Synthesis of chiral P,N-ligands derived from quinoline and their application in asymmetric allylic alkylations

Yan-Hong Shen*, Hui-Chao Lv and Liang Zhao
Department of Chemistry, Anyang Institute of Technology, Anyang 455000, P. R. China

Abstract

Chiral P,N-ligands derived from quinoline and with a trans and cis cyclohexane backbone were easily synthesised in four steps from quinoline N -oxide. The enantiopure trans isomer was obtained by the way of chiral resolution of the mixture of trans- and cis-2-(quinolin-2-yl)cyclohexanol with dibenzoyltartaric acid and then subjected to a Mitsunobu reaction and deprotection to give the corresponding cis isomer. The optical pure trans and cis isomer reacted with chlorodiphenylphosphine or $\mathrm{PAr}_{2} \mathrm{NEt}_{2}$ to obtain trans and cis P, N-ligands, which were used in asymmetric allylic alkylations with up to 78% ee and 84% ee respectively

Key words: P,N-ligands, quinoline, chiral resolution, allylic alkylations

Asymmetric transformations in the presence of chiral ligands have proved to be one of the most efficient methods for the construction of enantioenriched chiral compounds. ${ }^{1}$ The development of phosphorus- and nitrogen-based chiral ligands has been extensively investigated in late-transition-metal catalysis. ${ }^{2-4}$ Zhou and Pfaltz have successfully used chiral P,N-ligands with a cyclohexane-backbone and bicyclic P,Nligands in the Pd-catalysed allylic alkylations. ${ }^{5,6}$ However, P,Nligands derived from quinoline have been reported in only a few examples. In the present work, we describe the synthesis of chiral P,N-ligands derived from quinoline and their application in asymmetric allylic alkylations.

Following literature precedents, ${ }^{7-10}$ the reaction of quinoline N -oxide with the enamine of cyclohexanone in the presence of an acylating agent gave ketone 3. This was treated with NaHB_{4} in 95% ethanol for 10 min at room temperature to give a nearly quantitative yield of a mixture of the trans and cis alcohols 4 and $\mathbf{5}$. The stereochemistry of the two isomers was established from their ${ }^{1} \mathrm{H}$ NMR spectra. The chemical shift of the major isomers (trans $\mathbf{O H}$) was larger than that of the minor isomers (cis OH), which indicates the presence of an intramolecular hydrogen bonding in 5. ${ }^{10,11}$ The ratio of trans and cis isomers was $71: 29$. The cis and trans isomers could be easily separated by column chromatography.

The optical resolution of the isomers was then carried out. Kita et al. reported kinetic resolution of (\pm)-trans-2-pyridylcyclohexanols using chiral 3β-acetoxyetienic acid, DCC and DMAP ${ }^{12,13}$. Zhou reported a convenient method to obtain
enantiopure trans- and cis-pyridyl cyclohexanols with inexpensive tartaric acid derivatives. ${ }^{6}$ Here, we found the dibenzoyl tartaric acid (DBTA) was an efficient resolving agent. (D)-DBTA in a mixture of solvents was used to resolve the racemic trans and cis mixtures. The crude diastereomeric salt was then recrystallised three times to obtain (1S, 2 R)-4 in 22% yield and more than 99% ee. Then, the trans isomer (1S, 2R)-4 was transformed to the cis isomer (1R, 2R)-5 by a Mitsunobu reaction. ${ }^{6,14}$ Reaction of trans- $\mathbf{4}$ with BuLi and $\mathrm{PPh}_{2} \mathrm{Cl}$ in THF gave trans-ligand 6, and using Pfaltz's condition, reaction of cis-5 with $\mathrm{PAr}_{2} \mathrm{NEt}_{2} / 4,5$-dichloroimidazole/Et ${ }_{3} \mathrm{~N}$ (1:1:1, 1.5 equiv) under reflux gave the desired cis-ligand 7. ${ }^{5}$

Finally, we examined the palladium-catalysed asymmetric allylic alkylation of racemic 1,3-diphenyl-2-propenyl acetate (8) with 3.0 equiv. of dimethyl malonate (DMM) using chiral P,N-ligand 6 or 7 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 2 h at $25^{\circ} \mathrm{C}$.

For ligand $\mathbf{6}$, the reaction proceeded in 96% conversion and enantiomeric excess of up to 78%; for ligand 7 , the reaction proceeded in 95% conversion and enantiomeric excess of up to 84%.

