Palladium-Catalyzed Carboxylation of Benzyl Chlorides with Atmospheric Carbon Dioxide in Combination with Manganese/Magnesium Chloride

Shuai Zhang,^[a] Wei-Qiang Chen,^[b] Ao Yu,^{*[b]} and Liang-Nian He^{*[a]}

An efficient direct carboxylation of a series of benzyl chlorides with CO_2 catalyzed by $Pd(OAc)_2/dicyclohexyl$ (2',6'-dimethoxy-[1,1'-biphenyl]-2-yl)phosphine (SPhos) was developed to afford the corresponding phenylacetic acids in combination with Mn powder as a reducing reagent and MgCl₂ as an indispensable additive. The reaction proceeded smoothly under 1 atm CO_2 .

Introduction

 $\rm CO_2$ has attracted worldwide attention as an ideal C₁ source because of its high abundance, low cost, nontoxic nature, nonflammability, and renewability. In particular, the synthesis of carboxylic acids through C–C bond formation with $\rm CO_2$ is highly promising in $\rm CO_2$ fixation. However, the thermodynamic stability and kinetic inertness of $\rm CO_2$ hinders its transformation processes. In this regard, transition metal complexes have been proven to be promising catalysts for efficient carboxylation reactions with $\rm CO_2$ to furnish an excellent alternative to classical methods for carboxylic acids.^[1–5] A series of reagents such as arenes,^[1] alkenes,^[2] allenes,^[3] alkynes,^[4] and organic halides/boronic esters^[5] undergo smooth conversion with $\rm CO_2$ in the presence of transition metal species.

Metal powder as a promising reductant has found wide application in reductive coupling^[6] and reductive carboxylation reactions^[5,7,8] thanks to its characteristics of low cost, lack of sensitivity, and ease of work-up. The carboxylation of active allylic halides mediated by Zn⁰ or In⁰ without the addition of catalysts displayed a high regioselectivity.^[7c,d] Recently, Ni-catalyzed carboxylation reactions that start from aryl and benzyl halides as well as allyl esters with metal powder as a reductant have been established^[5] and present a wide functional-group tolerance. Additionally, the formation of the Ni¹ intermediate is

[a]	S. Zhang, Prof. Dr. LN. He Department State Key Laboratory and
	Institute of Elemento-Organic Chemistry
	Collaborative Innovation Center of Chemical Science and Engineering
	Tianjin, Nankai University Tianjin, 300071 (P. R. China) E-mail: heln@nankai.edu.cn
[b]	WQ. Chen, Prof. Dr. A. Yu College of Chemistry Nankai University Tianjin, 300071 (P. R. China) E-mail: esr@nankai.edu.cn
	Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/cctc.201500724.

The application of Mn powder instead of a sensitive reducing reagent represents an operationally simple access to phenylacetic acids. Notably, MgCl₂ is able to stabilize the (SPhos)₂Pd^{II}(Bn)(Cl)(η^1 -CO₂)(MgCl₂) adduct and thus facilitates CO₂ insertion into the Pd^{II}–C bond, which is supported by a DFT study.

crucial for successful carboxylation (Scheme 1). The Co-catalyzed carboxylation of propargyl acetates was also described by Tsuji et al. in the presence of Mn powder at room temperature.^[8]

Scheme 1. Ni- or Pd-catalyzed carboxylation of benzyl chlorides in the presence of metal powder.

Ni- and Co-catalyzed carboxylation reactions mediated by a stoichiometric amount of metal have been well investigated, which inspired us to investigate the compatibility of metal powder in Pd-catalyzed carboxylation. Furthermore, numerous computational studies have focused on the mechanism of carboxylation with CO_2 ,^[9] whereas the Pd-catalyzed direct carboxylation and the CO_2 insertion mechanism into the Pd^{II}–C bond remain a puzzle. We envisaged that CO_2 insertion into the Pd^{II}–C bond probably depends on the choice of additive. Herein, we describe the Pd-catalyzed carboxylation of benzyl chloride with metal powder and additive under atmospheric CO_2 and tentatively explore the process of CO_2 insertion into the Pd^{II}–C bond in a computational study (Scheme 1).

Results and Discussion

The carboxylation of benzyl chloride (1 a) as the model substrate was investigated initially in the presence of additives by using Pd(OAc)₂/ligand system under 1 atm CO₂ in DMF (Table 1). To recycle the catalyst, easy-to-handle metal powder instead of sensitive reagent was used as a reductant. To the best of our knowledge, this is the first example of the use of metal powder in the Pd-catalyzed carboxylation reaction. Unsurprisingly, trace 2a was observed in the absence of any additive (entry 1, Table 1), which suggests that an additive is crucial to perform the carboxylation. However, NBu₄I, which could assist electron transfer,^[5b] was detrimental to the carboxylation and facilitated the dehalogenation (3a) and the cross-coupling reaction (4a)^[10] (entry 2). The application of CsF, which could activate CO2, [4] suppressed the conversion of 1 a significantly (entry 3).

