Tetramethylammonium Fluoride Alcohol Adducts for S_NAr **Fluorination**

María T. Morales-Colón,[‡] Yi Yang See,[‡] So Jeong Lee, Peter J. H. Scott, Douglas C. Bland, and Melanie S. Sanford*

many recent advances, a long-standing limitation of these transformations is the requirement for rigorously dry, aprotic conditions to maintain the

nucleophilicity of fluoride and suppress the generation of side products. This report addresses this challenge by leveraging tetramethylammonium fluoride alcohol adducts (Me₄NF·ROH) as fluoride sources for S_NAr fluorination. Through systematic tuning of the alcohol substituent (R), tetramethylammonium fluoride tert-amyl alcohol (Me₄NF·t-AmylOH) was identified as an inexpensive, practical, and bench-stable reagent for S_NAr fluorination under mild and convenient conditions (80 °C in DMSO, without the requirement for drying of reagents or solvent). A substrate scope of more than 50 (hetero) aryl halides and nitroarene electrophiles is demonstrated.

ver the past 20 years, (hetero)aryl fluorides have emerged as important structural features of numerous pharmaceuticals and agrochemicals.¹⁻⁵ The $C(sp^2)$ -F bonds of these molecules are commonly formed via nucleophilic aromatic (S_NAr) fluorination reactions of fluoride salts with aryl electrophiles.^{6,7} Historically, S_NAr fluorinations have employed anhydrous KF or CsF as the fluoride source (Figure 1A).

B. Hypothesis: ROH to modulate fluoride reactivity

Figure 1. (A) Classical S_NAr fluorination reactions are highly water sensitive. (B) Our hypothesis: complexation of fluoride to an alcohol (ROH) will reduce water sensitivity while maintaining reactivity. (C) Me₄NF·t-AmylOH as optimal fluoride reagent.

However, because of the low nucleophilicity of these reagents, the reactions require elevated temperatures (>130 °C) and long reaction times, which limit functional group compatibility and lead to side products.^{6,8} Recently these challenges have been addressed through the identification of anhydrous fluoride salts with enhanced nucleophilicity.⁹⁻¹¹ For instance, our group has shown that anhydrous tetramethylammonium fluoride [Me4NF (anh)]¹²⁻¹⁵ effectively promotes many S_NAr fluorination reactions at room temperature. These mild conditions enable a wider substrate scope and minimize competing decomposition pathways.

Despite these advances, existing S_NAr fluorination methods still suffer from a key limitation: the reactions are highly sensitive to water (Figure 1A).¹⁶ Yields and selectivities typically plummet in the presence of even traces of moisture, and this adversely impacts both practicality and reproducibility.^{17,18} As such, the substrates, solvents, and hygroscopic fluoride reagents must be rigorously dried, sometimes for days at elevated temperatures.^{6,19} The water sensitivity of these reactions stems from strong hydrogen bonding between fluoride and water, which dramatically decreases the nucleophilicity of $\mathrm{F}^{-\,8,20-22}$ In addition, water can serve as a competing nucleophile for S_NAr, resulting in the formation of phenols and related side products (Figure 1A).

Received: April 30, 2021 Published: May 24, 2021

This Letter describes our approach to addressing this longstanding challenge by leveraging Me₄NF·alcohol adducts as fluoride sources for S_NAr reactions (Figure 1B, C).²³ Our work was inspired by a report from Kim and co-workers,²⁴ who demonstrated that $Bu_4NF(t-BuOH)_4$ is an effective fluoride reagent for $S_N 2$ fluorination. $Bu_4 NF \cdot (t-BuOH)_4$ was found to be significantly less hygroscopic than anhydrous Bu₄NF; furthermore, it afforded comparable/higher yields and fewer E2 byproducts. However, translation of this precedent to S_NAr fluorination presents two key challenges. First, alcohol complexation is well-known to attenuate the nucleophilicity of fluoride.^{21,24,25} This is much more problematic for S_NAr fluorinations, as these reactions are typically much slower and more sensitive to protic additives than their S_N2 analogues.²⁶ Second, while the alkyl fluoride products of S_N2 reactions are inert toward further substitution,²⁷ the aryl fluoride products of S_NAr fluorination are highly reactive electrophiles.²⁸ As such, these can engage with alcohols to generate undesired aryl ether byproducts. Herein, we describe a detailed evaluation of $Me_4NF \cdot ROH$ adducts for S_NAr fluorination (Figure 1C). We demonstrate that careful tuning of the alcohol results in a reagent with high reactivity and selectivity for S_NAr fluorination without the

