RSC Advances

This article can be cited before page numbers have been issued, to do this please use: S. Zhang, W. Zhang, Q. Xiao, Z. Yang, X. Hu, Z. Wei and K. Tam, RSC Adv., 2016, DOI: 10.1039/C6RA14060B.

c

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Development of dichloroacetamide pyrimidines as pyruvate dehydrogenases kinase inhibitors to reduce cancer cell growth: synthesis and biological evaluation \dagger

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x
www.rsc.org/

Shao-Lin Zhang ${ }^{\text {a }}$, Wen Zhang ${ }^{\text {a }}$, Qingqin Xiao ${ }^{\text {a,b }}$, Zheng Yang ${ }^{\text {a }}$, Xiaohui $\mathrm{Hu}^{\text {a }}$, Zhiyi Wei ${ }^{\text {b }}$ and Kin Yip Tam ${ }^{*}$

[^0]However, the activity of PDC is tightly regulated by a variety of allosteric effectors and by reversible phosphorylation. The phosphorylation of PDC by PDKs results in its inactivation, while dephosphorylation of PDC by pyruvate dehydrogenase phosphatases (PDPs) restores its activity. ${ }^{7}$ Inhibition of PDKs to increase the oxidative phosphorylation of glucose by activating PDC is an attractive therapeutic strategy to reverse the abnormal metabolic pathway and inhibit cancer cell proliferation.
Four PDK isoforms (PDK1, PDK2, PDK3, and PDK4) in mitochondria have been isolated and characterized. ${ }^{8}$ PDK1 is mostly associated with cancer malignancy. ${ }^{9}$ It had been reported that PDK1 was remarkably overexpressed in multiple human tumor such as lung cancer, ${ }^{10}$ head squamous cancer, ${ }^{9}$ myeloma, ${ }^{11}$ and gastric cancer. ${ }^{12}$ Over expression of PDK1 also correlated with poor prognosis and drug resistance. ${ }^{13}$ Collectively, these suggest that PDK1 is a valid anticancer target.

Fig. 1 Structures of DCA, compounds $\mathbf{1 a}$ and $\mathbf{1 b}$
So far, a number of PDKs inhibitors have been reported, such as AZD7545, ${ }^{14}$ Nov3r, ${ }^{15}$ Pfz3, ${ }^{16}$ PS10, ${ }^{7}$ VER-246608, ${ }^{17}$ and Radicicol, ${ }^{18}$ but none of them are efficacious anticancer agents. In 2007, Michelakis et al reported that dichloroacetate (DCA, Fig. 1) was capable of inducing apoptosis in cancerous in vitro. ${ }^{4}$ Since then, DCA has received considerable attention and rapidly entered Phase II clinical trials only three years after its anticancer activity was first reported. However, the high effective dosage ($25-100 \mathrm{mg} / \mathrm{kg}$ body weight) appeared to limit its further clinical application. ${ }^{19}$ Moreover, clinical data suggested that long-term DCA treatment of patients showed reversible limb motor weakness and demyelination of cerebral.

In our previous work, ${ }^{2}$ we discovered the DCA derived compounds 1a and 1b (Fig. 1), which selectivity bound to the ATP pocket of PDK1 and exhibited moderate anti-proliferation activities against breast cancer cell line Michigan Cancer Foundation-7 (MCF-7) (ATCC). However, the binding of these two compounds to their target PDK1 is relatively weak. To further enhance the anticancer activities and binding affinity of this chemical series, herein we describe the optimization of compounds 1a and 1b, and their biological evaluation as PDK1 inhibitor.

The preparation of the target dichloroacetamide pyrimidines started from commercially available material 2. The reaction of compound 2 with nitric acid (90\% aqueous solution) yielded compound 3, which was chloridized with phosphorus oxychloride to produce 2,6-dichloropyrimidine 4, ${ }^{20}$ and further reduced in the presence of by iron powers and acetic acid to afford 4,6-dichloro-5-aminopyrimidines 5. ${ }^{21}$ Finally, the dichloroacetamides 1a and 1b were prepared by the amidation of compounds 5 in dichloromethane with dichloroacetyl chloride.