Experimental

Solvents and reagents were obtained from commercial sources and used without further purification. Melting points were determined on a Mettler FP5 melting point apparatus and are uncorrected. NMR spectra were recorded on Bruker DRX 400 MHz spectrometer using DMSO- $d 6, \mathrm{CDCl}_{3}$ as solvent, and tetramethylsilane (TMS) as internal standard. Optical rotations were measured with a JASCO P-1020

1) PPh_{3}, $\mathrm{DEAD}, \mathrm{p}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}$ benzene, RT, 16 h
2) $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}$, reflux, 1.5 h

(1R,2R)-5

[^0]

(1R,2R)-5
(1R,2R)-7

8
$\left[\mathrm{Pd}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cl}\right]_{2}(2.5 \mathrm{~mol} \%)$

$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$

9
trans-6: 96\%, 78\% ee
cis-7: $95 \%, 84 \%$ ee
automatic polarimeter. High resolution mass spectra were recorded on Applied Biosystems Mariner System 5303. Enantiomeric excess (e.e.) determination was carried out using HPLC with a Chiralcel AS-H and AD-H column on an Agilent 1100 Series HPLC instrument.

The reduction of ketone: $\mathrm{NaBH}_{4}(0.418 \mathrm{~g}, 11 \mathrm{mmol})$ was added to a solution of ketone $3(2.25 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 0.5 h at room temperature. Then, the solvent was removed under vacuum. Water was added to the residue and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuum to give the product (cis and trans) as a diastereomeric mixture. The cis and trans isomers could be easily separated by column chromatography and their structure was confirmed by NMR.
(\pm)-trans-2-Quinolin-2ylcyclohexanol (4): ${ }^{10}$ M.p. $129-131^{\circ} \mathrm{C}$ (lit. $\left.{ }^{10}: 129-130^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58$ (br, 1H), 4.15 (td, $J=10.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{td}, J=10.6$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.54(\mathrm{~m}$, 4H).
(\pm)-cis-2-Quinolin-2ylcyclohexanol (5): ${ }^{11}$ M.p. $123-124^{\circ} \mathrm{C}$ (lit. ${ }^{11}$: $\left.126^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.01$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(b r \mathrm{~s}, 1 \mathrm{H}), 4.45$ (s, 1 H), 2.88-2.92 (m, 1 H), 2.03-2.09 (m, 2 H), 1.84-1.87 (m, 2 H$)$, 1.63-1.73 (m, 2 H), 1.45-1.55 (m, 2 H).

