> Synthesis and evaluation of chirally defined side chain variants of 7-chloro-4-aminoquinoline to overcome drug resistance in malaria chemotherapy.

Vasantha Rao Dola ${ }^{1}$, Awakash Soni ${ }^{2}$, Pooja Agarwal ${ }^{2}$, Hafsa Ahmad ${ }^{3}$, Kanumuri Siva Rama Raju ${ }^{4}$ Mamunur Rashid ${ }^{4}$, Muhammad Wahajuddin ${ }^{4}$, Kumkum Srivastava ${ }^{2}$, W.Haq ${ }^{1}$, A.K.Dwivedi ${ }^{3}$, S.K.Puri ${ }^{2}$, and S.B.Katti ${ }^{1 *}$

Divisions of Medicinal and Process Chemistry ${ }^{1}$, Parasitology ${ }^{2}$, Pharmaceutics ${ }^{3}$, and Pharmacokinetics and Metabolism ${ }^{4}$, Central Drug Research Institute, Sector-10, Jankipuram Ext. Sitapur Road, Lucknow-226031.

Running Title: Side chain modified 4-aminoquinoline antimalarials

CORRESPONDING AUTHOR INFORMATION

Dr. S. B. Katti,
Medicinal \& Process Chemistry Division,

Central Drug Research Institute,

Sitapur Road, Sector-10, Jankipuram Extension, Lucknow-226021

Phone: +91 9415106737

E-mail: sb_katti@cdri.res.inand setu_katti@yahoo.com.

Abstract

A novel 4-aminoquinoline derivative ((S)-7-chloro- N-(4-methyl-1-(4-methylpiperazin-1-yl)pentan-2-yl)-quinolin-4-amine triphosphate) exhibiting curative activity against chloroquine resistant malaria parasite has been identified for preclinical development as a blood schizonticidal agent. The lead molecule selected after detailed SAR studies, has good solid state properties, and has promising activity against in vitro and in vivo experimental malaria models. The in vitro ADME parameters have indicated favourable drug like profile.

INTRODUCTION

Malaria is a major infectious disease affecting mainly tropical and subtropical areas. Of the five species of Plasmodia which are responsible for human malaria, P. falciparum causes the most severe form of the disease (1). There were an estimated 207 million malaria cases in 2012 and an estimated 627000 deaths of which 90% of malaria deaths occur in sub-Saharan Africa, and 77% occur in children under five years of the age (2). For several decades chloroquine (CQ), a 4-aminoquinoline, has been the frontline drug in malaria chemotherapy because of its therapeutic efficacy, ease of use and low cost (3). However due to emergence of resistant P. falciparum and P. vivax strains against commonly used drugs such as CQ, amodiaquine and artemisinin (Figure 1) there is urgent need to develop new chemical entities with a goal to overcome parasite resistance.

Aminoquinolines such as chloroquine had been the most important antimalarials for more than four decades in view of their efficacy against all species of human malaria and their safety profile. Emergence of resistance to this class of compounds during 1980's created a genuine health crisis in the developing world. Studies on elucidation of mechanism of resistance and general trend emerging from the SAR-studies revealed that chloroquine resistance does not involve any change to the target of this class of drugs but involves compound specific efflux mechanism (4). Based on this premise a number of research groups have developed short chain analogues of 4 -aminoquinoline, which are active against CQresistant strains of P.falciparum. However, these derivatives undergo biotransformation (dealkylation) significantly affecting lipid solubility of the drug and decreasing the biological efficacy (5). In view of this background information it was surmised that a focussed library of
small molecules based on 4-aminoquinoline scaffold with suitable functionalities would result in molecules with improved antiplasmodial activity against CQ resistant parasite. Therefore, modifications employing side chain refinement and conformational rigidity were considered. The seminal finding of our study is that a new chemical entity having significant activity against CQ resistant parasites has been identified and the results are discussed in the present manuscript.

Stocks et al. synthesized and evaluated a series of short chain CQ derivatives, by replacement of diethyl amino function with more metabolically stable side chain (tert-butyl) as well as heterocyclic ring (piperidyl, pyrrolidino, morpholino) modifications, that led to a substantial increase in the antimalarial activity against CQ-resistant parasite strains (6). Madrid et al. have replaced diethylamino functionality with one propyl group as constant and replacing the other ethyl group with bulky or aromatic ring and the results indicated that some of these analogs are active against multi drug resistant strains (7).Some annals suggest that 4-aminoquinoline analogs of altered side chain such as N^{\prime}-(7-Chloro-quinolin-4-yl)- N, N -diethyl-propane-1,3- diamine show potential leads for the development of new drugs (8). Ryckebusch et al. evaluated new series (1,4-bis(3-aminopropyl) piperazine derivatives) against the chloroquine resistant strains of P. falciparum. Compounds displayed moderate to good activity when quinoline and/or aryl moieties were attached to the above mentioned linker. In this series, compounds containing piperazine moiety were found to be active against CQ resistant strains of P. falciparum (9-11).

Based on these annotations, earlier from this laboratory Solomon et al. explored different modifications at the pendant nitrogen of the CQ lateral side chain that led to compounds with improved activity, particularly against CQ-resistant strains (12). By taking into account above facts, more recently from our laboratory Sinha et al.developed a generic methodology for the synthesis of chiral chloroquine and its analogues. The key feature of this methodology is that it enables the use of amino acids to generate 4 -aminoquinolines with chirally defined substituted side-chain and also to address the role of hydrophobic substitution at the chiral center. It was inferred from the antiplasmodial activity data that analogues containing N methylpiperazine at the terminal part of side chain showed excellent in vitro activity with reference to CQ against the resistant strain. These authors also examined the chain length variation by homologation of selected α-amino acids to get the corresponding β^{3}-and γ-amino acids (13). Most of the derivatives displayed excellent in vitro antiplasmodial activity, and a few compounds in the in vivo studies showed 100% parasitaemia suppression on day 4 (14).

The objective of the present study is to synthesize a new series of 4-aminoquinoline derivatives with reduced side chain amide bond with a view to increase in vivo stability, and also, to synthesize compounds with different substitutions at the chiral centre. These compounds have been evaluated for antiplasmodial activity against chloroquine sensitive (CQ-S) and chloroquine resistant (CQ-R) strains and the results are reported in the following paragraphs.

MATERIALS AND METHODS

Chemistry

Melting points (mp) were taken in open capillaries on Complab melting point apparatus and are uncorrected. The ${ }^{1} \mathrm{H}$ NMR $(200,300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ($50,75 \mathrm{MHz}$) spectra were recorded in CDCl_{3}, on DPX-200 and 300 Bruker FT-NMR spectrometers. All chemical shifts (δ) are reported in parts per million (ppm) downfield from tetramethylsilane. The splitting pattern abbreviations are as follows: s (singlet), d (doublet), dd (doublet of doublet), t (triplet), q (quartet), br s (broad singlet) and m (multiplet). Coupling constants are given in hertz. Mass Spectra (ESI-MS), high resolution mass spectra HRMS (ESI-HRMS) were recorded on Jeol (Japan)/SX-102, and Agilent 6520 Q-TOF (ESI-HRMS) spectrometers respectively. Analytical thin-layer chromatography (TLC) was carried out on Merck's precoated silica-gel plates $60 \mathrm{~F}_{254}$ and spots were visualized by irradiation with UV light (254 nm). Iodine was used as developing agent and/or by spraying with Dragendorff's reagent. Column chromatographic purification was performed over neutral alumina and silica gel (silica gel 60-120, 100-200 and 230-400 mesh) using a gradient solvent system (nhexane/EtOAc, DCM/Hexane or chloroform/methanol as the eluent unless otherwise specified). All chemicals and reagents were obtained from Aldrich (USA), Lancaster (UK) and Spectrochem Pvt. Ltd (India) and were used without further purification. Analytes were eluted using isocratic mobile phase of methanol and 0.05% TFA in water ($60: 40$) and detected at 254 nm . The purities of compounds submitted for biological evaluation were $>98 \%$ as determined by HPLC. Yields are not optimized.

General Procedure for the Synthesis of 2a-j

Amino acids namely glycine, phenylalanine, tryptophan and methionine (1.0 equiv.) were dissolved in dioxane-water mixture (1:1) and the reaction mixture was stirred at room temperature. Addition of 2 N NaOH to this reaction mixture dissolves the reactant thereby
affording a miscible solution. The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$ and stirred for 15 \min. Finally, $(\mathrm{Boc})_{2} \mathrm{O}$ (1.1 equiv.) was added and the reaction mixture was allowed to stir at 0 ${ }^{\circ} \mathrm{C}$ for 10 min . The ice bath was then removed and the temperature of the reaction was allowed to rise to the room temperature. On completion of the reaction, reaction mixture was concentrated under reduced pressure. The aqueous layer was acidified with citric acid (pH 2 3) and extracted with EtOAc and the organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The yields were quantitative.

Amino acids namely alanine, valine, leucine, and isoleucine (1.0 equiv) in a 2 N aqueous NaOH solution (17 mL) was cooled in an ice bath to $0^{\circ} \mathrm{C}$. Under vigorous stirring benzyl chloroformate (1.1 equiv) and a 2 N aqueous NaOH solution were simultaneously added within 2 min . The mixture was stirred for 20 min at room temperature and extracted with diethyl ether. The aqueous layer was separated and acidified with conc. hydrochloric acid to a pH of 2-3. The resulting emulsion was extracted with EtOAc. The organic phases were combined, washed with brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The yields were quantitative.

2-(Tert-butoxycarbonylamino) acetic acid (2a)

The compound was obtained as a white solid in quantitative yield. m. p. $86-88^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 3.96\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} \mathrm{C}_{2} \mathrm{COOH}\right)\right.$; ESI-MS: $(\mathrm{m} / \mathrm{z}) 176$ $(\mathrm{M}+\mathrm{H})^{+}$.
(S)-2-(Benzyloxycarbonylamino) propanoic acid (2b)

The compound was obtained as a white solid in quantitative yield. m. p. $46-48^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.49\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH} \mathrm{CH} 3\right.$), $4.44\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 5.15(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), $7.37\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; ESI-MS: $(\mathrm{m} / \mathrm{z}) 224(\mathrm{M}+\mathrm{H})^{+}$.
(S)-2-(Benzyloxycarbonylamino)-3-methylbutanoic acid (2c)

The compound was obtained as a gummy substance in quantitative yield. ${ }^{1}$ H NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.92-1.01\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 2.31-2.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 4.43\right.\right.$ (brs, 1 H , $\left.\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.35\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; ESI-MS: $(\mathrm{m} / \mathrm{z}) 252(\mathrm{M}+\mathrm{H})^{+}$.
(S)-2-(Benzyloxycarbonylamino)-4-methylpentanoic acid (2d)

The compound was obtained as a gummy substance in quantitative yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 0.98\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1.55-1.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1.70-1.75(\mathrm{~m}\right.\right.$,
$2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 4.43$ (brs, $1 \mathrm{H}, \mathrm{NCH}$), 5.14 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 7.37 (s, $5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$); ESI-MS: $(m / z) 266(M+H)^{+}$.
(R)-2-(Benzyloxycarbonylamino)-4-methylpentanoic acid (2e)

The compound was obtained as a gummy substance in quantitative yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 0.98\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1.55-1.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1.70-1.75(\mathrm{~m}\right.\right.$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 4.43$ (brs, $1 \mathrm{H}, \mathrm{NCH}$), 5.14 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 7.37 (s, $5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$); ESI-MS: $(m / z) 266(\mathrm{M}+\mathrm{H})^{+}$.

2-(Benzyloxycarbonylamino)-4-methylpentanoic acid (2f)
The compound was obtained as a gummy substance in quantitative yield. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 0.98\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1.55-1.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1.70-1.75(\mathrm{~m}\right.\right.$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 4.43$ (brs, $1 \mathrm{H}, \mathrm{NCH}$), 5.14 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 7.37 (s, $5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$); ESI-MS: $(m / z) 266\left(M+H^{+}\right)$.
(2S,3S)-2-(Benzyloxycarbonylamino)-3-methylpentanoic acid (2g)
The compound was obtained as a gummy substance in quantitative yield. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}) : $\delta 0.93-1.08\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CHCH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 1.15-1.45 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.45-1.54 (m, $1 \mathrm{H}, \mathrm{CHCH}_{3}$), $4.42(\mathrm{brs}, \mathrm{NHCH}), 5.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, \mathrm{NHCH}), 5.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.37(\mathrm{~s}$, $\left.5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$; ESI-MS: $(\mathrm{m} / \mathrm{z}) 266(\mathrm{M}+\mathrm{H})^{+}$.
(S)-2-(Tert-butoxycarbonylamino)-4-(methylthio)butanoic acid (2h)

The compound was obtained as a gummy substance in quantitative yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): \delta 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \delta 1.97-2.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.51-\right.$ 2.60 (m, 2H, $\mathrm{CH}_{2} \mathrm{SCH}_{3}$); ESI-MS: $(\mathrm{m} / \mathrm{z}) 250.3(\mathrm{M}+\mathrm{H})^{+}$.
(S)-2-(Tert-butoxycarbonylamino)-3-phenylpropanoic acid (2i)

The compound was obtained as a white solid in quantitative yield. m.p $85-87^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 2.73-3.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}\right.$, $\mathrm{NCH}), 7.17-7.27\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} H_{5}\right)$; ESI-MS: $(\mathrm{m} / \mathrm{z}) 266.5(\mathrm{M}+\mathrm{H})^{+}$.
(S)-2-(Tert-butoxycarbonylamino)-3-(1H-indol-3-yl)propanoic acid (2j)

The compound was obtained as a white solid in quantitative yield. m.p 134-136 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 3.21-3.31\right.$ (m, $2 \mathrm{H}, \mathrm{CH}_{2}$ - Ind), 4.64 (br s, 1 H ,
$\mathrm{NCH}), 5.06$ (br s, 1H, NHBoc), 7.02 (s, 1H, Ind-2H), 7.08 -7.21 (m, 2H, Ind-5, 6-H), 7.33 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, Ind- $4 H$), $7.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, Ind-7H), 8.11(br s, 1H, Ind-NH).