Interestingly, the presence of $ZnCl_2$ led to the formation of **2a** albeit with low conversion (entry 4). Finally, the addition of MgCl₂ resulted in a high yield of **2a** (77%) with a suppression of the formation of **3a** and **4a** (entry 5). It has been reported that magnesium halide could promote the CO₂ insertion into the

Ni^I–C bond,^[9f] which suggests that MgCl₂ probably is also involved in the CO₂ insertion into the Pd^{II}–C bond. These results stimulated us to further investigate the role of MgCl₂ in the Pd-catalyzed carboxylation by a DFT study. Additional control experiments with **1a** indicated that almost no **2a** was observed in the absence of ligand or metal powder (entries 6 and 7). Among the ligands tested, the use of dicyclohexyl (2',6'-dimethoxy-[1,1'-biphenyl]-2-yl)phosphine (SPhos) facilitated the formation of phenylacetic acid (**2a**) with the inhibition of **3a** and **4a** (entries 5 and 8–10). Zn⁰ and Fe⁰ just gave a trace amount of **2a** (entries 11 and 12). Mn powder showed the best performance by giving a high yield of **2a** and a suppression of the formation of **3a** and **4a** (entry 5).

Encouraged by these results, we turned our attention to explore the scope of this carboxylation reaction. A variety of substituted benzyl chlorides delivered the corresponding phenylacetic acids in moderate to excellent yields (entries 1–10, Table 2). 2-(Chloromethyl)naphthalene also gave the desired product (**2k**) in good yield (entry 11). Interestingly, substrates that bear electron-withdrawing moieties gave higher yields than those that bear electron-donating moieties.

Clearly, this carboxylation protocol showed a good compatibility of functional groups such as ether (2b), alkyl (2c, 2d, 2e), and carbonyl (2f, 2g). The *ortho* substituent (2h) did not hamper the carboxylation reaction. Furthermore, halo (2h, 2i) and even vinyl groups (2j) remained intact, which allows further manipulation, for example, cross-coupling reactions.

As expected, no reaction occurred in the absence of $Pd(OAc)_2$ and SPhos, which indicates that Mn^0 itself could not insert into the C–Cl bond of benzyl chloride (Scheme S1a in the Supporting Information). Furthermore, a higher amount of **3a** was obtained in the absence of ligand (Scheme S1b),

Table 1. Pd-catalyzed carboxylation of 1 a with CO₂.^[a] CH₂CI Pd(OAc)₂ /L CH₂X X=COOH, 2a X=H, 3a reductive, additive, X=benzyl, 4a CO₂ balloon, 0 °C 2 a^[b] 3 a^[c] 4 a^[c] Entry Reductant Additive Ligand [1.4 equiv.] [%] [%] [%] [2.5 equiv.] 32 1 SPhos Mn 12 trace 2 SPhos Mn NBu₄I^[e] 17 8 35 3 SPhos CsF 5 2 2 Mn 4 SPhos Mn ZnCl₂ 22 16 1 5 SPhos Mn MgCl₂ 77 23 trace 6 0 Mn MgCl₂ 76 1 7 SPhos 0 0 MgCl₂ trace 8 PPh₃ 22 65 trace Mn MgCl₂ 9 PCy₃ Mn MgCl₂ 5 12 1 10 Xantphos^[d] 47 13 Mn MqCl₂ 4 SPhos 11 Zn MgCl₂ trace 66 10 12 SPhos Fe MgCl₂ 5 23 17

[a] Reaction conditions: $Pd(OAc)_2$ (11.2 mg, 3.3 mol%), ligand (0.10 mmol, 6.6 mol%), benzyl chloride (186 mg, 1.47 mmol), reductant (2.5 equiv.), additive (1.4 equiv.), DMF 2 mL, 0°C, CO₂ balloon, 12 h. [b] ¹H NMR yield with 1-chloro-2,4-dinitrobenzene as the internal standard. [c] GC yield with biphenyl as the internal standard. [d] Xantphos = (9,9-dimethyl-9*H*-xanthene-4,5-diyl)bis(diphenylphosphine); [e] NBu₄I (369 mg, 1 mmol).

which suggests that a small amount of nonligated Pd^0 species is generated in situ, which promotes the dehalogenation of benzyl chloride to give benzylmanganese chloride. Furthermore, **4a** is generated through the Pd^0 /SPhos-catalyzed crosscoupling reaction of benzyl chloride and benzylmanganese chloride (Scheme 2).^[10] Then, to investigate whether the benzylmanganese chloride is the actual intermediate, benzylmanganese chloride generated in situ was exposed to CO_2 in

both the presence and absence of $Pd(OAc)_2/SPhos$ (Scheme S1 c and d). Indeed, no **2a** was observed, even with further prolonging the reaction time, which implies that benzylmanganese chloride as the reaction intermediate can be ruled out and that a challenging CO_2 insertion into the Pd–C bond occurred in this catalytic system.

