a pad of celite and the acetone evaporated. Water was added to the residue and extracted with ether. The ethereal phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under vacuum. Column chromatography of the residue (627 mg) on silica gel Hexane/EtOAc gave 29 mg of starting material (10a/10b, 4.35\%; Hexane/EtOAc 95:5) and lactones 11a/11b ($471 \mathrm{mg}, 67.5 \%$). These lactones were separated by flash chromatography on silica gel eluting with Hexane/EtOAc 9:1.

12(S)-8,12-epoxy-labdan-15(12)-olide (α-levantanolide) 11a. mp 145-146 ${ }^{\circ} \mathrm{C}$ (Hexane). $[\alpha] \mathrm{D}+19.5^{\circ}$ $\left(\mathrm{CHCl}_{3}, \mathrm{c} 1.0\right)$ IR $\mathrm{V}_{\max } \mathrm{cm}^{-1}: 2290,1780,1460,1590,1280,1220$ and $910 .{ }^{1} \mathrm{H} \mathrm{NMR} \delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 1.23(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}-17), 0.76(3 \mathrm{H}, \mathrm{s}), 0.75(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{Me}-16), 0.71(3 \mathrm{H}, \mathrm{s})$ and $0.63(3 \mathrm{H}, \mathrm{s}), \mathrm{MS}, \mathrm{m} / \mathrm{z} 320\left(\mathrm{M}^{+}, 8\right), 319$ (15), 305 (57), 304 (7), 276 (5), 191 (53), 167 (34), 125 (40), 109 (59), 69 (100). ${ }^{13}$ C NMR. (See table 1).
$12(R)-8,12$-epoxy-labdan-15(12)-olide (β-levantanolide) 11b. [$\alpha] \mathrm{D}-42^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 0.6\right.$). IR $v_{\max }$ $\mathrm{cm}^{-1}: 2950,1780,1460,1380,1285,1280,1140$ and $1000 .{ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 2.69\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{1}=7.3 \mathrm{~Hz}\right.$ and $\left.\mathrm{J}_{2}=16.6 \mathrm{~Hz}, \mathrm{Ha}-15\right), 0.88(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-17), 0.76(3 \mathrm{H}, \mathrm{s}), 0.72(3 \mathrm{H}, \mathrm{s}), 0.60(3 \mathrm{H}, \mathrm{s}), \mathrm{MS}, \mathrm{m} / \mathrm{z} 320\left(\mathrm{M}^{+}, 4\right), 319$ (2), 305 (80), 276 (5), 191 (60), 167 (34), 125 (40), 109 (59), 69 (50), 43 (100). ${ }^{13}$ C NMR. (See table 1).
α-Selenylation of $11 \mathrm{a} / 11 \mathrm{~b}$. n-BuLi, $(0.75 \mathrm{ml}$ of a 1.6 M solution in hexane) was added dropwise to a stirred solution of diisopropylamine ($0.17 \mathrm{ml}, 1.2 \mathrm{mmol}$) in dry tetrahydrofurane (4 ml) at $-78^{\circ} \mathrm{C}$. A solution of $11 \mathrm{a} / 11 \mathrm{~b}$ ($174 \mathrm{mg}, 0.54 \mathrm{mmol}$) dissolved in dry THF (0.5 ml) was added dropwise. The mixture was kept at $-78^{\circ} \mathrm{C}$ for 30 minutes, then warmed to $0^{\circ} \mathrm{C}$. After 45 minutes at $0^{\circ} \mathrm{C}$ was cool down to $-78^{\circ} \mathrm{C}$ and a solution of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SeCl}(229 \mathrm{mg}, 1.2 \mathrm{mmol})$, was added in dry THF (1.2 ml) and HMPA $(0.2 \mathrm{ml})$. After one hour at $-78^{\circ} \mathrm{C}$ The temperature was warmed slowly to $-30^{\circ} \mathrm{C}$. Stirring was continued for another 2.5 hours, then saturated aqueous ammonium chloride solution (3 ml) was added and the mixture allowed to warm to room temperature. Water (5 ml) was added and the aqueous layer extracted with ether. The combined organic layers were washed with NaHCO_{3}, brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent under reduced pressure and chromatography of the residue (306 mg , Hexane/EtOAc 95:5) gave 140 mg of a mixture of selenides 12 (55%).