need for exclusion of ambient air/moisture. Our initial studies explored Me₄NF·MeOH as a fluoride source for S_NAr. As shown in Scheme 1A, Me₄NF·MeOH (a key

Scheme 1. (A) Synthesis of Me_4NF ·MeOH and (B) Reactivity of Me_4NF ·MeOH for S_NAr Fluorination under Ambient Conditions

A. Synthesis of Me₄NF•MeOH.

B. Initial studies for S_NAr fluorination with Me₄NF•MeOH

$ \begin{array}{c} $					
Entry ^a	F source	Solvent	1-F (%)	1-OMe (%)	Conv. (%)
1 <i>^b</i>	Me ₄ NF (anh)	DMF	99	-	100
2	Me ₄ NF•MeOH	DMF	0	0	0
3 ^c	Me ₄ NF•MeOH	DMF	10	19	29
4 ^c	Me ₄ NF•MeOH	DMA	12	27	39
5 ^c	Me ₄ NF•MeOH	MeCN	9	10	19
6 ^c	Me ₄ NF•MeOH	NMP	0	0	0
7 ^c	Me ₄ NF•MeOH	DMSO	16	32	48
8 ^d	Me ₄ NF•MeOH	DMSO	25	30	55

^{*a*}Conditions: F source (1.0 equiv), **1-Cl** (1.0 equiv), 25 °C. ¹H NMR yields determined by using nitromethane as standard. ^{*b*}Inside glovebox. ^{*c*}Reaction carried out at 60 °C. ^{*d*}Reaction carried out at 80 °C.

intermediate en route to anhydrous Me₄NF) is readily prepared on decagram scale via salt metathesis between KF and Me₄NCl in MeOH.²⁹ However, unlike anhydrous Me₄NF, Me₄NF. MeOH is a free-flowing powder that can be handled on the benchtop without significant deliquescence.³⁰

 Me_4NF ·MeOH was first evaluated as a reagent for the S_NAr fluorination of 2-chloroquinoline (1-Cl). For comparison, 1-Cl reacts with anhydrous Me_4NF in DMF at 25 °C in a N_2 -

atmosphere glovebox to afford 2-fluoroquinoline (1-F) in 99% yield. Using Me₄NF·MeOH under analogous conditions but under ambient atmosphere (on the benchtop, without drying of reagents or solvents), the reaction afforded <1% of 1-F (Scheme 1B, entry 2). However, when the temperature was increased to 60 °C, product 1-F was formed in 10% yield, along with 19% of 2-methoxyquinoline (1-OMe) (Scheme 1B, entry 3). We next probed the yield/product distribution as a function of solvent and temperature. Improved reactivity was observed in DMSO at 80 °C (55% conversion, 25% yield of 1-F, Scheme 1B, entry 8); however, 1-OMe remained the major product (30% yield).

A series of competition experiments (see Figures S1 and S2)³¹ indicate that 1-OMe derives primarily from the S_NAr etherification of product 1-F under these reaction conditions. Literature studies suggest that such S_NAr etherification reactions can be suppressed by increasing the size of the alcohol.³¹ As such, a series of Me₄NF·ROH adducts were synthesized by first dissolving Me₄NF·MeOH in the appropriate ROH, followed by removal of the volatiles and drying at room temperature overnight under vacuum (Scheme 2A).³² Me₄NF·(ROH)_x (x =

Scheme 2. (A) Synthesis of Me_4NF ·ROH and (B) Reactivity of Me_4NF ·ROH for S_NAr Fluorination under Ambient Conditions^a

A. Synthesis of Me₄NF•ROH adducts.

Me₄NF•MeOH
$$\xrightarrow{\text{ROH } (3x)}$$
 Me₄NF•(ROH)x x = 1 - 1.4
R = Et, ^{*i*}Pr, ^{*i*}Bu, ^{*i*}Amyl

B. Reactivity of Me₄NF•ROH adducts.

^{*a*1}H NMR yields determined by using nitromethane as standard.