Based on previous reports^[5a, 11] and the experimental results, a Pdº/Pd^{II} mechanism was proposed, which contradicts the well-established Ni¹ mechanism. A DFT study was performed to investigate CO₂ insertion into the Pd^{II}–C bond with replacement of the cyclohexyl group by a methyl group for simplification. It is well known that monoligated (SPhos)Pd⁰ complexes give a high catalytic activity in the Suzuki coupling reaction.^[12] However, the Gibbs activation energy (ΔG^{\neq}) for the CO₂ insertion into the monoligated Pd^{II}-C bond was calculated to be 67.2 or 38.4 kcal mol⁻¹ in the absence and presence of MgCl₂, respectively. In the optimized transition state **b** and **c**, the positively charged Pd atom interacts with the O atom of CO₂ and the Bn moiety interacts with the C atom of CO_2 (Figure 1). Such large ΔG^{\neq} values imply that this monoligated (SPhos)BnPdCl complex can hardly account for the CO2 insertion process in view of the mild reaction conditions used in the experiment.

The CO₂ insertion into the L₂Pd^{II}–C bond in the presence of MgCl₂ was calculated. Inspiringly, in the presence of CO₂ and MgCl₂, intermediate **A** coordinates with CO₂ and MgCl₂ to afford the Pd^{II}-(η^1 -CO₂)-MgCl₂ adduct **B** with a ΔG^{\neq} value of

21.8 kcal mol⁻¹ (Figure 2). However, the CO₂ molecule fails to react with intermediate A to afford the Pd^{II}-CO₂ adduct in the absence of MgCl₂, which is in agreement with the observation that almost no phenylacetic acid was observed without MgCl₂ (entry 1, Table 1). The electrostatic interaction between the positively charged Mg atom and the negatively charged O atom of CO_2 stabilizes the CO_2 coordination bond with the Pd^{\parallel} center to generate the $Pd^{II}(\eta^1-CO_2)(MgCI_2)$ adduct **B**. Starting from **B**, the CO₂ inserts easily into the Pd^{II} –C bond via the transition state Ts to afford the carboxylic intermediate C (Figure 2). Notably, the structure of Ts is quite different to those of **b** and **c**. In the structure of **Ts**, the C atom of CO_2 interacts with both the Pd center and benzyl group simultaneously, and MgCl₂ shows relatively strong interaction with the two oxygen atoms of CO₂, which delivers CO₂ to the benzyl group. Therefore, MgCl₂ presumably promotes the carboxylation reaction by stabilizing the Pd^{II}-CO₂ adduct and thus accelerating the CO₂ insertion into the Pd^{II}–C bond, which is fully consistent with the experimental results presented in Table 1.

Therefore, we proposed a catalytic Pd⁰/Pd^{II} cycle for the carboxylation of benzyl chloride in combination with Mn/MgCl₂ (Scheme 2). Firstly, the Pd^{II} complex is reduced to the L₂Pd⁰ species. Then oxidative addition of benzyl chloride takes place to form the intermediate **A** (step a). Subsequently, the Pd^{II}-CO₂-MgCl₂ adduct **B** is generated, and CO₂ insertion into the Pd–C bond via the transition state **Ts** occurs easily with the aid of MgCl₂, as proved by the DFT study (step b). A final one-step,

Figure 1. Gibbs energy profile and geometries for CO_2 insertion into the monoligated $Pd^{II}-C$ bond of *a* calculated by the M06/6-311+ +G(d,p)/LANL2DZ// M06/6-31G(d)/LANL2DZ method. Values given in brackets are the enthalpy energy change. Intermediate *a* is formed through the oxidative addition of monoligated Pd^0 species with benzyl chloride. All the energies are given in kcalmol⁻¹, and the bond lengths in Å. H: white, C: gray, O: red, Mg: light green, P: orange, CI: deep green, Pd: cyan.

Figure 2. Gibbs energy profile and geometries for CO_2 insertion into the Pd^{II} –C bond of **A** calculated by the M06/ 6-311 + +G(d,p)/LANL2DZ//M06/6-31G(d)/LANL2DZ method. Values given in brackets are the enthalpy energy change. Intermediate **A** is formed through the oxidative addition of L_2Pd^0 species wih benzyl chloride. All the energies are given in kcal mol⁻¹, and the bond lengths in Å. C: gray, O: red, Mg: light green, P: orange, CI: deep green, Pd: cyan.