Scheme 1 Synthetic routes for the mono-substituted dichloroacetamide pyrimidines 6-23 and bis-substituted dichloroacetamide pyrimidines $\mathbf{2 4}$ 37. For the compounds 14 and $\mathbf{2 3}$, the reaction condition is DCM, 13, and $\mathbf{2 2}$, then was treated with TFA.

Then mono-substituted dichloroacetamide pyrimidines 6-23 were synthesized from the intermediates $\mathbf{1 a}$ and $\mathbf{1 b}$ by N alkylation with various aliphatic amines at room temperature (Scheme 1). The bis-substituted pyrimidines 24-37 were successfully synthesized by increasing the reaction temperature to $60^{\circ} \mathrm{C}$ (Scheme 1). At last, the N-Boc protection
of bispiperazine pyrimidine 37 was subjected to the deprotection to produce compound 38, which was then treated with bromoethanol or glycolic acid to afford target compounds 39 and 40 with yields of 64.7% and 24.7\%, respectively (Scheme 2). All prepared compounds were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and HRMS spectra.

Scheme 2 Synthetic routes for the bispiperazine pyrimidines. Reagents and conditions: (a) DCM, TFA, rt; (b) MeOH, NEt ${ }_{3}$, 2-bromoethan-1-ol; (c) DMF, oxalyl chloride, glycolic acid, $\mathrm{NEt}_{3}, \mathrm{DCM}, \mathrm{rt}$.

Next we used Alamar Blue assay to test the antiproliferative activity of the prepared compounds against the glioblastoma cell line SF188, colon cancer cell line RKO, and MCF-7 (all purchased from ATCC). As shown in Table 1, all of the monosubstituted, and some of the bis-substituted pyrimidines displayed relative low inhibition rates at $40 \mu \mathrm{M}$ comparing with compounds $\mathbf{1 a}$ and $\mathbf{1 b}$. Interestingly, the bis-substituted N -Boc pyrimidines $\mathbf{3 0}$ and $\mathbf{3 7}$ showed improved antiproliferative activity against the three cancer cell lines at
$40 \mu \mathrm{M}$. In particular, the inhibition rates of $\mathbf{3 0}$ and $\mathbf{3 7}$ against SF188 are 45.20% and 74.63%, respectively. After the removal of the N-Boc group from 37 and further optimization, the resultant compounds 39 and 40 exhibited superior anticancer activity. It can be seen that both mono-substituted (6-23) and bis-substituted pyrimidines (24-29, 31-36 and 38) with substituents of small/moderate size do not offer potency enhancement, which could be rationalized by our molecular docking studies (see below). On the other hand, introduction
of bulky Boc group promotes anticancer activity (37), which is further improved in cases of compounds 39 and 40.

Fig. 2 Dose-response curves of compound 37 (left), $\mathbf{4 0}$ (right) and 1b (middle) against the SF188 cancer cells.

We have observed that PDKs are highly expressed in SF188 and RKO cancer cell lines but moderately expressed in MCF-7 (unpublished results). Hence, SF188 cancer cell line was selected for dose response studies on compounds 37,40 and 1b and further evaluations. Notably, the most potent
compound 40 exhibited an improved IC_{50} value of $8.21 \mu \mathrm{M}$ against the SF188 cancer cells (see Fig 2). Then, we used IncuCyte ${ }^{\circ}$ Zoom Live-Cell Analysis System (Essen BioScience Company) to monitor the growth of SF188 cancer cell after being treated with compound 40 at $40 \mu \mathrm{M}$ for 24,48 , and 72 h . As shown in Fig. 3, compound 40 inhibits the growth of SF188 cancer cell in a time dependent manner.
To explore the mechanism of cancer cells death, compounds 1b and 40 were used to induce SF188 apoptosis, which was examined by using Annexin V-FITC/PI FACS assay. As shown in Fig. 4, the percentages of apoptosis for SF188 cells treated with compound 40 in 10,20 , and $40 \mu \mathrm{M}$ for 24 h were $6.3,9.3$, and 13.4%, respectively. This indicates that compound 40 induces the apoptosis of SF188 cells in a dose dependent manner. Clearly, the apoptotic rates in the presence of compound $\mathbf{4 0}$ at $20 \mu \mathrm{M}$ outperformed compound $\mathbf{1 b}$ at $40 \mu \mathrm{M}$.