1-1.4) were obtained as free-flowing white solids. Importantly, these syntheses are typically performed on the benchtop (without exclusion of ambient air/moisture) and have been scaled to >25 g.

A series Me₄NF·ROH adducts was evaluated for the S_NAr fluorination of **1-Cl** in DMSO at 80 °C (Scheme 2B). Both the conversion of **1-Cl** and the yield of **1-F** improved with increasing substitution on the R group of the alcohol, with MeOH < EtOH < *i*-PrOH < *t*-BuOH ~ *t*-AmylOH.^{33,34} As predicted, the yield of the ether byproduct **1-OR** decreased dramatically across this series, with <1% of **1-OR** being detected with Me₄NF·*t*-AmylOH. Overall, Me₄NF·*t*-AmylOH exhibits the highest fluoride nucleophilicity (as indicated by the % conversion of **1-Cl** after 1 h at 80 °C) and lowest alcohol nucleophilicity (as

pubs.acs.org/OrgLett

Letter

^{*a*}With 1.1 equiv of Me4_NF·*t*-AmylOH. ^{*b*}With 1.5 equiv of Me₄NF·*t*-AmylOH. ^{*c*}With 2.0 equiv of Me₄NF·*t*-AmylOH. ^{*d*}With 2.1 equiv of Me₄NF·*t*-AmylOH. ^{*b*}With 2.5 equiv of Me₄NF·*t*-AmylOH. ^{*b*}With 3.5 equiv of Me₄NF·*t*-AmylOH. ^{*g*}At 45 °C. ^{*h*}Conditions: Me₄NF·*t*-AmylOH (1.0 equiv) and substrate (1.0 equiv) were stirred in DMSO (0.2 M) at 80 °C for 24 h. Yields determined using ¹⁹F NMR spectroscopy with 1,3,5-trifluorobenzene as standard. Isolated yields are given in parentheses.

indicated by the yield of **1-OR** after 1 or 24 h at 80 °C) among the alcohol adducts examined. Further optimization of the reaction time (moving from 1 to 24 h) and equivalents of Me₄NF·t-AmylOH (changing from 1.0 to 1.5 equiv) resulted in a quantitative yield of **1-F**.³⁵ Under these conditions, the reaction was highly reproducible (yields varied by ±5% over 12 runs). Furthermore, the yield showed minimal variance with different batches of DMSO or with changes in the ambient humidity.³⁶

We next explored the scope of S_NAr fluorination with Me₄NFt-AmylOH for various commercially available halo- and nitro-(hetero)arene electrophiles. As summarized in Scheme 3, good to excellent yields were obtained for >50 different quinoline, pyridine, electron-deficient arene, diazine, and fused heterocyclic substrates.³⁷ Importantly, all of these transformations were conducted on the benchtop at 80 °C, without drying or purification of the electrophile substrates or DMSO solvent. These reactions provided comparable yields on scales ranging from 40 mg to 1 g (for instance 1-F was obtained in 73% and 92% isolated yield, respectively, on these scales). Some other key trends and observations from these studies are summarized below.

