
Ynonylation of Acyl Radicals by Electroinduced Homolysis of 4‑Acyl-
1,4-dihydropyridines
Xiaosheng Luo and Ping Wang*

Cite This: Org. Lett. 2021, 23, 4960−4965 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Herein we report the conversion of 4-acyl-1,4-
dihydropyridines (DHPs) into ynones under electrochemical
conditions. The reaction proceeds via the homolysis of acyl-
DHP under electron activation. The resulting acyl radicals react
with hypervalent iodine(III) reagents to form the target ynones or
ynamides in acceptable yields. This mild reaction condition allows
wider functionality tolerance that includes halides, carboxylates, or
alkenes. The synthetic utility of this methodology is further demonstrated by the late-stage modification of complex molecules.

Ynones and their derivatives are versatile synthons in
organic synthesis due to their abilities for diverse

transformations to C−B, C−C, C−N, and C−O bonds.1

The combination of the highly reactive alkyne group with an
adjacent carbonyl group creates the unique reactivity of
ynones. As a case in point, this important function of ynones
makes them an attractive target for synthetic chemists. Several
strategies have been successfully developed for the preparation
of ynones utilizing the oxidation of propargyl alcohols, alkynyl
organometallic reagents, and the metal-catalyzed carbonylative
Sonogashira coupling, although the selectivity and substrate
scope are limited in these methods.2 In addition to these
traditional methods, a series of catalytic metal-mediated
methods, such as gold-catalyzed decarbonyl aerobic oxidation,3

Zn/In-cocatalyzed dehydrogenative cross-coupling,4 and Rh,
Ir-catalyzed chelation-assisted C−H bond activation5 have
been developed (Scheme 1, path A). More recently, photo-

redox catalysis has been elegantly employed by the groups of
Wang,6 Chen,7 and Xiao8 for the preparation of ynones using
alpha-keto acids as carbonyl radical precursors (Scheme 1, path
B).9 Glorius and coworkers reported a visible-light-catalyzed
homolysis of formyl C−H alkynylation, which exhibited a
broad functional group tolerance and substrate scope.10

However, alkynylation in the presence of carboxylic acids11

and iodide,12 bromide,13 and chloride14 groups under
photoredox reaction conditions has proven elusive due to
their high potential for reactivity. The development of a
synthetic strategy allowing a broader functional group
tolerance, a rapid reaction time, and the avoidance of precious
metals is still in high demand. To address these issues, we
questioned whether electrochemistry could address these
challenges via fine-tuning the electrode potential, which is
difficult to be solved by the current methods.15 We envisioned
that an electrochemical generation of acyl and carbamoyl
radicals might be a new activation mode for the preparation of
more complex ynones with much milder conditions and
broader functional group tolerance.16 Electrochemistry, which
enables a wide application of radical generation under milder
conditions, can generate highly reactive intermediates under an
applied potential without experiencing an excited state,17 such
as alkene functionalization,18 cyclization,19 bond construction
(C−N,20 C−O,21 C−C22), and other diverse reactions.23

Despite this progress, the electrochemical construction of
Csp

2(O)−Csp bonds remains elusive.
Herein we report a novel coupling of 4-acyl and carbamoyl

dihydropyridines (DHPs) with hypervalent iodine(III) re-
agents (HIRs), affording ynones and ynamides under electro-
chemical conditions, where the ability to produce acyl and
carbamoyl radicals in the absence of metal and photoredox
catalysts allowed a broad functional group tolerance. Motivated
by the recent studies of 4-substituted 1,4-dihydropyridines
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Scheme 1. Synthetic Approaches for Ynones
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acting as readily accessible radical precursors,24 we wondered if
it was feasible to harness the electrochemistry of DHPs in
carbonyl radical additions to the HIR. In this Letter, we show
the coupling of 4-acyl and carbamoyl DHPs with HIRs under
mild conditions, which permits the late-stage modification of
complex pharmaceutical molecules.
At the beginning of our exploration, we started with the

preparation of an ynone from the coupling of 4-benzyl
dihydropyridine (1a, 1.5 equiv) and 2a (1.0 equiv). The
reaction was conducted under 4.0 V conditions with a boron-
doped diamond (BDD) anode and cathode using n-Bu4NPF6
(0.25 M) as the electrolyte in 1,2-dichloroethane (DCE) at 25
°C in the presence of H2O (10 equiv). Product 3 was smoothly
obtained in 76% yield (Table 1, entry 1) in 3 h. Water played a