Table 1 Antiproliferative assay on the prepared compounds against SF188, RKO and MCF-7 cancer cell lines.

Fig. 3 Growth of SF188 cancer cells after treated with compound 40 at $40 \mu \mathrm{M}$ for $24 \mathrm{~h}, 48 \mathrm{~h}$, and 72 h . The images were taken by using IncuCyte Zoom live cells images (Essen BioScience Company).

With improved anticancer activity of compound $\mathbf{4 0}$, we sought to address the question whether this compound interacted with its supposed target PDKs. Specifically, PDK1 solution was titrated with compound 40 in an isothermal titration calorimetry (ITC) experiment. A moderate K_{d} value ($14.7 \mu \mathrm{M}$) was observed, suggesting that compound 40 interacted directly with PDK1 (see Fig. 5A). In contrast, the interaction of the starting compound $\mathbf{1 b}$ with PDK1 was undetectable under the same conditions.
Next, PDK1 kinase activity was evaluated in the presence of compound $\mathbf{1 b}$ and $\mathbf{4 0}$ using Kinase-Glo ${ }^{\circ}$ Luminescent Kinase Assays (Promega). As shown in Fig. 5B, compound 40 reduced the consumption of ATP in the presence of a substrate peptide fragment (amino acid sequences: RYHGHSMSDP, which is a fragment around S293 of PDC), ${ }^{2}$ indicating that compound 40

inhibited PDK1 activity. In Fig. 5C, compound 40 at 10, 20, and $40 \mu \mathrm{M}$ reduced PDK1 activities by 24.3, 53.7, and 72.5%, respectively. Inhibition of PDK1 activates PDC, leading to a switch of pyruvate consumption from lactate production to oxidative phosphorylation in the mitochondrion. Consequently, the lactate formation in cancer cell should be reduced after treatment with PDKs inhibitor. With this notion in mind, the lactate production was evaluated by Nova Bioprofile Flex analyzer (Nova Biomedical). As shown in Fig. S1, compound $\mathbf{4 0}$ decreases the lactate formation in SF188 cancer cells. The extent of lactate formation in the presence of compound $\mathbf{4 0}$ at $10 \mu \mathrm{M}$ was similar to that of compound $\mathbf{1 b}$ at $40 \mu \mathrm{M}$.

Fig. 4 Flow cytometer analysis of cell apoptosis. The cells were treated with compound $\mathbf{4 0}$ and $\mathbf{1 b}$ for $\mathbf{2 4} \mathbf{h}$ and then stained with FITC Annexin V / PI. Cells in the lower right quadrant indicate PI positive/ Annexin V negative, late apoptotic, or necrotic cells. The cells in the upper right quadrant indicate Annexin V-positive/PI negative, early apoptotic cells. $* P<0.05$, versus control group.
the raw data of the titration, in which the power output in microcalories per second is measured as a function of time in minutes; 5B: PDK1 kinase activity assay as indicated by ATP consumption in the

Fig. 5A ITC analysis of compound $\mathbf{4 0}$ binding to PDK1. Upper showed
presence of a substrate peptide fragment. * $P<0.05$, versus no inhibitor control group; 5C: Reduced PDK1 activity after treatment of compounds 1b and 40.
To rationalize the interactions between the PDK binding site and compound 40 , molecule docking study was undertaken. All crystal structure data were obtained from the protein data bank. Since the structure of PDK1-ATP complex is not available, we selected PDK2-ATP complex (PDB code: 2BU2) as the template for docking. PDK1 (PDB code: 2Q8F) and PDK2 share high similarity in their structures, with an alignment Root Mean Square (RSM) less than 1.5 angstrom. More importantly, all critical residues involved in ATP binding are conserved between PDK1 and PDK2. These justify the use of the PDK2ATP structure as template in our docking studies. As shown in the Fig. 6, compounds $\mathbf{1 b}$ and $\mathbf{3 8}$ (as well as other analogues with small/moderate sized substituents; data not shown) were not within reach of the two conserved amino acids Asp 282 and Thr 346, which formed hydrogen bonds with ATP. When compound 39 was docked to the ATP pocket, we observed hydrogen bond interaction between the compound and Asp282. Docking of compound 40 to the ATP pocket showed hydrogen bond interactions of the compound with Asp 282 and Thr 346. These could contribute to the enhanced potency
of compound 40 as compared with compounds $\mathbf{1 b}$ and 39. Apparently, compounds 39 and 40 are useful hits for the molecular design of inhibitors that specifically bind to the ATP pocket of PDKs. Further work on hit expansion based on

compound 40 is being carried out in our laboratory. Results will be reported in due course.

