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Treatment of pyridine N-oxides with dimethylthiocarbamoyl chloride in boiling acetonitrile effects 
chemoselective deoxygenation to pyridines. 
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INTRODUCTION 

Deoxygenation of pyridine N-oxides is an important 
synthetic transformation [1-4] for which many methods 
have been reported [5-7].  Of these, the most generally 
useful are catalytic hydrogenation (especially over nickel 
catalysts) [8,9], transfer hydrogenation, [10-12] treatment 
with trivalent phosphorus compounds (especially PCl3) 
[13-15] and treatment with metals (especially zinc) 
[16,17]. These methods, however, are not without 
drawbacks.  We present here a new chemoselective 

method.  When, for example, several 4-substituted 
pyridine N-oxides [18] are treated with commercially-
available dimethylthiocarbamoyl chloride (DMTCC) [19] 
using the general procedure, the parent pyridines, 
accompanied by 2-dimethylcarbamoylthio pyridines (and 
very small amounts of 3-dimethylcarbamoylthio 
pyridines), are produced [20-22] (Scheme 1). The 
following 2- and 3-substituted and 3,5-disubstituted 
pyridines behave in similar manner (Scheme 2). Pyridines 
bearing CHXY groups at C-2 or C-4 exhibit another type 
of side reaction (Scheme 3). 
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Scheme 1

1 (R = tBu) 2 (81%) 3 (4%)

4 (R = Ph) 5 (85%) 6 (8%)

7 (R = CO2CH3) 8 (35%) 9 (30%)

10 (R = COCH3) 11 (20%) 12 (24%)

13 (R = CN) 14 (<2%) 15 (49%)  
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19 (R3 = CH3, R5 = CH3) 21 (3%)

Cl

S

Me2N

22 (R3 = CH2OH, R5 = H) 23 (47%) 24 (9%)[25]

28 (R3 = Br, R5 = H) 29 (41%) 30 (<5%)[25]

25 (R3 = CO2CH3), R5 = H) 26 (36%) 27 (<10%)[25]
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RESULTS AND DISCUSSION 

It is likely that all products originate from N-
(thioacyl)oxy salts [26]. Using the 2-picoline N-oxide 
example, the production of 33 and 34 may occur as 
follows; alternative routes can be imagined [27]; 3- 
and 5-dimethylcarbamoylthio pyridines may arise via 
several processes [27]. The relatively large amounts of 
α-dimethylcarbamoylthio pyridines produced when 

there is an electron-withdrawing group at C-2 or C-4 is 
consistent with internal nucleophilic addition (cf. 44 
→ 45) (Scheme 4). 

We have, at present, little mechanistic understanding 
of the process(es) leading to deoxygenation.  Attack at 
sulfur by a nucleophile on the initial N-(thioacyl)oxy salt 
would produce pyridine and a species such as 47.  
Indeed, small amounts of bis(dimethylcarbamyl) disulfide 
[Me2N(CO)S-S(CO)NMe2] are found in all reactions.  
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Addition of 2 equivalents of iodide ion to the reaction 
mixture leads to the production of iodine but does not 
increase the yields of pyridines nor does it accelerate the 
rate of disappearance of pyridine N-oxides. [28] One mole 
of DMTCC per mole of pyridine oxide is necessary, and 
dimethylcarbamyl chloride is ineffective at causing 
deoxygenation of 1, with or without iodide ion.  3,5-
Lutidine N-oxide 19 and 2,6-lutidine N-oxide 39 are 
reduced at comparable rates and in comparable yield, 
suggesting that species analogous to 45 (whose formation 
in the case of 39 would be sterically disfavored) are not 
involved in the deoxygenation process [19]. Finally we 
note that small amounts of tetramethyl thiourea are 
produced in all reductions 

EXPERIMENTAL 

General procedure. A 1.48-g (12 mmol) portion of DMTCC 
is added to a magnetically-stirred solution of 10 mmol pyridine 
N-oxide in 20 mL of reagent-grade acetonitrile, and the solution 
is heated at reflux for 4 to 14 hrs until GC shows no further 
increase in the desired pyridine.  Because of the high water-
solubility of the products, the following non-aqueous workup is 
used.  The mixture is cooled and treated with 12 mL of a 1 M 
solution of HCl in ether.  Solvent is removed on the rotary 
evaporator and then at the vacuum pump and the residue is 
triturated with two 20-mL portions of ether; the ether-soluble 
phase, containing non-basic by-products such as bis(dimethyl-
carbamyl) disulfide, is set aside.  The ether-insoluble phase is 
dissolved in hot methylene chloride and treated with 2 mL (18 
mmol) N,N-dimethylethaneamine and the solvent is removed on 
the rotary evaporator and then at the vacuum pump.  The residue 
is triturated several times with 20-mL portions of ether and the 
ether-insoluble solid (N,N-dimethylethaneamine hydrochloride 
salt) is discarded.  The ether-soluble phase is concentrated and 
distilled or chromatographed on 100 g of silica gel (Davisil 
grade 643, 200-425 mesh) packed in hexane/ethyl acetate. 

This procedure was altered slightly for acid-sensitive 
compounds by not treating product mixture with acid solution. 
After removal of solvent on the rotary evaporator and then at the 
vacuum pump the residue is dissolved in the minimum amount 
of hot methylene chloride and passed through a short column 
containing 10 g of basic alumina (CAMAG 5016-A-1, 150 
mesh) eluting with hexane/methylene chloride. The eluant is 
concentrated and the residue is distilled or chromatographed as 
above. 
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