Scheme 2. Proposed catalytic cycle.

two-electron reduction with Mn powder regenerates the active L_2Pd^0 species and provides the manganese carboxylate **D** (step c), which delivers the expected carboxylated product upon hydrolytic work-up.

CHEMCATCHEM Full Papers

Conclusions

An effective Pd-catalyzed carboxylation of functionalized benzyl chlorides with CO₂ by employing Mn powder as a reductant has been developed. We believe this protocol represents an operationally simple access to phenylacetic acids under mild conditions without the use of sensitive reducing reagents. Notably, our computational study suggests that MgCl₂ is presumably involved in the process of CO₂ insertion into the (SPhos)₂Pd^{II}–C bond by stabilizing the Pd^{II}-CO₂ adduct and thus accelerates the CO₂ insertion. An extensive investigation on the Pd-catalyzed carboxylation with CO₂ is currently underway.

Experimental Section

General

Commercially available materials were used without further purification. CO_2 with a purity of 99.999% was commercially available. Mn powder (200 mesh, 98% trace

metal basis) was purchased from Aladdin Industrial Corporation. ¹H and ¹³C NMR spectra were recorded by using a Bruker 400 MHz NMR spectrometer. Chemical shifts are relative to those of CDCI₃ (7.26 ppm, ¹H and 77.16 ppm, ¹³C) as an internal standard. ESI-MS was recorded by using an LCQ-Advantage instrument from Thermo-Finnigan Analytical methods. GC was performed by using a Shimadzu GC-2014, equipped with a capillary column (RTX-17, 30 m×0.25 µm) using a flame ionization detector. Mass spectra were recorded by using a Shimadzu GCMS-QP2010 equipped with a RTX-5 MS capillary column at an ionization voltage of 70 eV.

General procedure for the carboxylation of benzyl chlorides with \mbox{CO}_2

All operations were performed under an N₂ atmosphere by using standard Schlenk and vacuum line techniques. An oven-dried Schlenk tube that contained a magneton was charged with a Pd source, ligand, reducing agent, and additive, if applicable. The Schlenk tube was then evacuated and back-filled under a CO_2 flow, and an atmospheric pressure of CO_2 was established. The solvent and the corresponding chlorides (1.47 mmol) were added subsequently by syringe, and the resulting solution was cooled to the desired temperature and stirred for the indicated time. The mixture was then allowed to warm to RT, and the reaction was quenched carefully with $1 \times$ HCl to hydrolyze the resulting carboxylate, and the product was extracted several times with AcOEt. A sample of the obtained solution was analyzed to determine the conversions and byproducts by GC using biphenyl as the internal

standard, and the yield of phenylacetic acid derivatives was determined by ¹H NMR spectroscopy using 1-chloro-2,4-dinitrobenzene as the internal standard. If required, the resulting carboxylic acid was purified by conventional flash chromatography.

2-Phenylacetic acid (2 a): Yield 77%; m.p. 77–78°C (lit.^[5d] 77–79°C); ¹H NMR (400 MHz, CDCl₃): δ = 3.65 (s, 2H), 7.25–7.45 ppm (m, 5H); ¹³C NMR (100.6 MHz, CDCl₃): δ = 177.85, 133.38, 129.52, 128.80, 127.51, 41.16 ppm; HRMS (ESI): *m/z*: calcd for C₈H₈O₂: 136.0524 [*M*–H⁺]⁻; found 135.0456.

2-(4-Methoxyphenyl)acetic acid (2 b): Yield 68%; m.p. 83–85 °C (lit.^[5d] 83–85 °C); ¹H NMR (400 MHz, CDCl₃): δ = 3.58 (s, 2 H), 3.79 (s, 3 H), 6.86 (d, 2 H), 7.19 ppm (d, 2 H); ¹³C NMR (100.6 MHz, CDCl₃): δ = 178.26, 158.99, 130.55, 125.45, 114.21, 55.40, 40.26 ppm; HRMS (ESI): *m/z*: calcd for C₉H₁₀O₃: 166.0630 [*M*-H⁺]⁻; found 165.0548.

2-(*p***-Tolyl)acetic acid (2 c)**: Yield 74%; m.p. 90–92 °C (lit.^[13a] 90–91 °C); ¹H NMR (400 MHz, CDCl₃): δ = 2.33 (s, 3 H), 3.61 (s, 2 H), 7.12–7.20 (d, 2 H), 7.24–7.30 ppm (d, 2 H); ¹³C NMR (100.6 MHz, CDCl₃): δ = 178.24, 137.19, 130.31, 129.49, 129.37, 40.72, 21.24 ppm; HRMS (ESI): *m/z*: calcd for C₉H₁₀O₂: 150.0681 [*M*–H⁺]⁻; found 149.0610.