crucial role in this reaction, and the absence of water resulted
in a decrease in the current from ∼3.0 to ∼0.7 mA and a drop
in the reaction efficiency (entry 2). We presume that the
addition of water increased the conductivity of the mixture,
whereas diminished yields were obtained with 5.0 or 15.0 equiv
of water (entries 3 and 4). Electrode materials such as Pt, Ni,
and glassy carbon were demonstrated to be less effective
(entries 5−8). DCE was shown to be a better solvent than
solvents such as acetonitrile, 2,2,2-trifluoroethanol (TFE), and
dimethylformamide (DMF) (entries 9−11). The increase in
voltage to 6.0 V gave a reduced yield (entry 12). This
transformation could be conducted under air, although a
diminished yield was obtained (entry 13). The electric current
was essential for this reaction (entry 14).
As shown in Scheme 2, we next evaluated the applicability of

this transformation using the optimized conditions. First, a
diverse series of 4-acyl DHPs were coupled to 2a to verify the
versatility and generality of this protocol (Scheme 2). With

respect to acyl DHPs with different electron-rich or -deficient
aryl groups, the alkynylation products (3−14) were obtained
in good yields. The ability to tolerate an aryl halogen atom (F,
Cl, Br, I, 8−11) showed that this method enables further
functionalization and is orthogonal to cross-coupling reactions.
Acyl DHPs with alkyl substituents smoothly gave ynones (15−
18) in 62−86% yields. Ynamides (19−22) could be accessed
from carbamoyl derivatives, which are useful building blocks in
synthesis that have been less explored in synthetic chemistry.

Table 1. Optimization of Reaction Conditions for
Electrochemical Ynonylationa

entry change from standard conditions yield (%)b

1 none 76 (75)
2 without H2O 41c

3 5.0 equiv of H2O 52
4 15.0 equiv of H2O 71
5 graphite as anode 12
6 Pt as anode 59
7 Ni as anode 41
8 glassy carbon as cathode 40
9 MeCN as solvent 66
10 TFE as solvent 58
11 DMF as solvent 46
12 6.0 V 56
13 under air 53
14 no current trace

aStandard conditions (0.15 mmol): 1a (1.5 equiv), 2a (1.0 equiv),
H2O (10.0 equiv), n-Bu4NPF6 (0.25 M), DCE (1.5 mL), BDD
electrodes, 4.0 V, undivided cell, 25 °C, N2 atmosphere, 3 h. bYields
were determined using 1H NMR analysis with 1,4-dimethoxybenzene
as an internal standard. Isolated yield is given in parentheses.
cReaction time: 6 h.

Scheme 2. Substrate Scope of Electroinduced Ynonylation
Reactionsa

aReaction conditions (0.15 mmol): 1 (1.5 equiv), 2 (1.0 equiv), H2O
(10.0 equiv), and n-Bu4NPF6 (0.25 M) in DCE (1.5 mL), BDD
electrodes, 25 °C, 4.0 V, undivided cell. bUsing peptidyl DHP 1x (1.0
equiv; for the structure, see the Supporting Information) and 2a (2.0
equiv).
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Peptides are important therapeutics, and the modification of
the peptide N-terminus is crucial for the improvement of their
bioavailability and stability. This transformation can be
employed in peptide chemistry. The DHP scaffold can be
readily introduced into the N-terminus of peptides. (See
general procedure C in the Supporting Information.)
Subsequently, peptidyl acyl-DHPs gave the corresponding
peptides 23−26 in decent yields. DHPs bearing carboxylic
acids (18, 25), esters (17, 23, 26), amides (25, 26), amine
(22), alcohol (24), and tBu-protected Tyr (26) were well
tolerated in this transformation. Unfortunately, we failed to
demonstrate the reaction efficiency with acyl DHPs bearing
linear alkyl chains because of the lack of synthetic methods to
obtain the corresponding DHPs. In addition, the reactions
employing acyl DHPs featuring an α-tBu moiety or free
phenols were unsuccessful.
To explore the universality of the reaction further, we

investigated a wide range of various alkynyl benziodoxolones
(BI-alkynes) under electrochemical conditions. The HIR with
various electron-rich or electron-deficient aryl substitutions
reacted well to provide ynones 27−36 in good yields. TIPS-
ynones are important scaffolds involved in synthesis. The
corresponding product 37 was successfully achieved in good
yield. Next, the coupling of DHP 1a with the alkyl-substituted
HIR provided ynones 38−42 in good yields. It is noteworthy
that the formation of ynones bearing alkyl chloride (41) and
bromide (42) by radical and metal-catalyzed chemistry was
challenging due to the high reactivity of halogens. These
examples demonstrated that the tunability of electrochemistry
established on the proper applied potential enabled the
selective activation of substrate functional groups.
This strategy was next demonstrated via its application to