2.8.3. General Procedure for the Synthesis of 3a-j

A solution of 2a-j (1.0 equiv.) in dry THF, was cooled to $-15^{\circ} \mathrm{C}$, and after $10 \mathrm{~min}, N$-methyl morpholine (NMM) (1.2 equiv.) and isobutylchloroformate (IBCF) (1.2 equiv.) were added with stirring. After 15 min , a solution of NaBH_{4} (2 equiv.) in water (10 mL) was added to this reaction mixture. The reaction mixture was stirred for 1 h . After completion of the reaction (as monitored by TLC), water (100 mL) added to quench the reaction. Solvent was evaporated under reduced pressure. The oily residue was taken in EtOAc, organic layer was washed with $5 \% \mathrm{NaHCO}_{3}$, and finally with brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated under reduced pressure. The products obtained were purified by the silica gel column chromatography, using a mixture of EtOAc and hexane as eluent to afford 3a-j.

Tert-butyl 2-hydroxyethylcarbamate (3a)

The compound was obtained as a gummy substance in quantitative yield. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.30\left(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 3.72(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $4.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$.
(S)-Benzyl 1-hydroxypropan-2-ylcarbamate (3b)

The compound was obtained as a white solid in quantitative yield. m.p $134-136^{\circ} \mathrm{C} ;{ }^{1} \mathrm{HNMR}$ (300MHz, CDCl_{3}): $\delta 1.17\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right), 3.53-3.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 3.80-\right.$ $3.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 4.88\left(\right.$ brs, $\left.1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 5.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.35(\mathrm{~s}, 5 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C}_{6} H_{5}$); ESI-MS: $(m / z) 209.9(\mathrm{M}+\mathrm{H})^{+}$.

(S)-Benzyl 1-hydroxy-3-methylbutan-2-ylcarbamate (3c)

The compound was obtained as a white solid in quantitative yield. m.p $114-116^{\circ} \mathrm{C}$; IR (KBr) 3360, 2975, 2881, 1688, 1523, 1456, 1226, 1057, $738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 0.94-0.99 (2d, $\left.J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.84-1.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 3.52-3.66(\mathrm{~m}, 2 \mathrm{H}\right.$, $\mathrm{CHCH}_{2} \mathrm{OH}$), $3.68-3.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 4.91$ (brs, $1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}$), 5.13 ($\mathrm{s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.37\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; ESI-MS: $(\mathrm{m} / z) 260.2(\mathrm{M}+\mathrm{Na})^{+}$.
(S)-Benzyl 1-hydroxy-4-methylpentan-2-ylcarbamate (3d)

The compound was obtained as a gummy substance in quantitative yield; IR (neat) 3523, $2925,1713,1517,1466,1251,1106 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1.61-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1.75-1.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 4.43\right.\right.$ (brs, $1 \mathrm{H}, \mathrm{NCH}), 5.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.37\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$; ESI-MS: $(\mathrm{m} / \mathrm{z}) 251.9(\mathrm{M}+\mathrm{Na})^{+}$.

(R)-Benzyl 1-hydroxy-4-methylpentan-2-ylcarbamate (3e)

The compound was obtained as a gummy substance in quantitative yield; IR (neat) 3523, $2925,1713,1517,1466,1251,1106 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1.61-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1.75-1.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 4.43\right.\right.$ (brs, $1 \mathrm{H}, \mathrm{NCH}), 5.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.37\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$. ESI-MS: $(\mathrm{m} / \mathrm{z}) 260.2(\mathrm{M}+\mathrm{Na})^{+}$.

Benzyl 1-hydroxy-4-methylpentan-2-ylcarbamate (3f)

The compound was obtained as a gummy substance in quantitative yield; IR (neat) 3523, $2925,1713,1517,1466,1251,1106 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1.61-1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1.75-1.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 4.43\right.\right.$ (brs, $1 \mathrm{H}, \mathrm{NCH}), 5.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.37\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$. ESI-MS: $(\mathrm{m} / \mathrm{z}) 260.2(\mathrm{M}+\mathrm{Na})^{+}$.

Benzyl (2S,3S)-1-hydroxy-3-methylpentan-2-ylcarbamate (3g)

The compound was obtained as a gummy substance in quantitative yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 300 MHz): $\delta 0.88-0.97\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CHCH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.12-1.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.44-1.50(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHCH}_{3}$), 3.60-3.77 (m, $3 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OH}$), 4.94 (brs, $\mathrm{CH}_{2} \mathrm{OH}$), 5.66 (brs, NHCH), 5.14 (s , $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.37\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$; ESI-MS: $(\mathrm{m} / \mathrm{z}) 252.0(\mathrm{M}+\mathrm{H})^{+}$.
(S)-Tert-butyl 1-hydroxy-4-(methylthio)butan-2-ylcarbamate (3h)

The compound was obtained as a gummy substance in quantitative yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): \delta 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \delta 1.78-1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3}\right), 2.13(\mathrm{~s}, 3 \mathrm{H}\right.$, SCH_{3}), 2.53-2.61 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3}$), 3.61-3.78 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{NCHCH} 2 \mathrm{OH}$); ESI-MS: $(\mathrm{m} / \mathrm{z})$ $236.4(\mathrm{M}+\mathrm{H})^{+}$.

(S)-Tert-butyl 1-hydroxy-3-phenylpropan-2-ylcarbamate (3i)

The compound was obtained as a white solid in quantitative yield; m. p $95-97{ }^{\circ} \mathrm{C} ; 3356$, 2980, 2925, 1684, 1526, 1456, 1316, 1269, 1168, 1007, 885, 775, ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.84\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.49-3.70(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OH}$), 3.87 (brs, $1 \mathrm{H}, \mathrm{NCH}$), $4.69\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 7.20-7.30\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} H_{5}\right)$.

(S)-Tert-butyl 1-hydroxy-3-(1H-indol-3-yl)propan-2-ylcarbamate (3j)

The compound was obtained as a white solid in quantitative yield; m. p $118-120{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 2.99\left(\mathrm{~d}, J=6.72 \mathrm{~Hz}, \mathrm{CH}_{2}\right.\right.$-Indole), 3.57-3.72(m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 3.98 (brs, $1 \mathrm{H}, \mathrm{NCH}$), 4.79 (brs, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 7.05 ($\mathrm{s}, 1 \mathrm{H}$, Ind-2H), 7.10-7.22 (m, 2H, Ind-5, 6-H), $7.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, Ind-4H), $7.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, Ind-7H), 8.09 (br s, 1 H , Ind-N H).

2.8.4. General Procedure for the Synthesis of 4a-j

To a suspension of 3a-j (1.0 equiv.) in anhydrous THF under nitrogen atmosphere was added triethylamine (3.0 equiv.). The mixture was cooled to below $0^{\circ} \mathrm{C}$. Methanesulfonyl chloride (3.0 equiv.) was added slowly, keeping the temperature below $5^{\circ} \mathrm{C}$, and the reaction mixture was stirred in an ice bath for 45 min . After completion of the reaction as monitored by the TLC the reaction mixture was diluted with saturated NaHCO_{3} solution, the reaction mixture was extracted with DCM. The combined organic extracts dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford $\mathbf{4 a - j}$. These intermediates were used without further purification.

2-(Tert-butoxycarbonylamino)ethyl methanesulfonate (4a)

The compound was obtained as a yellow gummy substance in quantitative yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCI}_{3}, 300 \mathrm{MHz}\right): \delta 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 3.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.49(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OSO}_{3}\right), 4.30\left(\mathrm{t}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OSO}_{3}\right)$; ESI-MS: $(m / z) 240(\mathrm{M}+\mathrm{H})^{+}$.
(S)-2-(Benzyloxycarbonylamino) propyl methanesulfonate (4b)

The compound was obtained as a white solid in quantitative yield; m.p $84-86^{\circ} \mathrm{C} ;{ }^{1} \mathrm{HNMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.28\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right), 2.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 4.01-4.26\right.$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OSO}_{2} \mathrm{CH}_{3}$), 4.89 (brs, $1 \mathrm{H}, \mathrm{NHCO}$), 5.12 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 7.37 (s, 5 H , $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$; ESI-MS: $(m / z) 309(\mathrm{M}+\mathrm{Na})^{+}$.

(S)-2-(benzyloxycarbonylamino)-3-methylbutyl methanesulfonate (4c)

The compound was obtained as a white solid in quantitative yield; m.p $62-64^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.89-0.97\left(2 \mathrm{~d}, J=6.6, \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1.68-1.77(\mathrm{~m}, 1 \mathrm{H}\right.$, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 2.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.57-3.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 4.28\left(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SOCH}_{2}\right)$,
4.92 (br s, $1 \mathrm{H}, \mathrm{NH}$), $5.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.35\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{6} H_{5}\right)$; ESI-MS: (m/z) 338.9 $(\mathrm{M}+\mathrm{Na})^{+}$.
(S)-2-(Benzyloxycarbonylamino)-4-methylpentyl methanesulfonate (4d)

The compound was obtained as a yellow solid in quantitative yield; m.p $55-57^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta \quad 0.95\left(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1.51-1.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\right.\right.$ $\left(\mathrm{CH}_{3}\right)_{2}, 1.60-1.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 2.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.91-3.99(\mathrm{~m}, 1 \mathrm{H}\right.$, $\mathrm{NCHCH}_{2} \mathrm{OSO}_{3}$), 4.01-4.47 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OSO}_{3}$), $5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$), 5.44 (brs, 1 H , $\mathrm{N} H \mathrm{CO}), 7.37\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} H_{5}\right)$; ESI-MS: $(\mathrm{m} / \mathrm{z}) 352.1(\mathrm{M}+\mathrm{Na})^{+}$.
(R)-2-(Benzyloxycarbonylamino)-4-methylpentyl methanesulfonate (4e)

The compound was obtained as a yellow solid in quantitative yield; m.p $55-57^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta: 0.95\left(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, 1.51-1.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{CH}\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 1.60-1.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.91-3.99(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCHCH}_{2} \mathrm{OSO}_{3}$), 4.01-4.47 (m, 2H, CHCH CHSO_{3}), 5.11 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 5.44 (brs, 1 H , $\mathrm{NHCO}), 7.37\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} H_{5}\right)$; ESI-MS: $(\mathrm{m} / \mathrm{z}) 352.1(\mathrm{M}+\mathrm{Na})^{+}$.

2-(Benzyloxycarbonylamino)-4-methylpentyl methanesulfonate (4f)

The compound was obtained as a yellow solid in quantitative yield; m.p $55-57^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 0.95\left(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.51-1.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{CH}_{2} \mathrm{CH}\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 1.60-1.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.91-3.99(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCHCH}_{2} \mathrm{OSO}_{3}$), 4.01-4.47 (m, $2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OSO}_{3}$), $5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$), 5.44 (brs, 1 H , $\mathrm{N} H \mathrm{CO}$), $7.37\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} H_{5}\right)$; ESI-MS: $(m / z) 352.1(\mathrm{M}+\mathrm{Na})^{+}$.
(2S, 3S)-2-(Benzyloxycarbonylamino)-3-methylpentyl methanesulfonate (4g)
The compound was obtained as a yellow solid in quantitative yield; m.p $55-57^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 0.87-0.95\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CHCH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.07-1.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 1.31-1.50 (m, $1 \mathrm{H}, \mathrm{CHCH}_{3}$), $2.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.65-3.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OSO}_{3}\right), 4.08-$ $4.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{OSO}_{3}\right), 5.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NHCO}), 7.38(\mathrm{~s}, 5 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C}_{6} H_{5}$).
(S)-2-(Tert-butoxycarbonylamino)-4-(methylthio)butyl methanesulfonate (4h)

The compound was obtained as a gummy substance in quantitative yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): \delta 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.81-2.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3}\right), 2.17(\mathrm{~s}, 3 \mathrm{H}$,
SCH_{3}), 2.53-2.61 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3}$), $3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.82-3.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH})$, $4.27\left(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SOCH}_{2}\right)$; ESI-MS: $(m / z) 313.5(\mathrm{M}+\mathrm{H})^{+}$.
(S)-2-(Tert-butoxycarbonylamino)-3-phenylpropyl methanesulfonate (4i)

The compound was obtained as a yellow gummy substance in quantitative yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.84-2.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.03(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{SO}_{2} \mathrm{CH}_{3}$), 3.85 (brs, $1 \mathrm{H}, \mathrm{NCH}$), 4.12-4.27 (m, 2H, SOCH_{2}), 4.71 (brs, NH), 7.22-7.33 (m, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$).
(S)-2-(Tert-butoxycarbonylamino)-3-(1H-indol-3-yl)propyl methanesulfonate (4j)

The compound was obtained as a yellow gummy substance in quantitative yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 2.72-2.86\left(\mathrm{~m}, \mathrm{CH}_{2}-\right.$ Indole), 3.01-3.13 (m, 2H, SOCH $)$, 4.28 (br s, 1H, NCH), 5.15(br s, $1 \mathrm{H}, \mathrm{NHBoc}$), 7.05 ($\mathrm{s}, 1 \mathrm{H}$, Ind-2H), 7.10-7.22 (m, 2H, Ind-5, 6-H), $7.36(\mathrm{~d}, ~ J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, Ind-4H), $7.65(\mathrm{~d}, J=7.6$ Hz, 2H, Ind-7H), 8.17 (br s, 1H, Ind-NH); ESI-MS: (m / z) $369.0(\mathrm{M}+\mathrm{H})^{+}$.

2.8.5. General Procedure for the Synthesis of 5a-j

To a suspension of $\mathbf{4 a} \mathbf{a} \mathbf{j}$ (1.0 equiv.) in acetonitrile under nitrogen atmosphere was added triethylamine (2.0 equiv.) and N-methyl piperazine (4.0 equiv.). The reaction mixture was stirred for 40 hrs at room temperature. After completion of the reaction (as monitored by TLC), the solvent was evaporated under reduced pressure and the residue was dissolved in DCM, the organic layer was washed with 10% citric acid, finally the aqueous layer was basified with NaHCO_{3} and extracted with DCM, and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The products obtained were used for the next step without further purification.