2-(*m***-Tolyl)acetic acid (2 d)**: Yield 68%; m.p. 62–63 °C (lit.^[13a] 63–64 °C); ¹H NMR (400 MHz, CDCl₃): δ = 2.34 (s, 3 H), 3.61 (s, 2 H), 3.79 (s, 3 H), 7.05–7.20 (m, 3 H), 7.22–7.28 ppm (m, 1 H); ¹³C NMR (100.6 MHz, CDCl₃): δ = 177.81, 138.50, 133.24, 130.25, 128.69, 128.27, 126.51, 41.07, 21.49 ppm; HRMS (ESI): *m/z*: calcd for C₉H₁₀O₂: 150.0681 [*M*–H⁺]⁻; found 149.0609.

2-[4-(*tert***-Butyl)phenyl]acetic acid (2 e)**: Yield 66%; m.p. 82–84 °C (lit.^[5d] 83–85 °C); ¹H NMR (400 MHz, CDCl₃): δ = 1.34 (s, 9 H), 1.97 (s, 2 H), 4.37 (q, ³*J*=7.1 Hz, 2 H), 7.20–7.28 (m, 2 H), 7.34–7.40 ppm (m, 2 H); ¹³C NMR (100.6 MHz, CDCl₃): δ = 177.88, 150.32, 130.40, 129.15, 125.73, 40.67, 31.44 ppm; HRMS (ESI): *m/z*: calcd for C₁₂H₁₆O₂: 192.1150 [*M*-H⁺]⁻; found 191.1080.

2-[4-(Ethoxycarbonyl)phenyl]acetic acid (2 f): Yield 88%; m.p. 100–102 °C (lit.^[13b] 101 °C); ¹H NMR (400 MHz, CDCl₃): δ =1.39 (t, ³*J*=7.1 Hz, 2 H), 3.71 (s, 2 H), 4.37 (q, ³*J*=7.1 Hz, 2 H), 7.68–7.19 (m, 1 H), 8.59–7.65 ppm (m, 1 H); ¹³C NMR (100.6 MHz, CDCl₃): δ =176.83, 166.49, 161.71, 138.30, 130.04, 129.78, 129.57, 61.17, 41.03, 14.45 ppm; HRMS (ESI): *m/z*: calcd for C₁₁H₁₂O₄: 208.0736 [*M*-H⁺]⁻; found 207.0652.

2-(4-Acetylphenyl)acetic acid (2 g): Yield 86%; m.p. 110–112 °C (lit.^[5d] 111–112 °C); ¹H NMR (400 MHz, CDCI₃): δ =2.60 (s, 3 H), 3.74 (s, 2 H), 7.40 (d, ³*J*=8.6 Hz, 2 H), 7.96 ppm (d, ³*J*=8.3 Hz, 2 H). ¹³C NMR (100.6 MHz, CDCI₃): δ =197.8, 176.3, 138.6, 136.2, 129.7, 128.7, 40.8, 26.6 ppm; HRMS (ESI): *m/z*: calcd for C₁₀H₁₀O₃: 178.0630 [*M*–H⁺]⁻; found 177.0560.

2-(2-Chlorophenyl)acetic acid (2 h): Yield 92%; m.p. 93–95 °C (lit.^[5d] 91–93 °C); ¹H NMR (400 MHz, CDCl₃): δ = 3.81 (s, 2 H), 7.20–7.42 ppm (m, 4 H); ¹³C NMR (100.6 MHz, CDCl₃): δ = 177.27, 134.77, 131.76, 131.68, 129.68, 129.12, 127.10, 38.96 ppm; HRMS (ESI): *m/z*: calcd for C₈H₇ClO₂: 170.0135; found [*M*–H⁺]⁻ 169.0055, [*M*–CO₂–H⁺]⁻ 125.0166.

2-(3-Fluorophenyl)acetic acid (2 i): Yield 96 %; m.p. 42–44 °C (lit.^[13a] 42–43 °C); ¹H NMR (400 MHz, CDCl₃): δ = 3.65 (s, 3 H), 6.98–7.08 (m, 3 H), 7.25–7.32 ppm (m, 1 H); ¹³C NMR (100.6 MHz, CDCl₃): δ = 177.55, 164.16, 161.71, 135.54, 135.46, 130.28, 130.20, 125.26,

125.23, 116.72, 116.50, 114.65, 114.44, 40.79 ppm; HRMS (ESI): m/z: calcd for C₈H₇FO₂: 154.0430 [M-H⁺]⁻; found 153.0351.

