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An efficient method for one-pot synthesis of �-lactams from
aldimines and ketene silyl acetals by tandem Lewis base-cata-
lyzed Mannich-type addition and cyclization, namely reaction
of benzylideneanilines and trimethylsilyl enolates derived from
esters or thioesters was established by using a Lewis base cata-
lyst such as lithium acetate, N-lithio-2-pyrrolidone, potassium
salt of phthalimide or lithium methoxide in DMF at room tem-
perature to afford the corresponding �-lactams in good to high
yields with moderate trans-selectivities.

�-Lactams are important compounds for their biological ac-
tivities and various synthetic methods were accordingly devel-
oped.1 Of those developed, a method which is carried out by
Mannich-type reaction of aldimines with silyl enolates and cyc-
lization of thus formed �-amino ester is quite useful and affords
the corresponding �-lactams by the use of various aldimines and
silyl enolates combinations successfully.2

In the course of our investigation on the activation of trime-
thylsilyl (TMS) enolates by Lewis base catalyst,3,4 nitrogen- or
oxygen-containing organic anions generated from amides or car-
boxylic acids were found to work effective Lewis base catalysts
to accelerate the Mannich-type reaction of N-tosylaldimines
with TMS enolates.5

Development of a one-pot synthesis of �-lactams was con-
sidered in order to show further applicability of this method. In
this communication, we would like to describe a one-pot synthe-
sis of various �-lactams by tandem Lewis base-catalyzed Man-
nich-type addition and cyclization.

The above-mentioned Lewis base-catalyzed Mannich-type
reaction was considered to proceed by the following mechanism
(Scheme 1): in the presence of a Lewis base, N-lithiated Man-
nich-adduct A and silylated Lewis base B were formed by nucle-

ophilic addition of TMS enolate to aldimine; thus formed silylat-
ed Lewis base B worked as a silylating reagent and the corre-
sponding �-amino ester C was next formed by a silyl group
transfer from B to N-lithiated Mannich-adduct A. An another
pathway of forming �-lactam by an intramolecular nucleophilic
substitution of A was also considered.

In the previously reported Lewis base-catalyzed Mannich-
type reaction, no evidence of forming �-lactams was detected
when N-tosylaldimines were used as Mannich-acceptors. Now,
it was interestingly found that the corresponding �-lactam was
obtained in 83% yield together with �-amino ester (15% yield)
when Mannich-type reaction between benzilideneaniline 2 and
TMS enolate 3 was carried out in the presence of 10mol% of
lithium acetate (AcOLi) at �45 �C.

Then, reaction conditions were screened in detail in order to
develop this method (Table 1). It was found then that the ratio of
formation of �-lactam 4 to �-amino ester 5 was influenced by
the reaction temperature and the desired �-lactam was afforded
selectively at room temperature in the presence of a catalytic
amount of AcOLi. Various Lewis bases such as lithium pyrror-
idone, potassium phthalimide, and lithium methoxide also
turned out to be effective when reactions were carried out at
room temperature while the ration of 4 was moderate in the case
of using potassium acetate or ammonium acetate.

Further, tandem lithium acetate-catalyzed Mannich-type ad-
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Entry Cat. Temp./�C Time/h
Yielda/%

4 5

1 AcOLi rt 1.5 95 n.d.b

2 AcOLi �20 6 92 8
3 AcOLi �45 6 83 15
4 AcOK rt 3 36 47
5 AcONn-Bu4 rt 3 51 44
6 2-pyrrolidone Lic rt 1.5 98 n.d.
7 2-pyrrolidone Lic �45 24 n.d. trace
8 Phthalimide Kd rt 6 98 n.d.
9 Phthalimide Kd �45 24 32 49

10 MeOLi rt 3 quant. n.d.
11 MeOLi �45 24 38 22
12 none rt 6 n.d. n.d.

aYield was determined by 1HNMR analysis (270MHz) using
1,1,2,2-tetrachloroethane as an internal standard. bn.d.; not detect-
ed. cN-lithio-2-pyrrolidone. dPotassium salt of phthalimide.
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dition and cyclization was tried by using various aldimines and
ketene silyl acetal 3 in DMF (Table 2). Aromatic aldimines
smoothly reacted with 3 to afford the corresponding �-lactams
in high yields, and in good to high yields in the cases when
the aldimines having a basic function within the same molecule
were used (Entries 4 and 5).

Next, tandem lithium acetate-catalyzed Mannich-type addi-
tion and cyclization were tried by using various TMS enolates
(Table 3). When enolate 9 or 10 was employed, the correspond-
ing �-lactams were obtained with moderate trans-selectivity. In
the cases of using TMS enolates generated from thioesters such
as 12, 13, or 14, however, the corresponding �-lactams were ob-
tained in high yields and good selectivities whose stereochemis-

try were improved from the case of using enolates of the corre-
sponding carboxylic esters.

It was considered that the Mannich-type reaction proceeded
via the acyclic transition states for the corresponding �-lactams
were obtained with moderate trans-selectivity irrespective of the
geometry of the silyl enolates employed (Entries 1, 2, 5, and 6).

Thus, it was found that tandem Lewis base-catalyzed
Mannich-type addition and cyclization between TMS enolates
and benzilideneanilines proceed smoothly under weakly basic
conditions. This method is quite practical and is applicable to
the syntheses of various �-lactams in one-pot process. Further
development of this reaction is now in progress.
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3 (1.4 equiv.) 

Entry Ar1 Ar2 Time/h Yielda/%

1 p-BrC6H4 Ph 6 96
2 p-O2NC6H4 Ph 6 73
3 p-MeOC6H4 Ph 6 80b

4 p-Me2NC6H4 Ph 24 78
5 3-Pyridil Ph 4 94c

6 Ph p-ClC6H4 6 96
7 Ph p-MeOC6H4 6 84

aYield was determined by 1HNMR analysis (270MHz) using
1,1,2,2-tetrachloroethane as an internal standard. b3% of �-
amino ester was obtained. c6% of �-amino ester was obtained.

Table 3.

DMF, rt, Time
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Entry Silyl enolate Time/h Yielda/% (trans/cis)

1

OSiMe3

OMe 9 6 62 (78/22)b,c

2
OSiMe3

OMe
10 24 85 (66/34)

3

Et

OSiMe3

OMe 11 24 quant. (75/25)b

4

OSiMe3

St-Bu
12 6 84 (89/11)

5

OSiMe3

SEt 13 6 89 (90/10)b

6
OSiMe3

SEt
14 24 93 (92/8)b

aYield was determined by 1HNMR analysis (270MHz) using
1,1,2,2-tetrachloroethane as an internal standard. b3 equivalents
of silyl enolate were used. c22% of �-amino ester was obtained
as co-product (anti/syn = 64/36).
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