Tert-butyl 2-(4-methylpiperazin-1-yl) ethylcarbamate (5a)

The compound was obtained as a gummy substance in 79% yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \quad \delta \quad 1.46\left(\mathrm{~s}, \quad 9 \mathrm{H}, \quad \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), \quad 2.29 \quad\left(\mathrm{~s}, \quad 3 \mathrm{H}, \quad \mathrm{NCH}_{3}\right), \quad 2.45-2.48 \quad(\mathrm{~m}, \quad 10 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 3.23\left(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right)$.
(S)-Benzyl 1-(4-methylpiperazin-1-yl) propan-2-ylcarbamate (5b)

The compound was obtained as a gummy substance in 89% yield; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.19-1.21\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.35-2.58(\mathrm{~m}, 10 \mathrm{H}$,
$\left.\mathrm{CHCH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 3.75-3.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHCH}_{2}\right), 5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.32-$ $7.35\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$; ESI-MS: $(\mathrm{m} / \mathrm{z}) 292.3(\mathrm{M}+\mathrm{H})^{+}$.

(S)-benzyl3-methyl-1-(4-methylpiperazin-1-yl) butan-2-ylcarbamate (5c)

The compound was obtained as a gummy substance in 83% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 0.87-0.94\left(2 \mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.32-2.61(\mathrm{~m}$, $\left.11 \mathrm{H}, \mathrm{C} H\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 3.60-3.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}), 5.13$ (s, 2 H , $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), $7.37\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; ESI-MS: $(\mathrm{m} / \mathrm{z}) 320.2(\mathrm{M}+\mathrm{H})^{+}$.
(S)-Benzyl 4-methyl-1-(4-methylpiperazin-1-yl) pentan-2-ylcarbamate (5d)

The compound was obtained as a white solid in 89% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $0.91\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.35-1.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.73-1.64(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.59-2.30\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 3.81-3.76$ (m, $1 \mathrm{H}, \mathrm{NHCH}$), $4.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NHCO}), 5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.36-7.30(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$); ESI-MS: $(\mathrm{m} / \mathrm{z}) 334.2(\mathrm{M}+\mathrm{H})^{+}$.
(R)-Benzyl 4-methyl-1-(4-methylpiperazin-1-yl)pentan-2-ylcarbamate (5e)

The compound was obtained as a white solid in 89% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $0.91\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.35-1.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.73-1.64(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.59-2.30\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), ~ 3.81-3.76$ (m, 1H, NHCH), 4.70 (br s, $1 \mathrm{H}, \mathrm{NHCO}$), 5.11 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 7.36-7.30 (m, 5 H , $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$); ESI-MS: $(\mathrm{m} / \mathrm{z}) 334.2(\mathrm{M}+\mathrm{H})^{+}$.

Benzyl 4-methyl-1-(4-methylpiperazin-1-yl)pentan-2-ylcarbamate (5f)

The compound was obtained as a white solid in 89% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $0.91\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.35-1.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.73-1.64(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.59-2.30\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 3.81-3.76$ (m, 1H, NHCH), $4.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NHCO}), 5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.36-7.30(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$; ESI-MS: $(\mathrm{m} / \mathrm{z}) 334.2(\mathrm{M}+\mathrm{H})^{+}$.

Benzyl (2S, 3S)-3-methyl-1-(4-methylpiperazin-1-yl) pentan-2-ylcarbamate (5g)
The compound was obtained as a gummy substance in 89% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \delta 0.87-1.05\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CHCH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.08-1.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.40-1.48(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{3}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.33-2.61\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 3.63-3.77(\mathrm{~m}$,
$1 \mathrm{H}, \mathrm{NHCH}), 4.90(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NHCH}) 5.13\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.32-7.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} H_{5}\right)$; ESI-MS: $(m / z) 334.2(\mathrm{M}+\mathrm{H})^{+}$.
(S)-tert-butyl 1-(4-methylpiperazin-1-yl)-4-(methylthio) butan-2-ylcarbamate (5h) The compound was obtained as a off-white solid in 85% yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 1.97-2.05 (m, $2 \mathrm{H}, \mathrm{CHCH}_{2}$), $2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.39-2.67(\mathrm{~m}, 12 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{SCH}_{3} \mathrm{CHCH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}$), 3.81-3.88 (m, 1H, NHCH); ESI-MS: $(\mathrm{m} / \mathrm{z}) 318.0$ $(\mathrm{M}+\mathrm{H})^{+}$.
(S)-Tert-butyl 1-(4-methylpiperazin-1-yl)-3-phenylpropan-2-ylcarbamate (5i)

The compound was obtained as a off-white solid in 86% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.30-2.61\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH} 3\right)$, $2.85\left(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.91-4.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 4.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{N} H)$, 7.26-7.30 (m, 5H, C ${ }_{6} H_{5}$); ESI-MS: $(m / z) 334.2(\mathrm{M}+\mathrm{H})^{+}$.
(S)-Tert-butyl 1-(1H-indol-3-yl)-3-(4-methylpiperazin-1-yl) propan-2-ylcarbamate (5j)

The compound was obtained as a off-white solid in 86% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.43\left(\mathrm{~s}, ~ 9 \mathrm{H}, \quad \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.27\left(\mathrm{~s}, \quad 3 \mathrm{H}, ~ \mathrm{NCH}_{3}\right), 2.29-2.44(\mathrm{~m}, 12 \mathrm{H}, \quad$ Ind$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}, 4.02$ (br s, $1 \mathrm{H}, \mathrm{NCH}$), 4.66 (br s, $1 \mathrm{H}, \mathrm{NHBoc}$), 7.02 (s, 1 H , Ind2 H), $7.08-7.20(\mathrm{~m}, 2 \mathrm{H}$, Ind-5, 6-H), 7.37 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, Ind-4H), 7.66 (d, $J=7.3 \mathrm{~Hz}$, 2H, Ind-7H), 8.09 (brs, 1H, NH-Ind); ESI-MS: (m / z) $373.2(\mathrm{M}+\mathrm{H})^{+}$.

2.8.6. General Procedure for the Synthesis of 6a-j

To a suspension of $\mathbf{5 a}, \mathbf{5} \mathbf{h}, \mathbf{5 i}$ and $\mathbf{5 j}$ in methanol (1.0 equiv. in 10.0 ml) were added 20% $\mathrm{HCl} /$ dioxane and stirred for 1 h at room temperature. After completion of the reaction, the solvent was evaporated under reduced pressure. The product was purified by trituration with diethyl ether. The hydrochloride salt was basified with the triethylamine and the products obtained were used for the next step without further purification.

To a solution of $\mathbf{5 b}, \mathbf{5 c}, \mathbf{5 d}, \mathbf{5 e}, \mathbf{5 f}$, and $\mathbf{5 g}$, in MeOH (1.0 equiv. in $10.0 . \mathrm{ml}$) $10 \%(\mathrm{w} / \mathrm{w})$ Pd / C was added, and flushed two times with hydrogen gas, and the reaction mixture was agitated at room temperature for 2 h under hydrogen gas, at 30 Psi. After complete deblocking of the protecting group (as monitored by the TLC) the reaction mixture was filtered through Celite and concentrated under reduced pressure to afford the product as a
gummy residue. The products obtained were used for the next step without further purification.

2-(4-methylpiperazin-1-yl)-ethanamine (6a)
The compound was obtained as a gummy substance in quantitative yield.
(S)-1-(4-methylpiperazin-1-yl) propan-2-amine (6b)

The compound was obtained as a gummy substance in quantitative yield.
(S)-3-methyl-1-(4-methylpiperazin-1-yl)butan-2-amine (6c)

The compound was obtained as a gummy substance in quantitative yield.
(S)-4-methyl-1-(4-methylpiperazin-1-yl)pentan-2-amine (6d)

The compound was obtained as a gummy substance in quantitative yield.
(R)-4-methyl-1-(4-methylpiperazin-1-yl)pentan-2-amine (6e)

The compound was obtained as a gummy substance in quantitative yield.
4-methyl-1-(4-methylpiperazin-1-yl)pentan-2-amine (6f)
The compound was obtained as a gummy substance in quantitative yield.
(2S,3S)-3-methyl-1-(4-methylpiperazin-1-yl)pentan-2-amine (6g)
The compound was obtained as a gummy substance in quantitative yield.
(S)-1-(4-methylpiperazin-1-yl)-4-(methylthio) butan-2-amine (6h)

The compound was obtained as a gummy substance in quantitative yield.
(S)-1-(4-methylpiperazin-1-yl)-3-phenylpropan-2-amine (6i)

The compound was obtained as a gummy substance in quantitative yield.
(S)-1-(1H-indol-3-yl)-3-(4-methylpiperazin-1-yl) propan-2-amine (6j)

The compound was obtained as a gummy substance in quantitative yield.

2.8.7. General Procedure for the Synthesis of 7a-r

The free amines 6a-j were (2.0 equiv.) heated with 4,7-dichloroquinoline (1.0 equiv.) in presence of phenol. After completion of the reaction (as monitored by the TLC) the reaction mixture was dissolved in chloroform. The organic layer was washed with 10% aqueous NaOH solution and finally with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was concentrated under reduced pressure. The crude products obtained were purified by column chromatography by using methanol-chloroform-triethylamine as eluent.

7-Chloro-N-(2-(4-methylpiperazin-1-yl) ethyl) quinolin-4-amine (7a)

The compound was obtained as a white solid in 78% yield; m.p 104-106 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.52-2.60\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right)$, 2.79$2.83\left(\mathrm{t}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 3.34\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right)$, 6.07 (br s, NH), 6.39 (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H quinoline), $7.39-7.43$ (dd, $J=2.1,8.9 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H quinoline), 7.70 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H quinoline), 7.98 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $8.53\left(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, Ar- H quinoline); ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 45.9$, $52.5,55.3,99.2,117.2,121.1,125.4,128.4,135.0,148.6,150.0,151.6$; HRMS calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{ClN}_{4}+\mathrm{H}\right]$ 305.1528, found 305.1521; ESI-MS: $(\mathrm{m} / \mathrm{z}) 305.1(\mathrm{M}+\mathrm{H})^{+}$.

N -(2-(4-methylpiperazin-1-yl)ethyl)-7-(trifluoromethyl)quinolin-4-amine (7b)
The compound was obtained as a white solid in 78% yield; m.p $72-74^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.52$ (brs, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.61$ (brs, 4 H , $\left.\mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 2.83\left(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 3.35(\mathrm{~d}, J=4.6$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 6.09$ (brs, NH), $6.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ quinoline), $7.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline $), 7.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), 8.29 (s, 1 H , Ar- H quinoline), $8.63\left(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H\right.$ quinoline); ${ }^{1} \mathrm{H}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 38.9,45.9,52.5,55.1,100.1,120.6,121.0,126.7,127.4,130.4,131.1$, 147.5, 149.6, 152.2; HRMS calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{4}+\mathrm{H}\right]^{+} 339.1791$, found 339.1788; ESIMS: $(m / z) 339.1(\mathrm{M}+\mathrm{H})^{+}$.
(S)-7-Chloro-N-(1-(4-methylpiperazin-1-yl) propan-2-yl) quinolin-4-amine (7c)

426 The compound was obtained as a white solid in 70% yield; m.p $96-98^{\circ} \mathrm{C}^{.}{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.31\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.42-2.67(\mathrm{~m}, 10 \mathrm{H}\right.$, $\mathrm{CHCH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}$), 3.66-3.74 (m, 1H, $\mathrm{CHCH}_{3} \mathrm{CH}_{2}$), 5.99 (br s, $1 \mathrm{H}, \mathrm{NHCH}$), $6.44(\mathrm{~d}, ~ J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H quinoline), 7.37-7.40- (dd, $J=1.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$
quinoline), 7.72 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $7.96(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $8.52(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline $) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 18.8$, $45.9,50.0,55.1,62.7,99.6,117.9,121.2,125.3,128.6,134.8,149.1,149.8,151.9$; HRMS calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{ClN}_{4}+\mathrm{H}\right]^{+} 319.1684$, found 319.1694; ESI-MS: $(m / z) 319.2(\mathrm{M}+\mathrm{H})^{+}$.

(S)-N-(1-(4-methylpiperazin-1-yl)propan-2-yl)-7-(trifluoromethyl)quinolin-4-amine (7d)

The compound was obtained as a white solid in 66% yield; m.p $88-90^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.33\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.42-2.75(\mathrm{~m}, 10 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 3.67-3.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3} \mathrm{CH}_{2}\right), 6.08$ (brs, $1 \mathrm{H}, \mathrm{NHCH}$), 6.53 (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $7.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline $), 7.89(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), 8.27 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $8.61(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 18.7,45.1,45.9,52.9,55.1,62.7,100.6,120.1$, $121.0,121.2,122.2,125.8,127.6,130.5,131.0,147.7,149.6,152.2$; HRMS calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{4}+\mathrm{H}\right]^{+}$353.1948; found 353.1946; ESI-MS: $(m / z) 353.2(\mathrm{M}+\mathrm{H})^{+}$.
(S)-7-Chloro-N-(3-methyl-1-(4-methylpiperazin-1-yl) butan-2-yl) quinolin-4- amine (7e) The compound was obtained as a white solid in 78% yield; m.p $95-97^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.96-1.06\left(2 \mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.31-2.70$ (m, $\left.11 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 3.53-3.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}) 5.99$ (br s, 1 H , $\mathrm{N} H C H$), 6.43 (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $7.38-7.42$ (dd, $J=2.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), 7.76 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $7.97(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $8.52(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline $) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 17.3$, $18.3,29.6,45.9,53.1,54.3,55.1,56.7,99.4,117.8,121.1,125.2,128.7,134.85,150.2$, 151.9; HRMS calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{ClN}_{4}+\mathrm{H}\right]^{+}$347.1997, found 347.2003; ESI-MS: $(\mathrm{m} / \mathrm{z})$ $347.2(\mathrm{M}+\mathrm{H})^{+}$.
(S)-N-(3-methyl-1-(4-methylpiperazin-1-yl) butan-2-yl)-7-(trifluoromethyl) quinolin-4amine (7f)
The compound was obtained as a white -off solid in 78% yield; m.p $87-89^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.97-1.07\left(2 \mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.25-2.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.56-2.82\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 3.54-3.64(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NHCH}), 6.0(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NHCH}), 6.54(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline $), 7.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 1 H, Ar- H quinoline), 8.05 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), 8.29 (s, $1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $8.60\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right.$ quinoline) ${ }^{13}{ }^{13} \mathrm{C}$ NR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 17.3,18.4,28.4$, $29.2,29.6,45.8,53.0,54.4,55.1,56.7,100.0,120.1,120.9,121.1,122.6,125.3,127.6,130.7$,
131.0, 147.8, 150.0, 152.2; HRMS calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{4}+\mathrm{H}\right]^{+}$381.2161, found 381.2278. ESI-MS: $(m / z) 381.2(\mathrm{M}+\mathrm{H})^{+}$.
(S)-7-Chloro- N -(4-methyl-1-(4-methylpiperazin-1-yl)pentan-2-yl)quinolin-4-amine (7g)