the late-stage functionalization of complex pharmaceutical
molecules (Scheme 3). Galactose (43), pregnenolone (44),
testosterone (45), and cinchonine (46) derivatives were
obtained in moderate to good yields. 4-Acyl DHPs bearing
cortisone, norfloxacin, and fluoxetine were selectively alkyny-
lated to smoothly provide products 47−49. A broad range of
functional groups (esters, olefins, ketones, and ketenes) can be
employed in this reaction. To further explore the functional
tolerance and robustness of this transformation, we inves-
tigated the impact of additives in this transformation. (See
page S10 in the Supporting Information.) It was found that the
addition of alcohol, alkene, alkyne, alkyl halogens (Cl, Br, I),
and carboxylic acids had no negative impact on the efficiency

of this transformation. Amino acids, such as histidine with an
imidazole, serine, and tyrosine, moderately suppressed this
reaction. (See page S10 in the Supporting Information for
details.) Recent seminal works in this field using photoredox
catalysis can provide ynones and ynamides under mild
conditions. Furthermore, functional groups like halogen,
carboxylic acid, and amino acid residues25 (Trp,26 Met27)
were proven to be excellent substrates for photoinduced
transformations, whereas electrochemistry enabled the selec-
tive activation of the DHP moiety under proper potential, with
these photosensitive functional groups remaining intact. As a
result, our reaction showed a different range in comparison
with the existing strategies with regard to functional group
tolerance. As demonstrated by the late-stage functionalization
of these complex molecules, a unique advantage of electro-
chemistry was the selectivity and tunability of the reaction
based on the redox potentials of the functional groups present
in the molecule.
Next, we proceeded to investigate the mechanism of this

electrochemical transformation. No desired product was
isolated in the presence of TEMPO (3.0 equiv), and the
reaction was inhibited with the addition of 1,1-diphenyl-
ethylene (2.0 equiv). Furthermore, the corresponding coupling
products 50 and 51 were isolated, and these results indicated
that an acyl radical was generated under electrochemical
conditions (Scheme 4a). Subsequently, cyclic voltammetry
(CV) experiments were conducted. As shown in Scheme 4b,
the redox behavior of substrate 1a (+1.31 V) was recorded. An
obvious peak current increase was observed with the addition
of 0.2% water, whereas no new peaks were detected by CV
analysis. 2a did not show any obvious redox signal. (See page
S12 in the Supporting Information.) Meanwhile, the mixtures
of these substrates showed no obvious change (Scheme 4c),
suggesting no interaction between both partners (further
confirmed using UV−vis spectrophotometer analysis; see page
S11 in the Supporting Information).
Compound 2a was not redox-active within this potential

range, and only 1a exhibited an oxidation peak at +1.31 V. This
provided evidence that the reaction was initiated by the anodic
oxidation of DHP reagents. Importantly, the addition of 0.2%
water increased the conductivity of the reaction system and
thus significantly accelerated the reaction. CV analysis
demonstrated no obvious change after the addition of water.
On the basis of these experimental studies, a possible
mechanism for this transformation is proposed in Scheme

Scheme 3. Late-Stage Functionalization of Pharmaceutical Moleculesa

aReaction conditions (0.15 mmol): 1 (1.5 equiv), 2 (1.0 equiv), H2O (10.0 equiv), and n-Bu4NPF6 (0.25 M) in DCE (1.5 mL), BDD electrodes,
25 °C, 4.0 V, undivided cell. bUsing norfloxacin-derived DHP 1z (1.0 equiv; for the structure, see the Supporting Information) and 2a (3.0 equiv)
in DCE/TFE (14/1, 1.5 mL), at 6.0 V, 50 °C for 10 h. cUsing fluoxetine-derived DHP 1aa (1.0 equiv; for the structure, see the Supporting
Information) and 2a (3.0 equiv) at 5.0 V, 50 °C for 10 h.
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4d. First, 1 was activated by anodic oxidation; then, C−C bond
homolysis of the newly formed radical cation intermediate A
released the key acyl radical B together with pyridine
byproduct 52. B was captured by the BI-alkynes, which
underwent elimination to give the target product 3. Byproduct
53 was detected upon cathodic reduction of the BI radical.
In summary, we have developed an unprecedented and

general approach that converts 4-acyl and carbamoyl DHPs
into ynones and ynamides via electrochemistry. The DHP
moiety was selectively activated without metal catalysts, and a
diverse range of functional groups including halide moieties,
activated alkenes, alkynes, and alcohols were tolerated in this
transformation. The merits of the electromediated alkynylation
were further exhibited in the synthesis of structurally more
complex compounds. This work provides a new set of tools to
the existing ynonylation methods.
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