2-(4-Vinylphenyl)acetic acid (2j): Yield 49%; m.p. 83–85 °C (lit.^[5d] 83–86 °C); ¹H NMR (400 MHz, CDCl₃): δ = 3.64 (s, 2H), 5.24 (d, *J* = 10.9 Hz, 1H), 5.73 (d, *J* = 17.6 Hz, 1H), 6.70 (dd, *J* = 17.6, 10.9 Hz, 1H), 7.26–7.21 (m, 2H), 7.38 ppm (d, *J* = 8.1 Hz, 2H); ¹³C NMR (100.6 MHz, CDCl₃): δ = 177.59, 136.91, 136.47, 132.84, 129.69, 126.61, 114.16, 40.82 ppm; HRMS (ESI): *m/z*: calcd for C₁₀H₁₀O₂: 162.0681 [*M*–H⁺]⁻; found 161.0610.

2-(Naphthalen-2-yl)acetic acid (2 k): Yield 78%; m.p. 140–142 °C (lit.^[5d] 140–142 °C); ¹H NMR (400 MHz, CDCl₃): δ = 3.81 (s, 2 H), 7.36–7.50 (m, 3 H), 7.71–7.86 ppm (m, 4 H); ¹³C NMR (100.6 MHz, CDCl₃): δ = 177.78, 133.53, 132.68, 130.81, 128.48, 128.33, 127.82, 127.44, 126.39, 126.10, 41.31 ppm; HRMS (ESI): *m/z*: calcd for C₁₂H₁₀O₂: 186.0681 [*M*–H⁺]⁻; found 185.0603.

1,2-Diphenylethane (4 a): M.p. 48–50 °C (lit.^[13c] 48–51 °C); ¹H NMR (400 MHz, CDCl₃): δ =2.92 (s, 4H), 7.16–7.22 (m, 4H), 7.24–7.30 ppm (m, 4H); ¹³C NMR (100.6 MHz, CDCl₃): δ =141.92, 128.59, 128.47, 126.05, 38.10 ppm; GC–MS calcd for C₁₄H₁₄ 182.11; found 182.15 (25.86%), 91.10 (100%).

Computational details

All the calculations were performed by the DFT method^[14] by using the GAUSSIAN 09 package.^[15] All the structures reported in this research were optimized by the M06 method in conjunction with BSI basis sets, in which BSI signifies basis set LANL2DZ^[16a] performed for the Pd atom and basis set $6-31G^{*[16b]}$ for the other C, H, O, P, Cl, and Mg atoms. Furthermore, all the final structures were confirmed by frequency calculations to be energy minima. Energy calculations were performed at M06/6-311 + + G^{**[16b-j]}/LANL2DZ// M06/BSI level, in which basis set $6-311 + + G^{**}$ was employed for C, H, O, P, Cl, and Mg atoms and basis set LANL2DZ was employed for the Pd atom. All energy data reported are in kcalmol⁻¹, and the length data were in Å. Structures were generated using CYLview.^[17]

Acknowledgements

We are grateful to the National Natural Sciences Foundation of China, the Specialized Research Fund for the Doctoral Program of Higher Education (20130031110013), the MOE Innovation Team (IRT13022) of China, and the "111" Project of the Ministry of Education of China (project No. B06005) for financial support.

Keywords: magnesium · manganese · palladium · phosphane ligands · reaction mechanisms

- a) L. Zhang, J. Cheng, T. Ohishi, Z. Hou, Angew. Chem. Int. Ed. 2010, 49, 8670–8673; Angew. Chem. 2010, 122, 8852–8855; b) I. I. F. Boogaerts, S. P. Nolan, J. Am. Chem. Soc. 2010, 132, 8858–8859; c) I. I. F. Boogaerts, G. C. Fortman, M. R. L. Furst, C. S. J. Cazin, S. P. Nolan, Angew. Chem. Int. Ed. 2010, 49, 8674–8677; Angew. Chem. 2010, 122, 8856–8859; d) H. Mizuno, J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2011, 133, 1251–1253.
- [2] a) M. Takimoto, M. Mori, J. Am. Chem. Soc. 2002, 124, 10008–10009;
 b) C. M. Williams, J. B. Johnson, T. Rovis, J. Am. Chem. Soc. 2008, 130, 14936–14937; c) M. D. Greenhalgh, S. P. Thomas, J. Am. Chem. Soc. 2012, 134, 11900–11903; d) J. Takaya, K. Sasano, N. Iwasawa, Org. Lett. 2011, 13, 1698–1701; e) H. Ohmiya, M. Tanabe, M. Sawamura, Org. Lett. 2011, 13, 1086–1088; f) T. G. Ostapowicz, M. Schmitz, M. Krystof, J. Klan-

kermayer, W. Leitner, Angew. Chem. Int. Ed. **2013**, *52*, 12119–12123; Angew. Chem. **2013**, *125*, 12341–12345; g) L. Wu, Q. Liu, I. Fleischer, R. Jackstell, M. Beller, Nat. Commun. **2014**, *5*, 3091; h) N. Huguet, I. Jevtovikj, A. Gordillo, M. L. Lejkowski, R. Lindner, M. Bru, A. Y. Khalimon, F. Rominger, S. A. Schunk, P. Hofmann, M. Limbach, Chem. Eur. J. **2014**, *20*, 16858–16862.