The compound was obtained as a white solid in 72% yield; m. p. 103-105 ${ }^{\circ} \mathrm{C}^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.96\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right), 1.06\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right), 1.44-\right.\right.$ $1.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.67-1.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.63-2.41$ (m, 10H, CHCH $\left.\mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 3.68(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 5.71(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{N} H), 6.44(\mathrm{~d}, J=5.3 \mathrm{~Hz}, \mathrm{Ar}-H$ quinoline $), 7.37-7.41(\mathrm{dd}, J=2.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), 7.51 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), 7.97 (dd, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $8.53(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline $) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 22.5,23.3,42.6$, 45.9, 53.3, 55.2, 61.2, 99.2, 117.7, 121.1, 125.3, 128.7, 134.8, 149.2, 149.8, 151.9; HRMS calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{ClN}_{4}+\mathrm{H}\right]^{+} 361.2154$ found 361.2151; ESI-MS: $(\mathrm{m} / \mathrm{z}) 361.2(\mathrm{M}+\mathrm{H})^{+}$.
(R)-7-Chloro- N -(4-methyl-1-(4-methylpiperazin-1-yl)pentan-2-yl)quinolin-4-amine (7h)

The compound was obtained as a white solid in 72% yield; m. p. $103-105^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.96\left(\mathrm{~d}, J=6.15 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right), 1.06\left(\mathrm{~d}, J=6.18 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right)\right.$, 1.44-1.51 (m, 2H, CH2 $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.66-1.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.40-$ $2.61\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 3.66(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 5.70(\mathrm{~d}, \mathrm{~J}=4.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{N} H), 6.43(\mathrm{~d}, J=5.3 \mathrm{~Hz}$, Ar-Hquinoline), $7.36-7.39(\mathrm{dd}, J=1.9,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ quinoline), 7.69 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $7.95(\mathrm{dd}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $8.52(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline $) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 22.4$, $23.3,24.9,42.6,45.9,53.3,55.2,61.2,99.2,117.7,121.1,125.2,128.7,134.7,149.2,149.7$, 151.9;HRMS calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{ClN}_{4}+\mathrm{H}\right]^{+} 361.2154$ found 361.2175; ESI-MS: $(\mathrm{m} / \mathrm{z})$ $361.2(\mathrm{M}+\mathrm{H})^{+}$.

7-Chloro- N-(4-methyl-1-(4-methylpiperazin-1-yl)pentan-2-yl)quinolin-4-amine (7i)
The compound was obtained as a white solid in 72% yield; m.p. $103-105{ }^{\circ} \mathrm{C}{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.96\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 1.06\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 1.44-$ 1.53 (m, 2H, $\left.\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 1. 67-1.83. (m, 1H, CH(CH3$\left.)_{2}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.63-2.41$ (m, 10H, CHCH $\left.\mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 3.68(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 5.71(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{N} H), 6.44(\mathrm{~d}, ~ J=5.3 \mathrm{~Hz}, \mathrm{Ar}-H$ quinoline $), 7.37-7.41(\mathrm{dd}, J=2.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), 7.51 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), 7.97 (dd, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $8.53\left(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H\right.$ quinoline) ; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 22.5,23.3,42.6$, 45.9, 53.3, 55.2, 61.2, 99.2, 117.7, 121.1, 125.3, 128.7, 134.8, 149.2, 149.8, 151.9; HRMS calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{ClN}_{4}+\mathrm{H}\right]^{+} 361.2154$ found 361.2151 ; ESI-MS: $(\mathrm{m} / \mathrm{z}) 361.2(\mathrm{M}+\mathrm{H})^{+}$.
(S)-7-Chloro-N-(1-(4-methylpiperazin-1-yl)-4-(methylthio)butan-2-yl)quinolin-4-amine

The compound was obtained as a off-white solid in 65% yield; m.p $92-94{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.97-2.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.37-$ $2.66\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SCH}_{3} \mathrm{CHCH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 3.80-3.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}), 5.77(\mathrm{~d}$, $J=1 \mathrm{H}, 3.78 \mathrm{~Hz}, \mathrm{~N} H), 6.53(\mathrm{~d}, \mathrm{~J}=4.05 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H quinoline), $7.76(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H quinoline), 7.71 (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $7.97(\mathrm{~d}, J=1.17 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $8.53\left(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right.$ quinoline) ${ }^{13} \mathrm{C} \operatorname{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 15.8$, $30.2,32.1,42.4,45.4,45.9,50.7,54.5,55.0,59.8 .99 .0,117.4,121.5,125.5,128.4,128.5$, 135.1, 149.1, 151.7, 151.8; HRMS calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{ClN}_{4} \mathrm{~S}+\mathrm{H}\right]^{+} 379.1718$, found 379.1716; ESI-MS: (m / z) $379.2(\mathrm{M}+\mathrm{H})^{+}$.
(S)-N-(1-(4-methylpiperazin-1-yl)-4-(methylthio)butan-2-yl)-7-
(trifluoromethyl)quinolin-4-amine (7n)
The compound was obtained as a white solid in 65% yield; m.p $89-91^{\circ} \mathrm{C}$; H NMR (300 MHz , CDCl_{3}): $\delta 1.97-2.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.44-2.73(\mathrm{~m}$, $\left.12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SCH}_{3} \mathrm{CHCH}_{2} \mathrm{CycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 3.57-3.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}), 5.90(\mathrm{~d}, J=3.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{N} H), 6.63$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $7.60-7.63$ (dd, $J=1.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H quinoline), 7.91 (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $7.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), 8.62 (d, $J=4.02 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H quinoline); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.9,30.7,32.1,42.4$, $45.4,45.9,51.7,54.5,55.4,59.8$. 99.0, 117.4, 121.5, 125.5, 128.4, 128.5, 135.1, 149.1, 151.7, 151.8; HRMS calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{~S}+\mathrm{H}\right]^{+}$413.1981, found 413.1993; ESI-MS: $(\mathrm{m} / \mathrm{z})$ $413.2(\mathrm{M}+\mathrm{H})^{+}$.

(S)-7-Chloro- N -(1-(4-methylpiperazin-1-yl)-3-phenylpropan-2-yl)quinolin-4-amine (7o)

The compound was obtained as a yellowish white solid in 63% yield; m.p $98-100{ }^{\circ} \mathrm{C}{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \quad \mathrm{NCH}_{3}\right), 2.40-2.79(\mathrm{~m}, \quad 10 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 2.92-3.13\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.83-3.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 5.72(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}), 6.50\left(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right.$ quinoline), 7.16-7.29 (m, $\left.5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} H_{5}\right)$, 7.36-7.40 (dd, $J=2.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H quinoline), $7.66(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $7.97(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-H$ quinoline $), 8.54(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline); ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 38.1,45.8,55.1,59.8,99.4,117.7,121.7,125.5$, $126.7,128.5,129.6,135.0,137.0,138.3,148.9,149.6,151.7$; HRMS calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{ClN}_{4}+\mathrm{H}\right]^{+} 394.1997$ found 395.1995; ESI-MS: $(m / z) 395.4$
(S)-N-(1-(4-methylpiperazin-1-yl)-3-phenylpropan-2-yl)-7-(trifluoromethyl) quinolin-4amine (7 p)

The compound was obtained as a yellowish white solid in 65% yield; m.p $91-93{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.40-2.66\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right)$, 2.92-3.14 (m, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), $3.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 5.83$ (brs, $\left.1 \mathrm{H}, \mathrm{NHCH}\right), 6.58(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H quinoline), 7.19-7.30 (m, 5H, $\mathrm{CH}_{2} \mathrm{C}_{6} H_{5}$), $7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline $), 7.84$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H quinoline), $8.28(\mathrm{~s}, 1 \mathrm{H}$, Ar- H quinoline), $8.63(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H quinoline) ${ }^{13}{ }^{13} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 38.0,45.9,50.3,52.9,55.1,59.8,100.4$, 120.2, 121.03, 126.7, 127.6, 128.5, 129.6, 130.5, 131.2, 136.9, 147.8, 149.2, 152.2;HRMS calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{4}+\mathrm{H}\right]^{+} 429.2261$, found 429.2272; ESI-MS: $(\mathrm{m} / \mathrm{z}) 429.2(\mathrm{M}+\mathrm{H})^{+}$.
(S)- N -(1-(1H-indol-3-yl)-3-(4-methylpiperazin-1-yl)propan-2-yl)-7-chloroquinolin-4amine ($7 \mathbf{q}$)
The compound was obtained as a pale yellow solid in 60% yield; m.p $102-104{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.35-2.69\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right)$, 3.16-3.30 (m, CH2-Indole), 4.05 (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}$), 5.75 (br s, 1H, NHCH), 6.56 (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline $), 7.00(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, Ind-2H), 7.09-7.23 (m, 2H, Ind-5, 6-H), 7.33-7.36 (m, 3H, Ind-4H and Ar-H quinoline), 7.61 (d, $J=2.9 \mathrm{~Hz}, 2 \mathrm{H}$, Ind-7H), 8.00 (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), 8.21 (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H quinoline), 8.54 (d, $J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H quinoline $){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 29.6,45.9,55.1,60.0,99.4$, $110.7,111.3,117.6,118.8,119.6,121.3,122.1,123.1,125.3,128.0,128.5,134.9,136.2$, 149.1, 149.6, 151.8; HRMS calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{ClN}_{5}+\mathrm{H}\right]^{+} 434.9763$, found 434. 9743; ESIMS: $(m / z) 434.3(\mathrm{M}+\mathrm{H})^{+}$.
(S)-N-(1-(1H-indol-3-yl)-3-(4-methylpiperazin-1-yl)propan-2-yl)-7-(trifluoromethyl)quinolin-4-amine (7r)

The compound was obtained as a pale yellow solid in 60% yield; m.p $96-98{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.41-2.65\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right)$, 3.20-3.25 (m, 2H, CH2-Indole), 4.04 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}$), $5.79(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, $\mathrm{N} H \mathrm{CH}$), 6.63 (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H quinoline), 7.09 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, Ind-2H), 7.10$7.23(\mathrm{~m}, 2 \mathrm{H}$, Ind-5, 6-H), $7.54(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H quinoline), $7.60(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, Ind$4 H$), $7.73(\mathrm{~d}, ~ J=2.9 \mathrm{~Hz}, 1 \mathrm{H}$, Ind- $7 H$), $8.18(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$, Ar- H quinoline), $8.27(\mathrm{~s}, 1 \mathrm{H}$, Ar- H quinoline), 8.61 (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $29.6,45.7,45.8,49.8,53.0,54.9,55.1,60.0,61.1,110.4,110.6,111.3,118.7,119.6,121.0$, $121.1,122.1,122.6,123.5,125.3,127.4,127.9,130.7,131.0,136.2,147.7,149.4,152.2$; HRMS calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{5}+\mathrm{H}\right]^{+}$468.2370, found 434. 2368; ESI-MS: $(m / z) 468.1$ $(\mathrm{M}+\mathrm{H})^{+}$.

2.8.8. General Procedure for the synthesis of 8a-b

Starting from glycine and α-phenylalanine, compounds $\mathbf{8 a - b}$ were prepared by the procedure described for (2b).

2-(benzyloxycarbonylamino)acetic acid (8a)

The compound was obtained as a white solid in quantitative yield; m.p $119-120^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.35\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$; ESIMS: $(m / z) 210(\mathrm{M}+\mathrm{H})^{+}$.
(S)-2-(benzyloxycarbonylamino)-3-phenylpropanoic acid (8b)

The compound was obtained as a white solid in quantitative yield; m.p $100-102{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.80\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}), 4.95(\mathrm{~s}, 1 \mathrm{H}$, NHCH), $5.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 7.13-7.28(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar} H)$.
2.8.9. General procedure for the synthesis of 9a-b

To a stirred solution of N -Cbz protected amino acids $\mathbf{8 a - b}$ (1.0 equiv.) in dry THF at $-15^{\circ} \mathrm{C}$ under nitrogen atmosphere were added successively isobutylchloroformate (IBCF) (1.1 equiv.), and N-methylmorpholine (NMM) (1.1 equiv.).The mixture was stirred for 15 min , and then treated drop wise with an ethereal solution of excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$. The yellow solution was allowed to warm to room temperature and stirring was continued until there was no N protected amino acid remaining (TLC control). The reaction mixture was concentrated under reduced pressure, and the residue was taken up in EtOAc. The organic phase was washed successively with aqueous NaHCO_{3} solution and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The products were purified by the silica gel column chromatography (EtOAc/hexane) to obtain the diazoketones 9a-b.

Benzyl 3-diazo-2-oxopropylcarbamate (9a)

The compound was obtained as a white off solid in 80% yield; m.p $68-69^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.97\left(\mathrm{~d}, J=4.8 \mathrm{~Hz}, \mathrm{NHCH}_{2}\right), 5.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.37\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CHN}_{2}\right)$, 5.54 (brs, $1 \mathrm{H}, \mathrm{NH}$), $7.35\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

(S)-benzyl 4-diazo-3-oxo-1-phenylbutan-2-ylcarbamate (9b)

The compound was obtained as a yellow solid in 80% yield; m.p $80-81^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.03\left(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right) ; 4.45-4.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H \mathrm{NH}), 5.21(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 5.31\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} H \mathrm{~N}_{2}\right), 5.35(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.18-7.42(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH})$.

