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ABSTRACT: Nucleophilic aromatic fluorination (SNAr) is among the
most common methods for the formation of C(sp2)−F bonds. Despite
many recent advances, a long-standing limitation of these transformations
is the requirement for rigorously dry, aprotic conditions to maintain the
nucleophilicity of fluoride and suppress the generation of side products. This report addresses this challenge by leveraging
tetramethylammonium fluoride alcohol adducts (Me4NF·ROH) as fluoride sources for SNAr fluorination. Through systematic tuning
of the alcohol substituent (R), tetramethylammonium fluoride tert-amyl alcohol (Me4NF·t-AmylOH) was identified as an
inexpensive, practical, and bench-stable reagent for SNAr fluorination under mild and convenient conditions (80 °C in DMSO,
without the requirement for drying of reagents or solvent). A substrate scope of more than 50 (hetero) aryl halides and nitroarene
electrophiles is demonstrated.

Over the past 20 years, (hetero)aryl fluorides have emerged
as important structural features of numerous pharma-

ceuticals and agrochemicals.1−5 The C(sp2)−F bonds of these
molecules are commonly formed via nucleophilic aromatic
(SNAr) fluorination reactions of fluoride salts with aryl
electrophiles.6,7 Historically, SNAr fluorinations have employed
anhydrous KF or CsF as the fluoride source (Figure 1A).

However, because of the low nucleophilicity of these reagents,
the reactions require elevated temperatures (>130 °C) and long
reaction times, which limit functional group compatibility and
lead to side products.6,8 Recently these challenges have been
addressed through the identification of anhydrous fluoride salts
with enhanced nucleophilicity.9−11 For instance, our group has
shown that anhydrous tetramethylammonium fluoride [Me4NF
(anh)]12−15 effectively promotes many SNAr fluorination
reactions at room temperature. These mild conditions enable
a wider substrate scope andminimize competing decomposition
pathways.
Despite these advances, existing SNAr fluorination methods

still suffer from a key limitation: the reactions are highly sensitive
to water (Figure 1A).16 Yields and selectivities typically
plummet in the presence of even traces of moisture, and this
adversely impacts both practicality and reproducibility.17,18 As
such, the substrates, solvents, and hygroscopic fluoride reagents
must be rigorously dried, sometimes for days at elevated
temperatures.6,19 The water sensitivity of these reactions stems
from strong hydrogen bonding between fluoride and water,
which dramatically decreases the nucleophilicity of F−.8,20−22 In
addition, water can serve as a competing nucleophile for SNAr,
resulting in the formation of phenols and related side products
(Figure 1A).
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Figure 1. (A) Classical SNAr fluorination reactions are highly water
sensitive. (B) Our hypothesis: complexation of fluoride to an alcohol
(ROH) will reduce water sensitivity while maintaining reactivity. (C)
Me4NF·t-AmylOH as optimal fluoride reagent.
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This Letter describes our approach to addressing this long-
standing challenge by leveraging Me4NF·alcohol adducts as
fluoride sources for SNAr reactions (Figure 1B, C).

23 Our work
was inspired by a report from Kim and co-workers,24 who
demonstrated that Bu4NF·(t-BuOH)4 is an effective fluoride
reagent for SN2 fluorination. Bu4NF·(t-BuOH)4 was found to be
significantly less hygroscopic than anhydrous Bu4NF; further-
more, it afforded comparable/higher yields and fewer E2
byproducts. However, translation of this precedent to SNAr
fluorination presents two key challenges. First, alcohol complex-
ation is well-known to attenuate the nucleophilicity of
fluoride.21,24,25 This is much more problematic for SNAr
fluorinations, as these reactions are typically much slower and
more sensitive to protic additives than their SN2 analogues.26