- [3] a) M. Takimoto, M. Kawamura, M. Mori, Synthesis 2004, 5, 791–795;
 b) M. Takimoto, M. Kawamura, M. Mori, Y. Sato, Synlett 2005, 13, 2019–2022;
 c) M. Murakami, N. Ishida, T. Miura, Chem. Lett. 2007, 36, 476–477;
 d) J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2008, 130, 15254–15255.
- [4] a) S. Saito, S. Nakagawa, T. Koizumi, K. Hirayama, Y. Yamamoto, J. Org. Chem. 1999, 64, 3975-3978; b) M. Takimoto, K. Shimizu, M. Mori, Org. Lett. 2001, 3, 3345-3347; c) M. Aoki, M. Kaneko, S. Izumi, K. Ukai, N. Iwasawa, Chem. Commun. 2004, 2568-2569; d) K. Shimizu, M. Takimoto, Y. Sato, M. Mori, Org. Lett. 2005, 7, 195-197; e) T. Fujihara, T. Xu, K. Semba, J. Terao, Y. Tsuji, Angew. Chem. Int. Ed. 2011, 50, 523-527; Angew. Chem. 2011, 123, 543-547; f) L. Zhang, J. Cheng, B. Carry, Z. Hou, J. Am. Chem. Soc. 2012, 134, 14314-14317; g) M. Takimoto, T. Mizoe, F. B. Sayyed, Y. Tani, J. Terao, S. Sakaki, Y. Tsuji, Org. Lett. 2014, 16, 4960-4963; j) S. Li, W. Yuan, S. Ma, Angew. Chem. Int. Ed. 2011, 50, 2578-2582; Angew. Chem. 2011, 123, 2626-2630; j) X. Zhang, W.-Z. Zhang, X. Ren, L.-L. Zhang, X.-B. Lu, Org. Lett. 2011, 13, 2402-2405.
- [5] a) A. Correa, R. Martin, J. Am. Chem. Soc. 2009, 131, 15974–15975; b) T. Fujihara, K. Nogi, T. Xu, J. Terao, Y. Tsuji, J. Am. Chem. Soc. 2012, 134, 9106–9109; c) T.-V. Hung, O. Daugulis, ACS Catal. 2013, 3, 2417–2420; d) T. León, A. Correa, R. Martin, J. Am. Chem. Soc. 2013, 135, 1221–1224; e) A. Correa, T. Leon, R. Martin, J. Am. Chem. Soc. 2014, 136, 1062–1069; f) Y. Liu, J. Cornella, R. Martin, J. Am. Chem. Soc. 2014, 136, 11212–11215; g) T. Moragas, J. Cornella, R. Martin, J. Am. Chem. Soc. 2014, 136, 11212–11215; g) T. Moragas, J. Cornella, R. Martin, J. Am. Chem. Soc. 2014, 136, L-L. Shi, C.-X. Guo, L.-L. Zhang, X.-B. Lu, Chem. Commun. 2012, 48, 6292–6294.
- [6] a) I. Kazmierski, M. Bastienne, C. Gosmini, J.-M. Paris, J. Périchon, J. Org. Chem. 2004, 69, 936-942; b) K. K. Majumdar, C.-H. Cheng, Org. Lett. 2000, 2, 2295-2298; c) J. X. Hu, C. Y. Li, W. J. Sheng, Y. X. Jia, J. R. Gao, Chem. Eur. J. 2011, 17, 5234-5237; d) R. Shrestha, D. J. Weix, Org. Lett. 2011, 13, 2766-2769; e) F. Wu, W. Lu, Q. Qian, Q. Ren, H. Gong, Org. Lett. 2012, 14, 3044-3047; f) A. C. Wotal, D. J. Weix, Org. Lett. 2012, 14, 3044-3047; f) A. C. Wotal, D. J. Weix, Org. Lett. 2012, 14, 1282-1285; h) A. H. Cherney, N. T. Kadunce, S. E. Reisman, J. Am. Chem. Soc. 2013, 135, 7442-7445; j) Y. Xia, F. Hu, Z. Liu, P. Qu, R. Ge, C. Ma, Y. Zhang, J. Wang, Org. Lett. 2013, 15, 1784-1787; j) T. Moragas, A. Correa, R. Martin, Chem. Eur. J. 2014, 20, 8242-8258.
- [7] a) A. A. Sathe, D. R. Hartlinea, A. R T. Radosevich, Chem. Commun. 2013, 49, 5040-5042; b) T. Mita, J. Chen, Y. Sato, Org. Lett. 2014, 16, 2200-2203; c) B. Miao, S. Ma, Chem. Commun. 2014, 50, 3285-3287; d) B. Miao, S. Ma, Org. Chem. Front. 2015, 2, 65-68.
- [8] K. Nogi, T. Fujihara, J. Terao, Y. Tsuji, Chem. Commun. 2014, 50, 13052– 13055.
- [9] a) H.-W. Suh, L. M. Guard, N. Hazari, Chem. Sci. 2014, 5, 3859–3872; b) T. Fan, F. K. Sheong, Z. Lin, Organometallics 2013, 32, 5224–5230; c) R. Yuan, Z. Lin, Organometallics 2014, 33, 7147–7156; d) W. Guo, C. Michel, R. Schwiedernoch, R. Wischert, X. Xu, P. Sautet, Organometallics 2014, 33, 6369–6380; f) e. B. Sayyed, Y. Tsuji, S. Sakaki, Chem. Commun. 2013, 49, 10715–10717; g) F. B. Sayyed, S. Sakaki, Chem. Commun.