2.8.10. General procedure for the synthesis of $10 \mathrm{a}-\mathrm{b}$

To a solution of the diazo ketone 9a-b (1.0 equiv.) in MeOH at $-25^{\circ} \mathrm{C}$ under N_{2} with the exclusion of light was treated with a solution of silver benzoate (0.11 equiv.) in $\mathrm{Et}_{3} \mathrm{~N}$ (2.9
equiv.).The reaction mixture was allowed to warm to room temperature within 3.0 h in the dark and then concentrated under reduced pressure. The oily residue dissolved in EtOAc and washed with brine solution. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by the silica gel column chromatography.

Methyl 3-(benzyloxycarbonylamino) propanoate (10a)

The compound was obtained as a yellow solid in 75% yield; m.p $80-81^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.41-2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOCH}_{3}\right), 3.43-3.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2}\right), 3.65(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 5.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.30(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$.
(S)-Methyl 3-(benzyloxycarbonylamino)-4-phenylbutanoate (10b)

The compound was obtained as a gummy substance in 75% yield; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 2.49-2.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COOCH}_{3}\right), 2.80-2.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 4.17-4.24 (m, 1H, NHCH), 5.07 ($\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.29(\mathrm{~d}, J=7.3 \mathrm{~Hz}, \mathrm{NH}), 7.15-7.35(\mathrm{~m}$, 10H, ArH); ESI-MS: $(m / z) 328.3(\mathrm{M}+\mathrm{H})^{+}$.

2.8.11. General procedure for the synthesis of 11a-b

MeOH was added drop wise over a period of 20 min to a mixture of ester of N - protected amino acid (10a-b, 1.0 equiv.) and NaBH_{4} (2 equiv.) in THF at $50-55^{\circ} \mathrm{C}$. The mixture was stirred for 10-25 min, and then water was added to the reaction mixture. Organic solvent was concentrated under reduced pressure. The residue was taken in EtOAc and extracted with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by the silica gel column chromatography using hexane:EtOAc as eluent.

Benzyl 3-hydroxypropylcarbamate (11a)

The compound was obtained as a gummy substance in 75% yield; ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 1.47-1.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 2.87-3.31\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 3.47-3.61(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 3.94 (brs, $1 \mathrm{H}, \mathrm{NHCH}$), 5.09 (s, $2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2} \mathrm{Ph}$), 7.35 (s, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$).

(S)-benzyl 4-hydroxy-1-phenylbutan-2-ylcarbamate (11b)

The compound was obtained as a gummy substance in 80% yield. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta \quad 1.80-1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 2.82-2.87\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.65(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 3.94 (br s, $1 \mathrm{H}, \mathrm{NHCH}$), 4.72-4.75 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 5.07 (s, $2 \mathrm{H}, \mathrm{O}-$ $\mathrm{CH}_{2} \mathrm{Ph}$), 7.15-7.35 (m, 10H, Ar-H); ESI-MS: $(\mathrm{m} / \mathrm{z}) 300(\mathrm{M}+\mathrm{Na})^{+}$.

2.8.12. General procedure for the synthesis of 12a-b

Compounds 12a-b were prepared by similar method described for $\mathbf{4 a}$.
3-(Benzyloxycarbonylamino)propyl methanesulfonate (12a)

664 The compound was obtained as a gummy substance in quantitative yield. ${ }^{1} \mathrm{H}$ NMR (300MHz,

1 H, Ar- H quinoline), 7.33-7.37 (dd, $J=2.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), 7.91 (d, $J=8.9$

698 Ar- H quinoline); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 23.4,44.3,46.2,53.5,55.2,58.6$, $98.4,117.4,122.4,124.6,128.3,134.7,148.8,150.6,151.8$; HRMS calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{ClN}_{4}+\mathrm{H}\right]^{+}$319.1684, found 319.1683; ESI-MS: $(m / z) 319.3(\mathrm{M}+\mathrm{H})^{+}$.

\mathbf{N}-(3-(4-methylpiperazin-1-yl) propyl)-7-(trifluoromethyl)quinolin-4-amine (15b)

The compound obtained as off-white solid in 70% yield. m.p $76-78^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 1.95-2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.63-2.68$ (m, 10H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}$), 3.38-3.42 (m, 2H, NHCH $)_{2}$, 6.41 (d, $J=4.05 \mathrm{~Hz}$, 1 H, Ar- H quinoline), $7.53-7.56$ (dd, $J=1.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H q u i n o l i n e), 8.07$ (d, $J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ quinoline), 8.25 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ quinoline), 8.59 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ quinoline); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 23.3,44.4,46.3,53.5,55.2,58.6,99.4,119.3,119.3,120.7$, $122.2,125.9,127.4,127.5,130.4,130.9,131.3,147.6,150.4,152.4$; HRMS calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{4}+\mathrm{H}\right]^{+}$353.1948, found 353.1951; ESI-MS: $(m / z) 353.2(\mathrm{M}+\mathrm{H})^{+}$.

(S)-7-Chloro- N -(4-(4-methylpiperazin-1-yl)-1-phenylbutan-2-yl)quinolin-4-amine (15c)

The compound was obtained as a gummy substance in 45% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.67-1.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 2.28(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH} 3), 2.36-2.47$ (m, 10H, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{cycN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{3}\right), 2.76-3.09\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.91$ (br s, $1 \mathrm{H}, \mathrm{NHCH}$), $6.40\left(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, Ar- H quinoline), $7.11-7.27\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} H_{5}\right), 7.76(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $7.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $7.95(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-H$ quinoline), $8.35(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ quinoline $){ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta 37.9$, $40.8,45.0,51.7,55.1,58.9,97.6,117.7,122.0,124.6,125.9,127.6,128.6,128.5,128.2$, 134.6, 138.2, 146.4, 149.0, 149.6; HRMS calculated for [$\left.\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{ClN}_{4}+\mathrm{H}\right] 409.2154$, found 409.2151; ESI-MS: $(m / z) 409.3(\mathrm{M}+\mathrm{H})^{+}$.

Biological methods

In vitro antimalarial assay

The compounds were evaluated for antimalarial activity against 3D7 (CQ-sensitive) and K1 (CQ-resistant) strains of P. falciparum using Malaria SYBR Green I nucleic acid staining dye based fluorescence (MSF) assay as mentioned by Singh et al (22).The stock ($5 \mathrm{mg} / \mathrm{mL}$) solution was prepared in DMSO and test dilutions were prepared in culture medium (RPMI-1640-FBS). The final concentration of DMSO in Plasmodium cultures was $<1 \%$. Chloroquine diphosphate was used as a reference drug.
Test technique: 50 mL of culture medium was dispensed in 96 well plate followed by addition of 50 mL of highest concentration of test compounds (in duplicate wells) in row B. Subsequent two-fold serial dilutions were prepared and finally 50 mL of 1.0% parasitized cell
suspension containing 0.8% parasitaemia was added to each well except 4 wells in row‘A' received non parasitized erythrocyte suspension. The plates were incubated at $37{ }^{\circ} \mathrm{C}$ in CO_{2} incubator in an atmosphere of $5 \% \mathrm{CO}_{2}$ and air mixture and 72 h later $100 \mu \mathrm{~L}$ of lysis buffer containing 2 x concentration of SYBR Green-I (in Nitrogen) was added to each well and incubated for 1 h at $37^{\circ} \mathrm{C}$. The plates were examined at $485 \pm 20 \mathrm{~nm}$ of excitation and 530 ± 20 nm of emission for relative fluorescence units (RFUs) per well using the fluorescence plate reader (FLX800, BIOTEK).

Statistical analysis: Data was transferred into a graphic programme (EXCEL) and IC_{50} values were obtained by Logit regression analysis of dose response curves using preprogrammed Excel spreadsheet.

In vitro assay for evaluation of cytotoxic activity

Cytotoxicity of the compounds was carried out using VERO cell line (C1008; Monkey kidney fibroblast) following the method as mentioned in M. Sinha et al (26).The cells were incubated with compound-dilutions for 72 h and MTT was used as reagent for detection of cytotoxicity. 50% cytotoxic concentration $\left(\mathrm{CC}_{50}\right)$ was determined using nonlinear regression analysis of dose response curves using pre-programmed Excel spreadsheet. Selectivity Index (SI) was calculated as $\mathrm{SI}=\mathrm{CC}_{50} / \mathrm{IC}_{50}$

In vivo antimalarial assay

The in vivo drug response was evaluated in Swiss mice infected with P. yoelii (N-67 strain) which is innately resistant to CQ (23).In addition selected compounds were also tested on multidrug resistance P. yoelii and P. vinckei. The mice $(22 \pm 2 \mathrm{~g})$ were inoculated with 1×10^{6} parasitized RBC on day 0 and treatment was administered to a group of five mice from day 0 6 , once daily. The aqueous suspensions of compounds were prepared with $0.5 \% \mathrm{v} / \mathrm{v}$ Tween 80. The efficacy of test compounds was evaluated at $100 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$ and the required daily dose was administered in 0.5 mL volume via oral route. Parasitemia levels were recorded from thin blood smears at regular intervals of four days throughout the period of experiment. The mean value determined for a group of five mice was used to calculate the percent suppression of parasitemia with respect to the untreated control group. Mice treated with CQ served as reference controls. Whereas, in the case of arteether, the drug was dissolved in neutralized ground nut oil and administered via intramuscular route.

Determination of hematin-4-aminoquinoline derivatives association constant

Hematin and amino quinoline association constants for the compounds synthesized in the present study were determined by spectrophotometric titration procedure in aqueous DMSO
at pH 7.5 (24). In this assay condition, hematin is strictly in monomeric state and interpretation of results is not complicated by need to consider hematin disaggregation process. Association constant calculated in this technique is a good reflection of the interaction that would occur in the acidic food vacuole. The pH 7.5 improves the stability of hematin solutions and quality of data.

In vitro Inhibition of $\boldsymbol{\beta}$-hematin formation assay

The ability of the 4 -aminoquinoline derivatives to inhibit β-Hematin polymerization was induced by 1-oleoyl-rac-glycerol using UV spectrophotometer and measurements were carried out at 405 nm (25).The triplicate values obtained from the assay are expressed as percent inhibition relative to hemozoin formation in a drug free control. The 50% inhibitory concentration $\left(\mathrm{IC}_{50}\right)$ values for the compounds were obtained from the sigmoidal dose response curves using non-linear regression curve fitting analyses with Graph Pad Prism 30 v.3.00 software (26). Each IC_{50} value is the result of at least three separate experiments performed in duplicate.

Molecular Docking Method

Database Preparation

Compounds were used to perform docking study against heme. To do a comparison study, we used chloroquine drug for docking. A database was prepared by using SYBYL-X 1.3 (Tripos Inc, St. Louis, MO, USA) modeling package (27).All compounds were drawn through sketch module in sybyl. Structures were minimized further by adding Gasteiger-Huckel charges along with distance-dependent dielectric and the Powell conjugate gradient algorithms with a convergence criterion of $0.001 \mathrm{kcal} / \mathrm{mol}$. All structures were put into a database and finally aligned with each other by way of 'Fit Atom' method.

Protomol-Based Docking Study

The molecular docking studies of synthesized compounds were performed using the SurflexDock module with standard protocols in SYBYL-X 1.3.We have extracted heme molecule from a protein (XX) which was collected from a protein database bank(PDB ID). Hydrogen atoms were added to heme structure to get a correct configuration. Charges were also added to it using Gasteiger-Huckel charge and energy-minimizations were performed with standard protocol using the Tripos force field with same Gasteiger-Huckel charges along with distance-dependent dielectric and the Powell conjugate gradient algorithms with a convergence criterion of $0.001 \mathrm{kcal} / \mathrm{mol}$. After that, automatic protomol generation method
was utilized to create a grid over heme. Molecular docking was performed by placing the molecules including reference into the grid with reasonable scoring function to score the ligands and protomol guided docking. Finally, the protomol-based method and empirically derived scoring function (e.g. Total score, crash score, polar etc.) were used to calculate the binding affinities.

Experimental Procedures for the pharmacokinetic studies of 7 g and 16 (phosphate salt

 of 7 g)In vitro Pharmacokinetics of $7 \mathbf{g}$

Simulated gastric fluid (SGF) was prepared by dissolving 234 mg of NaCl and 37.2 mg of KCl in 100 mL triple distilled water and pH was adjusted to 1.2 with concentrated HCl . Simulated intestinal fluid (SIF) was prepared by dissolving 680 mg of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and 90 mg of NaOH in 100 mL triple distilled water and pH was adjusted to 6.8 with orthophosphoric acid. SGF/SIF (2 mL) was taken in a test tube and pre-incubated in shaking water bath for 10-15 \min at $37 \pm 2^{\circ} \mathrm{C} .5 \mu \mathrm{~L}$ of 7 g stock solution $(100 \mu \mathrm{~g} / \mathrm{mL})$ was spiked in preincubated SGF/SIF to produce a concentration of $250 \mathrm{ng} / \mathrm{ml}$ and immediately subjected to incubation. $50 \mu \mathrm{l}$ of the incubation mixture was sampled at $0,15,30,60,90,120 \mathrm{~min}$, diluted 5 times with acetonitrile and analyzed by LC-MS/MS. Metabolic stability of $\mathbf{7 g}$ was performed in duplicate using glass tubes. To each tube, $460 \mu \mathrm{~L}$ of phosphate buffer $(0.1 \mathrm{M}, \mathrm{pH} 7.4)$ and $12.5 \mu \mathrm{~L}$ of microsomal protein $(20.0 \mathrm{mg} / \mathrm{mL})$ were added and incubated for at $37 \pm 0.2^{\circ} \mathrm{C}$ for 5 min. Then, $2.5 \mu \mathrm{~L}$ of test compound $(1 \mathrm{mM})$ was added. For positive control testosterone was used as the test compound. Reaction was initiated by addition of $25 \mu \mathrm{~L}$ of NADPH (24 mM) and incubated for $0,5,10,15,30,45$ and 60 min . In negative control, NADPH was replaced by $25 \mu \mathrm{~L}$ of phosphate buffer. Reaction was stopped by addition of $450 \mu \mathrm{~L}$ ice-cold acetonitrile to $50 \mu \mathrm{~L}$ reaction mixture collected at predefined time intervals, followed by centrifugation for 15 min at $10,000 \mathrm{rpm} .100 \mu \mathrm{~L}$ of supernatant was directly analyzed by LCMS/MS. For the assessment of plasma stability the blank rat plasma (2 mL) in a test tube was pre-incubated in shaking water bath for 10 min at $37 \pm 2^{\circ} \mathrm{C} .2 \mu \mathrm{l}$ of $7 \mathbf{g}$ stock solution (100 $\mu \mathrm{g} / \mathrm{mL}$) was spiked to preincubated plasma to produce a concentration of $100 \mathrm{ng} / \mathrm{mL}$ and immediately subjected to incubation. $50 \mu \mathrm{l}$ of the plasma was sampled at $0,5,10,15,30,60$, 90 and 120 min . Plasma proteins were precipitated by addition of $400 \mu \mathrm{~L}$ acetonitrile at predefined time intervals, followed by centrifugation for 15 min at $10,000 \mathrm{rpm} .100 \mu \mathrm{~L}$ of supernatant was directly analyzed by LC-MS/MS.