Resolution of 2-(quinolin-2-yl)cyclohexanol with DBTA: DBTA $(25.6 \mathrm{~g}, 71.5 \mathrm{mmol})$ was added to compound $4(16.2 \mathrm{~g}, 71.4 \mathrm{mmol})$ in a mixed solvent (250 mL ethanol and 250 mL petroleum ether) at $0^{\circ} \mathrm{C}$, and the reaction mixture was heated for several minutes until it became clear. Then it was allowed to room temperature and kept stirring overnight. A white solid precipitated and was collected by filtration and washed with a small amount of petroleum ether (30 mL). The solid was crystallised a second time by adding 350 mL of ethanol and 150 mL of petroleum ether and then heating to reflux and cooling to room temperature. The process was repeated three more times with 280 mL and $200 \mathrm{~mL}, 180 \mathrm{~mL}$ and $100 \mathrm{~mL}, 130 \mathrm{~mL}$ and 100 mL of ethanol and petroleum ether (all wash with 10 mL of petroleum ether) respectively. After drying in vacuo for 2 h , the final diastereomeric salt precipitated and filtered as a white solid (3.2 g). It was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ and $1 \mathrm{M} \mathrm{KOH}(10 \mathrm{ml})$. The mixture was stirred for 30 min , and the organic layer was dried over anhydrous MgSO_{4} and evaporated in vacuum to give $(1 S, 2 R)-4$ as white solid.
(1S,2R)-trans-2-(quinolin-2-yl)cyclohexanol (4): M.p. $155^{\circ} \mathrm{C}$. $[\alpha]^{27}{ }_{\mathrm{D}}=-23.7\left(c \quad 0.42, \mathrm{CHCl}_{3}\right) ;>99 \%$ ee. (Chiralcel AS-H column, $i-\mathrm{PrOH} /$ hexane $10 / 90,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, 254 \mathrm{~nm}: \mathrm{t}_{(\mathrm{IS}, 2 \mathrm{R})}=7.2 \mathrm{~min}, \mathrm{t}_{(\mathrm{IR}, 2 \mathrm{~S})}=$ $9.1 \mathrm{~min})$].
$(1 R, 2 R)$-cis-2-(quinolin-2-yl)cyclohexanol (5): A solution of DEAD $3.0 \mathrm{mmol})$ in benzene (20 mL) was slowly added under a N_{2} atmosphere to the mixture of (1S,2R)-trans-2-(quinolin-2-yl)cyclohexanol (4) $(454 \mathrm{mg}, 2.0 \mathrm{mmol}), p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}(502 \mathrm{mg}, 3.0 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(786 \mathrm{mg}, 3.0 \mathrm{mmol})$ in 30 mL benzene at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 24 h . The solvent was removed under reduced pressure and the residue was immediately subjected to flash chromatography to give (1R,2R)-cis-2-(quinolin2-yl)cyclohexyl-4-nitrobenzoate. The resulting carboxylic esters were dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10 \mathrm{mmol})$ was added. The solution was stirred under reflux for 3 h . The reaction mixture was concentrated in vacuo to dryness and then diluted with water $(120 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layer was successively washed with $\mathrm{KOH}(1 \mathrm{~N}), \mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the white crystalline solid (1R,2R)-cis-2-(quinolin-2-yl)cyclohexanol 5 in 91% yield. M.p. $150-152{ }^{\circ} \mathrm{C}[\alpha]^{26}{ }_{\mathrm{D}}=+19.3\left(c 0.78, \mathrm{CHCl}_{3}\right)$.
[(1S,2R)-trans-2-Quinolin-2ylcyclohexan-1-oxy]diphenyl phosphine (6): $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, 0.52 mL$)$ was added to a Schlenk flask containing (1S,2R)-trans-2-(quinolin-2-yl)cyclohexanol $4(297 \mathrm{mg}, 1.31 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and stirred for 1 h . The reaction was then cooled to $0^{\circ} \mathrm{C}$ and chlorodiphenylphosphine $(0.27 \mathrm{~mL}, 1.44 \mathrm{mmol})$ was added using a syringe. The reaction mixture was again allowed to warm to room temperature and stirred for 3 h . The solvent was removed in vacuo, and the reaction was diluted with 95:5 hexane-AcOEt (1.5 mL). The resulting slurry was loaded onto a plug of silica and purified by flash chromatography (hexane/ $\mathrm{AcOEt}=95: 5$) to yield 6 as a pale yellow oil.
[(1S,2R)-trans-2-Quinolin-2ylcyclohexan-1-oxy]diphenyl phosphine (6): $[\alpha]^{26}{ }_{\mathrm{D}}=+26.1\left(c 0.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO$\left.d_{6}\right): \delta 8.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.91(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~m}, 1 \mathrm{H}), 7.54$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.89$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.39-4.44 (m, 1 H), 3.10-3.16 (m, 1 H), 2.16-2.19 (m, 1 H), 1.691.92 (m, 3 H), 1.35-1.52 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): 824.4, 25.0, 32.1, 34.3, $53.9(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 82.5(\mathrm{~d}, J=20.1 \mathrm{~Hz})$, 121.7, 125.6, 126.9, 127.2, 127.3, 127.6, 128.1, 128.2, 128.5, 128.6, $128.8,129.0,129.1,129.4,129.7,136.1,141.7$ (d), 143.0 (d, $J=17.1$

Hz), 147.4, 163.6; ${ }^{31} \mathrm{P}$ NMR (162 MHz, DMSO- d_{6}): $\delta 105.8 ;$ HRMS Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NOP}(\mathrm{M}+1)$ 412.183. Found: 412.184 .
[(1R,2R)-cis-2-Quinolin-2ylcyclohexan- 1-oxy]diphenyl phosphine (7): (1R,2R)-cis-2-(quinolin-2-yl)cyclohexanol 5 ($68 \mathrm{mg}, 0.30 \mathrm{mmol}$), 4,5 -dichloro imidazole ($62 \mathrm{mg}, 0.45 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL) to give a white suspension. Triethylamine ($63 \mu \mathrm{l}, 0.45 \mathrm{mmol}$) was added to the reaction mixture to give a clear solution. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and N -ethyl- N -(diphenylphosphino)ethanamine $(116 \mathrm{mg}, 0.45 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added. The cooling bath was removed and the solution was heated to reflux for 6 h until the reaction was complete (TLC). The mixture was then concentrated and directly purified by flash chromatography (hexane/ $\mathrm{EtOAc}=10: 1-15: 1$) to yield 7 as a white solid ($80 \mathrm{mg}, 65 \%$).
[(1R,2R)-cis-2-Quinolin-2ylcyclohexan-1-oxy]diphenyl phosphine (7): M.p. 70-72 ${ }^{\circ} \mathrm{C},[\alpha]^{25}{ }_{\mathrm{D}}=-265.5$ (c 1.34, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 8.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.71 (m, 1 H), 7.55 (t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.32-7.40 (m, 5 H), $6.94(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.68(\mathrm{~m}, 4 \mathrm{H}), 4.62-4.64$ (m, 1 H), $3.20(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.07(\mathrm{~m}, 1 \mathrm{H})$, 1.90-1.98 (m, 2 H$), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.53(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 19.6,23.8,25.1,31.5,49.2(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 79.0$ (d, $J=19.8 \mathrm{~Hz}$), 120.6, 125.7, 126.7, 127.4, 127.5, 127.6, 127.8, $128.3,128.4,128.5,128.7,128.9,129.2,129.6,129.8,130.8,135.8$, 141.9 (d), 143.2 (d), 147.1, 162.9; ${ }^{31}$ P NMR (162 MHz , DMSO- d_{6}): 8104.1; HRMS Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NOP}(\mathrm{M}+1)$ 412.18248. Found: 412.18309.