CHEMCATCHEM Full Papers

2014, *50*, 13026–13029; h) A. Uhe, M. Hölscher, W. Leitner, *Chem. Eur. J.* **2012**, *18*, 170–177.

- [10] For some examples of cross-coupling reactions of organic halides and organometal species see: a) R. Martin, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129, 3844–3845; b) A. Krasovskiy, C. Duplais, B. H. Lipshutz, J. Am. Chem. Soc. 2009, 131, 15592–15593; c) D. A. Everson, R. Shrestha, D. J. Weix, J. Am. Chem. Soc. 2010, 132, 920–921; d) D. A. Everson, B. A. Jones, D. J. Weix, J. Am. Chem. Soc. 2012, 134, 6146–6159; e) J. E. Milne, S. L. Buchwald, J. Am. Chem. Soc. 2004, 126, 13028–13032.
- [11] C. Amatore, A. Jutand, F. Khalil, M. F. Nielsen, J. Am. Chem. Soc. 1992, 114, 7076-7085.
- [12] For examples of the use of SPhos in the Suzuki reaction see: a) T. E. Barder, S. D. Walker, J. R. Martinelli, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 4685–4696; b) S. Kozuch, J. M. L. Martin, Chem. Commun. 2011, 47, 4935–4937; c) D. S. Surry, S. L. Buchwald, Chem. Sci. 2011, 2, 27–50; d) B. Pudasaini, B. G. Janesko, Organometallics 2011, 30, 4564–4571.
- [13] a) M. She, D.i Xiao, B. Yin, Z. Yang, P. Liu, J. Li, Z. Shi, *Tetrahedron* 2013, 69, 7264–7268; b) K. Müller, H. Reindl, K. Breu, *J. Med. Chem.* 2001, 44, 814–821; c) M. Lamani, R. S. Guralamata, K. R. Prabhu, *Chem. Commun.* 2012, 48, 6583–6585.
- [14] a) Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157–167; b) Y. Zhao,
 D. G. Truhlar, J. Chem. Theory Comput. 2009, 5, 324–333; c) P. Śliwa, J.
 Handzlik, Chem. Phys. Lett. 2010, 493, 273–278; d) A. D. Kulkarni, D. G.
 Truhlar, J. Chem. Theory Comput. 2011, 7, 2325–2332.
- [15] Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Krnox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, C. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Orniels, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, **2009**.
- [16] W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284–298; b) M. M. Francl,
 W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A.
 Pople, J. Chem. Phys. 1982, 77, 3654–3665; c) A. J. H. Wachters, J. Chem.
 Phys. 1970, 52, 1033–1036; d) P. Hay, J. Chem. Phys. 1977, 66, 4377–4384; e) R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys.
 1980, 72, 650–654; f) T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. R.
 Schleyer, J. Comput. Chem. 1983, 4, 294–301; g) M. J. Frisch, J. A. Pople,
 J. S. Binkley, J. Chem. Phys. 1984, 80, 3265–3269; h) K. Raghavachari,
 G. W. Trucks, J. Chem. Phys. 1989, 91, 1062–1065; j) R. C. Binning, L. A.
 Curtiss, J. Comput. Chem. 1990, 11, 1206–1216; j) M. P. McGrath, L.
 Radom, J. Chem. Phys. 1991, 94, 511–516.
- [17] C. Y. Legault, CYLview, 1.0b, Université de Sherbrooke: Sherbrooke (Québec) Canada, 2009, http://www.cylview.org.

Received: June 24, 2015 Published online on September 23, 2015