In vivo Pharmacokinetic study:

Invivo pharmacokinetic study was performed in male SpragueDawley rats ($\mathrm{n}=4$). Intravenous formulation of 7 g was prepared by dissolving accurately weighed quantity of $7 \mathrm{~g}(20 \mathrm{mg})$ in 2 mL of DMSO followed by addition of $400 \mu \mathrm{~L}$ of ethanol and $800 \mu \mathrm{~L}$ of glycerol and vortexing for 2 min . Volume was then made up to 4 ml with TDW followed by vortexing for 2 min . For its oral formulation, accurately weighed quantity of $7 \mathbf{g}(30 \mathrm{mg})$ was transferred to mortar and triturated with a pestle using $200 \mu \mathrm{~L}$ of Tween 20 . Volume was then made up to 4 ml with 0.25% CMC Suspension. The intravenous and oral formulations of its phosphate salt form (16) were prepared by dissolving in distilled water. Blood samples were collected from the retroorbital plexus of rats under light ether anesthesia into microfuge tubes containing heparin as an anti-coagulant at $0.083,0.25,0.5,1,2,3,5,7,9,24,30$ and 48 hours postdosing for intravenous study, while $0.25,0.5,1,2,3,5,7,9,24,30$ and 48 hours post-dosing for oral study. Plasma was harvested by centrifuging the blood at 13000 rpm for 10 min on Sigma 1-15 K (Frankfurt, Germany) and stored frozen at $-70 \pm 10^{\circ} \mathrm{C}$ until bioanalysis. Each plasma sample ($100 \mu \mathrm{l}$) was processed using protein precipitation method using $200 \mu \mathrm{l}$ acetonitrile containing piracetam as internal standard (I.S.) as protein precipitant, and $10 \mu 1$ of the supernatant was injected for LC-MS/MS.

RESULTS AND DISCUSSION

Chemistry. The target compounds envisaged in the present study having the general structure shown in figure 2 were obtained by strategies using α-amino acids and β-amino acids as shown in schemes depicted in figures 3 and 4 .

Synthesis of compounds 7a-r: Synthesis of 7a-r involves following steps starting from the preparation of the Boc and/or Cbz protected α-amino acids. Compounds $\mathbf{1 a} \mathbf{- j}$ were converted to the corresponding Boc and/or Cbz derivatives 2a-j in quantitative yields (14, 15). The $\mathrm{Boc} / \mathrm{Cbz}$ protected amino acids were reduced to the corresponding alcohols by mixed anhydride protocol (16). Boc/Cbz amino alcohols were subjected to mesylation to afford 4a-j in good yields (16). The mesylated products were treated with N-methylpiperazine under nitrogen atmosphere to get 5a-j (17). Boc deprotection was done by using $20 \% \mathrm{HCl} /$ Dioxane at room temperature in quantitative yields and Cbz group was removed by using $10 \% \mathrm{Pd} / \mathrm{C}$ catalyst to afford free amines $\mathbf{6 a - j}$. $(14,16)$ Compounds $\mathbf{6 a - j}$ thus obtained were fused to 4,7Dichloroquinoline or 4-chloro-7-(trifluoromethyl)quinoline in the presence of phenol to obtain compounds 7a-r (18) (Figure 3).

Synthesis of compounds 15a-c: Synthesis of 15a-c involves following steps starting from the preparation of the N-Cbz protected amino acids (scheme-2). Amino acids $\mathbf{1 a} \& 1 \mathbf{i}$ were converted to the corresponding N - Cbz derivatives $\mathbf{8 a - b}$ in quantitative yields (19). N - Cbz protected amino acids were converted into the corresponding β-amino esters by Arndt-Eistert reaction. The reaction involves two steps in the first step Cbz-amino acids were converted into their corresponding diazoketones $\mathbf{9 a - b}$ by mixed anhydride reaction and treating the mixed anhydride intermediate with diazomethane in THF at $-15^{\circ} \mathrm{C}$. Diazoketones were purified by the silica gel column chromatography and characterized by ${ }^{1} \mathrm{H}$ NMR. Purified diazoketone derivatives were converted into the corresponding β-amino esters via Wolf rearrangement in the presence of silver benzoate to get 10a-c (20).The β-amino esters were converted to β-amino alcohols 11a-b (21), subsequently alcohols were transformed to mesylates 12a-b followed by replacing the mesyl group with N-methyl piperazine to obtain compounds 13a-b (17). The N -Cbz protecting group was deprotected by using Pd / C to give amines 14a-b (16) The amines so obtained were fused with the 4,7-Dichloroquinoline or 4-chloro-7-(trifluoromethyl)quinoline in the presence of phenol resulting in compounds 15a-c (18). The details of the synthetic steps and the reaction conditions are depicted in figure 4 (scheme 2).

Preparation of Phosphate salt of compound 7 g (16)
A cold solution of 400 mg of the compound 7 g ($>99 \%$ pure) in methanol, was added to a methanolic solution of phosphoric acid made from 85% phosphoric acid (3.0 equiv). After complete conversion of free base as seen from TLC, isopropyl alcohol was added to the reaction mixture and the phosphate salt separated as oil. The alcohol layer was decanted; acetone was added to the oil and triturated /stirred until it solidified. The mixture was then filtered and the phosphate salt thus obtained was washed with acetone and quickly placed in a vacuum desiccator. Further, it was inferred by differential scanning calorimetry (DSC) (figure 5), that no freebase ($\mathbf{7 g}$) was present in the phosphate salt (16). The yield was quantitative. m. p $195-198^{\circ} \mathrm{C}$.

In vitro antiplasmodial activity

The synthesized compounds 7a-r and 15a-c were screened against the 3D7 (CQ-S) and K1 (CQ-R) strains of P. falciparum in vitro for antiplasmodial activity and the results are presented in table 1. Most of the compounds displayed excellent antiplasmodial activity in the nanomolar range. As expected reduction of the amide bond has led to a substantial increase in
antiplasmodial activity against both the strains. Our data (table 1) suggest that compounds derived from glycine, leucine and phenylalnine i.e $\mathbf{7 a - b}, 7 \mathbf{g}, 7 \mathbf{j}$ and $\mathbf{7 0 - p}$ displayed similar antiplasmodial activity when chloro substituent was replaced with a trifluoromethyl group against both the strains. Whereas some compounds exhibited moderate to substantial difference in the antiplasmodial activity.

Among the 21 compounds tested (7a-r \& 15a-c), fourteen compounds namely $\mathbf{7 a - c}, \mathbf{7 e}, 7 \mathrm{~g}$ $\mathbf{k}, 7 \mathbf{0}-\mathbf{q}, 15 \mathrm{a} \& \mathbf{1 5 c}$ exhibited potent antiplasmodial activity in the range of 3.27 to 25.1 nM against CQ-S strain and $\mathrm{IC}_{50} 9.79$ to 167.4 nM range against CQ-R strain. Whereas, seven compounds7d, 7f, 7l-n, 7r \& 15b displayed antiplasmodial activity against CQ-S strain in the range of $\mathrm{IC}_{50} 81.22$ to 723 nM and one compound $7 \mathbf{r}$ showed comparable activity against CQ-R with $\mathrm{IC}_{50} 259 \mathrm{nM}$, two compounds7d \& 15b exhibited $\mathrm{IC}_{50} 548$ and 585 nM , four compounds 7f \& 7l-n demonstrated no detectable antiplasmodial activity against K1 strain at the highest concentration tested $\left(\mathrm{IC}_{50}>1000 \mathrm{nM}\right)$. On the other hand, compounds having a iso-butyl group ($\mathbf{7 g} \mathbf{- j}$) and benzyl group ($\mathbf{7 o - p} \& \mathbf{1 5 c}$) at the chiral centre were found to be the most active in this series. Moreover, the enantiomeric pairs of $\mathbf{7 g}, \mathbf{7 h}$ and racemic compound $7 \mathbf{i d}$ did not show any difference in the activities against both 3D7 and K1 strains. There was more than a 1.7 -fold increase in the activity against CQ-S for compound-7a (3.27 $\mathrm{nM})$ when compared to the $\mathrm{CQ}(5.46 \mathrm{nM})$. In fact, compounds namely $\mathbf{7 g}-\mathbf{7 j}, \mathbf{7 p}, \mathbf{1 5 a}$ and $\mathbf{1 5 c}$ exhibited almost 20 to 28 fold increases in the activity against the CQ resistant strain with IC_{50} values of $13.57,11.16,11.79,12.13,9.97$ and 11.52 nM when compared to the chloroquine. In this study we have also explored the effect of the chain length variation by homologation of selected α-amino acids to get the corresponding β^{3} amino acids. Increase in the chain length showed positive effects on the antiplasmodial activities against both 3D7 and K1 strain of P. falciparum. Compounds derived from glycine (15a) ($\mathrm{IC}_{50} 9.79 \mathrm{nM}$) enhanced ten folds the activity when compared to the CQ in the case of resistant strain. Whereas, in the case of phenylalanine $(\mathbf{1 5 c})\left(\mathrm{IC}_{50} 11.52 \mathrm{nM}\right)$ the activity was increased four folds with respect to the CQ .

In vitro cytotoxicity

The cytotoxicity of all the synthesized molecules was determined against VERO cell line using MTT assay (table 1). Our target compounds showed selectivity index ranging from 83.20 to 37,281 . Compounds namely $\mathbf{7 a}, \mathbf{7 g}$, and $\mathbf{1 5} \mathbf{c}$ exhibited excellent selectivity indices $37,281,22,727$ and 9,852 respectively. Whereas, compounds $\mathbf{7 e}, 7 \mathbf{k}$, and $\mathbf{7 p}$, displayed
selectivity indices $8,538,7,026$, and 8,024 respectively when compared to the chloroquine. Thus these compounds demonstrated the promising safety profile.

Biophysical studies

It is well established that the mode of action of 4-aminoquinoline based antimalarial compounds such as chloroquine is by interaction with the heme leading to inhibition of the hemozoin formation. The association constant $(\log K)$ for the drug-ferriprotoporphyrin (FP) ring provides valuable information about the antimalarial activity of the synthesized molecules. Another biophysical study which involves the in-vitro inhibition of hemozoin formation provides the possible mode of action of the synthesized compounds. This involves inhibition of in-vitro polymerization of hematin to β-hematin. The term β-hematin is used for chemically or in vitro synthesized hemozoin pigments, while the term hemozoin is used for the biosynthetic malaria pigment. The inhibition of the β-hematin formation takes place due to the blockage of the growing face of the crystal by the capping effect by majority of the CQ-like compounds.

A) Association constant for hematin and-4-aminoquinoline derivatives $(\log K)$

Heme interaction has remained the unequivocal target for antimalarial activity of 4aminoquinoline class of compounds. Accordingly, the association constant $(\log \mathrm{K})$ of this interaction is calculated by titrating the hematin with different concentrations of compounds in 40% DMSO solution and $\log \mathrm{K}$ values obtained are in the range of 4.23-6.37. There is a linear correlation between the induced hypochromic effect and the concentration of the compounds. Among all the compounds reported in the present study compounds $\mathbf{7 c}, \mathbf{7 e}, \mathbf{7 g}-\mathbf{h}$, $\mathbf{7 k}, \mathbf{7 o}, \mathbf{7 q}, 15 \mathrm{a}$ and $\mathbf{1 5 c}$ have shown very strong binding to hematin. This result is concurrent with the generally accepted mechanism of action of this class of compounds.

B) Inhibition of $\boldsymbol{\beta}$-hematin formation assay

The results presented in table-1indicated that these derivatives inhibited β-hematin formation in a concentration dependent manner. The IC_{50} values calculated for all the compounds were in the range of $0.14-0.27 \mathrm{mM}$. Most of the synthesized compounds were good inhibitors of β hematin formation; some of them have shown moderate antimalarial activity against CQ-S and CQ-R strains of P. falciparum. The most potent inhibitors were compounds $7 \mathrm{a}, 7 \mathrm{f}, 7 \mathrm{e}$, $\mathbf{7 g}-\mathbf{7 k}, 7 \mathbf{0}-\mathbf{7 q}, 15 \mathrm{a}$ and $\mathbf{1 5 c}$ respectively in the hemozoin inhibition assay. These results are consistent with observed antiplasmodial activity.

In vitro efficacy of compound $\mathbf{7 g}$

From the data presented in table 1 it may be inferred that, enantiomeric pair $\mathbf{7 g}, 7 \mathbf{h}$ and racemic compound $7 \mathbf{i}$ displayed excellent antiplasmodial activity against CQ-R strain. Additionally we have also evaluated the in vitro parasite killing efficacy against CQ-S and CQ-R strains. In the case of sensitive parasite, after 12 h and 24 h time, when compared to CQ, a marginal difference has been observed, whereas in the case of resistant parasite, the lead molecule 7 g rapidly kills the parasite which is a major prerequisite for antimalarial drug like candidate. It has displayed excellent IC_{90} against K 1 strain. The results are shown in table 2 and figure 6.