Allylic alkylations with dimethyl malonate: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ followed by $\left[\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{PdCl}\right]_{2}(2.3 \mathrm{mg}, 0.0063 \mathrm{mmol})$ was added to a Schlenk flask containing ligand 6 or $7(5.1 \mathrm{mg}, 0.0125 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h . Potassium acetate (1.2 mg) and the allylic acetate ($63 \mathrm{mg}, 0.25 \mathrm{mmol}$) dissolved in $1 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added to the reaction and the reaction solution was stirred at room temperature for another 1 h . Dimethyl malonate ($86 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$) and N,O-bis(trimethylsilyl)acetamide $(186 \mu \mathrm{~L}, 0.75 \mathrm{mmol})$ were
added subsequently. The reaction mixture was stirred at room temperature for 2 h . The solvent was removed under vacuum and the residue was passed through a short silica gel column (EtOAc/hexanes = 1:9) to give an oily product. The enantiomeric excess of the product was determined by HPLC (Chiralcel AD-H column, i-PrOH/hexane $\left.10 / 90,1.0 \mathrm{~mL} \mathrm{~min}^{-1}, 254 \mathrm{~nm}: \mathrm{t}_{(\mathrm{R})}=11.8 \mathrm{~min}, \mathrm{t}_{(\mathrm{S})}=16.8 \mathrm{~min}\right)$. The products of the allylic alkylations using ligands $\mathbf{6}$ and 7 were shown to have $[\alpha]^{26}{ }_{\mathrm{D}}=-16.2\left(c 0.48, \mathrm{CHCl}_{3}\right)$ and $[\alpha]^{26}{ }_{\mathrm{D}}=-17.1\left(c 0.50, \mathrm{CHCl}_{3}\right)$ respectively

Received 12 April 2011; accepted 27 May 2011
Paper 1100653 doi: 10.3184/174751911X13082269792294 Published online: 11 July 2011

References

1 I. Ojima, Catalytic asymmetric synthesis, 2nd edn, Wiley-VCH, New York, 2000.

2 P.J. Guiry and C.P. Saunders, Adv. Synth. Catal., 2004, 346, 497
3 G. Chelucci, G. Orru and G.A. Pinna, Tetrahedron, 2003, 59, 9471.
4 G. Helmchen and A. Pfaltz, Acc. Chem. Res., 2000, 33, 336.
5 S. Kaiser, S.P. Smidt and A. Pfaltz, Angew. Chem., Int. Ed., 2006, 45, 5194.

6 Q.-B. Liu and Y.-G. Zhou, Tetrahedron Lett., 2007, 48, 2101.
7 H. Noda, Chem. Pharm. Bull., 1965, 13, 912.
M. Hamana and H. Noda, Chem. Pharm. Bull., 1966, 14, 762

9 M. Hamana and H. Noda, Chem. Pharm. Bull., 1967, 15, 474
10 M. Matsugi, K. Itoh, M. Norjima, Y. Hagimoto and Y. Kito, Chem. Eur. J., 2002, 8, 5551
11 C. Arnoldi, A. Citterio and F. Minisci, J.Chem. Soc., Perkin Trans., 2: Phys. Org. Chem., 1983, 531.
12 M. Matsugi, Y. Hagimoto and Y. Kita, Tetrahedron Lett., 2001, 42, 8039.
13 M. Matsugi, Y. Hagimoto, M. Nojima and Y. Kita, Org. Process Res. Dev., 2003, 7, 583.
4 S. F. Martin and J. A. Dodge, Tetrahedron Lett., 1991, 32, 3017

Copyright of Journal of Chemical Research is the property of Science Reviews 2000 Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

[^0]: * Correspondent. E-mail: yanhong0809@163.com

