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ABSTRACT: A copper-mediated dehydrogenative C−H/C−H
biaryl coupling of phenols and 1,3-azoles has been developed.
The key to its success is the introduction of a bipyridine-type
bidentate auxiliary, 4,4′-di(tert-butyl)-2,2′-bipyridine, on the phenol
oxygen, which is readily prepared and easily attachable, detachable,
and recyclable. The reaction proceeds smoothly in the presence of
copper salt alone to form the corresponding phenol-azole
heterobiaryls, which are prevalent motifs in functional molecules
such as excited-state intramolecular proton transfer materials.

Due to its ubiquity in pharmaceuticals and functional
organic materials, construction of the heterobiaryl

linkage has been one of the long-standing central topics in
synthetic organic chemistry. In addition to the conventional
cross-coupling technology using organic halides and organo-
metallic reagents,1 the metal-promoted C−H activation
strategy2 has recently received a significant amount of attention
because of its better step and atom economy. Among them, the
dehydrogenative C−H/C−H biaryl coupling is ideal and can
streamline the synthesis of the heterobiaryls because
preactivation steps, such as stoichiometric halogenation and
metalation, of two starting (hetero)arenes can be avoided.3

There are several successful examples using noble metals (e.g.,
Pd, Rh, Ir, and Ru)4 and even earth-abundant base metals (e.g.,
Ni, Co, Fe, and Cu).5 However, the applicable combination of
two simple (hetero)arenes is still limited. In particular, the
phenol−heteroarene direct biaryl coupling is possible only
using the noble Cp*Rh(III) catalyst/Ag oxidant system,4g

despite the fact that the obtained phenol−heteroarene
conjugation is frequently occurring in bioactive molecules,6

organic light-emitting diodes (OLEDs),7 and excited-state
intramolecular proton transfer (ESIPT) materials.8 A good
alternative is the metal-free, electrochemical synthesis
developed by Waldvogel, in which dehydrogenative coupling
of phenols and thiophenes is achieved.9

Meanwhile, our research group focused on the unique redox
activity of Cu salts and developed the Cu-mediated C−H
activation reactions involving C−H/C−H couplings.5d−g With
our continuing interest in this chemistry, we envisioned the
dehydrogenative coupling of phenols and heteroarenes.
Herein, we report a bipyridine-type bidentate auxiliary-enabled
Cu-promoted direct biaryl coupling of phenols and 1,3-azoles.
The key to its success is the introduction of a 4,4′-di(tert-
butyl)-2,2′-bipyridine (dtbpy) auxiliary on the phenol oxygen.
The auxiliary can be easily prepared, and its attachment,

detachment, and even recycling are feasible. Additionally, the
direct substitution via C−O cleavage is also possible. The
successful use of 1,3-azoles as the coupling partners is
complementary to the reported electrochemical methods.9

Our initial attempt with the simple o-cresol (1a-H, 0.10
mmol), 5-phenyloxazole (2a, 0.20 mmol), and the Cu(OAc)2·
H2O promotor (0.30 mmol) remained unsuccessful; no
targeted product was detected probably because of rapid
oxidative decomposition of the unprotected phenol ring
(Scheme 1a). The monodentately coordinating substrate 1a-
Py, which was successfully used during noble transition metal-
catalyzed C−H activation,10 also resulted in no conversion.
Thus, we turned our attention to the use of bidentately
coordinating phenanthroline auxiliary 1a-Phen, which was
recently originally developed by our group.11 However,
unfortunately, just decomposition of 1a-Phen was observed.
To improve the stability of the starting phenol derivative under
the oxidative conditions, we next tested relatively flexible but
more robust 2,2′-bipyridine-substitued substrate 1a-bpy.12

Gratifyingly, the desired phenol−heteroarene conjugate 3aa-
bpy was formed in 20% 1H NMR yield. On the contrary,
competitive C−H arylation on the pyridine ring also occurred
(3aa′-bpy) probably because of the rollover cyclometalation
via free rotation of the pyridine−pyridine bond in the
bipyridine auxiliary.13 To suppress the competitive C−H
activation on the pyridine ring and enhance its chelating
nature, substituents were attached at positions 4 and 4′ of the
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bipyridine moiety. The introduction of methyl groups
improved the yield to a 44% 1H NMR yield (1a-dmbpy).

The tert-butyl substituents further increased the yield (1a), and
targeted 3aa was isolated in 69% yield with a 26% recovery of

Scheme 1. Investigation of Directing Groups for Cu-Mediated C−H/C−H Coupling of Phenols 1 and 5-Phenyloxazole (2a)
and Preparation of the Starting Substrate

Scheme 2. Copper-Mediated C−H/C−H Biaryl Coupling of Phenols 1 and Heteroarenes 2a

aReaction conditions: Cu(OAc)2·H2O (0.30 mmol), 1 (0.10 mmol), 2 (0.20 mmol), o-xylene (1.0 mL), 130 °C, 22 h, N2. Isolated yields are
shown. The 3:4 ratios are in parentheses. bOn a 1.0 mmol scale. cIn toluene. dIsolated yields of only monoarylated products.
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unreacted 1a-dtbpy (93% yield brsm). In this case, the
reaction was clean, and any side products corresponding to
3aa′-bpy were not detected at all (see the Supporting
Information for more detailed optimization studies involving
attempts to make the reaction catalytic in copper). We believe
that the product 3aa can be a N,N,N-tridentately coordinating
substrate to the copper to decrease its performance. The
starting 1a was easily prepared by the simple condensation of
o-cresol (1a-H) and 4,4′-di-tert-butyl-6-chloro-2,2′-bipyridine
(dtbpy-Cl), which was readily synthesized on a gram scale
from commercially available 4,4′-di-tert-butyl-2,2′-bipyridine
(dtbpy) in two steps (Scheme 1b).
With the optimal auxiliary and reaction conditions in hand,