Fig. 6 Molecular modelling of compounds in the ATP binding pocket of PDK2. 6A: compound 1b and ATP in the ATP binding pocket of PDK2; 6B: compound 38 and ATP in the ATP binding pocket of PDK2; 6C: compound 39 in the ATP binding pocket of PDK2; 6D: compound 40 in the ATP binding pocket of PDK2 (PDB code: 2BU2). All the amino acid residues and compounds are shown as stick models, H-bonds are shown as yellow dashed lines. The 3D graphical presentations were drawn by PyMol.

Conclusions

In this paper, we descried the synthesis and identification of novel PDK1 inhibitors. Their structures were confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and HRMS. Biological assays revealed that compound 40 inhibited the cancer cell proliferation with an IC_{50} value of $8.21 \mu \mathrm{M}$ against the SF188 cancer cells. ITC experiment suggested that compound 40 bound to PDK1 with a K_{d} value of $14.7 \mu \mathrm{M}$. Kinase activity assay showed that compound 40 in 10,20 , and $40 \mu \mathrm{M}$ reduced PDK1 activity by $24.3,53.7$, and 72.5%, respectively. Molecule modeling study indicated that compound 40 bound to ATP pocket of PDKs, potentially forming four hydrogen bonds with amino acid residues Glu 243, Asp 282, Thr 320, and Thr 346. Compound 40 could be a probe molecule to explore the pharmacology of PDK1.

Acknowledgments

We thank the financial support from the Science and Technology Development Fund, Macao S.A.R. (FDCT) (project reference no. 086/2014/A2). This work was supported partly by the startup of South University of Science and Technology of China and by Science, Technology and Innovation Commission of Shenzhen Municipality (Grant No. JCYJ20140417105742705) to Z.W.

Notes and references

1 D. A. Tennant, R. V. Durán and E. Gottlieb, Nat. Rev. Cancer, 2010, 10, 267.
2 S.-L. Zhang, X. H. Hu, W. Zhang and K. Y. Tam, J. Med. Chem., 2016, 59, 3562.
3 R. J. DeBerardinis, J. J. Lum, G. Hatzivassiliou and C. B. Thompson, Cell Metab., 2008, 7, 11.
4 S. Bonnet, S. L. Archer, J. Allalunis-Turner, A. Haromy, C. Beaulieu, R. Thompson, C. T. Lee, G. D. Lopaschuk, L. Puttagunta, S. Bonnet, G. Harry, K. Hashimoto, C. J. Porter, M. A. Andrade, B. Thebaud and E. D. Michelakis, Cancer Cell, 2007, 11, 37
5 E. D. Michelakis, G. Sutendra, P. Dromparis, L. Webster, A. Haromy, E. Niven, C. Maguire, T.-L. Gammer, J. R. Mackey, D. Fulton, B. Abdulkarim, M. S. McMurtry and K. C. Petruk, Sci. Transl. Med., 2010, 2, 31ra34.

6 S.-L. Zhang, X. H. Hu, W. Zhang, H. K. Yao and K. Y. Tam, Drug Discov. Today, 2015, 20, 1112.
7 S. C. Tso, X. Qi, W. J. Gui, C. Y. Wu, J. L. Chuang, I. WernstedtAsterholm, L. K. Morlock, K. R. Owens, P. E. Scherer, N. S. Williams, U. K. Tambar, R. M. Wynn and D. T. Chuang, J. Biol. Chem., 2014, 289, 4432.
8 W. Zhang, S.-L. Zhang, X. H. Hu and K. Y. Tam, Int. J. Biol. Sci., 2015, 11, 1390.
9 S. M. Wigfield, S. C. Winter, A. Giatromanolaki, J. Taylor, M. L. Koukourakis and A. L. Harris, Br. J. Cancer, 2008, 98, 1975.