- Functional group compatibility. Arene substituents including halogen (F, Cl, Br, I), nitrile (21–23,33–35), ether (9), ester (16, 31, 32), trifluoromethyl (17), nitro (20, 25), tertiary nitrogen (45), and N-Boc protecting groups (48) are all compatible with Me₄NF·*t*-AmylOH S_NAr reactions. Many of these are valuable handles for downstream functionalization. In addition, various heterocycles found in biologically relevant scaffolds are tolerated (e.g., imidazole, pyrazole, indole, pyrrolidine, piperazine, benzimidazole).
- (2) Inherent reactivity. In a series of isomeric chloroquinoline electrophiles, the 2-Cl derivative affords the highest yield (99% of 1-F) followed by the 4-Cl (74% of 2), and then the 3-Cl (0% of 3). A similar trend was observed in the nitro benzonitrile series (33 in 81% yield; 34 in 53% yield; 35 in 0% yield) and the bromo benzonitrile series (33 in 52% yield; 34 in 39% yield; 35 in 0% yield). This reactivity reflects well-documented trends in S_NAr reactions.³⁸
- (3) Site selectivity of substitution. In substrates containing multiple possible leaving groups, S_NAr fluorination with Me₄NF·t-AmylOH reliably favors substitution at the more activated site, independent of the nature of the leaving group. This is exemplified by 4–7 and 24–27, as well as 18 versus 20.
- (4) Effect of leaving group. The impact of the leaving group on reaction yield was examined in three different classes of substrates (that form products 27, 33, and 34).³⁹ In all cases, the yields trend as follows: $NO_2 > Cl \sim Br > I$. This is generally consistent with observations in other S_NAr fluorination systems.¹²
- (5) Biologically relevant scaffolds. Substrate 16-Cl, which forms the core of quinazoline based antibiotics, underwent S_NAr fluorination to afford 16 in 76% isolated yield. In addition, 5-fluoropicolinate 32 was obtained using this method. This structural motif appears in numerous agrochemical candidates.⁴⁰

In summary, this Letter describes the development of Me_4NF · ROH adducts as reactive and practical reagents for S_NAr fluorination. We show that the alcohol substituent (R) can be tuned to enhance the nucleophilicity of fluoride as well as to mitigate competing S_NAr of the alcohol. Me₄NF-*t*-AmylOH was ultimately identified as the optimal fluoride reagent. It can be synthesized, stored, and utilized on the benchtop without the rigorous exclusion of air/moisture. Furthermore, Me₄NF-*t*-AmylOH proved effective for the S_NAr fluorination of a wide range of aryl and heteroaryl electrophiles under mild and convenient conditions (80 °C in DMSO, without drying of solvent or reagents). Overall, we anticipate that this reagent will find widespread application in the construction of $C(sp^2)-F$ bonds.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.1c01490.

Experimental procedures, characterization data, and NMR spectra (PDF)

FAIR data, including the primary NMR FID files, for compounds 1, 4, 5–7, 9–16, 28–32, 36–38, 40–58, Me₄NF·EtOH, Me₄NF·iPrOH, Me₄NF·MeOH, Me₄NF·t-AmylOH, and Me₄NF·t-BuOH (ZIP)

AUTHOR INFORMATION

Corresponding Author

Melanie S. Sanford – Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States; orcid.org/0000-0001-9342-9436; Email: mssanfor@ umich.edu

Authors

- María T. Morales-Colón Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States; • orcid.org/0000-0002-9783-1243
- Yi Yang See Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- So Jeong Lee Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Peter J. H. Scott Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States;
 orcid.org/0000-0002-6505-0450
- **Douglas C. Bland** Process Sciences & Technology, Corteva Agriscience, Indianapolis, Indiana 46268, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.1c01490

Author Contributions

[‡]M.T.M.-C. and Y.Y.S. contributed equally. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Corteva Agriscience and the National Institutes of Health (R01EB021155) are acknowledged for supporting this work. M.T.M.-C. acknowledges support from the National Science Foundation's Graduate Research Fellowship Program (GRFP).

Organic Letters

(1) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001–2011). *Chem. Rev.* **2014**, *114*, 2432–2506.

(2) Fujiwara, T.; O'Hagan, D. Successful fluorine-containing herbicide agrochemicals. J. Fluorine Chem. 2014, 167, 16–29.

(3) Jeschke, P. The unique role of halogen substituents in the design of modern agrochemicals. *Pest Manage. Sci.* **2010**, *66*, 10–27.