Oxidation/Elimination of $\mathbf{1 2} \mathbf{6 a} / \mathbf{6 b}$. To the mixture of selenides $12(34 \mathrm{mg}, \mathbf{0 . 0 7} \mathrm{mmol})$ dissolved in THF $(0.15 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ with some $\mathrm{AcOH}(0.15 \mathrm{ml})$, was added $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.2 \mathrm{ml})$. After 30 minutes at $0^{\circ} \mathrm{C}$, saturated sodium hydrogencarbonate solution (5 ml) was added. The aqueous layer was then extracted with ether and the combined organic layers washed with brine and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Evaporation of the solvent under reduced pressure and chromatography of the residue (Hexane/EtOAc 8:2) afforded a mixture of levantenolides 6a/6b ($18 \mathrm{mg}, 79 \%$). These two compounds were separated by P.T.L.C. on silica gel eluting with Hexane/EtOAc 8:2.
α-levantenolide $6 \mathrm{a} . \mathrm{mp} 210^{\circ} \mathrm{C}$ (hexane), $[\alpha] \mathrm{D}+60.0^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 0.7\right)$. IR $v_{\text {max }} \mathrm{cm}^{-1}: 3100,1770,1630$, $1265,1215,1114,1075,1015,900,860$ and 780 . ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 5.33(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{H}-14), 1.39(3 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{Me}-16$), 1.28 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-17$), $0.75(3 \mathrm{H}, \mathrm{s}), 0.70(3 \mathrm{H}, \mathrm{s}), 0.61(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR. (See table 1).
β-levantenolide $6 \mathbf{b}$. $[\alpha] \mathrm{D}-59.0^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 0.8\right)$. $\mathbb{R} v_{\max } \mathrm{cm}^{-1}: 3100,1770,1650,1280,1135,1090$, $1010,940,880$ and 780 . ${ }^{1} \mathrm{H}$ NMR $\delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 5.47(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{H}-14), 1.47(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{Me}-16)$, $0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-17), 0.82(3 \mathrm{H}, \mathrm{s}), 0.78(3 \mathrm{H}, \mathrm{s}), 0.67(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (See table 1).

REFERENCES AND NOTES

1. Pascual Teresa, J. de; Urones, J. G.; Montaña, A. and Basabe, P. Tetrahedron Letters 1985, 26, 5717-5720.
2. Pascual Teresa, J. de; Urones, J. G.; Montaña, A. and Basabe, P. Tetrahedron 1986, 42, 45634576.
3. Giles, J. A. and Schumacher, J. N. Tetrahedron 1961, 14, 246-251
4. a) Kato, N; Takahashi, M.; Shibayama, M. and Munakata, K. Agric. Biol. Chem. 1972, 36, 257a;
b) Hosozawa, S.; Kato, N. and Munakata, K. Ibid 1974, 38, 823; c) Hosozawa, S.; Kato, N.; Munakata, K. and Chen, Y. L. Ibid 1974, 38, 1045.
5. Kojima, Y. and Kato, N.; Agric. Biol. Chem. 1981, 44, 855 and references cited therein.
6. Kojima, Y. and Kato, N.; Tetrahedron 1981, 37, 2527 and references cited therein.
7. Jones, P. S.; Ley, S. V.; Simpkins, N. S. and Whittle, A. J. Tetrahedron 1986, 42, 6519-6534
8. Kubo, I.; Lee, Y. W. Balogh-Nair, V.; Nakanishi, K. and Chapya, A.; J. Chem. Soc., Chem. Commun. 1976, 949-950.
9. Kalvoda, J. and Heusler, K. Synthesis 1971, 10, 501-526.
10. Structure I was built using the template and sketching options of the general ORGANIC mode of Macromodel. II was generated from I by inversion at C-9. Both structures were minimised MM2 forcefield option: 100 iterations of stepest descent (SD) minimisation followed by further minimisation, using the block diagonal Newton-Raphson method (BDNR), until default convergence criteria were met) and then set up for a conformational search. The six-membered ring was treated as rigid as was the t-butyl group used as a model for the sidechain of 8 a and 8 b . The remaining carbon-carbon bonds were defined as rotatable with an increment of 30°, except the enol
carbon carbon double bond which was allowed to adopt torsions of only 0 or 180°. All conformers generated were subjected to 100 iterations of SD, 100 iterations of BDNR and final minimisation to the default convergence criteria using the full matrix Newton-Raphson method. The three lowest energy conformers Ia-c and IIa-c of each model were subjected to geometric analysis as discussed in the text.
11. Grant P. K.; Hanton, L. R.; Tsai, S. F. and Yap, T. M.; Australian, J. Chem. 1991, 44, 433-446.
12. González, A. G.; Francisco, G. C.; Freire, R.; Hernández, R.; Salazar, S. A. and Suarez, E. Tetrahedron Letters 1976, 31, 2725-2728.
13. Clive, D. L. Tetrahedron 1978 34, 1049-1132 and references cited therein.
14. The biological data will be published elsewhere.

[^0]: \ddagger Current address: Merck Sharp \& Dohme, Ferlings Park, Eastwick Road, Harlow Essex CM202QR, UK