Second, while the alkyl fluoride products of SN2 reactions are
inert toward further substitution,27 the aryl fluoride products of
SNAr fluorination are highly reactive electrophiles.28 As such,
these can engage with alcohols to generate undesired aryl ether
byproducts. Herein, we describe a detailed evaluation of
Me4NF·ROH adducts for SNAr fluorination (Figure 1C). We
demonstrate that careful tuning of the alcohol results in a reagent
with high reactivity and selectivity for SNAr f luorination without the
need for exclusion of ambient air/moisture.
Our initial studies explored Me4NF·MeOH as a fluoride

source for SNAr. As shown in Scheme 1A, Me4NF·MeOH (a key

intermediate en route to anhydrous Me4NF) is readily prepared
on decagram scale via salt metathesis between KF and Me4NCl
in MeOH.29 However, unlike anhydrous Me4NF, Me4NF·
MeOH is a free-flowing powder that can be handled on the
benchtop without significant deliquescence.30

Me4NF·MeOH was first evaluated as a reagent for the SNAr
fluorination of 2-chloroquinoline (1-Cl). For comparison, 1-Cl
reacts with anhydrous Me4NF in DMF at 25 °C in a N2-

atmosphere glovebox to afford 2-fluoroquinoline (1-F) in 99%
yield. Using Me4NF·MeOH under analogous conditions but
under ambient atmosphere (on the benchtop, without drying of
reagents or solvents), the reaction afforded <1% of 1-F (Scheme
1B, entry 2). However, when the temperature was increased to
60 °C, product 1-F was formed in 10% yield, along with 19% of
2-methoxyquinoline (1-OMe) (Scheme 1B, entry 3). We next
probed the yield/product distribution as a function of solvent
and temperature. Improved reactivity was observed in DMSO at
80 °C (55% conversion, 25% yield of 1-F, Scheme 1B, entry 8);
however, 1-OMe remained the major product (30% yield).
A series of competition experiments (see Figures S1 and S2)31

indicate that 1-OMe derives primarily from the SNAr ether-
ification of product 1-F under these reaction conditions.
Literature studies suggest that such SNAr etherification reactions
can be suppressed by increasing the size of the alcohol.31 As
such, a series of Me4NF·ROH adducts were synthesized by first
dissolving Me4NF·MeOH in the appropriate ROH, followed by
removal of the volatiles and drying at room temperature
overnight under vacuum (Scheme 2A).32 Me4NF·(ROH)x (x =

1−1.4) were obtained as free-flowing white solids. Importantly,
these syntheses are typically performed on the benchtop
(without exclusion of ambient air/moisture) and have been
scaled to >25 g.
A series Me4NF·ROH adducts was evaluated for the SNAr

fluorination of 1-Cl in DMSO at 80 °C (Scheme 2B). Both the
conversion of 1-Cl and the yield of 1-F improved with increasing
substitution on the R group of the alcohol, with MeOH < EtOH
< i-PrOH < t-BuOH∼ t-AmylOH.33,34 As predicted, the yield of
the ether byproduct 1-OR decreased dramatically across this
series, with <1% of 1-OR being detected with Me4NF·t-
AmylOH. Overall, Me4NF·t-AmylOH exhibits the highest
fluoride nucleophilicity (as indicated by the % conversion of
1-Cl after 1 h at 80 °C) and lowest alcohol nucleophilicity (as

Scheme 1. (A) Synthesis of Me4NF·MeOH and (B) Reactivity
of Me4NF·MeOH for SNAr Fluorination under Ambient
Conditions

aConditions: F source (1.0 equiv), 1-Cl (1.0 equiv), 25 °C. 1H NMR
yields determined by using nitromethane as standard. bInside
glovebox. cReaction carried out at 60 °C. dReaction carried out at
80 °C.

Scheme 2. (A) Synthesis of Me4NF·ROH and (B) Reactivity
of Me4NF·ROH for SNAr Fluorination under Ambient
Conditionsa

a1H NMR yields determined by using nitromethane as standard.
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Scheme 3. Substrate Scope for SNAr Fluorination with Me4NF·t-AmylOHh