(4) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. *Chem. Soc. Rev.* **2008**, *37*, 320–30.

(5) Braun, M.; Eicher, J. The fluorine atom in health care and agrochemical applications: A contribution to life science. *Progr. Fluor. Sci. Ser.* **2017**, *3*, 7–25.

(6) Adams, D. J.; Clark, J. H. Nucleophilic routes to selectively fluorinated aromatics. *Chem. Soc. Rev.* **1999**, *28*, 225–231.

(7) Champagne, P. A.; Desroches, J.; Hamel, J. D.; Vandamme, M.; Paquin, J. F. Monofluorination of organic compounds: 10 years of innovation. *Chem. Rev.* **2015**, *115*, 9073–9174.

(8) Sasson, Y.; Negussie, S.; Royz, M.; Mushkin, N. Tetramethylammonium chloride as a selective and robust phase transfer catalyst in a solid-liquid halex reaction: The role of water. *Chem. Commun.* **1996**, 297–298.

(9) Sun, H. R.; DiMagno, S. G. Anhydrous tetrabutylammonium fluoride. J. Am. Chem. Soc. 2005, 127, 2050–2051.

(10) Sun, H.; DiMagno, S. G. Room-temperature nucleophilic aromatic fluorination: Experimental and theoretical studies. *Angew. Chem., Int. Ed.* **2006**, *45*, 2720–2725.

(11) Allen, L. J.; Muhuhi, J. M.; Bland, D. C.; Merzel, R.; Sanford, M. S. Mild fluorination of chloropyridines with in situ generated anhydrous tetrabutylammonium fluoride. *J. Org. Chem.* **2014**, *79*, 5827–5833.

(12) Schimler, S. D.; Ryan, S. J.; Bland, D. C.; Anderson, J. E.; Sanford, M. S. Anhydrous tetramethylammonium fluoride for room temperature S_NAr fluorination. *J. Org. Chem.* **2015**, *80*, 12137–12145.

(13) Schimler, S. D.; Cismesia, M. A.; Hanley, P. S.; Froese, R. D. J.; Jansma, M. J.; Bland, D. C.; Sanford, M. S. Nucleophilic deoxyfluorination of phenols via aryl fluorosulfonate intermediates. *J. Am. Chem. Soc.* **2017**, *139*, 1452–1455.

(14) Cismesia, M. A.; Ryan, S. J.; Bland, D. C.; Sanford, M. S. Multiple approaches to the in situ generation of anhydrous tetraalkylammonium fluoride salts for S_NAr fluorination reactions. *J. Org. Chem.* **2017**, *82*, 5020–5026.

(15) Schimler, S. D.; Froese, R. D. J.; Bland, D. C.; Sanford, M. S. Reactions of arylsulfonate electrophiles with NMe₄F: Mechanistic insight, reactivity, and scope. *J. Org. Chem.* **2018**, 83, 11178–11190.

(16) See, Y. Y.; Morales-Colón, M. T.; Bland, D. C.; Sanford, M. S. Development of S_NAr nucleophilic fluorination: A fruitful academia-industry collaboration. *Acc. Chem. Res.* **2020**, 53 (10), 2372–2383.

(17) Sharma, R. K.; Fry, J. L. Instability of anhydrous tetra-normalalkylammonium fluorides. J. Org. Chem. **1983**, 48, 2112–2114.

(18) Hong, C. M.; Xu, Y.; Chung, J. Y. L.; Schultz, D. M.; Weisel, M.; Varsolona, R. J.; Zhong, Y.-L.; Purohit, A. K.; He, C. Q.; Gauthier, D. R.; Humphrey, G. R.; Maloney, K. M.; Levesque, F.; Wang, Z.; Whittaker, A. M.; Sirota, E.; McMullen, J. P. Development of a commercial manufacturing route to 2-fluoroadenine, the key unnatural nucleobase of islatravir. *Org. Process Res. Dev.* **2021**, *25* (3), 395–404.