In vivo antimalarial activity

On the basis of in vitro potency and structural diversity, compounds 7a-b, 7g-j, 70-p, 15a and 15c were tested for in vivo activity against chloroquine resistant P. yoelii (N-67 strain) in Albino mice of Swiss strain. Initially, the in vivo activity of selected molecules were determined through oral route at the dose of $100 \mathrm{mg} / \mathrm{kg}$ administered once daily for four or seven consecutive days post-infection and monitored for parasitaemia reduction, and survival of mice until day 28 post-infection. Parasitemia reductions for multi-dose regimens are reported in table 3. All compounds were administered as hydrochloride salts whereas only compound $\mathbf{7 g}$ was administered as hydrochloride salt and phosphate salt (16).

Compound 7a showed 100% parasitaemia suppression on day 4 at a dose of 100 and 50 $\mathrm{mg} / \mathrm{kg}$ for 4 days with survival rate 83 and 66% respectively up to day 28 and none of the animals were cured. While, compound $\mathbf{7 b}$ displayed 100% parasitaemia suppression on day 4 at a dose of $100 \mathrm{mg} / \mathrm{kg}$ for 4 days, at $50 \mathrm{mg} / \mathrm{kg}$ the same compound displayed 99.9% parasitaemia suppression, all the mice survived up to day 28 , but none of them were cured. Enantiomeric pair compounds namely $\mathbf{7 g}, 7 \mathrm{~h}$ and racemic compound $7 \mathbf{i}$ showed 100% parasitaemia suppression at the dose of 100,50 and $25 \mathrm{mg} / \mathrm{kg}$, all mice survived as well as cured up to day 28 . Whereas, at the dose of $10 \mathrm{mg} / \mathrm{kg}$, racemic compound ($7 \mathbf{i}$) displayed 100% survival and curative effect. Enantiomeric pair ($7 \mathbf{g}$ and $\mathbf{7 h}$) exhibited 100% survival rate and 80% and 60% curative effect respectively. Trifluoro substituted compound (7j) showed 100% parasitaemia suppression on day 4 at the dose of $100,25 \mathrm{mg} / \mathrm{kg}$, all mice survived and cured at the same dose level. However, the same compound at $12.5 \mathrm{mg} / \mathrm{kg}$ exhibited 100% parasitaemia suppression on day 4 , four out of five mice survived and two out of five mice are cured. These results are encouraging when compared with the standard drug CQ, which
showed 90% curative effect at dose of $100 \mathrm{mg} / \mathrm{kg}$ but there was no curative effect observed at dose of $25 \mathrm{mg} / \mathrm{kg}$. Compound 7 o also administered at multiple dose regimen 100 and 50 $\mathrm{mg} / \mathrm{kg}$, at these two doses this compound has shown 100% parasitaemia suppression on day 4. At $100 \mathrm{mg} / \mathrm{kg}$ five out of six mice were survived and four out of six mice were cured, while at $50 \mathrm{mg} / \mathrm{kg}$ none of the mice survived up to day 28 . While, compound $\mathbf{7 p}$, exhibited 100% inhibition of parasitemia on day 4 at multiple doses, $100,50,25 \mathrm{mg} / \mathrm{kg}$ for four consecutive days. Nevertheless, at $100 \mathrm{mg} / \mathrm{kg}$, all mice survived and cured, at $50 \mathrm{mg} / \mathrm{kg}$, three out of five mice survived, two mice were cured, and at $25 \mathrm{mg} / \mathrm{kg}$ none of the mice survived. Compound 15a, inhibited 100% parasitaemia on day 4 , all mice survived up to day 28 and all mice were cured, while at $50 \mathrm{mg} / \mathrm{kg}$ dose, there was 99.9% suppression of parasitaemia, showed 60% survival rate, and none of the mice were cured. Compound $\mathbf{1 5 c}$ at the dose of $100 \mathrm{mg} / \mathrm{kg}$ showed 100% parasitaemia suppression on day 4 , all mice survived up to day 28 and all mice were cured.

Compound 16, which is a phosphate salt of compound $7 \mathbf{g}$ when administered orally at $25,12.5,10,6.25$ and $5 \mathrm{mg} / \mathrm{kg}$ doses showed curative effect at 25.0 and 12.5 and $10.0 \mathrm{mg} / \mathrm{kg}$ dose range. At lower doses although there was 100% suppression of parasitaemia but there was no curative effect. The effective curative dose of compound 16 is $10.0 \mathrm{mg} / \mathrm{kg}$. It may be inferred from the above mentioned data that compound $\mathbf{1 6}$ is nearly two times more active than its corresponding free base compound $7 \mathbf{g}$ possibly because of the improved GI absorption. This is consistent with the pharmacokinetic data discussed below.

Dose response studies were done for enantiomeric pairs $\mathbf{7 g}, 7 \mathbf{h}$ and racemic compound 7i against chloroquine resistant strain P.yoelii ($\mathrm{N}-67$), and the results are shown in table 3. There was no difference observed in the in vivo activity of $(S),(R)$ isomers and racemic compounds. Therefore, compound $\mathbf{7 g}$ was chosen for pre-clinical studies, considering the easy availability of L-amino acid and statutory requirement of chirally defined center as against racemate in the drug discovery chain. The results of the dose response studies are shown in table 4.

In order to evaluate broad spectrum of activity of the identified molecule $7 \mathbf{g}$ in vivo activity against MDR strain was carried out. Based on the in vivo potency against P. yoelii (N-67) strain, compounds $\mathbf{7 g}-\mathbf{7 i}$, were further selected for in vivo antimalarial activity against P. yoelii multi drug resistant strain in Albino mice of Swiss model (Table 5). Initially compound $7 \mathbf{g}$ which is an (S) enantiomer, was screened at multiple doses via oral route in the form of
hydrochloride salt with $100,50,25 \mathrm{mg} / \mathrm{kg}$ x 7 days respectively. This compound has suppressed 100% parasitaemia on day 4 at all the doses, all mice were survived and cured at $100,50 \mathrm{mg} / \mathrm{kg}$, while at the dose $25 \mathrm{mg} / \mathrm{kg}$ three out of five mice were cured. Similar results were obtained with the R - enantiomer $\mathbf{7 h}$ and the racemic compound $\mathbf{7 i}$. In addition to this, the broad spectrum of activity of $\mathbf{7 g}$ was evaluated against P. vinckei which is very close to human model. The results are shown in tables 5 and 6 .

Screening against Plasmodium cynomolgi-Rhesus monkey model

Dose response studies with compound $\mathbf{7 g}$ against simian model showed that $10 \mathrm{mg} / \mathrm{kg} \times 3$ dose regimen is curative against P. cynomolgi in monkeys. Four animals treated with initial parasitemia at $8000-15000 / \mathrm{mm}^{3}$ showed parasite clearance within 48 hours and no recrudescence was recorded during 70 day post -treatment observation period. Treatment at 5 $\mathrm{mg} / \mathrm{kg} \times 3$ dose in two monkeys showed parasite clearance in 72 hours. While one of the monkeys showed recrudescence on day 13 , the other was cured. Chloroquine at $10 \mathrm{mg} / \mathrm{kg} \times 3$ dose regimen is also curative in this model.

Chromatographic conditions for checking chiral purity of 7g, 7h

The lead molecule $7 \mathbf{g}$ identified in the present study has a chiral center therefore it is important to establish chiral purity before proceeding further with pre-clinical investigations. Towards this objective HPLC method has been successfully developed: HPLC separation of compound $7 \mathbf{g}$ and its entatiomer 7 h was achieved on a Lux 5μ cellulose-1 [250 x 4.60 mm , $5 \mu \mathrm{~m}$] chiral column (Phenomenex); at $25 \pm 3^{\circ} \mathrm{C}$ utilizing mobile phase consisting of a mixture of hexane, isopropanol, and methanol (95:4.5:0.5); with addition of triethylamine (TEA) (0.8%) flow rate being $2.0 \mathrm{~mL} / \mathrm{min}$ with detection wavelength being 254 nm . Injections were given in triplicate for each isomer and the racemate. The HPLC profiles of enantiomers vis-àvis racemate clearly suggest that compound $\mathbf{7 g}$ and $\mathbf{7 h}$ are chirally pure and there is no cross contamination of the enantiomers (figure 7).

Pharmacokinetic studies

In vitro stability studies

The in vitro pharmacokinetics data are shown below in table-7. To evaluate the stability of the compound $7 \mathbf{g}$ in different conditions encountered after oral administration, the in vitro simulated gastric fluid (SGF), simulated intestinal fluid (SIF), metabolic and plasma stability
studies were performed. The results of these studies indicate that the candidate molecule is stable in the GI tract before getting absorbed. The compound was found to be more than 97% stable in both acidic (SGF) and basic (SIF) conditions up to 2 hrs. In vitro metabolic stability was performed in rat liver microsomes to assess the contribution of liver towards the total clearance of the compound from the body. Testosterone was used as a positive control to assess the activity of the microsomes. The half-life of the testosterone was in agreement with the literature reports. The half-life of $7 \mathbf{g}$ was found to be 154.54 min . The compound was found to have low clearance. The plasma stability of $\mathbf{7 g}$ was found to be 96.13% after 2 hrs . (Table 7)

In vivo Pharmacokinetics

The in vivo pharmacokinetic studies were performed using plasma as the matrix. This decision was taken after preliminary studies in plasma as well as blood as bioanalytical matrix. The biological levels were comparable and we could study complete pharmacokinetic profile in plasma. The whole blood partitioning (erythrocyte uptake studies), plasma and blood stability studies using blood as matrix originating from healthy as well as infected mice were also performed to check suitability of plasma as matrix (data not given). The other reason for choosing plasma was getting much cleaner and reproducible results for pharmacokinetic studies as we could eliminate interfering matrix. The analytical method used for the analysis was sensitive enough to detect the systemic levels upto 2 days of exposure, which suggests the usefulness of plasma as matrix. The mean plasma concentration-time profile of $7 \mathbf{g}$ is as shown in the figure 8 . Upon oral administration, it got rapidly absorbed and showed double peak phenomenon in their plasma concentration time profiles (figure 8). The peak plasma concentrations of the 7 g are 20.36 ± 13.92 and $22.3 \pm 9.18 \mathrm{ng} / \mathrm{mL}$ at 0.44 ± 0.38 and $3.67 \pm 0.58 \mathrm{~h}$ respectively. This behaviour may be due to solubility constraints of the compounds or absorption from multiples sites and enterohepatic re-circulation. The oral bioavailability (\%F) of $\mathbf{7 g}$ is found to be 25.30%. The discrepancy in the bioavailability data could be because of the poor solubility of $\mathbf{7 g}$. Therefore it was considered appropriate to prepare the phosphate salt of $\mathbf{7 g}(\mathbf{1 6})$ and as expected the pharmacokinetic parameters were significantly improved when compared to the free base $(\mathbf{7 g})$. The mean plasma concentrationtime profile of $\mathbf{1 6}$ is shown in the figure 8 . Upon oral administration, the salt form rapidly got absorbed and showed double peak phenomenon in their plasma concentration time profiles (figure 8) similar to its free base. In the case of salt form (16) the peak plasma concentrations are 104.9 ± 5.46 and 47.5 ± 1.83 at 0.25 and 4 h respectively, indicating improved absorption
from the intestine. The oral bioavailability (\%F) of $\mathbf{7 g}$ is found to be 64.47% when the salt form (16) was administered. This indicates the salt form has better pharmacokinetic properties than the free base.

The pharmacological safety, toxicity, detailed pharmacokinetics (including multiple dose pharmacokinetics, tissue distribution and excretion study) and toxicokinetic studies are in progress. In vitro hERG assay results indicate that the compound 16 (phosphate salt of compound 7 g) does not bind to hERG ion channel up to $10 \mu \mathrm{M}$. However, we observed the binding at the highest tested concentration i.e. $33 \mu \mathrm{M}$. E-4031, a known hERG ligand was used as a positive control in the assay method. These studies are part of our next manuscript which addresses mainly regulatory considerations and IND enabling endeavour.

Molecular docking studies

The ability of the compound $\mathbf{7 g}$ to form a complex with Fe(III)FPIX was investigated by molecular modelling studies. A database was prepared by using SYBYL-X 1.3 (Tripos Inc, St. Louis, MO, USA) modeling package. Compound $7 \mathbf{g}$ were drawn through sketch module in Sybyl. Structures were minimized further by adding Gasteiger-Huckel charges along with distance-dependent dielectric and the Powell conjugate gradient algorithms with a convergence criterion of $0.001 \mathrm{kcal} / \mathrm{mol}$. All structures were put into a database and finally aligned with each other by way of 'Fit Atom' method. The obtained docking values are reported in table 8 . As shown in the figure 9 , chloroquine binds with the carboxylic acid of porphyrin ring via single hydrogen bonding with C score value 4 , whereas, compound $\mathbf{7 g}$ interacts with another free carboxylic group of heme with the C score value 5 . The docking results complement those of biophysical data confirming that mechanism of antiplasmodial activity is through heme binding.

In silico properties of compound 7 g

In order to evaluate drug-likeness of the compound we have used Schrodinger/QikProp/ software, and it is apparent from the data mentioned in table 9 that the selected compound doesn't violate the limitations. Molecular weight, solvent accessible surface area, rotatable bonds, H-bond donors and acceptors are within the range. More importantly it doesn't violate the lipinski rule of 5(not more than 5 hydrogen bond donors (the total number of nitrogenhydrogen and oxygen-hydrogen bonds), not more than 10 hydrogen bond acceptors (all nitrogen or oxygen atoms), a molecular mass less than 500 daltons, an octanol-water partition
coefficient $\log P$ not greater than 5). Compound 7 g comply with all parameters (Table 9). The in silico evaluation confirmed that the compound $\mathbf{7 g}$ had "drug-like" properties.