aWith 1.1 equiv of Me4NF·t-AmylOH. bWith 1.5 equiv of Me4NF·t-AmylOH. cWith 2.0 equiv of Me4NF·t-AmylOH. dWith 2.1 equiv of Me4NF·t-
AmylOH. eWith 2.5 equiv of Me4NF·t-AmylOH. fWith 3.5 equiv of Me4NF·t-AmylOH. gAt 45 °C. hConditions: Me4NF·t-AmylOH (1.0 equiv)
and substrate (1.0 equiv) were stirred in DMSO (0.2 M) at 80 °C for 24 h. Yields determined using 19F NMR spectroscopy with 1,3,5-
trifluorobenzene as standard. Isolated yields are given in parentheses.
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indicated by the yield of 1-OR after 1 or 24 h at 80 °C) among
the alcohol adducts examined. Further optimization of the
reaction time (moving from 1 to 24 h) and equivalents of
Me4NF·t-AmylOH (changing from 1.0 to 1.5 equiv) resulted in
a quantitative yield of 1-F.35 Under these conditions, the
reaction was highly reproducible (yields varied by ±5% over 12
runs). Furthermore, the yield showed minimal variance with
different batches of DMSO or with changes in the ambient
humidity.36

We next explored the scope of SNAr fluorination withMe4NF·
t-AmylOH for various commercially available halo- and nitro-
(hetero)arene electrophiles. As summarized in Scheme 3, good
to excellent yields were obtained for >50 different quinoline,
pyridine, electron-deficient arene, diazine, and fused hetero-
cyclic substrates.37 Importantly, all of these transformations
were conducted on the benchtop at 80 °C, without drying or
purification of the electrophile substrates or DMSO solvent.
These reactions provided comparable yields on scales ranging
from 40 mg to 1 g (for instance 1-F was obtained in 73% and
92% isolated yield, respectively, on these scales). Some other key
trends and observations from these studies are summarized
below.

(1) Functional group compatibility. Arene substituents includ-
ing halogen (F, Cl, Br, I), nitrile (21−23,33−35), ether
(9), ester (16, 31, 32), trifluoromethyl (17), nitro (20,
25), tertiary nitrogen (45), and N-Boc protecting groups
(48) are all compatible with Me4NF·t-AmylOH SNAr
reactions. Many of these are valuable handles for
downstream functionalization. In addition, various
heterocycles found in biologically relevant scaffolds are
tolerated (e.g., imidazole, pyrazole, indole, pyrrolidine,
piperazine, benzimidazole).

(2) Inherent reactivity. In a series of isomeric chloroquinoline
electrophiles, the 2-Cl derivative affords the highest yield
(99% of 1-F) followed by the 4-Cl (74% of 2), and then
the 3-Cl (0% of 3). A similar trend was observed in the
nitro benzonitrile series (33 in 81% yield; 34 in 53% yield;
35 in 0% yield) and the bromo benzonitrile series (33 in
52% yield; 34 in 39% yield; 35 in 0% yield). This reactivity
reflects well-documented trends in SNAr reactions.

38

(3) Site selectivity of substitution. In substrates containing
multiple possible leaving groups, SNAr fluorination with
Me4NF·t-AmylOH reliably favors substitution at the
more activated site, independent of the nature of the
leaving group. This is exemplified by 4−7 and 24−27, as
well as 18 versus 20.

(4) Ef fect of leaving group. The impact of the leaving group on
reaction yield was examined in three different classes of
substrates (that form products 27, 33, and 34).39 In all
cases, the yields trend as follows: NO2 > Cl ∼ Br > I. This
is generally consistent with observations in other SNAr
fluorination systems.12

(5) Biologically relevant scaf folds. Substrate 16-Cl, which
forms the core of quinazoline based antibiotics, under-
went SNAr fluorination to afford 16 in 76% isolated yield.
In addition, 5-fluoropicolinate 32 was obtained using this
method. This structural motif appears in numerous
agrochemical candidates.40

In summary, this Letter describes the development ofMe4NF·
ROH adducts as reactive and practical reagents for SNAr
fluorination. We show that the alcohol substituent (R) can be
tuned to enhance the nucleophilicity of fluoride as well as to

mitigate competing SNAr of the alcohol. Me4NF·t-AmylOH was
ultimately identified as the optimal fluoride reagent. It can be
synthesized, stored, and utilized on the benchtop without the
rigorous exclusion of air/moisture. Furthermore, Me4NF·t-
AmylOH proved effective for the SNAr fluorination of a wide
range of aryl and heteroaryl electrophiles under mild and
convenient conditions (80 °C in DMSO, without drying of
solvent or reagents). Overall, we anticipate that this reagent will
find widespread application in the construction of C(sp2)−F
bonds.
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