(19) Ishikawa, N.; Kitazume, T.; Yamazaki, T.; Mochida, Y.; Tatsuno, T. Enhanced effect of spray-dried potassium fluoride on fluorination. *Chem. Lett.* **1981**, *10*, 761–764.

(20) Adams, D. J.; Clark, J. H.; McFarland, H.; Nightingale, D. J. Unexpected side products in the tetramethylammonium fluoridedimethylsulfoxide system. *J. Fluorine Chem.* **1999**, *94*, 51–55.

(21) Kim, D. W.; Jeong; Lim, S. T.; Sohn, M.-H.; Katzenellenbogen, J. A.; Chi, D. Y. Facile nucleophilic fluorination reactions using tertalcohols as a reaction medium: Significantly enhanced reactivity of alkali metal fluorides and improved selectivity. *J. Org. Chem.* **2008**, *73*, 957–962. (22) Hydrogen bonding can regulate nucleophilic fluorination. (a) Lee, J. W.; Oliveira, M. T.; Jang, H. B.; Lee, S.; Chi, D. Y.; Kim, D. W.; Song, C. E. Hydrogen-bond promoted nucleophilic fluorination: concept, mechanism and applications in positron emission tomography. *Chem. Soc. Rev.* **2016**, *45* (17), 4638–50. (b) Pfeifer, L.; Engle, K. M.; Pidgeon, G. W.; Sparkes, H. A.; Thompson, A. L.; Brown, J. M.; Gouverneur, V. Hydrogen-Bonded Homoleptic Fluoride-Diarylurea Complexes: Structure, Reactivity, and Coordinating Power. *J. Am. Chem. Soc.* **2016**, *138* (40), 13314–13325. (c) Liang, S.; Hammond, G. B.; Xu, B. Hydrogen Bonding: Regulator for Nucleophilic Fluorination. *Chem. - Eur. J.* **2017**, *23* (71), 17850–17861.

(23) During the preparation of this manuscript, a complementary in situ preparation of Me_4NF outside of a glovebox was reported using KF or CsF and catalytic Me_4NCl and 18-crown-6. Hong, C. M.; Whittaker, A. M.; Schultz, D. M. J. Org. Chem. **2021**, 86 (5), 3999–4006.

(24) Kim, D. W.; Jeong, H. J.; Lim, S. T.; Sohn, M. H. Tetrabutylammonium tetra (tert-butyl alcohol)-coordinated fluoride as a facile fluoride source. *Angew. Chem., Int. Ed.* **2008**, *47*, 8404–8406.

(25) (a) Kim, D. W.; Ahn, D. S.; Oh, Y. H.; Lee, S.; Kil, H. S.; Oh, S. J.; Lee, S. J.; Kim, J. S.; Ryu, J. S.; Moon, D. H.; Chi, D. Y. A new class of S_N2 reactions catalyzed by protic solvents: Facile fluorination for isotopic labeling of diagnostic molecules. *J. Am. Chem. Soc.* **2006**, *128*, 16394–16397. (b) Kim, D. W.; Jeong, H. J.; Lim, S. T.; Sohn, M. H. Facile nucleophilic fluorination of primary alkyl halides using tetrabutylammonium fluoride in a tert-alcohol medium. *Tetrahedron Lett.* **2010**, *51*, 432–434.

(26) Alcohols can be used as reaction solvents for $S_N 2$ fluorination (for example, see references 21 and 25). In contrast, $S_N Ar$ fluorination has been computationally determined to be energetically unfeasible in alcohol solvents due to the high solvation energy of fluoride. Dalessandro, E. V.; Pliego, J. R. Reactivity and stability of ion pairs, dimers, and tetramers versus solvent polarity: $S_N Ar$ fluorination of 2-bromobenzonitrile with tetramethylammonium fluoride. *Theor. Chem. Acc.* **2020**, *139*, 27.

(27) Amii, H.; Uneyama, K. C-F bond activation in organic synthesis. *Chem. Rev.* **2009**, *109*, 2119–2183.

(28) Vlasov, V. M. Fluoride-ion as a nucleophile and a leaving group in aromatic nucleophilic-substitution reactions. *J. Fluorine Chem.* **1993**, *61*, 193–216.