10 M. I. Koukourakis, A. Giatromanolaki, G. Bougioukas and E. Sivridis, Cancer Biol. Ther., 2007, 6, 1476.
11 S. Fujiwara, Y. Kawano, H. Yuki, Y. Okuno, K. Nosaka, H. Mitsuya and H. Hata, Br. J. Cancer, 2013, 108, 170.
12 H. Hur, Y. Xuan, Y. B. Kim, G. Lee, W. Shim, J. Yun, I. H. Ham and S. U. Han, Int. J. Oncol., 2013, 42, 44.
13 B. Daniel, R. Uta, H. Jannis, K. Hans, E. Jan, C. Hannes, M. Kurt, S. Martin and W. Steffen, World J. Urol., 2013, 31, 1191.

14 J. A. Morrell, J. Orme, R. J. Butlin, T. E. Roche, R. M. Mayers and E. Kilgour, Biochem. Soc. Trans., 2003, 31, 1168.
15 T. D. Aicher, R. C. Anderson, G. R. Bebernitz, G. M. Coppola, C. F. Jewell, D. C. Knorr, C. Liu, D. M. Sperbeck, L. J. Brand, R. J. Strohschein, J. Gao, C. C. Vinluan, S. S. Shetty, C. Dragland, E. L. Kaplan, D. DelGrande, A. Islam, X. Liu, R. J. Lozito, W. M. Maniara, R. E. Walter and W. R. Mann, J. Med. Chem., 1999, 42, 2741.
16 P. Gahlot and R. Kakkar, Int. Res. J. Pharm., 2011, 1, 33.
17 J. D. Moore, A. Staniszewska, T. Shaw, J. D'Alessandro, B. Davis, A. Surgenor, L. Baker, N. Matassova, J. Murray, A. Macias, P. Brough, M. Wood, P. C. Mahon, Oncotarget, 2014, 5, 12862.
18 M. Kato, J. Li, J. L. Chuang and D. T. Chuang, Structure, 2007, 15, 992.
19 P. W. Stacpoole, T. L. Kurtz, Z. Han and T. Langaee, Adv. Drug. Deliv. Rev., 2008, 60, 1478.
20 M. H. Norman, N. Chen, Z. D. Chen, C. Fotsch, C. Hale, N. Han, R. Hurt, T. Jenkins, J. Kincaid, L. B. Liu, Y. L. Lu, O. Moreno, V. J. Santora, J. D. Sonnenberg and W. Karbon, J. Med. Chem., 2000, 43, 4288.
21 N. Baindur, N. Chadha and M. R. Player, J. Comb. Chem., 2003, 5, 653.

Development of dichloroacetamide pyrimidines as pyruvate dehydrogenases kinase inhibitors to reduce cancer cell growth: synthesis and biological evaluation

Shao-Lin Zhang ${ }^{\text {a }}$, Wen Zhang ${ }^{\text {a }}$, Qingqin Xiao ${ }^{\text {a,b }}$, Zheng Yang ${ }^{\text {a }}$, Xiaohui Hu ${ }^{\text {a }}$, Zhiyi Wei ${ }^{\text {b }}$ and Kin Yip Tam ${ }^{*}$
${ }^{a}$ Drug Development Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, China. E-mail: kintam@umac.mo; Phone: +853 88224988; Fax: +853 88222314.
${ }^{b}$ Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
The synthesis and biological assays were described herein to firstly identify a novel PDK1 inhibitor.

[^0]: ${ }^{a}$ Drug Development Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, China. E-mail: kintam@umac.mo; Phone: +853 88224988; Fax: +853 88222314.
 ${ }^{b}$ Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
 \dagger The authors declare no competing interests.
 Electronic Supplementary Information (ESI) available: Supplementary information available for: Assay for lactate formation; Synthesis procedures for the target compounds; ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and HRMS data and spectra; Protocols for cell culture, cell viability assay, IncuCyte Zoom live cells image for the growth of the cancer cells, apoptosis detection by flow cytometry, PDK1 expression and purification, ITC Analysis, PDK kinase activity assay, molecule docking.