CONCLUSION

In conclusion, we have synthesized a novel series of chirally pure 4-aminoquinoline derivatives by using amino acids as building blocks for the side chain modifications. These analogs have displayed excellent in vitro as well as in vivo antimalarial activities against P. falciparum with oral efficacy in a P. yoelli mouse model against chloroquine resistant parasites. Based on the detailed anti-parasitic tests, speed of parasitic reduction upon administration of the compound (in vitro) and propensity of the parasites to recrudesce following administration (measured over 28 days) and finally efficacy validation of the compound in P. falciparum simian monkey model compound $\mathbf{1 6}$ has been identified as preclinical candidate molecule. Furthermore, in vitro, and in vivo ADME assays carried out on compound 16 have shown that compound 16 has excellent physicochemical properties, acceptable pharmacokinetic profile and moderate metabolic clearance in rat liver microsomes. Overall, compound $\mathbf{1 6}$ has "drug-like" properties. These results are in consonance with the in silico ADME predictions and MMV's criteria for selection of antimalarial compound. Currently the compound is under toxicological and regulatory pharmacological evaluations.

References

1. Schlitzer M. 2007.Malaria chemotherapeutics part 1: History of antimalarial drug development, currently used therapeutics and drugs in clinical development. Chem. Med. Chem.,2: 944-986.
2. WHO. 2013. World Malaria Report, World Health Organization.
3. (a) Wiesner J, Ortmann R, Jomaa H, Schlitzer M. 2003. New antimalarial drugs. Angew. Chem. Int. Ed. Engl.42:5274-5293. (b)O'Neill PM, Bray PG, Hawley SR, Ward SA, Park BK. 1998. 4-Aminoquinolines--past, present, and future: a chemical perspective. Pharmacol. Ther.77:29-58.

4. Klingenstein R, Melnyk P, Leliveld SR, Ryckebusch A, Korth C. 2006. Similar structureactivity relationships of quinoline derivatives for antiprion and antimalarial effects. J. Med. Chem. 49:5300-5308.
5. (a) Solomon VR, Puri SK, Srivastava K, Katti SB. 2005. Design and synthesis of new antimalarial agents from 4-aminoquinoline. Bioorg. Med. Chem. 13:2157-2165. (b) Solomon VR, Haq W, Srivastava K, Puri SK, Katti SB. 2007. Synthesis and antimalarial activity of side chain modified 4 -aminoquinoline derivatives. J. Med. Chem.50:394-398. (c) Solomon VR, Haq W, Smilkstein M, Srivastava K, Puri SK, Katti SB. 2010. 4-Aminoquinoline derived antimalarials: Synthesis, antiplasmodial activity and heme polymerization inhibition studies. Eur. J. Med. Chem.45:49904996. (d) Solomon VR, Haq W, Srivastava K, Puri SK, Katti SB. 2013. Design and synthesis of 3-[(7-chloro-1-oxidoquinolin-4-ylamino)alkyl]-1,3-thiazolidin-4ones as antimalarial agents. J. Enzyme. Inhib. Med. Chem. 28:1048-1053. (e) Solomon VR, Haq W, Srivastava K, Puri SK, Katti SB. 2013. Design, synthesis of 4-aminoquinoline-derived thiazolidines and their antimalarial activity and heme polymerization inhibition studies. J. Enzyme. Inhib. Med. Chem. 28:619-626. (f) Solomon VR, Haq W, Puri SK, Srivastava K, Katti SB. 2006. Design, synthesis and antimalarial activity of a new class of iron chelators. Medicinal Chemistry 2:133138.
6. Sinha M, Dola VR, Agarwal P, Srivastava K, Haq W, Puri SK, Katti SB. 2014. Antiplasmodial activity of new 4-aminoquinoline derivatives against chloroquine resistant strain. Bioorg. Med. Chem. 22:3573-3586.
7. Sinha M, Dola VR, Soni A, Agarwal P, Srivastava K, Haq W, Puri SK, Katti SB. 2014. Synthesis of chiral chloroquine and its analogues as antimalarial agents. Bioorg. Med. Chem.22:5950-5960.

1188	15. Rahman MM, Czaun M, Takafuji M, Ihara H. 2008. Synthesis, self-assembling
1189	properties, and atom transfer radical polymerization of an alkylated L-phenylalanine-
1190	derived monomeric organogel from silica: A new approach to prepare packing
1191	materials for high-performance liquid chromatography. Chem. Eur. J.14:1312-1321.
1192	16. Brouwer AJ, Ceylan T, Jonker AM, van der Linden T, Liskamp RM. 2011.
1193	Synthesis and biological evaluation of novel irreversible serine protease inhibitors
1194	using amino acid based sulfonyl fluorides as an electrophilic trap. Bioorg. Med.
1195	Chem. 19:2397-2406.
1196	17. Natarajan JK, Alumasa JN, Yearick K, Ekoue-Kovi KA, Casabianca LB, de
1197	Dios AC, Wolf C, Roepe PD. 2008. 4-N-, 4-S-, and 4-O-chloroquine analogues:
1198	influence of side chain length and quinolyl nitrogen pKa on activity vs chloroquine
1199	resistant malaria. J. Med. Chem. 51:3466-3479.
1200	18. Kenyon RL, Wiesner JA, Kwartler CE. 1949. Chloroquine manufacture, Ind.Eng.
1201	Chem. 41:654-662.
1202	19. (a) Rahman MM, Czaun M, Takafuji M, Ihara H. 2007. Synthesis, self-assembling
1203	properties, and atom transfer radical polymerization of an alkylated L-phenylalanine-
1204	derived monomeric organogel from silica: A new approach to prepare packing
1205	materials for high-performance liquid chromatography. Chem. Eur. J.14:1312-1321.
1206	(b) Schmuck C, Rehm T, Geiger L, Schafer M. 2007. Synthesis and self-association
1207	properties of flexible guanidiniocarbonylpyrrole-carboxylate zwitterions in DMSO:
1208	intra- versus intermolecular ion pairing. J. Org. Chem. 72:6162-6170.
1209	20. Seebach D, Overhand M, Kuhnle FNM, Martinoni B, Oberer L, Hommel U,
1210	Widmer H. 1996. beta-peptides: Synthesis by Arndt-Eistert homologation with
1211	concomitant peptide coupling. Structure determination by NMR and CD spectroscopy

	$5 \mathrm{mg} / \mathrm{kg} \mathrm{x} 4$ days		100	6/8	0/8
	CQ 20	$20 \mathrm{mg} / \mathrm{kg} 4$ days	99.0	5/5	0/5
	Arteether $\quad 5 \mathrm{mg} / \mathrm{kg} \mathrm{x} 4$ days (i.m.)*		100	5/5	5/5
$\begin{aligned} & 1256 \\ & 1257 \end{aligned}$	${ }^{a}$ Number of mice ${ }^{b}$ Number of mice with	${ }^{a}$ Number of mice that survived till day 28 post-infection/total mice in the group.			
1258	* Route of administration Intramuscular.				
1259					
$\begin{aligned} & 1260 \\ & 1261 \end{aligned}$	Table 4. Dose response studies of enantiomeric pair ($7 \mathrm{~g}, 7 \mathrm{~h}$) and racemic compound (7i) against P.yoelii ($\mathbf{N}-67$); chloroquine resistant strain				
	Compound	Dose $\mathbf{x} 4$ days (oral route)	Day 4 supression	No. of cured/ No. of treated	
	7 g	$100 \mathrm{mg} / \mathrm{kg} \mathrm{x} 4$ days	100	5/5	
		$50 \mathrm{mg} / \mathrm{kg} \times 4$ days	100	5/5	
	(S) isomer	$25 \mathrm{mg} / \mathrm{kg} \times 4$ days	100	5/5	
		$10 \mathrm{mg} / \mathrm{kg} \times 4$ days	100	4/5	
	7h	$100 \mathrm{mg} / \mathrm{kg} \times 4$ days	100	5/5	
		$50 \mathrm{mg} / \mathrm{kg} \times 4$ days	100	5/5	
	(R) isomer	$25 \mathrm{mg} / \mathrm{kg} \times 4$ days	100	5/5	
		$10 \mathrm{mg} / \mathrm{kg} \times 4$ days	100	3/5	
	$7 \mathbf{i}$	$100 \mathrm{mg} / \mathrm{kg} \times 4$ days	100	5/5	
		$50 \mathrm{mg} / \mathrm{kg} \times 4$ days	100	5/5	
	(Racemic)	$25 \mathrm{mg} / \mathrm{kg}$ x 4 days	100	5/5	
		$10 \mathrm{mg} / \mathrm{kg} \times 4$ days	100	5/5	
1262					
1263					
1264					
1265					

Table 5. In vivo antimalarial activity P.yoelii MDR strain in Albino mice of Swiss model.

Cmpd No	Dose	\% of suppression on day 4	Survival ${ }^{\text {a }}$	Cured ${ }^{\text {b }}$
7g	$100 \mathrm{mg} / \mathrm{kg} \times 7$ days	100	5/5	5/5
	$50 \mathrm{mg} / \mathrm{kg} \times 7$ days	100	5/5	5/5
	$25 \mathrm{mg} / \mathrm{kg} \times 7$ days	100	3/5	3/5
	$25 \mathrm{mg} / \mathrm{kg} \times 4$ days	99.9	0/5	0/5
7h	$50 \mathrm{mg} / \mathrm{kg} \times 7$ days	100	5/5	5/5
7 i	$50 \mathrm{mg} / \mathrm{kg} \times 7$ days	100	3/5	3/5
CQ	$20 \mathrm{mg} / \mathrm{kg} \times 7$ days	99.3	3/5	0/5
${ }^{a}$ Number of mice that survived till day 28 postinfection/total mice in the group ${ }^{b}$ Number of mice without parasitaemia (cured) till day 28 postinfection.				
Table 6. In vivo antimalarial activity against different rodent malaria models (compound 7g)				

Compound 7g (S) isomer		
Parasite	Drug Sensitivity	Total Curative Dose $(\mathbf{m g} / \mathbf{k g})$
P. yoelii	CQ resistant	25×4 days
P. yoelii	MDR	50×4 days
P. vinckei	CQ resistant	25×4 days

Table. 7 In vitro pharmacokinetic parameters of 7g. (N=3)

Parameters	Compound 7g
Simulated gastric fluid stability (\% remaining, 2hr)	$96.03 \pm 2.29 \%$
Simulated intestinal fluid stability (\% remaining, 2hr)	$97.72 \pm 1.64 \%$
Plasma stability (\% remaining, 2hr)	$96.14 \pm 3.15 \%$
Metabolic stability, Half Life ($\left.\mathrm{t}_{1 / 2}, \mathrm{~min}\right)$	154.54 ± 15.67

1276
1277
Table 8. Docking scores of compound 7 g and $\mathbf{C Q}$

Cmpd	Total score	Crash score	polar	D score	PMF score	G score	Chem score	C score	Global score
$\mathbf{7 g}$	1.31	-0.87	1.36	161.25	-35.35	-87.17	-19.64	5	5
$\mathbf{C Q}$	1.78	-0.79	1.47	130.29	-19.22	-70.26	-20.59	4	3

Table 9.Schrodinger/QikProp/ predictions (CQ, AQ-13 and compound 7g)

Principal Descriptors	Chloroquine	AQ-13	Cmpd 7g	Range of 95\% of Drugs	
		Min	Max		
Molecular Weight	319.876	291.823	360.929	130	725
Total SASA	649.001	603.348	667.701	300	1000
No. of rotatable bonds	8	7	6	0	15
H-bond donors H-bond acceptors	1	1	1	0	6
QP log P for octanol/water	4.508	3.674	3.578	-2	6.5
QP log K hsa Serum Protein Binding	0.604	0.341	0.469	-1.5	1.5

Figures

Figure 1. Antimalarial drugs

Figure 2- General structure of compounds synthesized.

Figure 3. (Scheme 1) Synthesis of compounds (7a-r); Reagents and Conditions: (i) $(\mathrm{Boc})_{2} \mathrm{O}, \mathrm{NaOH} /$ Dioxane, $0^{\circ} \mathrm{C}, 2-3 \mathrm{~h}$, and/or Benzylchloroformate, $\mathrm{NaOH}, 0^{\circ} \mathrm{C} 2-3 \mathrm{~h}$; (ii) NMM, IBCF, NaBH_{4}, Dry THF, $-15^{\circ} \mathrm{C}$, 1 h ;(iii) Triethyl amine, Methane sulphonyl chloride, THF, 45 min ;(iv) N-Methylpiperazine, acetonitrile, $\mathrm{N}_{2}, 48 \mathrm{~h}$;(v) $20 \% \mathrm{HCl} /$ dioxane and/or $\mathrm{H}_{2} / \mathrm{Pd}$, Methanol, 1 h ;(vi) 4,7-dichloroquinoline, and/or 4-chloro-7-(trifluoromethyl)quinoline amines ($\mathbf{6 a - j}$), Phenol, $140-155^{\circ} \mathrm{C}, 4-6 \mathrm{~h}$.

(viii)

Figure 4. (Scheme 2) Synthesis of compounds (15a-c); Reagents and Conditions: (i) Benzylchloroformate, $\mathrm{NaOH}, 0^{\circ} \mathrm{C} 2-3 \mathrm{~h}$; (ii) NMM, IBCF, $\mathrm{CH}_{2} \mathrm{~N}_{2}$, Dry THF, $-15^{\circ} \mathrm{C}$, 1 h ; (iii) Silver benzoate, Methanol, $70^{\circ} \mathrm{C} 1 \mathrm{~h}$; (iv) Methanol, $\mathrm{NaBH}_{4}, \mathrm{THF}, 55-60^{\circ} \mathrm{C}, 45 \mathrm{~min}$; (v) Triethylamine, Methanesulphonylchloride,THF,45 min; (vi) N-Methylpiperazine, Acetonitrile, N_{2}, 2days; (vii) $\mathrm{H}_{2} / \mathrm{Pd} / \mathrm{C}$, Methanol, 1h;(vii) 4,7-dichloroquinoline, and/or 4-chloro-7-(trifluoromethyl)quinoline, amines (14a-14b), Phenol, 140-155 ${ }^{\circ} \mathrm{C}, 4-6 \mathrm{~h}$.

Figure 7.HPLC spectrum of enantiomers $\mathbf{7 g}, 7 \mathbf{h}$ and racemic $\mathbf{7 i}$ compounds.

1342
1343

Figure 8. Intravenous ($10 \mathrm{mg} / \mathrm{kg}$) and oral ($15 \mathrm{mg} / \mathrm{kg}$) pharmacokinetic profiles of 7 g and 16 in male SD rats. $(\mathrm{n}=4)$