(29) Bland, D. C.; Cheng, Y. Method for preparing tetramethylammonium fluoride. Patent US20180050980A1, February 22, 2018.

(30) Christe, K. O.; Wilson, W. W.; Wilson, R. D.; Bau, R.; Feng, J. A. Syntheses, properties, and structures of anhydrous tetramethylammonium fluoride and Its 1–1 adduct with trans-3-amino-2-butenenitrile. *J. Am. Chem. Soc.* **1990**, *112*, 7619–7625.

(31) S_NAr etherification of 1-F requires the presence of a base (in this case fluoride). Stirring 1-F for 24 h at 80 °C in DMSO and in the presence of 1 equiv of MeOH did not afford 1-OMe. In contrast, the analogous reaction in the presence of 1 equiv of Me₄NF·MeOH afforded 1-OMe in 83% yield (¹H NMR).

(32) Attempts to prepare the tertiary alcohol adducts Me_4NF ·*t*-BuOH and Me_4NF ·*t*-AmylOH directly from Me_4NCl and KF via salt metathesis in the respective solvents were unsuccessful even at higher temperatures. We postulate that this is due to the low solubilities of KF and KCl in these alcohols.

(33) Rodriguez, J. R.; Agejas, J.; Bueno, A. B. Practical synthesis of aromatic ethers by S_NAr of fluorobenzenes with alkoxides. *Tetrahedron Lett.* **2006**, 47, 5661–5663.

(34) For a related study on fluoride-alcohol complexes in S_N^2 reactions, see: Engle, K. M.; Pfeifer, L.; Pidgeon, G. W.; Giuffredi, G. T.; Thompson, A. L.; Paton, R. S.; Brown, J. M.; Gouverneur, V. Coordination diversity in hydrogen-bonded homoleptic fluoride-alcohol complexes modulates reactivity. *Chem. Sci.* **2015**, *6*, 5293–5302.

(35) Control reactions using anhydrous potassium fluoride (KF) or cesium fluoride (CsF) under these conditions afforded 1-F in < 1% or 47% yield, respectively.

(36) The DMSO solvent used for all reactions in this work contains 28.7 ppm of water, as determined by Karl Fisher titration. However, as

(37) In some cases, isolated yields were lower than ¹⁹F NMR yields due to the difficult separation from remaining starting material.

(38) (a) Froese, R. D. J.; Whiteker, G. T.; Peterson, T. H.; Arriola, D. J.; Renga, J. M.; Shearer, J. W. Computational and experimental studies of regioselective S_NAr halide exchange (halex) reactions of pentachloropyridine. J. Org. Chem. 2016, 81, 10672–10682. (b) Wendt, M. D.; Kunzer, A. R. Ortho selectivity in S_NAr substitutions of 2,4-dihaloaromatic compounds. Reactions with piperidine. Tetrahedron Lett. 2010, 51, 641–644.

(39) A reviewer suggested that residual trimethylamine could facilitate S_NAr fluorination via the formation of aryltrialkylammonium intermediates. Suggesting against this possibility, careful analysis of the ¹H NMR spectra of (1) the isolated Me₄NF·ROH adducts and (2) the crude S_NAr reaction mixtures showed no Me₃N.

(40) Epp, J. B.; Alexander, A. L.; Balko, T. W.; Buysse, A. M.; Brewster, W. K.; Bryan, K.; Daeuble, J. F.; Fields, S. C.; Gast, R. E.; Green, R. A.; Irvine, N. M.; Lo, W. C.; Lowe, C. T.; Renga, J. M.; Richburg, J. S.; Ruiz, J. M.; Satchivi, N. M.; Schmitzer, P. R.; Siddall, T. L.; Webster, J. D.; Weimer, M. R.; Whiteker, G. T.; Yerkes, C. N. The discovery of Arylex (TM) active and Rinskor (TM) active: Two novel auxin herbicides. *Bioorg. Med. Chem.* **2016**, *24*, 362–371.