we then examined the substrate scope of heteroarenes 2
(Scheme 2). The copper-mediated conditions were compatible
with several electron-rich and -deficient 5-aryloxazoles thar
bear methyl (3ab), methoxy (3ac and 3ai), trifluoromethyl
(3ad), chloro (3ae), methoxycarbonyl (3af), cyano (3ag), and
nitro (3ah) groups. The naphthalene (3aj) and styrenyl (3ak)
substituents were also tolerated. In addition to the oxazole, the
electronically and sterically diverse 1,3,4-oxadiazoles were
applicable substrates to deliver the corresponding heterobiaryls
3al−ap in acceptable yields. The bicyclic benzoxazole was also
a viable substrate (3aq). However, attempts to apply other
azoles such as thiazole and imidazole remained unsuccessful
probably because of their lower acidity of C−Hs at the C2
position (data not shown).14

Not only o-cresol 1a but also some ortho-substituted phenols
underwent the dehydrogenative coupling with 2a to form
3ba−ea in good yields, except for the tert-butyl-substituted
hindered 3ea. The m-cresol derivative was arylated selectively
at the more sterically accessible ortho C−H (3fa). In the cases
of the parent phenol and para-substituted phenols, a mixture of
mono- and diarylated products were generally obtained but in
synthetically useful combined yields (3ga−ja and 4ga−ja).
Interestingly, when the parent phenol-type substrate 1g was
subjected to reaction conditions with the oxadiazole 1l, the
monoarylated product 3gl was formed with high selectivity
(>15:1 3gl:4gl). Additionally, naphthols (3ka and 3la) and
pyridinols (3ma and 3na) participated in the reaction.
Furthermore, the tetralone (3oa), julolidine (3pa), dihydro-
benzofuran (3qa), and sesamol (3ra) ring systems were
accommodated under the standard conditions. The copper-
mediated C−H/C−H coupling could also be applied to the
modification of a 2,4-bis(α,α-dimethylbenzyl)phenol scaffold
(3sa), which is the core structure of UV absorption materials,
TINUVIN. Particularly notable is the successful use of
bioactive estrone, giving heteroarylated 3ta in a satisfactory
yield with high regioselectivity. The structure of 3aj was
unambiguously confirmed by X-ray crystallographic analysis
(CCDC 2078754). The reaction was also conducted on a 1.0
mmol scale (3aa), thus suggesting the reproducibility and
practicality of the process. In some cases, the dtbpy directing
group was removed during the reaction, and the formed free
phenol underwent decomposition to decrease the mass
balance.
The dtbpy auxiliary could be readily removed and recycled

from the coupling products 3 (Scheme 3). Treatment of 3ga
with KO-t-Bu in heated toluene was followed by TFA to afford
the OH-free 3ga-H in 86% yield along with a 94% yield of
pyridone derivative 5, which was easily converted back into
dtbpy-Cl by the action of POCl3/DMF. The complex estrone
derivative 3ta also underwent auxiliary removal under

microwave-assisted modified conditions (3ta-H). The Odtbpy
moiety also worked as the good leaving group in the
chromium-catalyzed Kumada−Tamao−Corriu coupling. 3ha
reacted with PhMgBr in the presence of the CrCl2 catalyst to
furnish arylated 6 and pyridone 5 in 86% and 73% yields,
respectively.15 Intriguingly, in the case of 3aa, the arylation
occurred at the C−H and the C−O,16 and the corresponding
diarylated product 7 was mainly obtained.
Finally, to compare the directing effect of pyridine,

phenanthroline, and bipyridine auxiliaries in the reaction, we
performed deuterium incorporation tests (Scheme 4). Each

substrate was heated in o-xylene with 20 mol % Cu(OAc)2 and
4.0 equiv of acetic acids-d4, and the recovered starting substrate
was analyzed by NMR. Similar to our previous work,11a the
monodentately coordinating pyridine-ligated 1a-Py resulted in
0% deuterium content while 63% D was observed in the
recovered phenanthroline-substituted 1a-Phen. However, to
our surprise, bpy- and dtbpy-ligated substrates 1a-bpy and 1a
exhibited lower D contents (26% D and 31% D, respectively).
These phenomena suggest that the bidentate coordinating

Scheme 3. Removal, Recycling, and Functionalization of an
Auxiliary

Scheme 4. Deuterium Incorporation Tests
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nature of the auxiliary is essential for the C−H activation step,
but the directing aptitude cannot be correlated with product
formation. Actually, the most productive 1a showed just a
moderate performance in the deuterium incorporation
reaction. The highest productivity of the dtbpy bidentate
auxiliary might be mainly attributed to its higher stability under
the C−H/C−H coupling reaction conditions.17

In conclusion, we have developed a Cu-mediated C−H/C−
H biaryl coupling of phenols and azoles to form the
corresponding heterobiaryls directly. The salient feature is
the use of a bidentately coordinating auxiliary, 4,4′-di(tert-
butyl)-2,2′-bipyridine (dtbpy), which is readily prepared from
commercial sources and attached on the phenol oxygen.
Additionally, the auxiliary is easily removed and recycled after
the coupling event, whereas its direct substitution with the aryl
functionality is also possible under suitable Cr catalysis. The
obtained phenol−heteroarene conjugations are of great
interest in pharmaceutical and material chemistry. Additional
applications of the dtbpy bidentate auxiliary in C−H activation
reactions and development of more robust and selective
directing groups are currently underway in our laboratory.
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